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Abstract

Analysis methods based on simulations and optimization have been previously developed

to estimate relative translation rates from next-generation sequencing data. Translation

involves molecules and chemical reactions, hence bioinformatics methods consistent with

the laws of chemistry and physics are more likely to produce accurate results. Here, we

derive simple equations based on chemical kinetic principles to measure the translation-initi-

ation rate, transcriptome-wide elongation rate, and individual codon translation rates from

ribosome profiling experiments. Our methods reproduce the known rates from ribosome

profiles generated from detailed simulations of translation. By applying our methods to data

from S. cerevisiae and mouse embryonic stem cells, we find that the extracted rates repro-

duce expected correlations with various molecular properties, and we also find that mouse

embryonic stem cells have a global translation speed of 5.2 AA/s, in agreement with previ-

ous reports that used other approaches. Our analysis further reveals that a codon can

exhibit up to 26-fold variability in its translation rate depending upon its context within a tran-

script. This broad distribution means that the average translation rate of a codon is not repre-

sentative of the rate at which most instances of that codon are translated, and it suggests

that translational regulation might be used by cells to a greater degree than previously

thought.
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Author summary

The process of translating the genetic information encoded in an mRNA molecule to a

protein is crucial to cellular life and plays a role in regulating gene expression. The transla-

tion initiation rate of a transcript is a direct measure of the rate of protein synthesis and is

the key kinetic parameter defining translational control of the gene’s expression. Transla-

tion rates of individual codons play a considerable role in coordinating co-translational

processes like protein folding and protein secretion and thus contribute to the proper

functioning of the encoded protein. Direct measurement of these rates in vivo is nontrivial

and recent next generation sequencing methods like ribosome profiling offer an opportu-

nity to quantify these rates for the entire translatome. In this study, we develop chemical

kinetic models to measure absolute rates and quantify the influence of different molecular

factors in shaping the variability of these rates at codon resolution. These new analysis

methods are significant because they allow scientists to measure absolute rates of transla-

tion from next-generation sequencing data, provide analysis tools rooted in the physical

sciences rather than heuristic or ad hoc approaches, and allow for the quantitative, rather

than qualitative study of translation kinetics.

Introduction

Translation-associated rates influence in vivo protein abundance, structure and function. It is

therefore crucial to be able to accurately measure these rates. The ribosome synthesizes a pro-

tein in three steps namely initiation, elongation, and termination [1–3]. Translation is initiated

at the start codon of the mRNA transcript by the ribosomal subunits that form a stable transla-

tion-initiation complex [4,5]. During the elongation step, the ribosome moves along the

mRNA transcript decoding individual codons and adding residues to the growing nascent

chain. Translation is terminated when the stop codon is in the ribosome’s A-site resulting in

release of the synthesized protein. The initiation and elongation phases of translation contrib-

ute to protein levels inside a cell; indeed, alteration of their rates can cause protein abundance

to vary by up to five orders of magnitude [6–8], and alter protein structure and function [9].

Termination does not influence the cellular concentration of proteins as it is not a rate limiting

step [10]. Therefore, knowledge of translation initiation and codon translation rates are impor-

tant to understand the regulation of gene expression.

Significant efforts have been made to extract these rates from data generated from ribosome

profiling experiments [11–14], a technique that measures the relative ribosome density across

transcripts [15]. In a number of methods, the actual rates are not measured but instead a ratio

of rates, or other relevant quantities have been reported [16–20]. Estimates of translation-initi-

ation and codon translation rates have helped identify the molecular determinants of these

rates. For example, estimated initiation rates correlate with the stability of mRNA structure

near the start codon and in the 5’ untranslated region [10,14,16,21] indicating mRNA structure

can influence initiation. Similarly, codon translation rates have been found to positively corre-

late with their cognate tRNA abundance [16,22], and anti-correlate with the presence of down-

stream mRNA secondary structure [23,24] and positively charged nascent-chain residues

inside the ribosome exit tunnel [20,25]. Some of these findings are controversial as different

analysis methods and data have led to contradictory results concerning the role of tRNA con-

centration [16,19,26,27], positively charged residues [17,20] and coding sequence (CDS)

length [10,12,14,16]. Moreover, the accuracy of these methods is unknown because

orthogonal, high-throughput experimental measurements of translation rates do not exist.
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In the absence of data that could differentiate the accuracy of different methods, we argue

that the methods most likely to be accurate will be those that are constrained by and account

for the chemistry and physics of the translating system. Here, we present three such methods,

derived from chemical kinetic principles that permit the extraction of translation-initiation

rates, transcriptome-wide average elongation rate and individual codon translation rates from

Next-Generation Sequencing (NGS) data. These methods are verified against artificial ribo-

some profiling data generated from detailed simulations of the translation process where the

translation rates are known a priori. We then apply these methods to in vivo ribosome profil-

ing data and extract the transcriptome-wide translation-initiation and codon translation rates

in S. cerevisiae and transcriptome-wide average elongation rate in mouse stem cells. We show

that the translation rate parameters correlate with factors known to modulate these rates, and

assign absolute numbers to these rates.

Results

Theory

Measuring translation-initiation rates. To derive an analytical expression relating the

translation-initiation rate to the experimental observable of ribosome density along a tran-

script we assume steady state conditions, meaning that the ribosome flux at each codon posi-

tion is equal to the rate at which fully synthesized protein molecules are released. Thus, for any

transcript i, we have:

Fð1; iÞ ¼ Fð2; iÞ ¼ � � � ¼ Fðj; iÞ ¼ � � � ¼ FðNcðiÞ; iÞ; ð1Þ

where F(1, i) is equal to the flux of ribosomes initiating translation at the start codon, F(j, i) is

the flux of ribosomes moving from codon position j to (j + 1) on copies of transcript i, Nc(i) is

the number of codons in the transcript, and F(Nc(i), i) is the flux of ribosomes terminating

translation from the stop codon. In our modeling, the position of a ribosome on a transcript is

defined by its A-site location.

Let ‘ be the number of codon positions that a ribosome covers on a transcript. A ribosome

typically covers 10 codon positions and hence ℓ = 10 with the A-site of the ribosome located at

the sixth codon position in this segment [15]. A ribosome initiating translation will, therefore,

cover codon positions 1 through 6 in the coding sequence, with the other portion covering

part of the transcript’s 50 UTR. It follows then that a ribosome translating any of the first ‘ þ 1

codons will prevent a new ribosome from initiating translation by physically blocking the first

six codon positions of the transcript. Thus, the ribosome flux at the start codon is

Fð1; iÞ ¼ aðiÞ½1 �
X‘þ1

k¼2
rðk; iÞ�; ð2Þ

where α(i) is the initiation rate in the absence of any ribosome at the first ‘ þ 1 codon posi-

tions, and ρ(k, i) is the average ribosome occupancy at the kth codon position of the transcript

[28]. Note well, Eq (2) assumes that the ρ(k, i)s for the first ten codon positions are indepen-

dent of each other, and is therefore a first-order approximation of an exact solution and thus

Eq (2) ignores higher order terms of α(i) [28]. This assumption may introduce inaccuracies in

the calculation of F(1, i) for large α(i)s. Polysome profiling experiments [29] and computer

simulations of protein synthesis [21], however, suggest that most S. cerevisiae transcripts are

translated in the regime of low average ribosome density. As a consequence, ignoring higher

order terms of α(i) in Eq (2) provides a reasonable estimate of F(1, i). Under a mean-field

assumption [30], the ribosome flux at the jth codon position for copies of transcript i can be
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written as

Fðj; iÞ ¼ oðj; iÞrðj; iÞf ðj; j þ ‘; iÞ: ð3Þ

In Eq (3), ω(j, i) is the intrinsic translation rate of the jth codon position in the transcript

(i.e., the rate that would be observed in the absence of any other ribosomes), and f ðj; j þ ‘; iÞ is

the conditional probability that given that a ribosome is at the jth codon position there is no

ribosome at the ðj þ ‘Þ
th

codon position.

We used Eqs (1), (2) and (3) to derive (see S1 Text) the following expression for translation-

initiation rate

a ið Þ ¼
hrðiÞiðNcðiÞ � 1Þ

hTðiÞi½1 �
P‘þ1

k¼2
rðk; iÞ�

; ð4Þ

where hrðiÞi ¼

PNcðiÞ

j¼2
rðj;iÞ

NcðiÞ�1
is the average ribosome density per codon on the ith transcript, and

hT(i)i is the average time a ribosome takes to synthesize a full-length protein from the tran-

script. Eq (4) can measure the translation-initiation rate provided hT(i)i, hρ(i)i and the ρ(j, i)s
are known. We calculated hρ(i)i and ρ(j, i) from ribosome profiling, RNA-Seq and polysome

profiling data, and hT(i)i using a scaling relationship [31] between protein synthesis time and

CDS length. Full details for determining these parameters are provided in S1 Text.

Measuring the average translation elongation rate across a transcriptome. In ribosome

run-off experiments performed on eukaryotic cells translation-initiation is inhibited at time

point t = 0 using the drug harringtonine [26]. This causes ribosomes to accumulate at start

codons and thereby block new translation-initiation events. At time t = Δt, the cells are treated

with cycloheximide, which stops translation elongation by the ribosomes. The experiment is

repeated at different Δt values. A meta-gene analysis of ribosome profiles [32] is then obtained

from each run-off experiment and used to quantify the depletion of ribosome density across

the transcripts as a function of time, allowing the transcriptome-wide average elongation rate

to be measured [26].

To model this non-steady state data, we assume that ribosome movement along transcripts

is a form of mass flow along one dimension–a reasonable assumption given that ribosomes

can move only in one direction along a transcript. In this case, a natural way to describe this

phenomenon is the continuity equation

dr

dt
þ r � J ¼ 0; ð5Þ

which equates the decrease in density of a substance (ρ, the ribosome occupancy in our case)

over time, t, with the outward flux J of that substance from a particular region of space. The

equality with zero in Eq (5) is a manifestation of conservation of mass. In the ribosome run-off

experiment this corresponds to a depletion of ribosome density along a segment of a transcript

as ribosomes move out of that region with rate J, and are not replenished by new ribosomes

since initiation was halted at time t = 0.

According to the definition of divergence, r � J is the rate at which ρ exits from a given

closed space [33]. For a system composed of L codons along a transcript that are being trans-

lated by ribosomes, r � J ¼ J
L (see S1 Text, Eq. (S14)). Substituting this value of r � J into Eq

(5) and then integrating over t from 0 to Δt yields

rðt¼Dt; LÞ

rðt¼0; LÞ
¼ 1 �

Dt
tðLÞ

; ð6Þ
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where ρ(t = Δt, L) is the average ribosome density of the transcriptome within the first L codon

positions of a sample at run-off time Δt. t Lð Þ ¼
Lrðt¼0;LÞ

J is the average time at which
rðt¼Dt;LÞ

rðt¼0;LÞ

equals zero.
rðt¼Dt;LÞ

rðt¼0;LÞ
in Eq (6) is calculated using the ribosome run-off data. Explicit details of

this calculation are provided in the S1 Text.

We inserted the relative average ribosome density ρ(t = Δt, L)/ρ(t = 0, L) obtained from Eq

(S16) into Eq (6) and plotted this against Δt. By fitting this data to a straight line we determined

τ(L), the time at which ρ(t = Δt, L)/ρ(t = 0, L) equals zero. τ(L) is, therefore, the time at which

the last translating ribosomes have crossed the Lth codon position, on average. We calculated

τ(L) in this way for different L values up to the minimum L value at which ribosome density

depletion no longer occurs even at the longest run off time in the experiment. The average

transcriptome-wide elongation rate hωi is therefore equal to

hoi ¼
dL

dtðLÞ
: ð7Þ

Measuring individual codon translation rates. To derive a mathematical expression for

extracting codon translation rates from ribosome profiling data we assumed steady state con-

ditions in which the flux of ribosomes at each codon position is equal to the rate of protein

synthesis

Nribo
2;i

tð2; iÞ
¼

Nribo
3;i

tð3; iÞ
¼ � � �

Nribo
j;i

tðj; iÞ
¼ � � � ¼

Nribo
NcðiÞ;i

tðNcðiÞ; iÞ
: ð8Þ

In Eq (8), Nribo
j;i and τ(j, i) are, respectively, the steady-state number of ribosomes and the

average translation time of the jth codon position within copies of transcript i in a given experi-

mental sample. The mean total time of synthesis hT(i)i of transcript i is, by definition, equal to

hTðiÞi ¼ tð2; iÞ þ tð3; iÞ þ � � � þ tðNcðiÞ; iÞ; ð9Þ

Solving Eqs (8) and (9) for τ(j, i) (see derivation in S1 Text) yields

t j; ið Þ ¼
Nribo

j;i
PNcðiÞ

l¼2
Nribo

l;i

hTðiÞi: ð10Þ

As is the convention in the field [34], we assume that ribosome profiling reads at the jth

codon position of transcript i, c(j, i), are directly proportional to Nribo
ij . This relationship can be

expressed as

Nribo
j;i ¼ aj;icðj; iÞ; ð11Þ

where aj,i is a constant of proportionality. aj,i values have not been experimentally measured,

but they are commonly assumed to be constant for all codon positions in a single experiment

[34]. That is, aj,i = ai for all i and j. Using Eq (11) with aj,i = ai in Eq (10) yields

t j; ið Þ ¼
cðj; iÞ

PNcðiÞ
l¼2

cðl; iÞ
hTðiÞi: ð12Þ

Eq (12) indicates that we can determine the individual codon translation rates from ribo-

some profiling reads provided we know the average total synthesis time of the transcript. Eq

(12) can be connected to the expression for normalized ribosome density, derived in the SI of

Ref. [16], where
tðj;iÞ
tðiÞ Nc ið Þ is the normalized ribosome density and is expressed as a function of

Chemical kinetic methods to measure translation rates from ribosome profiling data
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c(j, i)s. Eq (12) is also related to a metric used in the simulations of Ref. [14] to estimate the

codon translation rates. It is important to note that τ(j, i) is the actual codon translation time,

which includes the time delay caused by ribosome-ribosome interactions and is distinct from

the intrinsic translation rate of a codon ω(j, i). τ(j, i) is equal to the inverse of oðj; iÞf ðj; j þ ‘; iÞ
[35].

Application

In silico validation of our methods. As a first step to test the accuracy of the measured

translation rates from Eqs (4), (7) and (12), we applied them to artificial S. cerevisiae ribosome

profiles generated by kinetic Monte Carlo [36] and Gillespie simulations [37] in which all of

the underlying rates are known (see Methods). If our analysis methods are accurate then a nec-

essary condition is that they reproduce these rates from the simulated profiles. We applied Eq

(4) to the simulated, steady-state ribosome profiling data and find that it quantitatively repro-

duces the initiation rates used in the simulations (Fig 1A, slope = 0.97, R2 = 0.84 and p-

value < 10−60). We applied Eq (7) to the non-steady state ribosome run off profiles of S. cerevi-
siae (Fig 2A and 2B) and find that it accurately measures the transcriptome-wide average

translation rate. Specifically, our method measures the transcriptome-wide average elongation

rate at 3.8 AA/s against the real average elongation rate of 4.2 AA/s. Note well, that as predicted

by Eq (6), we also observe a linear decrease in
rðt¼Dt;LÞ

rðt¼0;LÞ
as a function of time (S1A Fig). Finally,

we applied Eq (12) to the steady-state ribosome profiles and find that the individual codon

translation times are accurately measured by our method (Fig 3, median R2 = 0.96 and median

slope = 1.00). Thus, the analysis methods we have created can in principle accurately capture

the translation rate parameters.

There are several points worth noting concerning these tests. First, the rates used in the sim-

ulation model are realistic, having been taken from literature values [10,38]. Second, the depth

of coverage in the simulated ribosome profiles is in the same range as experiments, e.g., having

26 million reads arising from 1,388 different coding sequences [16]. Third, Eqs (4) and (12)

require knowledge of the average synthesis time of a protein, which is experimentally difficult

to measure. Therefore, in the above analyses we used the approximation that the average syn-

thesis time of a protein is proportional to the number of codons in its transcript, multiplied by

the transcriptome-wide average codon translation time (Eq. (S10)) [26,31]. However, when we

Fig 1. Eq (4) accurately determines the translation-initiation rate from simulated S. cerevisiae ribosome profiles

and its application to experimental data. (A) Translation-initiation rates determined by applying Eq (4) to simulated

ribosome profiling data are plotted against the actual initiation rates used in the simulations. These initiation rates

were calculated using Eq (S10) for the average protein synthesis times. (B) Same as (A) but the average protein

synthesis times were measured from our simulations of the translation process. The solid lines in (A) and (B) are the

lines of the best fit. (C) The distribution of in vivo translation-initiation rates measured by applying Eq (4) to

experimental data involving 1,287 S. cerevisiae high coverage transcripts.

https://doi.org/10.1371/journal.pcbi.1007070.g001
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use the actual synthesis time of each transcript we achieve even better agreement between the

estimated and true translation initiation rates (Fig 1B, slope = 0.99, R2 = 0.95 and p-value <

10−60). Similarly, when we increase our read coverage from 7.1 million to 35.5 billion reads

and use the exact synthesis time of a protein, R2 between the estimated and true codon transla-

tion rates goes to > 0.99. Thus, our model is reasonably accurate when approximate protein

synthesis times are used (Eq. (S10)) and the coverage is similar to typical experiments, and

highly accurate when the exact synthesis time is used and coverage is high.

Ribosome profiling data tend to exhibit a higher ribosome density near the start codon as

compared to the rest of the transcript [16]. This feature might bias the in vivo measurement of

initiation rate using our method, as Eq (4) is a function of the ribosome density of the first 10

codon positions. To assess the effect of this feature on the accuracy of our method we created

in silico ribosome profiles by running synthesis simulations in which the translation rates of

the first 100 codons were 50% slower for all S. cerevisiae 1,388 transcripts. This artificial

decrease in codon translation rates introduced more ribosome density near the start codon.

Using these in silico ribosome profiles, we find that Eq (4) still recapitulates the initiation rates

with a similar level of accuracy as before (S2 Fig, R2 � 0.85). Thus, higher ribosome density

near the start codon does not substantially affect the accuracy of our method. Our simulations

Fig 2. Measuring average elongation rate by applying Eq (7) to in silico and in vivo ribosome run-off data. (A)

Normalized average ribosome read density (RT ðj; DtÞ), Eq. (S15), calculated from simulated ribosome run-off

experiment is plotted as a function of codon position for run-off times of 0, 5, 10, 15, 20, 25 and 30 s−1 with black, red,

blue, cyan, pink, yellow and green data points, respectively. (B) The average time taken to fully deplete the normalized

average ribosome read density within a window of the most 50 codons positions in S. cerevisiae transcripts are plotted

against the most 30 codon position of the window. (C) Normalized average ribosome read density, calculated from in
vivo run-off experimental data reported in Ref. [26], are plotted as a function of codon position for the run-off times of

0, 90, 120 and 150 seconds with black, red, blue and cyan data points, respectively. (D) The average time taken to fully

deplete the normalized average ribosome read density within a window of the most 50 codons positions in mouse stem

cells transcripts are plotted against the most 30 codon position of the window. The negative intercept reflects the time

taken by harringtonine to engage with ribosomes.

https://doi.org/10.1371/journal.pcbi.1007070.g002
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do not account for other possible biases associated with ribosome profiling experiments,

including sequencing amplification biases [39]. Thus, the accuracy of our model as determined

from these in silico ribosome profiles might represent an upper bound to the accuracy on

actual in vivo profiles with similar sequencing depth.

Measuring the initiation rate from experimental data. We next applied Eq (4) to in vivo
ribosome profiling and RNA-Seq data from S. cerevisiae reported in Ref. [16]. Calculation of

the translation-initiation rate for a transcript requires knowledge of the average time a ribo-

some takes to synthesize the protein (hT(i)i) and the average occupancies of the first ten codon

positions (ρ(j, i)). The average protein synthesis time was calculated using the scaling relation-

ship (Eq. (S10)) where the transcriptome-wide average codon translation time was set to 200

ms as reported in the literature [40,41] (see S1 Text). ρ(j, i)s were calculated from Eq. (S9)

using the ribosome profiling and RNA-Seq data from Ref. [16] and polysome profiling data

from Ref. [42]. We then inserted these arguments into Eq (4) to calculate the translation-initia-

tion rates for 1,287 S. cerevisiae transcripts that meet the filtering criteria (see Methods) and

for which polysome profiling data is available. We find the translation-initiation rates vary

from as low as 5.8 × 10−2 s−1 (5th percentile) to as high as 0.24 s−1 (95th percentile) with the

most probable rate being 0.1 s−1 (Fig 1C and S1 File). These translation-initiation rates are

Fig 3. Eq (12) accurately determines codon translation times from simulated ribosome profiles. (A) Average

translation time of a codon in YER009W S. cerevisiae transcript is plotted as a function of its position within the

transcript. The true codon translation times in the simulations are plotted as green boxes, blue and black data points

are the translation times measured using Eq (12). Blue data points were calculated using the average protein synthesis

time measured from the simulations and relative ribosome density calculated using a large number of in silico
ribosome profiling reads. Black data points were calculated using the average protein synthesis time estimated from the

scaling relationship (Eq. (S10)) and the relative ribosome density calculated from the in silico reads which were equal to

the reads aligned to the same transcript in the experiment [16]. (B) Measured codon translation times, plotted with

black and blue data points in (A), are plotted against true codon translation times in the simulations in the top and

bottom panel, respectively. (C) Probability distribution of the R2 correlation between the true and calculated codon

translation times for the 85 S. cerevisiae transcripts. (D) Probability distribution of the slope of the best-fit lines

between the estimated and true codon translation times for the 85 S. cerevisiae transcripts. The high R2 in (C) and

median slope of 1.00 in (D) indicate that Eq (12) can, in principle, accurately measure absolute rates.

https://doi.org/10.1371/journal.pcbi.1007070.g003
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significantly lower than the average elongation rate in S. cerevisiae which is consistent with

previous studies indicating that initiation is the rate limiting step in translation [21]. The dis-

tribution of translation-initiation rates measured using Eq (4) is very similar to the distribution

reported in Ref. [10], which was obtained using polysome profiling data.

To test the reproducibility of these results we calculated in vivo translation-initiation rates

using the ribosome profiling and RNA-seq data measured by Nissley et al. [43] and polysome

profiling data in Refs. [29,42]. These in vivo initiation rates are reported in the S1 File. We

have found a statistically significant correlation between the initiation rates measured from the

Weinberg et al. [16] and Nissley et al. [43] data sets (S3 Fig). The Pearson correlation between

them was 0.53 (P = 10−46) and 0.31 (P = 4 × 10−15) when polysome profiling data of Mackay

et al. [42] and Arava et al. [29] were used, respectively. We have also compared these in vivo
initiation rates with the ones measured in the study of Dao Duc and Song [14] and found a

statistically significant correlation between them with Pearson r varying from 0.51 to 0.80

(P < 10−24), depending upon the data sets used (S4 Fig).

Reproducing known correlations with initiation rates. Next, we tested whether our

measurements reproduce previously reported correlations between initiation rates and CDS

length, sequence context upstream and around the start codon, folding energy near the 50 cap

of mRNA molecule, and protein copy number. Initiation rates can depend on CDS length

because the shorter a transcript, the more probable the termini will be in close proximity,

allowing more efficient re-initiation of terminating ribosomes [44]. We used the initiation

rates extracted from ribosome profiling and RNA-Seq data reported in Ref. [16], and polysome

profiling data reported in Ref. [42] and find a moderate but statistically significant correlation

(Pearson r = 0.51, p-value = 4 × 10−59) between the translation-initiation rate and the inverse

of CDS length (Fig 4A), as has been observed previously [10,14,16].

Folded mRNA structure near the 50 cap can disrupt the binding of initiation factor eIF4F

and the scanning of 40S ribosomes in eukaryotes, causing a decrease in a gene’s translation-

initiation rate [14,16,45,46]. We calculated the mRNA folding energy near the 50 mRNA cap

(see Methods) and find a statistically significant correlation between them and our translation-

initiation rates (Fig 4B, Pearson r = 0.30 and p-value = 2 × 10−9).

Sequence-based features also determine the rate of translation-initiation in eukaryotes. For

example, an upstream open reading frame can potentially interfere with translation initiation

at the canonical start codon by initiating translation prematurely resulting in a different pro-

tein product [47,48]. We tested whether upstream open reading frames affect initiation rates

by comparing the median initiation rate in transcripts with at least one upstream AUG site

against transcripts that do not contain any upstream AUG. We find that the transcripts with at

least one upstream AUG codon have a median initiation rate that is 15% slower (0.095 s−1 ver-

sus 0.112 s−1, Mann-Whitney U test, p-value = 0.006). Weinberg et al. [16] also demonstrated

this effect with their measure of initiation efficiency. Additionally, the 12-nt Kozak sequence

[49] is enriched in highly expressed genes and mutations in the Kozak sequence have been

shown to drastically effect protein abundance levels [50]. We find that initiation rates are 16%

faster with a median value of 0.116 s−1 in transcripts with Kozak-like sequences around the

start codon as compared to those that do not contain these mRNA sequence motifs (Mann-

Whitney U test, p-value = 0.005). Hence, the presence of Kozak or Kozak-like sequences

around the start codon facilitate translation initiation. This is consistent with results of Pop

et al. [13] who have shown a strong correlation between the presence of the Kozak sequence

and translation efficiency.

Initiation is typically the rate limiting step of translation [21]. Therefore, a faster initiation

rate should increase the rate of protein synthesis and thus the steady-state level of proteins

in a cell. Indeed, we find a statistically significant correlation between the rate of translation-
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initiation and protein copy number in a cell (Fig 4C, Pearson r = 0.29 and p-value = 1 × 10−5).

Next, we tested whether the missing variation in Fig 4C is explained by the variation in mRNA

copy number. We did this by measuring the correlation between the protein copy number

and the multiplicative product of a transcript’s copy number and its initiation rate. We find a

stronger correlation between this quantity and protein copy number (Fig 4D, Pearson r = 0.70

and p-value = 5 × 10−33). These results suggest, as has been found previously [21,51], that the

translation-initiation rate is a major determinant of protein abundance inside a cell.

We further measured the correlation between the mRNA copy number and initiation

rates and found a moderate level of correlation between them (Fig 4E, Pearson r = 0.35 and p-

value = 1 × 10−7). This suggests that higher copy number transcripts have a faster translation-

initiation rate, consistent with previous studies [52]. We also find statistically significant corre-

lations between the aforementioned quantities when we calculated the translation-initiation

rate from other published data, using all possible combinations of ribosome profiling,

RNA-Seq [16,43] and polysome profiling datasets [29,42] (S5–S7 Figs, S1 and S2 Tables).

In summary, we find that the initiation rates we measured correlate with factors that

have been established to influence translation speed. This suggests our initiation rates are

reasonable.

Measurement of the average codon translation rate in a cell. Next, we applied Eq (7) to

measure the average codon translation rate inside mouse stem cells from ribosome run-off

experiments [26]. We calculated the average normalized reads RT ðDt; jÞ from three different

samples prepared by allowing the ribosomes to continue their elongation for 90, 120, and

150 seconds after the inhibition of initiation, and plotted RT ðDt; jÞ as a function of codon

Fig 4. Translation-initiation rates measured using Eq (4) reproduce previously reported correlations with

molecular properties. In vivo translation-initiation rates of S. cerevisiae transcripts are plotted against the inverse of

their CDS length, folding energy of mRNA molecule near the 50 cap and protein copy number in (A), (B) and (C),

respectively. (D) The copy number of S. cerevisiae proteins are plotted as a function of the product of the initiation rate

of the transcripts that encode them and that transcript’s copy number in a cell. (E) mRNA copy number is plotted

against the translation-initiation rate.

https://doi.org/10.1371/journal.pcbi.1007070.g004
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position (Fig 2C). By following the analysis procedure described in the Theory Section, we

fitted
rðt¼Dt;LÞ

rðt¼0;LÞ
against Δt curves (S1B Fig) with a line and calculated the depletion time τ(L),

where
rðt¼Dt;LÞ

rðt¼0;LÞ
equals zero for L varying between codon positions 800 and 1000. Plotting τ(L)

against L yields a straight line (Fig 2D). The gradient of this line is the average elongation rate,

which we find equals 5.2 AA/s.

Measurement of individual codon translation rates. To extract individual codon trans-

lation times along a coding sequence we applied Eq (12) to 117 and 364 high-coverage tran-

scripts from ribosome profiling data reported, respectively, in Refs. [43] and [53] (see

Methods). The number of transcripts in both of these datasets are small as compared to the

size of S. cerevisiae transcriptome. Therefore, to determine whether these subset of transcripts

are representative of the whole transcriptome we compared the distributions of different phys-

icochemical properties in these two sets to the total transcriptome. We find that the subset of

transcripts from Nissley et al. [43] have 6.6% higher mean GC content but a very similar mode

of length distribution and codon usage relative to the total transcriptome (S8A–S8C Fig). For

Williams et al.’s ribosome profiling dataset [53] we again find that the mode of the length dis-

tribution and codon usage is similar to the S. cerevisiae transcriptome, with 5.3% higher mean

GC content (S8D–S8F Fig). This indicates that the set of transcripts we analyze are largely rep-

resentative of the properties of the transcriptome, but have a bit higher GC content.

Upon extracting individual codon translation times from these ribosome profiling data, we

first characterized the distribution of translation times for the 61 sense codons (S1 File). We find

around three-fold difference between the median translation times of the fastest and slowest

codons in the Nissley dataset [43]. The fastest and slowest codons are AUU and CCG codons

that are translated in 127±2 and 344±37 ms (median ± standard error), respectively. The vari-

ability in translation times for a given codon type is even larger, as illustrated by wide distribu-

tions of their translation times in the Nissley dataset (Fig 5A, S9A Fig). Fig 5B shows an example

Fig 5. Wide variability in individual codon translation rates in vivo. (A) Probability density functions for translation times of AUU, GAC and UGG codons in

Nissley dataset. Median translation times for AUU, GAC and UGG codon are 127, 208 and 331 ms, respectively. (B) The translation time profile of S. cerevisiae
transcript YAL038W from Nissley dataset is shown between codon positions 150 and 450. AAG codon (colored red) is translated in 362.8 ms at the 196th codon

position and in 58.6 ms at 413th codon position.

https://doi.org/10.1371/journal.pcbi.1007070.g005
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where the AAG codon is translated with translation times ranging from 59 ms at codon position

413 to 363 ms at codon position 196 in YAL038W S. cerevisiae transcript. We find a 16-fold vari-

ability in codon translation times across the transcriptome even if we ignore the extremities of

the distributions by only considering the translation times between the 5th and 95th percentiles

of all codon types. Similar ranges are found in the Williams dataset where there is a 26-fold

variability in translation times and 3.9 fold-difference in median translation times of the fastest

(AUC) and slowest (CGA) codons, which are translated with median time of 128±2 and 496±61

ms, respectively (S1 File, S9B Fig). The translation time distributions are well correlated between

the above two datasets (S10A and S10B Fig). The study of Dao Duc and Song [14] also infers the

individual codon translation rates and a very high correlation is observed between the rates

obtained using our method and the rates found in that study (S10C Fig).

Molecular factors flanking the A-site shape the variability of individual codon transla-

tion rates. A number of molecular factors have been shown or suggested to influence the

translation rate of a codon in the A-site, including tRNA concentration, mRNA structure,

wobble-base pairing, and proline residues at or near the ribosome P-site [16,18–20,22–24,39].

Here, we test whether the presence or absence of these factors correlate with changes in trans-

lation speed that we measure. We first examined whether the cognate tRNA concentration

correlates with our translation times. We find that the median codon translation times

negatively correlates with the abundance of cognate tRNA (Fig 6A and 6B, ρ = −0.51 (p-

value = 0.0006) and ρ = −0.50 (p-value = 0.0009), respectively), indicating that codons with

lower cognate tRNA concentrations typically are translated more slowly.

The presence of a proline amino acid at the ribosome’s P-site can slowdown translation due

to its stereochemistry [55]. We tested whether such an effect was present in our data set by cal-

culating the percentage difference in median translation time at the A-site when proline is

present at the P-site versus when it is not present at the P-site. We find a 19% increase in

median translation time when proline is present (Fig 6C, Mann-Whitney U test, p-

value = 2.2 × 10−32) indicating that proline does systematically slowdown translation in vivo.

It has been found that the presence of downstream mRNA secondary structure can slow

down the translation at the A-site [23,24,56,57]. To test for this effect, we plotted the difference

in the median translation time at the A-site when mRNA secondary structure is present versus

when it is not present at a given number of codon positions downstream of the ribosome A-

site. Structured versus unstructured nucleotides were identified using DMS data [58]. We find

that when secondary structure is present 4 codons downstream of the A-site, placing that

structure directly at the leading edge of the ribosome, there is on average a 6.7% increase in

codon translation time at the A-site (Fig 6D, Mann-Whitney U test, p-value = 2.7 × 10−14). A

slowdown is also found when we cross-reference our codon translation times with mRNA

structure data from PARS [59], which measures the presence of mRNA structure in vitro (Fig

6E, Mann-Whitney U test, p-value = 5.6 × 10−9).

Wobble base pairing between the codon and anti-codon tRNA stem-loop has been found

to slowdown translation speed as compared to Watson-Crick base pairing in bacteria [60] and

metazoans [61]. For each pair of codon types that are decoded by the same tRNA molecule, by

Watson-Crick base pairing in one instance and wobble base pairing in the other, we tested

whether two codon types are translated with different rates. We find that there is no systematic

difference in median translation times between codons that are decoded by either mechanism

(Fig 6F, Wilcoxon signed-rank test, p-value = 0.46), indicating that, at least in S. cerevisiae,
wobble base pairing does not slowdown in vivo translation elongation.

These results were reproduced using another dataset [53] that also shows that codon trans-

lation times anti-correlate with tRNA concentration (S11A and S11B Fig, ρ = −0.58 (p-value =

7.8 × 10−5) and ρ = −0.56 (p-value = 0.0002), respectively), exhibit larger translation times
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when a proline is present at the P-site (S11C Fig, Mann-Whitney U test, p-value = 3.0 × 10−27)

or when mRNA structure is present downstream of the A-site (S11D and S11E Fig, Mann-

Whitney U test, p-values = 3.6 × 10−5, 8.7 × 10−4, respectively) and similarly, we found no dif-

ference between the translation rate of codons that are translated with Watson-Crick and

Wobble base pairing (S11F Fig, Wilcoxon signed-rank test, p-value = 0.88).

Discussion

We have presented three methods for measuring initiation rates and elongation rates from

ribosome profiling data. What distinguishes our approach from many others is that it uses

simple equations derived from chemical kinetic principles, it does not require simulations or a

large number of parameters, and it yields absolute rather than relative rates. We demonstrated

that our approach provides accurate results when applied to test data sets (Figs 1, 2 and 3), and

Fig 6. Molecular factors shaping the variability of individual codon translation rates. (A-B) Median translation times of codon types are

negatively correlated with cognate tRNA abundance estimated by (A) gene copy number and (B) RNA-Seq gene expression. (C) Probability

distribution of translation times of codons in the A-site either when a proline is present in the P-site (green) or when a proline is not present

in the P-site (blue). (D-E) Percentage difference in median translation times when mRNA structure is present relative to when it is not

present is plotted as a function of codon position after the A-site. Grey bars indicate results that are not statistically significant. Error bars

are the 95% C.I. calculated using 104 bootstrap cycles; significance is assessed using the Mann-Whitney U test corrected with the Benjamini

Hochberg FDR method for multiple-hypothesis correction. mRNA structure information used in (D) and (E) are provided by in vivo DMS

and in vitro PARS data, respectively. (F) Scatter plot of the median translation times of pairs of codon types that are decoded by the same

tRNA molecule. The red line is the identity line. The list of tRNA molecule names and decoded codon types were taken from Ref. [54]. Error

bars are standard error about the median translation time calculated with 104 bootstrap cycles.

https://doi.org/10.1371/journal.pcbi.1007070.g006
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reproduced previously reported correlations between translation speed and various molecular

factors (Figs 4 and 6, S5–S7 and S11 Figs), suggesting the rates obtained by these methods are

reasonable.

A novel finding concerning elongation rates is that in S. cerevisiae the translation time of a

codon depends dramatically on its context within a transcript. In S. cerevisiae, the range of

individual codon translation time spans up to 26-fold, from 45 to 1,194 ms, even after discard-

ing the top and bottom 5% of this distribution as possible outliers. The codon AAG in gene

YAL038W, for example, occurs 36 times along this gene’s transcript. At the 196th codon posi-

tion AAG is translated in 363 ms, and at the 413th position AAG is translated in 59 ms. Thus,

the same codon in different contexts can be translated at very different speeds. Characterizing

the distribution of mean times of translation of different occurrences of the same codon reveals

a broad distribution (Fig 5A), whose coefficient of variation is often close to 0.5 (S1 File). This

means that the standard deviation is half of the average translation time of a codon. This leads

to the important finding that the average translation rate of a codon type is not representative

of the rate at which most instances of that codon type are translated. These results are consis-

tent with the findings that a large number of molecular factors determine codon translation

rates in vivo [62], thus giving rise to a broad distribution of rates (Fig 5A, S9 Fig). These factors

have been shown to cause a bias towards slower translation in the first 200 codons of many

transcripts [23].

A molecular factor that has not been quantified in this study is ribosome queuing. Cur-

rently, the conventional Ribosome profiling protocol isolates only monosomes and the mono-

some-protected fragments are extracted and sequenced. However, should ribosomes queue

along a transcript, disomes and trisomes are likely to be produced that are not accounted for

in current datasets. Recent studies [14,63] have attempted to quantify the extent of ribosomal

queuing but several challenges remain. One of the central challenges is to correctly identify the

location of A-sites of ribosomes translating disome- and trisome-protected mRNA fragments.

Current ribosome profiling datasets that include disomes have very sparse coverage, which

limits the application of our method but more importantly suggests that the occurrence of dis-

omes, and hence of queuing, may be rather rare under normal growth conditions. However,

under stress conditions, ribosome queuing has the potential to become frequent for some

genes and potentially decrease the accuracy of our method unless the disomes and trisomes

fragments are included. As advances in ribosome profiling experiments are made to generate

high coverage data and improve the A-site identification on disomes and trisomes, our method

will be able to more accurately quantify the rates of translation elongation under non-standard

growth conditions.

To determine the transcriptome-wide average elongation rate, Eq (7) was derived from the

principles of mass flow and the continuity equation. Eq (7) accurately determines the average

elongation rate in simulated data sets (Fig 2B). Applying Eq (7) to ribosome run-off experi-

ments revealed that in mouse stem cells the average codon translation rate is 5.2 AA/s which is

similar to the elongation rate measured in a previous study [26].

Measuring initiation rates using Eq (4) reproduced previously reported correlations (Fig

4A–4C), and also revealed a statistically significant correlation between the rate of translation-

initiation and mRNA copy number (Fig 4E). This correlation indicates that genes with a

higher mRNA copy number tend to have a higher translation efficiency, suggesting that tran-

scriptional and translational regulation of gene expression can act synergistically to maximize

the protein copy number of highly expressed genes.

Other methods have determined initiation rates by varying the initiation rate in simulations

until the average ribosome density of a transcript matched the experimentally measured value

[10,12,14,63]. These methods require knowledge of individual codon translation rates. Thus,
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small errors in these rates have the potential to accumulate and lead to large errors in the esti-

mated initiation rates. This might contribute to conflicting conclusions reported in the litera-

ture. For example, three [10,14,16] out of four published methods, as well as our method,

found a negative correlation between initiation rate and CDS length, whereas Gritsenko et al.
[12] found no such correlation. In contrast to these methods, our method is based on a simple

chemical kinetic equation that is easy to implement and does not require any detailed assump-

tions about codon translation rates. Apart from these simulation-based approaches, other

methods [19,21,64,65] measure the protein synthesis rate, which represents a lower bound to

the rate of translation-initiation (Eq (2)). One of these methods uses chemical kinetic modeling

[21], but unlike Eq (4), this method requires a number of biophysical parameters, including

the diffusion constant of tRNAs and ribosomes, and cell volume. The difference between the

initiation rate and protein synthesis rate increases with increasing initiation rate [66]. There-

fore, such methods could exhibit larger errors for transcripts that have higher translation-initi-

ation rates, which are often found in highly expressed transcripts (Fig 4C and 4E).

A number of approaches have been developed to measure codon translation times includ-

ing simulation based approaches [12,14] that extract rates by comparing the local distribution

of ribosome profiling reads with simulated ribosome densities, others that optimize an objec-

tive function [13] or fit a normalized-footprint-count distribution of a codon to an empirical

function [11], and yet others that measure relative codon translation times by quantifying the

enrichment of ribosome read density using a variety of procedures [18,19]. In contrast, Eq (12)

allows individual, absolute codon translation rates to be calculated directly from the ribosome

profile along the transcript. Another distinction is that a number of these methods [11–13,19]

assume that all occurrences of a codon across the transcriptome must be translated at the same

rate. This assumption cannot be correct as it is known that non-local aspects of translation

(such as mRNA structure) can influence the translation speed of individual codons. Eq (12)

does not make this assumption, and therefore its extracted rates can better reflect the naturally

occurring variation of codon translation times across a transcript.

The codon usage in a transcript, and associated translation rates, can affect various co- and

post-translational processes involving nascent proteins [9]. Therefore, the accurate knowledge

of codon translation times measured using Eq (12) will help provide a better quantitative

understanding of how translation speed can impact the efficiency of co-translational processes,

such as protein folding, chaperone binding, and numerous other processes involving the

nascent protein. Coupled with molecular biology techniques that can knock out various genes

and their functions in cells, Eq (12) provides the opportunity to quantitatively examine

whether co-translational processes can cause translation speed changes.

Ribosome profiles have ill-quantified sequencing biases [27] that can potentially produce

reads that are not proportional to the underlying number of ribosomes at a particular codon

position. This could lead to errors in the extraction of translation rate parameters using our

methods [67]. It has been demonstrated that using translational inhibitors like cycloheximide

leads to distortion of ribosome profiles due to inefficient arrest of translation [39,68]. This was

one of the primary reasons why initial studies using cycloheximide did not observe a correla-

tion of codon translation rates and cognate tRNA concentration. While there is often a strong

correlation between the total number of mapped reads per transcript between datasets from

different studies, the correlation is often poor at the individual nucleotide level [69]. This

“noise” at this resolution has been attributed to sparse read coverage [69], choice of ribonucle-

ase for digestion [70], and the methods used to halt elongation in the ribosome profiling proto-

col [39,68]. Restricting our analyses to transcripts with high coverage contributes to more

reproducible results, as can be seen by the high correlation between the two datasets used in

this study (S10 Fig). Experimental improvements that minimize bias have been developed
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[16,34,70,71], such as using flash-freezing for arresting translation and utilizing short micro-

RNA library generation techniques [72], but sequence-dependent biases can still exist, for

example due to varying efficiencies of linker ligation [73]. As experimental techniques are

improved to minimize bias, the accuracy of the rates extracted using our methods will also

increase.

The absence of accurate translation rate parameters is an impediment to quantitatively

modeling the process of translation. By measuring translation rate parameters using a chemi-

cal-kinetic framework, our methods can contribute to ongoing efforts [65,74] to understand

how the sequence features of an mRNA molecule can regulate gene expression. More broadly,

the approach we have taken in this study is to utilize ideas from chemistry and physics to

analyze next-generation sequencing data; a branch of bioinformatics we refer to as physical

bioinformatics. We expect that this physical-science-based approach will prove useful in

understanding other large biological data sets concerning translation and compliment conven-

tional computer science approaches to bioinformatics.

Methods

Simulated steady state and non-steady state ribosome profiling data

We carried out protein synthesis simulations using the inhomogeneous ‘-TASEP model

[36,63,66,74,75]. In this model, with ℓ = 10 and the A-site of the ribosome located at the 6th

codon within the ribosome-protected mRNA fragment, a new translation-initiation event sto-

chastically occurs on transcript i with rate α(i) when the first six codons of the transcript are

not occupied by another ribosome [15]. The ribosome then stochastically moves along the

transcript from codon position j to j + 1 with rate ω(j, i) if no ribosome is present at the

ðj þ ‘Þ
th

codon position. A ribosome stochastically terminates the translation process with rate

β when its A-site encounters the stop codon. Note that our simulation model does not account

for other processes such as ribosome recycling [44] and drop-off [76].

1,388 S. cerevisiae mRNA transcripts were selected to test our translation-initiation rate

measurement method. They were chosen based on the filtering criteria that at least 95% of

their codons have non-zero read density in the ribosome profiling data reported in Ref. [16].

The list of these genes are provided in S1 File. We used the translation-initiation rates reported

in Ref. [10] in our simulations for 1,236 of the transcripts. The initiation rates for the other

152 transcripts were not reported in Ref. [10]. Therefore, we randomly assigned (with replace-

ment) the initiation rate to those 152 transcripts from the same database. We used codon

translation rates from Fluitt and Viljoen’s model for all 61 sense codons [38] and set the trans-

lation-termination rate to 35 s−1 [10]. We set ‘ ¼ 10 codons in our simulations because it is

the canonical mRNA fragment length that is protected by ribosomes against nucleotide diges-

tion in ribosome profiling experiments [15].

We simulated the translation of these 1,388 S. cerevisiae mRNA sequences using the Gilles-

pie’s algorithm [37] to generate the in silico ribosome profiling data. During the simulations,

we recorded ribosome locations across the transcript every 100 steps, which we found mini-

mized the time-correlation between successive saved snapshots. The codon positions of the

ribosome’s A-site in each of these snapshots, summed over all snapshots, constituted the in sil-
ico generated ribosome profile for the transcript. We ran the simulations until the total num-

ber of in silico ribosome profiling reads were equal to the total number of reads aligned to the

same transcript measured from experimental ribosome profiling data reported in Ref [16].

This allowed us to create a realistic level of statistical sampling in our in silico ribosome pro-

files. Each of the uncorrelated snapshots can be thought as a separate copy of the mRNA
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transcript. Thus, the total number of these snapshots were equal to the mRNA copy number in

our in silico experiment which we used to calculate ρ(j, i)s.
Non-steady-state ribosome run-off experiments were simulated for 4,617 S. cerevisiae tran-

scripts by using a Monte Carlo simulation method whose procedure is described in Refs. [77–

79]. Like Gillespie’s algorithm [37], Monte Carlo simulation method also use exponentially

distributed first passage times for each step in our simulation. We used Fluitt-Viljoen codon

translation rates [38] and in vivo initiation rates reported in Ref. [10] to perform these non-

steady-state simulations. These transcripts were chosen based on the filtering criteria reported

in Ref. [26]. To perform the in silico run-off experiment described in Ref. [26], first we waited

until the translation system achieved a steady-state and then set α = 0, which stopped transla-

tion-initiation in our simulations. However, we allowed ribosomes to continue elongation for

a time Δt, after which elongation was halted. Next, we recorded the ribosome A-site positions

across the transcript that were defined as in silico ribosome profiling reads. We repeated this

in silico experiment for the run-off times of Δt = 5, 10, 15, 20, 25 and 30 seconds until the in sil-
ico average read per codon for each transcript became equal to the ribosome profiling reads

reported in Ref. [16].

To test our method for measuring codon translation rates using Eq (12) we selected 85 tran-

scripts that meet the filtering criteria (see sub-section Selection of genes for codon translation
rates for details) from the experimental ribosome profiling data reported in Ref. [16]. We sim-

ulated protein synthesis on those 85 transcripts to generate in silico ribosome profiles. The

number of in silico ribosome profiling reads for each of those 85 transcripts were equal to the

experimental ribosome profiling reads reported in Ref. [16].

In silico measurement of average protein synthesis and codon translation

times

To calculate the translation-initiation rate (Eq (4)) and codon translation times (Eq (12)) from

in silico ribosome profiles we need the average time a ribosome takes to synthesize a protein

from a given transcript. We measured this quantity from our simulations by recording the

time it takes a ribosome to traverse from the start codon to the stop codon in the transcript.

The average synthesis time of a protein was then calculated from 10,000 individual ribosomes.

We also calculated the average synthesis time of a protein using a scaling relationship that

uses the transcriptome-wide average codon translation time (S1 Text, Eq. (S10)). To calculate

this quantity, we first computed the average codon translation time for each transcript by

dividing the average protein synthesis time of a transcript by its CDS length. We then calcu-

lated the transcriptome-wide average codon translation time using the average codon transla-

tion time of each transcript.

Testing the accuracy of Eq (12) requires the real codon translation times which we mea-

sured by setting a separate clock at each codon position of a transcript in our simulations.

These clocks measured the time difference between successive arrival and departure of a ribo-

some at each codon position. To calculate the average codon translation time at each codon

position at least 10,000 such measurements were made.

Calculation of the folding energy near the 50 mRNA cap and estimation of

other relevant parameters

We calculated the folding energy near the 50 mRNA cap of S. cerevisiae transcripts to measure

its correlation with in vivo translation-initiation rates calculated using Eq (4). The folding

energy of the first 70 nucleotides after the 50 mRNA cap correlates the most with the transla-

tion-initiation rate [16]. To identify the 50 UTR sequences included in those 70 nucleotides, we
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used the database reported in Ref [80]. We calculated the folding energy of each segment by

using the software RNAfold 2.0 [81].

We used the mRNA and protein copy numbers reported in Ref. [82] to measure their corre-

lation with translation-initiation rates. The mRNA and protein copy number reported in this

paper are the average copy numbers, which were each averaged using three independent stud-

ies [83–88].

Analysis of ribosome profiling and RNA-Seq data

Datasets. To calculate the translation-initiation rates we applied our methods (Eq (4))

to in vivo ribosome profiling data published in Refs. [16] and [43] with NCBI accession

numbers GSM1289257 and GSM1949551, respectively. The RNA-Seq data we used for

Ref. [16] has NCBI accession number GSM1969535. For Ref. [43], we make public the

RNA-Seq sample at GSM3242263 which we performed simultaneously with the ribosome

profiling experiment. We chose these two data sets because they contain both ribosome pro-

filing and RNA-Seq data of a sample, allowing us to calculate the average ribosome density

of a transcript (S1 Text, Eq. (S9)). To calculate the codon translation rates, we apply our

method to high-coverage ribosome profiling datasets of wild type S. cerevisiae reported in

Refs. [43] and [53] with NCBI accession numbers GSM1949551 and GSM1495503, respec-

tively. In our analysis, reads were preprocessed and mapped to sacCer3 reference genome as

described in Ref. [43]. To maintain the accuracy of read assignment, transcripts in which

multiple mapped reads constitute more than 0.1% of total reads mapping to the CDS region

were not considered in the analysis. A-site positions in ribosome profiling reads were

assigned according to the offset table generated using an Integer Programming algorithm

which maximizes the reads between the second and stop codon of transcripts [89]. The offset

table for S. cerevisiae is taken from Table 1 of ref. [89]. RPKM values were calculated for

transcripts in RNA-Seq data by counting the reads whose 50 ends were within the coding

region of the transcript.

Selection of genes for translation-initiation rates. To apply our method (Eq (4)) for

extracting translation initiation rates, we restrict our analysis to genes in which 95% of codon

positions of a transcript have non-zero read density. 1,388 transcripts meet this criterion. This

threshold reduces the statistical uncertainty in the estimation of codon position dependent

ribosome density used in Eq (4).

Selection of genes for codon translation rates. To extract individual codon translation

rates, we restrict our analysis to genes that have at least 3 reads at every codon position of the

transcript. We find that 117 and 364 genes meet this criterion in the data set of Nissley et al.
[43] and Williams et al. [53], respectively. This stringent requirement is necessary since Eq

(12) would predict codons with zero reads to be translated in zero time. Reads at the start

codon and the second codon have contributions from the translation initiation process; there-

fore, we ignored these codon positions in our calculations of translation time distributions and

correlation with molecular factors. As stated before, transcripts containing multiple mapped

reads greater than 0.1% of the total reads mapped to the transcript were discarded. Genes with

overlap of coding sequence regions as well as those containing introns (which is less than 6%

of S. cerevisiae genome) were not considered in the analysis to avoid overlap of ribosome

profiles.

Preparation of RNA-Seq sample. 200 mL of cells were grown in YPD to an OD600 nm of

0.5, filtered (All-Glass Filter 90mm, Millipore), flash frozen in liquid nitrogen and lysed by

mixer milling (2 min, 30 Hz, MM400, Retsch) with 600 μL of lysis buffer (20 mM Tris-HCl

pH 8.0, 140 mM KCl, 6 mM MgCl2, 0.1% NP-40, 0.1 mg/ml cycloheximide, 1 mM PMSF,
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2x protease inhibitors (Complete EDTA-free, Roche), 0.02 U/ml DNaseI (recombinant DNa-

seI, Roche), 20 mg/mL leupeptin, 20 mg/mL aprotinin, 10 mg/mL E-64, 40 mg/mL bestatin).

Thawed cell lysates are cleared by centrifugation (20,000xg, 5 min, 4˚C) and RNA extraction is

performed as described in Ref. [90]. 10 μg of extracted RNA was depleted for rRNA using the

kit RiboMinus, Yeast Module (Invitrogen) and fragmented for 30 min using the NEBNext

Magnesium RNA Fragmentation Module (NEB). Deep sequencing libraries were prepared fol-

lowing the protocol described in Ref. [90] and sequenced on a HiSeq 2000 (Illumina).

Miscellaneous. (a) Since experimental measurements of hT(i)is are not available for S. cer-
evisiae we use Eq. (S10) to estimate hT(i)i with hτAi = 200 ms, as reported in the literature

[40,41]. (b) In vivo ribosome profiling data for the mouse stem cells were processed using the

method described in the original paper [26]. (c) The measures for tRNA abundance based on

gene copy number and RNA-Seq measurements were obtained from Table S2 of Ref. [16]. (d)

Transcript leader (or 50 UTR) sequences were obtained from Ref. [80] and upstream AUG

were identified in these sequences for the transcripts for which we calculate the translation ini-

tiation rates. (e) For Kozak sequence analysis, 12 nt sequence was identified around the start

codon starting from -6 with respect to Adenine of start codon (position +1) to +6. The consen-

sus Kozak sequence for S. cerevisiae is (A/T)A(A/C)A(A/C)AATGTC(T/C) [49]. For the 12 nt

sequence for every transcript, a similarity score is calculated based on its match with the Kozak

sequence. The score ranges from 1 to 10 in the order of its increasing similarity with Kozak

sequence. If all the 9 nt around the start codon are same as the Kozak sequence and the start

codon (scored as 1), the score will be 9+1 = 10. If only start codon is same while all other 9 nt

are different, the score is just 1. If start codon is same and only 4 nt positions are same, then

the score will be 4+1 = 5. To determine the effect of Kozak sequence, two subsets of transcripts

were created, the first with transcripts having context around start codon closer to Kozak

sequence (score > 7) and the second subset for transcripts with context farther away from

Kozak sequence (score < 5). Mann-Whitney U test was used to determine the statistical signif-

icance of the difference between the translation-initiation rate distributions of the two subsets

of genes.

Assignment of mRNA secondary structure

Both DMS and PARS data provide information about base-paired nucleotides within an

mRNA molecule. We considered a codon to be structured if at least two of its three nucleotides

were base-paired or one nucleotide was base-paired and the structure information for the

other two nucleotides was not available.

DMS data for S. cerevisiae were downloaded from GEO database with accession number

GSE45803 [58]. The reads from all in vivo replicates were pooled together and then aligned to

the ribosomal RNA sequences using Bowtie 2 (v2.2.3) [91]. The reads which did not align to

the ribosomal RNA sequences were then aligned to the Saccharomyces cerevisiae assembly

R64-2-1 (UCSC: sacCer3) using Tophat (v2.0.13) [92]. In our analysis, A and C nucleotides

were considered base-paired when the DMS signal was below the threshold of 0.2 and consid-

ered unstructured if the DMS signal was greater than 0.5. A and C nucleotides with DMS sig-

nal between 0.2 and 0.5 are considered ambiguous and classified together with U and G

nucleotides, which do not react with DMS. Codons involving such nucleotides were not con-

sidered in our analysis.

PARS data were downloaded from genie.weizmann.ac.il/pubs/PARS10 with PARS scores

available for all transcripts, except YDR461W and YNL145W, which were excluded from our

analysis. Nucleotides with a PARS score greater than 0 were considered base-paired [59].
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Supporting information

S1 Text. Detailed derivations of rates discussed in Theory section.

(PDF)

S1 Fig. Normalized ribosome read density calculated from run-off experiments decreases

linearly as a function of time. (A) The normalized ribosome read density in S. cerevisiae
using in silico run-off experiment data in the first 201, 250, 300, 350 and 400 codons are

plotted as a function of time. (B) The normalized ribosome read density in mouse stem cells

(Ref. [26]) are plotted as a function of time in the first 800, 850, 900, 950 and 1000 codons.

Lines are to guide the eye.

(TIFF)

S2 Fig. Eq (4) accurately determines the translation-initiation rate from simulated S. cere-
visiae ribosome profiles where the translation rates of the first 100 codons were artificially

decreased. (A) Translation-initiation rates determined by applying Eq (4) to simulated ribo-

some profiling data are plotted against the actual initiation rates used in the simulations. These

initiation rates were calculated using Eq. (S10) for the protein synthesis times. (B) Same as (A)

but the average protein synthesis times were measured from our simulations of the translation

process. The solid lines in (A) and (B) are the lines of the best fit.

(TIFF)

S3 Fig. Comparison between translation-initiation rates measured from two independent

data sets. α1 and α2 are the translation-initiation rate calculated by Eq (4) using the ribosome

profiling and RNA-Seq data reported in Nissley et al. [43] and Weinberg et al. [16], respec-

tively. Polysome profiling data reported in Mackay et al. [42] and Arava et al. [29] were used in

(A) and (B), respectively.

(TIFF)

S4 Fig. Comparison between translation-initiation rates measured from Eq (4) with those

of Dao Duc and Song. [14]. In vivo initiation rates calculated by Eq (4) using the ribosome

profiling and RNA-seq data from Weinberg et al. [16] were compared with the ones reported

in Dao Duc and Song [14] in (A) and (C); In vivo initiation rates calculated by Eq (4) using the

ribosome profiling and RNA-seq data from Nissley et al. [43] were compared with the ones

reported in Dao Duc and Song [14] in (B) and (D). Polysome profiling data reported in

Mackay et al. [42] were used to calculate in vivo initiation rates in (A) and (B); Polysome pro-

filing data reported in Arava et al. [29] were used to calculate in vivo nitiation rates in (C) and

(D).

(TIFF)

S5 Fig. Translation-initiation rates measured from data sets taken from Refs. [16] and [29]

reproduce previously reported correlations. In vivo translation-initiation rates of S. cerevisiae
transcripts are plotted against the inverse of their CDS length, folding energy of mRNA mole-

cule near the 50 cap and protein copy number in (A), (B) and (C), respectively. (D) The copy

number of S. cerevisiae proteins are plotted as a function of the product of the initiation rate

of transcripts that encode them and that transcript’s copy number in a cell. (E) mRNA copy

number is plotted against the translation-initiation rate.

(TIFF)

S6 Fig. Translation-initiation rates measured from data sets taken from Refs. [43] and [42]

reproduce previously reported correlation. In vivo translation-initiation rates of S. cerevisiae
transcripts are plotted against the inverse of their CDS length, folding energy of mRNA
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molecule near the 50 cap and protein copy number in (A), (B) and (C), respectively. (D) The

copy number of S. cerevisiae proteins are plotted as a function of the product of the initiation

rate of transcripts that encode them and that transcript’s copy number in a cell. (E) mRNA

copy number is plotted against the translation-initiation rate.

(TIFF)

S7 Fig. Translation-initiation rates calculated from data sets taken from Refs. [43] and

[29] reproduce previously reported correlations. In vivo translation-initiation rates of S. cere-
visiae transcripts are plotted against the inverse of their CDS length, folding energy of mRNA

molecule near the 50 cap and protein copy number in (A), (B) and (C), respectively. (D) The

copy number of S. cerevisiae proteins are plotted as a function of the product of the initiation

rate of transcripts that encode them and that transcript’s copy number in a cell. (E) mRNA

copy number is plotted against the translation-initiation rate.

(TIFF)

S8 Fig. Comparison of the properties of the 117- and 364-transcript data sets from Refs.

[43] and [53], respectively, to the entire S. cerevisiae transcriptome. Probability distribu-

tions of CDS length and percent GC content from the data set of 117-transcripts from

Ref. [43] (green) and from the entire transcriptome (blue) are plotted in (A) and (B), respec-

tively. (C) Scatter plot of the codon usage in the whole genome versus the 117-transcript data

set from Ref. [43]. (D), (E) and (F) are the same as (A), (B) and (C), respectively, except

364-transcripts from Ref. [53] is used.

(TIFF)

S9 Fig. Translation time distributions for the 64 codon types. (A) The translation time dis-

tributions for each codon type is shown for the dataset of Nissley et al. [43]. The distribution is

shown ignoring the extreme 5th percentiles at both ends of the distribution. The codons are

sorted based on the medians of their translation time distributions. There are only three

instances of CGG and one instance of CGA in our gene subset and hence their boxplot is not

noticeable. (B) Same as (A) but for the dataset of Williams et al. [53]. The sorting is the same

as in (A).

(TIFF)

S10 Fig. Codon translation rates are highly correlated across datasets and with rates from

method of Dao Duc and Song. (A) The medians of the translation time distributions of the 64

codon types are highly correlated between the datasets of Nissley et al. [43] and Williams et al.
[53]. (B) The standard deviations of these translation time distributions are also highly corre-

lated for the two datasets indicating that the variability of translation times is reproducible

across datasets. (C) The codon translation rates obtained using Eq (12) for the dataset from

Weinberg et al. [16] is correlated with codon translation rates inferred in the study of Dao Duc

and Song [14] on the same dataset.

(TIFF)

S11 Fig. Molecular factors shaping the variability of individual codon translation rates in

the dataset from Ref [53]. (A-B) Median translation times of codon types are negatively cor-

related with cognate tRNA abundance estimated by (A) gene copy number and (B) RNA-Seq

gene expression. (C) Probability distribution of translation time of codons in the A-site either

when a proline is present in the P-site (green) or when a proline is not present in the P-site

(blue). (D-E) Percentage difference in median translation times when mRNA structure is

present relative to when it is not present as a function of codon position after the A-site. Grey

bars indicate results that are not statistically significant. Error bars are the 95% C.I. calculated
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using 104 bootstrap cycles; significance is assessed using the Mann-Whitney U test corrected

with the Benjamini Hochberg FDR method for multiple-hypothesis correction. mRNA struc-

ture information used in (D) and (E) were taken from in vivo DMS and in vitro PARS data,

respectively. (F) Scatter plot of the median translation times of pairs of codon types that are

decoded by the same tRNA molecule. The red line is the identity line. The list of tRNA mole-

cules and which codon they decode were taken from Ref. [54]. Error bars are standard error

about the median calculated with 104 bootstrap cycles.

(TIFF)

S12 Fig. Average ribosome density on a transcript as a function of translation efficiency.

Translation efficiency in (A) and (B) are calculated using the ribosome profiling and RNA-Seq

data reported in Ref. [16]; Translation efficiency in (C) and (D) are calculated using ribosome

profiling and RNA-Seq data reported in Ref. [43]. Ribosome density used in (A) and (C) are

from the polysome profiling data reported in Ref. [42] whereas the ribosome density in (B)

and (D) are provided by Ref. [29]. The solid line in all these figures represent the best fit of y =

ξx line.

(TIFF)

S1 Table. Transcripts containing at least one upstream AUG (uAUG) have lower median

translation-initiation rates. For all possible combinations of ribosome profiling and RNA-Seq

data [16,43] and polysome profiling data [29,42], we see a consistent result that the median

translation-initiation rate is lower for transcripts with at least one uAUG. The result is not sta-

tistically significant for combination of Refs. [43] and [42] (p-value = 0.052).

(PDF)

S2 Table. Transcripts with sequence context around start codon similar to Kozak sequence

have higher translation-initiation rates. For all possible combinations of ribosome profiling

and RNA-Seq data [16,43] and polysome profiling data [29,42], we see a consistent result that

the median translation-initiation rate is higher for transcripts with sequence context similar to

Kozak sequence (see Methods for details). The result for combination of Refs [43] and [29] is

however not statistically significant (p-value = 0.065).

(PDF)

S1 File. Initiation rates for genes discussed in the study as well as statistics for codon trans-

lation times for 64 codon types.

(XLSX)
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