
332 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Pre-Defined Sparse Neural Networks
With Hardware Acceleration

Sourya Dey , Kuan-Wen Huang, Peter A. Beerel , Senior Member, IEEE, and Keith M. Chugg, Fellow, IEEE

Abstract— Neural networks have proven to be extremely
powerful tools for modern artificial intelligence applications, but
computational and storage complexity remain limiting factors.
This paper presents two compatible contributions towards reduc-
ing the time, energy, computational, and storage complexities
associated with multilayer perceptrons. Pre-defined sparsity is
proposed to reduce the complexity during both training and
inference, regardless of the implementation platform. Our results
show that storage and computational complexity can be reduced
by factors greater than 5X without significant performance
loss. The second contribution is an architecture for hardware
acceleration that is compatible with pre-defined sparsity. This
architecture supports both training and inference modes and
is flexible in the sense that it is not tied to a specific number
of neurons. For example, this flexibility implies that various
sized neural networks can be supported on various sized field
programmable gate array (FPGA)s.

Index Terms— Machine learning, neural network, multilayer
perceptron, sparsity, hardware acceleration.

I. INTRODUCTION

NEURAL networks are critical drivers of new techno-
logies such as computer vision, speech recognition, and

autonomous systems. As more data have become available,
the size and complexity of neural network (NN)s has risen
sharply, with modern NNs containing millions or even billions
of trainable parameters [1], [2]. These massive NNs come
with the cost of large computational and storage demands.
The current state of the art is to train large NNs on Graphical
Processing Unit (GPU)s in the cloud – a process that can
take days to weeks even on powerful GPUs [1]–[3] or similar
programmable processors with multiply-accumulate acceler-
ators [4]. Once trained, the model can be used for infer-
ence, which is less computationally intensive and is typically
performed on more general purpose processors (i.e., Central
Processing Unit (CPU)s). It is increasingly desirable to run
inference, and even some re-training, on embedded processors
which have limited resources for computation and storage.
In this regard, model reduction has been identified as a key
to NN acceleration by several prominent researchers [5].
This is generally performed post-training to reduce the
memory requirements to store the model for inference –

Manuscript received December 3, 2018; revised February 24, 2019; accepted
March 27, 2019. Date of publication April 12, 2019; date of current version
June 11, 2019. This work was supported by NSF, Software and Hardware
Foundations, under Grant 1763747. This paper was recommended by Guest
Editor B. Murmann. (Corresponding author: Sourya Dey.)

The authors are with the Ming Hsieh Department of Electrical and
Computer Engineering, University of Southern California, Los Angeles,
CA 90089 USA (e-mail: souryade@usc.edu; kuanwenh@usc.edu; pabeerel@
usc.edu; chugg@usc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2019.2910864

e.g., methods for quantization, compression, and grouping
parameters [6]–[9].

Decreasing the time, computation, storage, and energy costs
for training and inference is therefore a highly relevant goal. In
this paper we present two compatible methods towards this end
goal: (i) a method for introducing sparsity in the connection
patterns of NNs, and (ii) a flexible hardware architecture that
is compatible with training and inference-only operation and
supports the proposed sparse NNs. Our approach to sparsifying
a NN is extremely simple and results in a large reduction
in storage and computational complexity both in training
and inference modes. Moreover, this method is not tied to
the hardware acceleration and provides the same benefits for
training and inference in software under the current paradigm.
The hardware architecture is massively parallel, but not tightly
coupled to a specific NN architecture (i.e., not tied to the
number of nodes in a layer). Instead, the architecture allows for
maximum throughput for a given amount of circuit resources.

Our approach to making a NN sparse is to specify a sparse
set of neuron connections prior to training and to hold this
pattern fixed throughout training and inference. We refer to
this method of simply excluding some fixed set of connections
in the NN as pre-defined sparsity. There are several methods in
the literature related to sparse NNs, but most do not reduce the
computation and storage complexity associated with training,
which is a primary goal of this work. One related concept is
dropout [10] where selected edges in the NN are not processed
during some steps of the training process, but the final result
is a Fully Connected (FC) NN for inference. Another set of
approaches target producing a sparse NN for inference, but use
FC NNs during training. Among these are pruning and trim-
ming methods that post-process the trained NN to produce a
sparse NN for inference mode [11]–[13]. As mentioned before,
other methods have been proposed for reducing the complex-
ity of performing inference on a trained FC NN such as
quantization, compression, and grouping parameters [6]–[9].
Other research has suggested a method of learning sparsity
during training that begins training a FC NN and uses a cost
regularizer that promotes sparsity in the trained model [14].
Note that all of these methods do not substantially reduce
the complexity of training and instead target inference models
that have lower complexity. One method aimed at reduc-
ing both training and inference complexity is using NNs
with structured, but not sparse, weight matrices [15], [16].
Finally, we note that several authors have very recently pro-
posed pre-defined sparse NNs [17]–[19] independently of our
published work [20]–[22].

Motivated by the fact that specialized hardware is typically
faster and more energy efficient than GPUs and CPUs, there

2156-3357 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3084-1428
https://orcid.org/0000-0002-8283-0168

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 333

exists a large body of literature in NN hardware acceleration.
The vast majority of this addresses only inference given a
trained model [9], [23]–[26], with few addressing hardware
accelerated training [27]. The work of [27], for example,
targets a specific size NN – i.e., the logic and memory
architecture is tied to the number of neurons in a layer.

We propose an architecture that supports training, but can
be simplified for inference-only mode, and is flexible to the
NN size. This is particularly attractive for Field Programmable
Gate Array (FPGA) implementations. Specifically, the pro-
posed architecture produces the maximum throughput on a
given FPGA for a given NN and can therefore support various
sized NNs on various sized FPGAs. This is accomplished by
an edge-based processing architecture that can process z edges
in a given layer in parallel (i.e., we refer to z as the degree of
parallelism). A given FPGA can support some largest value
of z, and NNs with more edges will simply take more clock
cycles to process.1

Our edge-based architecture is inspired by architectures
proposed for iterative decoding of modern sparse-graph-based
error correction codes (i.e., Turbo and Low Density Parity
Check (LDPC) codes) (cf., [28], [29]). In particular, for a
given processing task, there are z logic units to perform the
task and z memories to store the quantities associated with
the task. A challenge with this architecture, shared between
the decoding and NN applications, is that in order to achieve
high throughput without memory duplication, the parallel
memories must be accessed in two manners: natural order
and interleaved order. In natural order, each computation unit
is associated with one memory and accesses the elements
of that memory sequentially. For interleaved order access,
the z computational units must access the memories such
that no memory is accessed more than once in a cycle.
Such an addressing pattern is called clash-free, and this
property ensures that no memory contention occurs so that no
stalls or wait states are required. For modern codes, the clash-
free property of the memories is ensured by defining clash-
free interleavers (i.e., permutations) [30], or clash-free parity
check matrices [29]. In the context of NNs, this clash-free
property is tied to the connection patterns between layers of
neurons.

In addition to z degrees of parallelism in edge processing
in a given layer, our architecture is pipelined across layers.
Thus, there is a degree of parallelism associated with each
layer (i.e., zi for layer i) selected to set the number of cycles
required to process a layer to a constant – i.e., larger layers
have larger z so that the computation time of all layers is the
same. For an (L + 1)-layer NN there are L pipeline stages
so that a given NN input is processed in the time it takes
to complete the processing of the edges in a single layer.
Furthermore, the three operations associated with training –
Feedforward (FF), Backpropagation (BP), and Update of
trainable parameters (UP) – are performed in parallel. The
architecture may be simplified to perform only inference by

1We use the terms the terms ‘connection’ and ‘edge’ interchangeably, as we
do with ‘node’ and ‘neuron’. Also, the term ‘cycle’ will mean ‘clock cycle’,
unless otherwise stated.

eliminating the logic and memory associated with BP and UP.
Furthermore, while the architecture supports the reduced com-
plexity sparse NNs, it is also compatible with traditional FC
networks. Interestingly, very recent work proposed pipelining
across layers for an inference-only accelerator [31], as well
as scalable edge-based architectures for training [32], [33]
independently of our published work [20], [21]. Neither of
these other recent works, however, takes advantage of pre-
defined sparsity in the network.

Our form of pre-defined sparse connection patterns are con-
strained in the sense that they are designed to be compatible
with our hardware architecture. We demonstrate that such
hardware-friendly patterns provide learning performance better
than randomly connected sparse patterns. We also compare
against other state-of-the-art algorithms for generating sparse
patterns which are not compatible with our hardware, and
demonstrate that our patterns achieve performance statistically
on-par with these. Thus, pre-defining sparsity for hardware
compatibility does not cost learning performance.

A natural point to investigate is the methodology of search-
ing for a pre-defined sparse connection pattern, which is a
hyperparameter to be chosen prior to training. Accordingly,
this work contains a set of trends or design guidelines for
accelerating this search, resulting from detailed simulation
studies of pre-defined sparsity on four different datasets.

The paper is structured as follows. Section II provides
motivation for and simple examples of the effectiveness of
pre-defined sparsity. Section III describes the hardware archi-
tecture in detail, including defining a class of simple clash-free
connection patterns. Section IV discusses guidelines for choos-
ing pre-defined sparse network configurations. Section V com-
pares our method of sparsity with others. Finally, Section VI
concludes the paper.

II. STRUCTURED PRE-DEFINED SPARSITY

A. Definitions, Notation, and Background

An (L + 1)-layer Multilayer Perceptron (MLP) has Ni

nodes in the i th layer, described collectively by the neuronal
configuration Nnet = (N0, N1, · · · , NL), where layer 0 is the
input layer. We use the convention that layer i is to the ‘right’
of layer i − 1. There are L junctions between layers, with
junction i connecting the Ni−1 nodes of its left layer i − 1
with the Ni nodes of its right layer i .

We define pre-defined sparsity as simply not having all
Ni−1 Ni edges present in junction i . Furthermore, we define
structured pre-defined sparsity so that for a given junction i ,
each node in its left layer has fixed out-degree – i.e., dout

i
connections to its right layer, and each node in its right layer
has fixed in-degree – i.e., d in

i connections from its left layer.
FC NNs have dout

i = Ni and d in
i = Ni−1 with Ni−1 Ni

edges in the i th junction, while a sparse NN has at least one
junction with less than this number of edges. The number of
edges (or weights) in junction i is given by |Wi | = Ni−1
dout

i = Ni d in
i . The density of junction i is measured relative

to FC and denoted as ρi = |Wi |/(Ni−1 Ni). The structured
constraint implies that the number of possible ρi values is
equal to the Greatest Common Divisor (gcd) of Ni−1 and Ni ,

334 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

as shown in Appendix A. The overall density of the NN is:

ρnet =
∑L

i=1 |Wi |
∑L

i=1 Ni−1 Ni
(1)

Thus, specifying Nnet and the out-degree configuration dout
net =

(dout
1 , · · · , dout

L) determines the density of each junction and
the overall density.

We will also consider random pre-defined sparsity, where
connections are distributed randomly given preset ρi values
without constraints on in- and out-degrees. In Sec. IV-B we
show that random pre-defined sparsity is undesirable at low
densities because it may result in unconnected neurons.

The standard equations for FC NNs are well-known [34].
For a NN using structured pre-defined sparsity, only the
weights corresponding to connected edges are stored in mem-
ory and used in computation. This leads to the modified equa-
tions (2)–(4), where subscripts denote layer/junction numbers,
single superscripts denote neurons in a layer, and double super-
scripts denote (right neuron, left neuron) in a junction. The FF
processing proceeds left-to-right and computes the activations
ai and associated derivatives ȧi for each layer by applying an
activation function act(·) to a linear combination of biases bi ,
junction weights Wi , and preceding layer activations ai−1:

h(j)
i =

d in
i∑

f=1

W
(j,k f)

i a
(k f)

i−1 + b(j)
i (2a)

a(j)
i = act

(
h(j)

i

)
(2b)

ȧ(j)
i =

da(j)
i

dh(j)
i

= ˙act
(

h(j)
i

)
(2c)

Note that (2c) is used in training, but is not required in
inference mode. The BP computation is done only in training
and computes a sequence of error values from right-to-left:

δ
(j)
L =

∂l(j)
(

a(j)
L , y(j)

)

∂h(j)
L

(3a)

δ
(j)
i = ȧ(j)

i

⎛

⎝
dout

i∑

f=1

W
(k f , j)
i+1 δ

(k f)

i+1

⎞

⎠ (3b)

where l(j)
(

a(j)
L , y(j)

)
is the j th component of the loss func-

tion. Finally, stochastic gradient UP is given by

b(j)
i ← b(j)

i − ηδ
(j)
i (4a)

W (j,k)
i ← W (j,k)

i − ηa(k)
i−1δ

(j)
i (4b)

where η is the learning rate. The parameters on the left-hand-
side of (2)–(4) will be referred to as the network parameters,
with the weights and biases being the trainable parameters.

B. Motivation and Preliminary Examples

Pre-defined sparsity can be motivated by inspecting the
histogram for trained weights in a FC NN. There have been
previous efforts to study such statistics [3], [35], however,
not for individual junctions. Fig. 1 shows weight histograms
for each junction in both a 2-junction and 4-junction FC NN

Fig. 1. Histograms of weight values in different junctions for FC NNs
trained on MNIST for 50 epochs, with (a-b) Nnet = (800, 100, 10), and
(d-g) Nnet = (800, 100, 100, 100, 10). Test accuracy shown in (c,h) for
different NNs with same Nnet and varying ρnet . ρnet is set by reducing ρ1
since junction 1 has more weights close to zero in the FC cases (circled).

trained on the MNIST dataset. Note that many of the weights
are zero or near-zero after training, especially in the earlier
junctions. This motivates the idea that some weights in these
layers could be set to zero (i.e., the edges excluded). Even
with this intuition, it is unclear that one can pre-define a set of
weights to be zero and let the NN learn around this pre-defined
sparsity constraint. Fig. 1(c) and (h) show that, in fact, this is
the case – i.e., this shows classification accuracy as a function
of the overall density ρnet for structured pre-defined sparsity.
Since the computational and storage complexity is directly
proportional to the number of edges in the NN, operating at an
overall density of, for example, 50% results in a 2X reduction
in complexity both during training and inference. Detailed
numerical experiments in Section IV build on these simple
examples. However, before we proceed to those results, it is
important to consider a hardware architecture that can support
structured pre-defined sparsity and consider the additional
clash-free constraints placed on the connection patterns so that
these can be considered in the studies in Section IV.

III. HARDWARE ARCHITECTURE

In this section we describe the proposed flexible hardware
architecture outlined in the Introduction. The overall architec-
tural view is captured by Fig. 2: sub-figure (a) shows parallel
edge processing within a junction with degree of parallelism 3,
(b) shows clash-free memory access, and (c) junction pipe-
lining and parallel processing of the three operations – FF,
BP, UP. The toy example in Fig. 2(a)-(b) is for Ni−1 = 6,
Ni = 3, ρi = 6/18 = 1/3, and zi = 3. Fig. 2(a) shows that
the zi = 3 blue edges are processed in parallel in one cycle,
while the pink edges are processed in parallel during the next
cycle. Fig. 2(b) shows how the zi = 3 FF processing logic
units access the memories in natural and interleaved order.
As will be described in detail in Sec. III-B, the interleaved
order access may represent reading of the activations {a(j)

i−1}
for j ∈ {0, 1, 5} and the natural order access may correspond

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 335

Fig. 2. (a) Processing zi = 3 edges in each cycle (blue in cycle 0, pink in cycle 1) for some junction i . (b) Accessing zi = 3 memories – M0, M1 and
M2 shown as columns – from two separate banks, one in natural order (same address from each memory), the other in interleaved order. Clash-freedom is
achieved by accessing only one element from each memory. The accessed values are fed to zi = 3 processors to perform FF simultaneously. (c) Operational
parallelism in each junction (vertical dotted lines denote processing for one junction), and junction pipelining of each operation across junctions (horizontal
dashed lines) in a multi-junction NN. Subfigure (c) is modified from our previous conference publication [20, Fig. 2(c)].

to writing the computed activations {a(j)
i } for j ∈ {0, 1, 2}.

On the next cycle, the remaining memory locations (i.e., the
white cells) will be accessed. Note that this illustrates a clash-
free connection pattern since each of the zi = 3 memories is
accessed no more than once in each cycle – i.e., one hit per
column on each access.

The junction-based operation in Fig. 2(b) is repeated for
each junction in a pipeline. In particular, there are L pipeline
stages. For example, for the FF pipeline, while the first stage
is processing input vector n + L on junction 1, the second
stage is processing input vector n + L − 1 on junction 2. The
degree of parallelism for each junction is selected so that the
processing time for any operation (FF/BP/UP) is the same
for each junction. Thus the throughput, i.e., the frequency of
processing input samples, is determined by the time taken to
perform a single operation in a single junction.

In summary, the architecture is (i) edge-based and not tied
to a specific number of nodes in a layer, (ii) flexible in that
the amount of logic is determined by the degree of parallelism
which trades size for speed, and (iii) fully pipelined for the
parallel operations associated with NN training. Also note that
the architecture can be specialized to perform only inference
by removing the logic and memory associated with the BP
and UP operations, and the ȧi computation in (2c).

A key concern when implementing NNs on hardware is
the large amount of storage required. Several characteristics
regarding memory requirements guided us in developing the
proposed architecture. Firstly, since weight memories are
the largest, their number should be minimized. Secondly,
having a few deep memories is more efficient in terms of
power and area than having many shallow memories [36].
Thirdly, throughput should be maximized without duplicating
memories, hence the need for clash-free connection patterns.

In Sec. III-A, we describe junction pipelining design, which
attempts to minimize weight storage resources. The memory
organization within a junction is described in Sec. III-B, and
is designed to minimize the number of memories for a given
degree of parallelism. Finally, clash-free access conditions are
developed in Sec. III-B and III-C, and a simple method for
implementing such patterns given in Sec. III-C.

A. Junction Pipelining and Operational Parallelism

Our edge-based architecture is motivated by the fact that all
three operations – FF, BP, UP – use the same weight values
for computation. Since zi edges are processed in parallel in
a single cycle, the time taken to complete an operation in
junction i is Ci = |Wi | /zi cycles. The degree of paral-
lelism configuration znet = (z1, · · · , zL) is chosen to achieve
Ci = C ∀ i ∈ {1, · · · , L}. This allows efficient junction
pipelining since each operation takes exactly C cycles to be
completed for each input in each junction, which we refer to
as a junction cycle.2 This determines throughput.

The following is an analysis of Fig. 2(c) in more detail
for an example NN with L = 2. While a new training input
numbered n+3 is getting loaded as a0, junction 1 is processing
the FF stage for the previous input n + 2 and computing a1.
Simultaneously, junction 2 is processing FF and computing
cost δL via cost derivatives for input n + 1. It is also doing
BP on input n to compute δ1, as well as updating (UP)
its parameters from the finished δL computation of input n.
Simultaneously, junction 1 is performing UP using δ1 from the
finished BP results of input n − 1. This results in operational
parallelism in each junction, as shown in Fig. 3. The combined
speedup is approximately a factor of 3L as compared to doing
one operation at a time for a single input.

Notice from Fig. 3 that there is only one weight memory
bank which is accessed for all three operations. However, UP
in junction 1 needs access to a0 for input n − 1, as per the
weight update equation (4b). This means that there need to
be 2L + 1 = 5 left activation memory banks for storing
a0 for inputs n − 1 to n + 3, i.e., a queue-like structure.
Similarly, UP in junction 2 will need 2(L − 1) + 1 = 3
queued banks for each of its left activation a1 and its derivative
ȧ1 memories – for inputs from n (for which values will be
read) to n + 2 (for which values are being computed and
written). There also need to be 2 banks for all δ memories –

2During hardware implementation, a few extra cycles may be needed to flush
the pipeline, so Ci = |Wi | /zi+ci . These are also balanced, i.e., ci = c ∀ i ∈
{1, · · · , L}, to achieve efficient pipelining. In our initial implementation [37],
for example, c = 2, and the junction cycle is C = 34.

336 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 3. Architecture for parallel operations for an intermediate junction i
(i �= 1, L) showing the three operations along with associated inputs and
outputs. Natural and interleaved order accesses are shown using solid and
dashed lines, respectively. The a and ȧ memory banks occur as queues,
the δ memory banks as pairs, while there is a single weight memory bank.
Figure modified from our previous conference publication [20, Fig. 3].

TABLE I

HARDWARE ARCHITECTURE TOTAL STORAGE COST COMPARISON FOR

Nnet = (800, 100, 10) FC VS SPARSE WITH dout
net = (20, 10), ρnet = 21%

one for reading and the other for writing. Thus junction
pipelining requires multiple memory banks, but only for layer
parameters a, ȧ and δ, not for weights.3 The number of layer
parameters is insignificant compared to the number of weights
for practical networks. This is why pre-defined sparsity leads
to significant storage savings, as quantified in Table I for the
circled FC point vs. the ρnet = 21% point from Fig. 1(c).
Specifically, memory requirements are reduced by 3.9X in
this case. Furthermore, the computational complexity, which is
proportional to the number of weights for a MLP, is reduced
by 4.8X. For this example, these complexity reductions come
at a cost of degrading the classification accuracy from 98.0%
to 97.2%.

B. Memory Organization

For the purposes of memory organization, edges are num-
bered sequentially from top to bottom on the right side of the
junction. Other network parameters such as a, ȧ and δ are
numbered according to the neuron numbers in their respective
layer. Consider Fig. 4 as an example, where junction i is
flanked by Ni−1 = 12 left neurons with dout

i = 2 and Ni = 8
right neurons, leading to |Wi | = 24 and d in

i = 3. The three
weights connecting to right neuron 0 are numbered 0, 1, 2;
the next three connecting to right neuron 1 are numbered 3,
4, 5, and so on. A particular right neuron connects to some
subset of left neurons of cardinality d in

i .

3This is achieved by making the weight memory dual-port, while a and
ȧ are single-ported memories. The δ memories are also dual-ported due to
the exact manner in which we implemented this architecture on FPGA, refer
to [37] for full details.

Fig. 4. An example of processing inside junction i with zi = 4 memories
in the weight and left banks, and zi+1 = 2 memories in the right bank. The
banks are represented as numerical grids, each column is a memory, and the
number in each cell is the number of the edge / left neuron / right neuron
whose parameter value is stored in it. Edge are sequentially numbered on
the right (shown in curly braces). Four weights are read in each of the six
cycles with the first three colored blue, pink and green, respectively. These
represent sweep 0, while the next 3 (using dashed lines) colored brown, red
and purple, respectively, represent sweep 1. Clash-freedom leads to at most
one cell from each memory in each bank being accessed each cycle. Weight
and right memories are accessed in natural order, while left memories are
accessed in interleaved order.

Each type of network parameter is stored in a bank of
memories. The example in Fig. 4 uses zi = 4, i.e., 4 weights
are accessed per cycle. We designed the weight memory bank
to have the minimum number of memories to prevent clashes,
i.e., zi , and their depth equals Ci . Weight memories are read in
natural order – one row per cycle (shown in same color). This
implies that the logic to compute memory addresses simply
consists of zi incrementers.

Right neurons are processed sequentially due to the weight
numbering. The number of right neuron parameters of a
particular type needing to be accessed in a cycle is upper
bounded by

⌈
zi/d in

i

⌉
, which leads to zi+1 ≥

⌈
zi/d in

i

⌉
in order

to prevent clashes in the right memory bank.4 For FF in Fig. 4
for example, cycles 0 and 1 finish computation of a(0)

i and a(1)
i

respectively, while cycle 2 finishes computing both a(2)
i and

a(3)
i . For BP or UP, everything remains same except for the

right memory accesses. Now δ
(0)
i and δ

(1)
i are used in cycle 0,

δ
(1)
i and δ

(2)
i in cycle 1, and δ

(2)
i and δ

(3)
i in cycle 2. Thus the

maximum number of right neuron parameters ever accessed
in a cycle is

⌈
zi/d in

i

⌉ = 2.
Since edges are interleaved on the left, in general, the zi

edge processing logic units will need access to zi parameters
of a particular type from layer i − 1. So all the left memory
banks have zi memories, each of depth Di = Ni−1/zi , which
are accessed in interleaved order. For example, after Di cycles,
Ni−1 edges have been processed – i.e., (Di × zi) = Ni−1.

4This does not limit most practical designs (see Appendix B).

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 337

We require that each of these edges be connected to a different
left neuron to eliminate the possibility of duplicate edges.
This completes a sweep, i.e., one complete access of the left
memory bank. Since each left neuron connects to dout

i edges,
dout

i sweeps are required to process all the edges, i.e., each
left activation is read dout

i times in the whole junction cycle.
The reader can verify that Di cycles multiplied by dout

i sweeps
results in Ci total cycles, i.e., one junction cycle.

C. Clash-Free Connection Patterns

We define a clash as attempting to perform a particular
operation more than once on the same memory at the same
time, which would stall processing.5 The idea of clash-freedom
is to pre-define a pattern of connections and z values such
that no operation in any junction of the NN results in a
clash. Sec. III-B described how z values should be designed
to prevent clashes in the weight and right memory banks.

This subsection analyzes the left memory banks, which are
accessed in interleaved order. Their memory access pattern
should be designed so as to prevent clashes. Additionally,
the following properties are desired for practical clash-free
patterns. Firstly, it should be easy to find a pattern that gives
good performance. Secondly, the logic and storage required to
generate the left memory addresses should be low complexity.

We generate clash-free patterns by initially specifying the
left memory addresses to be accessed in cycle 0 using a
seed vector φi ∈ {0, 1, · · · , Di − 1}zi . Subsequent addresses
are cyclically generated. Considering Fig. 4 as an example,
φi = (1, 0, 2, 2). Thus in cycle 0, we access addresses
(1, 0, 2, 2) from memories (M0, M1, M2, M3), i.e., left neu-
rons (4, 1, 10, 11). In cycle 1, the accessed addresses are
(φi + 1) % Di = (2, 1, 0, 0), and so on. Since Di = 3,
cycles 3–5 access the same left neurons as cycles 0–2.

We found that this technique results in a large number of
possible connection patterns, as discussed in Appendix C.
Randomly sampling from this set results in performance
comparable with non-clash-free NNs, as shown in Sec. IV-B.
Finally, our approach only requires storing φi and using zi

incrementers to generate subsequent addresses. This approach
is similar to methods used in modern coding to allow parallel
processing and memory accesses, c.f. [28]–[30]. Appendix C
discusses other techniques to generate clash-free patterns.

D. Batch Size

It is common in training of NNs to use minibatches. For
a batch size of M , the UP operation in (4) is performed
only once for M inputs by using the average over the M
gradients. Our architecture performs an UP for every input and
therefore may be viewed as having batch size one. However,
the processing in our architecture differs from a typical soft-
ware implementation with M = 1 due to the pipelined and
parallel operations. Specifically, in our architecture, FF and

5For single-ported memories, attempting two reads or two writes or a read
and a write in the same cycle is a clash. For simple dual-ported memories
with one port exclusively for reading and the other exclusively for writing,
a read and a write can be performed in the same cycle. Attempting to perform
two reads or two writes in the same cycle is a clash.

Fig. 5. Processing the FC version of the junction from Fig. 4. For clarity, only
the first 12 and last 12 edges (dashed) are shown, corresponding respectively
to right neurons 0 and 7, sweeps 0 and 7, cycles 0–2 and 21–23.

BP for the same input use different weights, as implied by
Fig. 2(c). In results not presented here, we found no per-
formance degradation due to this variation from the standard
backpropagation algorithm. There is considerable ambiguity
in the literature regarding ideal batch sizes [38], [39], and we
found that our current network architecture performed well in
our initial hardware implementation [37].

The architecture can be modified by performing UP once
every (M > 1) samples. As an example, a practical case for
a deep MLP could be M = 64 and L = 5. For all such cases
where M � L, FF and BP will use the same weights for most
inputs in a batch.

Finally, a more conventional minibatch update can also
be obtained by completely removing the UP logic from the
junction pipeline. After performing FF and BP on M samples,
the pipeline will be flushed and the averaged gradients over
M samples used to update all parameters in all junctions
simultaneously.

E. Special Case: Processing a FC Junction

Fig. 5 shows the FC version of the junction from Fig. 4,
which has 96 edges to be accessed and operated on. This
can be done keeping the same junction cycle Ci = 6 by
increasing zi to 16, i.e., using more hardware. On the other
hand, if hardware resources are limited, one can use the same
zi = 4 and pay the price of a longer junction cycle Ci = 24,
as shown in Fig. 5. This demonstrates the flexibility of our
architecture.

Note that FC junctions are clash-free in all practical cases
due to the following reasons. Firstly, the left memory accesses
are in natural order just like the weights, which ensures that
no more than one element is accessed from each memory per
cycle. Secondly,

⌈
zi/d in

i

⌉ = 1 for all practical cases since

338 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

zi ≤ Ni−1, as discussed in Appendix B, and d in
i = Ni−1

for FC junctions. This means that at most one right neuron
is processed in a cycle, so clashes will never occur when
accessing the right memory bank.

Note that compared to Fig. 4, the weight memories in Fig. 5
are deeper since Ci has increased from 6 to 24. However, the
left layer memories remain the same size since Ni−1 = 12 and
zi = 4 are unchanged, but the left memory bank is accessed
more times since the number of sweeps has increased from
2 to 8. Also note that even if cycle 0 (blue) accesses some
other clash-free subset of left neurons, such as (4, 5, 6, 7)
instead of (0, 1, 2, 3), the connection pattern would remain
unchanged. This implies that different memory access patterns
do not necessarily lead to different connection patterns; as
discussed further in Appendix C.

IV. OBSERVED TRENDS OF PRE-DEFINED SPARSITY

This section analyzes trends observed when experiment-
ing with several different classification datasets via software
simulations. We intend the following four trends to provide
guidelines on designing pre-defined sparse NNs.

1) Hardware-compatible, clash-free, pre-defined sparse pat-
terns perform at least as well as other pre-defined sparse
patterns (i.e., random and structured) (Sec. IV-B).

2) The performance of pre-defined sparsity is better on
datasets that have more inherent redundancy (Sec. IV-C).

3) Junction density should increase to the right: junctions
closer to the output should generally have more connec-
tions than junctions closer to the input (Sec. IV-D).

4) Larger and more sparse NNs are better than smaller
and denser NNs, given the same number of layers and
trainable parameters. Specifically, ‘larger’ refers to more
hidden neurons (Sec. IV-E).

The remainder of this section first describes the datasets we
experimented on, and then examines these trends in detail.

A. Datasets and Experimental Configuration

Unless otherwise noted, the following parameters and con-
figurations listed below were used for all presented results.

a) MNIST handwritten digits [40]: We rasterized each
input image into a single layer of 784 features,6 i.e., the
permutation-invariant format. No data augmentation was
applied.

b) Reuters RCV1 corpus of newswire articles [41]:
The classification categories are grouped in a tree structure.
We used preprocessing techniques similar to [42] to isolate
articles which fell under a single category at the second level of
the tree. We finally obtained 328,669 articles in 50 categories,
split into 50,000 for validation, 100,000 for test, and the
remaining for training. The original data has a list of token
strings for each story, for example, a story on finance would
frequently contain the token ‘financ’. We chose the most
common 2000 tokens and computed counts for each of these

6On certain occasions we added 16 input features which are always
trivially 0 so as to get 800 features for each input. This leads to easier
selection of different sparse network configurations. In Fig. 1(c) for example,
we used 800 input neurons and 100 hidden neurons since gcd(800, 100) >
gcd(784, 100), so more values of ρnet can be simulated.

in each article. Each count x was transformed into log(1+ x)
to form the final 2000-dimensional feature vector for each
input.

c) TIMIT speech corpus [43]: TIMIT is a speech dataset
comprising approximately 5.4 hours of 16 kHz audio com-
monly used in Automatic Speech Recognition (ASR). A mod-
ern ASR system has three major components: (i) preprocessing
and feature extraction, (ii) acoustic model, and (iii) dictionary
and language model. A complete study of an ASR system
is beyond the scope of this work. Instead we focus on the
acoustic model, which is typically implemented using a NN.
The input to the acoustic model is feature vectors and the
output is a probability distribution on phonemes (i.e., speech
sounds). For our experiments, we used 25ms speech frames
with 10ms shift, as in [42], and computed a feature vector of 39
Mel-frequency Cepstral Coefficient (MFCC)s for each frame.
We used the complete training set of 818,837 training samples
(462 speakers), 89,319 validation samples (50 speakers), and
212,093 test samples (118 speakers). We used a phoneme set
of size 39 as defined in [44].

d) CIFAR-100 images [45]: Our setup for CIFAR-100
consists of a Convolutional Neural Network (CNN) followed
by a MLP. The CNN has 3 blocks and each block has
2 convolutional layers with window size 3x3 followed by a
max pooling layer of pool size 2x2. The number of filters
for the six convolutional layers is (60,60, 125,125, 250,250).
This results in a total of approximately one million trainable
parameters in the convolutional portion of the network. Batch
normalization is applied before activations. The output from
the 3rd block, after flattening into a vector, has 4000 features.
Typically dropout is applied in the MLP portion, however we
omitted it there since pre-defined sparsity is an alternate form
of parameter reduction. Instead we found that a dropout prob-
ability of half applied to the convolutional blocks improved
performance. No data augmentation was applied.

For each dataset, we performed classification using
one-hot labels and measured accuracy on the test set as
a performance metric. We also calculated the top-5 test set
classification accuracy for CIFAR-100.

We found the optimal training configuration for each FC
setup by doing a grid search using validation performance
as a metric. This resulted in choosing ReLU activations for
all layers except for the final softmax layer. The initialization
proposed by He et al. [46] worked best for the weights; while
for biases, we found that an initial value of 0.1 worked best in
all cases except for Reuters, for which zeroes worked better.
The Adam optimizer [47] was used with all parameters set to
default, except that we set the decay parameter to 10−5 for best
results. We used a batch size of 1024 for TIMIT and Reuters
since the number of training samples is large, and 256 for
MNIST and CIFAR.

All experiments were run for 50 epochs of training and
regularization was applied as an L2 penalty to the weights.
To maintain consistency, we kept most hyperparameters the
same when sparsifying the network, but reduced the L2 penalty
coefficient with increasing sparsity. This was done because
sparse NNs have fewer trainable parameters and are less prone
to overfitting. We ran each experiment at least five times to

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 339

TABLE II

COMPARISON OF PRE-DEFINED SPARSE METHODS

average out randomness and we show the 90% Confidence
Interval (CI)s for each metric as shaded regions (this also holds
for the results in Fig. 1(c,h)). In addition to the results shown,
we developed a data set of Morse code symbol sequences
and investigated pre-defined sparse NNs. While these results
are excluded for brevity, they are consistent with the trends
described in this Section, and can be found in [48].

B. Comparison of Pre-Defined Sparse Methods

Table II shows performance on different datasets for three
methods of pre-defined sparsity: a) the most restrictive and
hardware-friendly clash-freedom, b) structured, and c) random.
For the clash-free case, we experimented with different znet
settings to simulate different hardware environments:
• Reuters: One junction cycle is 50 cycles for all the differ-

ent densities. This is because we scale znet accordingly,
i.e., a more powerful hardware device is used for each
NN as ρnet increases.

• CIFAR-100 and MNIST: These simulate cases where
hardware choice is limited, such as a high-end, a mid-
range and a low-end device being available. Thus three
different znet values are used for CIFAR-100 depending
on ρnet.

• TIMIT: We keep znet constant for different densities.
Junction cycle length varies from 90 cycles for ρnet =
7.69% to 810 for ρnet = 69.23%. This shows that when
limited to a single low-end hardware device, denser NNs
can be processed in longer time by simply changing znet.

Table II confirms that hardware-friendly clash-free pre-
defined sparse architectures do not lead to any statistically
significant performance degradation. We also observed that
random pre-defined sparsity performs poorly for very low
density networks, as shown by the blue values. This is pos-
sibly because there is non-negligible probability of neurons
getting completely disconnected, leading to irrecoverable loss
of information.

C. Dataset Redundancy

Many machine learning datasets have considerable redun-
dancy in their input features. For example, one may not
need information from the ∼800 input features of MNIST
to infer the correct image class. We hypothesize that pre-
defined sparsity takes advantage of this redundancy, and will
be less effective when the redundancy is reduced. To test this,
we changed the feature vector for each dataset as follows.
For MNIST, Principal Component Analysis (PCA) was used
to reduce the feature count to the least redundant 200. For
Reuters, the number of most frequent tokens considered as
features was reduced from 2000 to 400. For TIMIT, we both
reduced and increased the number of MFCCs by 3X to
13 and 117, respectively. Note that the latter increases redun-
dancy. For CIFAR-100, a source of redundancy is the depth of
the CNN, which extracts features and discriminates between
classes before the MLP performs final classification. In other
words, the CNN eases the burden of the MLP. So a way to
reduce redundancy and increase the classification burden of the
MLP is to lessen the effectiveness of the CNN by reducing its
depth. Accordingly, we used a single convolutional layer with
250 filters of window size 5 × 5, followed by a 8 × 8 max
pooling layer. This results in the same number of features,
4000, at the input of the MLP as the original network, but has
reduced redundancy for the MLP.

Classification performance results are shown in Fig. 6 as a
function of ρnet. For MNIST and CIFAR-100, the performance
degrades more sharply with reducing ρnet for the nets using
the reduced redundancy datasets. To explore this further,
we recreated the histograms from Fig. 1 for the reduced
redundancy datasets, i.e., a FC NN with Nnet = (200, 100, 10)
training on MNIST after PCA. We observed a wider spread
of weight values, implying less opportunity for sparsification
(i.e., fewer weights were close to zero). Similar trends are
less discernible for Reuters and TIMIT, however, reducing
redundancy led to worse performance overall.

The results in Fig. 6 further demonstrate the effectiveness
of pre-defined sparsity in greatly reducing network complexity
with negligible performance degradation. For example, even
the reduced redundancy problems perform well when operat-
ing with half the number of connections. For CIFAR in particu-
lar, FC performs worse than an overall MLP density of around
20%. Thus, in addition to reducing complexity, structured pre-
defined sparsity may be viewed as an alternative to dropout in
the MLP for the purpose of improving classification.

D. Individual Junction Densities

The weight histograms in Fig. 1 indicate that latter junc-
tions, particularly junction L closest to the output, have a wide
spread of weight values. This suggests that a good strategy

340 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 6. Comparison of classification accuracy as a function of ρnet for
different versions of datasets – original, reduced in redundancy by reducing
feature space (MNIST, Reuters, TIMIT) or performing less processing prior
to the MLP (CIFAR-100), and increasing redundancy by enlarging feature
space (TIMIT). Higher density points for MNIST are magnified.

Fig. 7. Comparison of classification accuracy as a function of ρnet for
different ρL , where L = 2. Black-circled points show the effects of ρ2 when
ρnet is the same. Nnet values are (800, 100, 10) for MNIST, (2000, 50, 50)
for Reuters, and (4000, 500, 100) for the MLP in CIFAR-100.

for reducing ρnet would be to use lower densities in earlier
junctions – i.e., ρ1 < ρL . This is demonstrated in Fig. 7 for
the cases of MNIST, CIFAR-100 and Reuters, each with L = 2
junctions in their MLPs. Each curve in each subfigure is for
a fixed ρ2, i.e., reducing ρnet across a curve is done solely
by reducing ρ1. For a fixed ρnet, the performance improves as
ρ2 increases. For example, the circled points in Reuters both
have ρnet = 4%, but the starred point with ρ2 = 100% has
approximately 40% better test accuracy than the pentagonal
point with ρ2 = 2%. The trend clearly holds for MNIST and
Reuters, and is also discernible for CIFAR-100. We observed
a similar trend for three-junction NNs, i.e., ρ3 > ρ2 improves
performance, but the detailed results are omitted for brevity.

We further observed that this trend is related to the redun-
dancy inherent in the dataset and may not hold for datasets

Fig. 8. Comparison of classification accuracy as a function of ρnet
for: (a) TIMIT with 39 MFCCs for the two cases where one junction is
always sparser than the other and vice-versa. Black-circled points show
how reducing ρ1 degrades performance to a greater extent. (b) TIMIT with
13 MFCCs for different ρ1. (c,d) TIMIT with 117 MFCCs, and Reuters
reduced to 400 tokens, for different ρ2. Nnet values are (a) (39, 390, 39),
(b) (13, 390, 39), (c) (117, 390, 39), (d) (400, 50, 50).

with very low levels of redundancy. To explore this, results
analogous to those in Fig. 7 are presented in Fig. 8 for TIMIT,
but with varying sized MFCC feature vectors – i.e., datasets
corresponding to larger feature vectors will contain more
redundancy. The results in Fig. 8(c) are for 117 dimensional
MFCCs and are consistent with the trend in Fig. 7. However,
for a MFCC dimension of 13, this trend actually reverses –
i.e., junction 1 should have higher density. This is shown
in Fig. 8(b), where each curve is for a fixed ρ1. This reversed
trend is also observed for the case of 39 dimensional feature
vectors, considered in Fig. 8(a), where Nnet = (39, 390, 39).
Due to this symmetric neuronal configuration, for each value
of ρnet on the x-axis in Fig. 8(a), the two curves have comple-
mentary values of ρ1 and ρ2 (ρ1 �= ρ2) – e.g., the two curves
at ρnet = 7.69% have (ρ1, ρ2) pairs of (2.56%, 12.82%) and
(12.82%, 2.56%). We observe that the curve for ρ1 < ρ2 is
generally worse than the curve for ρ2 < ρ1, which indicates
that junction 1 should have higher density in this case.

Fig. 8(d) depicts the results for Reuters with the feature
vector size reduced to 400 tokens. While junction 2 is still
more important (as in Fig. 7(c) for the original Reuters
dataset), notice the circled star-point at the very left of the
ρ2 = 100% curve. This point has very low ρ1. Unlike Fig. 7(c),
it crosses below the other curves, indicating that it is more
important to have higher density in the first junction with this
less redundant set of features. We observed a similar, but less
prominent, trend in MNIST PCA when the feature dimension
was reduced to 200.

In summary, if an individual junction density falls below
a certain value, referred to as the critical junction density,
it will adversely affect performance regardless of the density
of other junctions. This explains why some of the curves cross

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 341

Fig. 9. Comparing ‘large and sparse’ to ‘small and dense’ networks for
MNIST with 784 features, with (a) Nnet = (784, x, 10) (on the left), and
(b) Nnet = (784, x, x, x, 10) (on the right). Solid curves (with the shaded
CIs around them) are for constant x , black dashed curves with same marker
are for same number of trainable parameters. The final junction is always
FC. Intermediate junctions for the L = 4 case have dout values similar to
junction 1.

in Fig. 8. The critical junction density is much smaller for
earlier junctions than for later junctions in most datasets with
sufficient redundancy. However, the critical density for earlier
junctions increases for datasets with low redundancy.

E. ‘Large and Sparse’ vs. ‘Small and Dense’ Networks

We observed that when keeping the total number of trainable
parameters the same, sparser NNs with larger hidden layers
(i.e., more neurons) generally performed better than denser
networks with smaller hidden layers. This is true as long as
the larger NN is not so sparse that individual junction densities
fall below the critical density, as explained in Sec. IV-D. While
the critical density is problem-dependent, it is usually low
enough to obtain significant complexity savings above it. Thus,
‘large and sparse’ is better than ‘small and dense’ for many
practical cases, including NNs with more than one hidden
layer (i.e., L > 2).

Fig. 9 shows this for networks having one and three hidden
layers trained on MNIST. For the three layer network, all
hidden layers have the same number of neurons. Each solid
curve shows classification performance vs. ρnet for a par-
ticular Nnet, while the black dashed curves with identical
markers are configurations that have approximately the same
number of trainable parameters. As an example, the points
with circular markers (with a big blue ellipse around them)
in Fig. 9(b) all have the same number of trainable parameters
and indicate that the larger, more sparse NNs perform better.
Specifically, the network with Nnet = (784, 112, 112, 112, 10)
and dout

net = (10, 10, 10, 10) corresponding to ρnet = 9.82%
performs significantly better than the FC network with Nnet =
(784, 14, 14, 14, 10), and other smaller and denser networks,
despite each having 11,500 trainable parameters. Increasing
the network size further to Nnet = (784, 224, 224, 224, 10),
and reducing ρnet to 4% to fix the number of trainable
parameters at 11,500, leads to performance degradation. This
is because this ρnet was achieved by setting ρ2 = ρ3 = 2.68%,
which appears to be below the critical density.

Fig. 10 summarizes the analogous experiment on Reuters
with similar conclusions. Both subfigures are for the same
results, with the x-axis split into higher and lower density

Fig. 10. Comparing ‘large and sparse’ to ‘small and dense’ networks for
Reuters with 2000 tokens, with Nnet = (2000, x, 50). The x-axis is split into
higher values on the left (a), and lower values on the right in log scale (b).
Solid curves (with the shaded CIs around them) are for constant x , black
dashed curves with same marker are for same number of trainable parameters.
Junction 1 is sparsified first until its number of total weights is approximately
equal to that of junction 2, then both are sparsified equally.

Fig. 11. Comparing ‘large and sparse’ to ‘small and dense’ networks for
(a) TIMIT with 39 MFCCs and Nnet = (39, x, x, x, x, 39) (on the left), and
(b) CIFAR-100 with the deep 9-layer CNN and MLP Nnet = (4000, x, 100)
with log scale for the x-axis (on the right). Solid curves (with the shaded CIs
around them) are for constant x , black dashed curves with same marker are for
same number of trainable parameters (in the MLP portion only for CIFAR).
Since TIMIT has symmetric junctions, we tried to keep input and output
junction densities as close as possible and adjusted intermediate junction
densities to get the desired ρnet . CIFAR-100 is sparsified in a way similar
to Reuters in Fig. 10.

range (on log scale) to show more detail. Observe that the
trend of ‘large and sparse’ being better than ‘small and dense’
holds for subfigure (a), but reverses for (b) since densities are
very low (the black dashed curves have positive slope instead
of negative). This is due to the critical density effect.

Fig. 11(a) shows the result for the same experiment on
TIMIT with four hidden layers.7 The trend is less clearly
discernible, but it exists. Notice how the black dashed curves
have negative slopes at appreciable levels of ρnet, indicating
‘large and sparse’ being better than ‘small and dense’, but high
positive slopes at low ρnet, indicating the rapid degradation in
performance as density is reduced beyond the critical density.
This is exacerbated by the fact that TIMIT with 39 MFCCs is
a dataset with low redundancy, so the effects of very low ρnet
are better observed.

Fig. 11(b) for the MLP portion of CIFAR-100 shows similar
results as TIMIT, but on a log x-scale for more clarity.
As noted in Sec. IV-C, the best performance for a given Nnet

7We also performed experiments on TIMIT with one hidden layer (L = 2)
and Reuters with 2 hidden layers (L = 3). Results were similar to those
shown, hence are not included for brevity’s sake.

342 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

occurs at an overall density less than 100%. It appears that for
any Nnet for CIFAR-100, peak performance occurs at around
10–20% overall MLP density. In experiments not shown here,
we obtained similar results for the reduced redundancy net
with a single convolutional layer.

V. COMPARISON TO OTHER SPARSE NN METHODS

Numerical results in Sec. IV showed that hardware-
compatible clash-free connection patterns performed as well as
structured and random pre-defined sparse connections. In this
section, we compare clash-free patterns against two sparsity
approaches that are less constrained than the structured pre-
defined sparsity considered in Sec. IV. In particular, both
approaches remove the constraint of regular degree – i.e., these
approaches yield sparse NNs that have varying dout

i and d in
i

selected to optimize classification performance.

A. Attention-Based Preprocessed Sparsity

Previous works [49], [50] have applied the concept of atten-
tion on object recognition and image captioning to achieve
better performance with fewer parameters and less computa-
tion. We simplify this idea by computing the variance of input
features as attention and setting the out-degree of the neurons
of the input layer based on this value. Specifically, the feature
variances are quantized into three levels, and input neurons
with higher attention are assigned more connections than those
with lower attention. For the neurons in latter layers, we use
uniform out-degree and in-degree.

B. Learning Structured Sparsity During Training

While the method in Sec. V-A obtains a non-uniform neuron
out-degree for the first layer, it only considers the properties
of the dataset and not the learning process. We also compared
against the method of Learning Structured Sparsity (LSS)
which learns a good sparse connection pattern during training.
This method was proposed in [14] and prunes the connections
during training by using a sparse-promoting penalty function
p(·) as part of the objective function (which also includes a
loss function l(·) and a regularizer r(·)):

min
{Wi ,bi }Li=1

l
(
{Wi , bi }Li=1

)
+λr

(
{Wi }Li=1

)
+

L∑

i=1

γi p(Wi)

where the penalty coefficients {γi}Li=1 control the density of
each junction. Increasing γi decreases ρi , however, obtaining a
specific value of ρi requires experimental tuning of γi . Exam-
ple p(·) functions include L1 and L1/L2 used in Lasso [51]
and group-Lasso [52], respectively. In the results presented in
this section, we used L1 as the element-wise sparse-promoting
penalty function and L2 as the regularizer.

Note that, in contrast to the attention-based method and the
structured pre-defined sparsity approach, LSS is not a pre-
defined sparsity method. Instead training in LSS begins with
a FC network, which means that training complexity is similar
to that of a FC NN. At the end of the LSS training process,
weights with absolute value below a threshold are set as zero
to achieve the target density.

Fig. 12. Comparison of classification accuracy as a function of ρnet for dif-
ferent sparse methods on (a) MNIST with Nnet = (800, 100, 10), (b) Reuters
with Nnet = (2000, 50, 50), and (c) TIMIT with Nnet = (39, 390, 39).
We set the overall density ρnet and all individual junction densities ρi to
be approximately the same across different sparse methods. The FC NN is
the same for each approach, and its test accuracy performance is also noted.

C. Performance Comparison

Fig. 12 compares performance versus ρnet of different
sparse NNs on MNIST, Reuters, and TIMIT. The individual
density of each junction with the attention-based preprocessed
sparse method is set to be identical to the density of each
junction using clash-free pre-defined sparse method. However,
the density of the nets using the LSS method can be tuned only
with the penalty coefficients. We tuned these to approximate
match the density of the other methods.

The LSS method performs best among all sparse methods,
which is to be expected as it is the least constrained and also
discovers a good sparse connection pattern during training.
However, the performance with clash-free pre-defined spar-
sity is near that of the attention-based and LSS methods –
i.e., within 2% in terms of test accuracy at ρnet = 20%.
We conclude that even though the clash-free patterns are
highly structured and pre-defined, there is no significant per-
formance degradation when compared to advanced methods
for producing sparse models which exploit specific properties
of the dataset or learn sparse patterns during training. In fact,
the performance of our method is comparable to FC NNs at
most values of ρnet.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed a new technique for complexity
reduction of neural networks – pre-defined sparsity – in
which a fixed sparse connection pattern is enforced prior to
training and held fixed during both training and inference.
We presented a hardware architecture suited to leverage the
benefits of structured pre-defined sparsity, capable of parallel
and pipelined processing. The architecture can be used for

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 343

both training and inference modes, and supports networks of
arbitrary density, including conventional fully connected ones.
Flexibility is afforded by the degree of parallelism znet, which
trades hardware complexity for speed. Simple methods for
clash-free memory access are presented and shown to achieve
performance on par with the best known methods for obtaining
sparse MLPs.

Using extensive numerical experiments, we also identified
trends and guidelines which help in designing pre-defined
sparse networks. Firstly, it is better to allocate connections
in a structured manner rather than randomly. Secondly, for
most datasets with high redundancy, earlier junctions can be
made more sparse. Thirdly, it is better to have more neurons
in the hidden layers, and then sparsify aggressively to keep the
number of edges low and reduce complexity. Interesting areas
for future research include analytical approaches to justify the
trends observed in this work.

This work focuses on MLPs, which are either used stand-
alone, or as building blocks in a wide variety of problems
such as classification and ASR systems. There are other kinds
of NNs such as convolutional and recurrent. The former is
characterized by weight reuse and local connectivity, and will
likely need a different parallel memory access scheme to
avoid clashes. The latter undergoes backpropagation through
time and can have potential hardware bottlenecks due to state
updates. We believe the methods introduced in this work also
have applicability to convolutional and recurrent architectures,
however, these represent a significant extension of our methods
and are excellent topics for future research.

While our hardware implementation in [37] is a good
initial proof-of-concept, there are significant engineering tasks
required to demonstrate state-of-the-art training speeds. This
is an area of ongoing work.

In conclusion, the rapidly growing complexity associated
with modern NNs is a major challenge. Pre-defined sparsity is
a simple method to help address this challenge, as is acceler-
ation with custom hardware. Speeding the training process by
orders of magnitude would allow more extensive search over
NN architectures, and therefore a better understanding of the
largely empirical process of NN design.

APPENDIX A
STRUCTURED PRE-DEFINED SPARSITY CONSTRAINTS

In our structured pre-defined sparse network, ρi , the density
of junction i , cannot be arbitrary, since ρi = dout

i /Ni =
d in

i /Ni−1, where dout
i and d in

i are natural numbers satisfying
the equation Ni−1dout

i = Ni d in
i . Therefore, the number of pos-

sible ρi values is the same as the number of
(
dout

i , d in
i

)
values

satisfying the structured pre-defined sparsity constraints:

dout
i =

Ni d in
i

Ni−1
, d in

i ≤ Ni−1, dout
i , d in

i ∈ N (5)

where N denotes the set of natural numbers.
The smallest value of d in

i which satisfies dout
i ∈ N is

Ni−1/gcd(Ni−1, Ni), and other values are its integer multiples.
Since d in

i is upper bounded by Ni−1, the total number of
possible

(
dout

i , d in
i

)
is gcd(Ni−1, Ni). Thus, the set of possible

ρi is
{

ρi ∈ (0, 1]
∣
∣
∣
∣ ρi = k

gcd(Ni−1, Ni)
, k ∈ N

}

. (6)

APPENDIX B
HARDWARE ARCHITECTURE CONSTRAINTS

The depth of left memories in our hardware architecture is
Di = Ni−1/zi . Thus, Ni−1 should preferably be an integral
multiple of zi . This is not a burdening constraint since the
choice of zi is independent of network parameters and depends
on the capacity of the device. In the unusual case that this
constraint cannot be met, the extra cells in memories can be
filled with dummy values such as 0.

There are also 2 conditions placed on the z values to
eliminate stalls in processing: for all junctions i ∈ {1, · · · , L},
(i) |Wi | /zi = C , and (ii) zi+1 ≥

⌈
zi/d in

i

⌉
(excluding i = L).

Using the definitions from Sec. II-A, (i) is equivalent to
zi+1 = zi dout

i+1/d in
i . Then, (ii) can be equivalently written as:

dout
i+1 ≥

d in
i

zi

⌈
zi

d in
i

⌉

(7)

which needs to be satisfied ∀ i ∈ {1, · · · , L − 1}. In practice,
it is desirable to design zi/d in

i to be an integer so that an
integral number of right neurons finish processing every cycle.
This simplifies hardware implementation by eliminating the
need for additional storage, for example, of the intermediate
activation values during FF. In this case, (7) reduces to
dout

i+1 ≥ 1, which is always true.
For non-integral zi/d in

i , there are two cases. If zi > d in
i , (7)

reduces to dout
i+1 ≥ 2. On the other hand, if zi < d in

i , there is
no bound on the right hand side of (7). In general, note that
(7) becomes a burdening constraint only if d in

i is large, and
dout

i+1 and zi are both desired to be small. This corresponds
to earlier junctions being denser than later, which is typically
not desirable according to the observations in Sec. IV-D, or to
very limited hardware resources. We thus conclude that (7) is
not a limiting constraint in most practical cases.

APPENDIX C
CLASH-FREE PATTERNS

Specifying Ni−1, Ni , d in
i and zi for junction i in a clash-free

structured pre-defined sparse NN does not uniquely define a
connection pattern (unless it is FC). This section discusses the
number of possible left memory access patterns SMi for such
a junction i . Note that the total number of possible memory
access patterns for the complete NN is SM =∏L

i=1 SMi .
When zi ≥ d in

i , which is expected to be true for practical
cases of implementing sparse NNs on powerful hardware
devices, SMi is also equal to the number of possible connection
patterns SCi , which is the key quantity of interest. This is
because if zi ≥ d in

i , at least one right neuron is completely
processed in some cycle. Thus, changing the left memory
access pattern will change the left neurons to which that right
neuron connects, thereby changing the connection pattern.
This one-to-one correspondence results in SMi = SCi .

344 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 2, JUNE 2019

Fig. 13. (a-c) Various types of clash-freedom, and (d) memory dithering
for type 3, using the same left neuronal structure from Fig. 4 as an example.
The grids represent different access patterns for the same memory bank. The
number in each cell represents the left neuron number whose parameter is
stored in that cell. Cells sharing the same color are read in the same cycle.

For the case of zi < d in
i , a FC junction provides an example

where SMi �= SCi . Specifically, in this case SCi = 1 as there is
only one way to fully connect all neurons, but there are many
clash-free memory access patterns. This is shown next, along
with various types of clash-freedom.

Type 1 is as described in Sec. III-C, and recapitu-
lated in Fig. 13(a). The number of ways of designing
φi is SMi = Di

zi .
In Type 2, implemented in our earlier work [37], a new

φi is defined for every sweep. Considering the example
in Fig. 13(b), φi = (1, 0, 2, 2) for sweep 0, but (2, 0, 0, 0)
for sweep 1. There will be dout

i different φi vectors for each
junction, resulting in SMi = Di

zi dout
i .

In Type 3, the constraint of cyclically accessing the left
memories is also eliminated. Instead, any cycle can access
any cell from each of the memories. This means that storing
φi is not enough, the entire sequence of memory accesses
needs to be stored as a matrix �i ∈ {0, 1, · · · , Di − 1}Di×zi .
This removes the need of having zi incrementers to com-
pute subsequent addresses. In Fig. 13(c) for example, �i =
((1, 0, 2, 2), (0, 2, 1, 0), (2, 1, 0, 1)) for sweep 0. Every sweep
would also have a different �i , resulting in SMi = (Di !)zi dout

i .
A technique that can be applied to all the types of clash-

freedom is memory dithering, which is a permutation of the zi

memories (i.e., the columns) in a bank. This permutation can
change every sweep, as shown in Fig. 13(d). Memory dithering
incurs an additional address computation storage cost because
of the zi permutation, but increases SMi by a factor Ki .
If d in

i /zi is an integer, an integral number of cycles are
required to process each right neuron. Since a cycle accesses
all memories, dithering has no effect and Ki = 1. On the
other hand, if zi/d in

i is an integer greater than 1, the effects
of dithering on connectivity patterns are only observed when
switching from one right neuron to the next within a cycle.

This results in: Ki =
⎛

⎝ zi !

d in
i !

zi
din

i

⎞

⎠

dout
i

for types 2 and 3, and the

dout
i exponent is omitted for type 1 since the access pattern

does not change across sweeps.
When either of zi or d in

i does not perfectly divide the
other, an exact value of Ki is hard to arrive at since some
proper or improper fraction of right neurons are processed
every cycle. In such cases, Ki is upper-bounded by (z!)dout

i .

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[2] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with COTS HPC systems,” in Proc. Int. Conf. Mach.
Learn. (ICML), vol. 28, 2013, pp. III-1337–III-1345.

[3] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2015, pp. 1135–1143.

[4] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2017, pp. 1–12.

[5] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[6] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. (2014). “Compressing
deep convolutional networks using vector quantization.” [Online]. Avail-
able: https://arxiv.org/abs/1412.6115

[7] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2015, pp. 1–10.

[8] S. Han, H. Mao, and W. J. Dally. (2015). “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding.” [Online]. Available: https://arxiv.org/abs/1510.00149

[9] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 243–254.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[11] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. 43rd Int. Symp. Comput. Archit. (ISCA), 2016,
pp. 1–13.

[12] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in Proc. ACM/IEEE 43rd Annu. Int. Symp.
Comput. Archit. (ISCA), Jun. 2016, pp. 267–278.

[13] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex
pruning of deep neural networks with performance guarantee,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2017, pp. 3177–3186.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2016, pp. 2074–2082.

[15] V. Sindhwani, T. Sainath, and S. Kumar, “Structured transforms for
small-footprint deep learning,” in Proc. Adv. Neural Inform. Process.
Syst. (NIPS), 2015, pp. 3088–3096.

[16] S. Wang et al., “C-LSTM: Enabling efficient LSTM using structured
compression techniques on FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays (FPGA), 2018, pp. 11–20.

[17] A. Bourely, J. P. Boueri, and K. Choromonski. (2017). “Sparse
neural networks topologies.” [Online]. Available: https://arxiv.org/abs/
1706.05683

[18] A. Prabhu, G. Varma, and A. M. Namboodiri. (2017). “Deep expander
networks: Efficient deep networks from graph theory.” [Online]. Avail-
able: https://arxiv.org/abs/1711.08757

[19] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta, “Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science,” Nature Commun.,
vol. 9, Jun. 2018, Art. no. 2383.

[20] S. Dey, Y. Shao, K. M. Chugg, and P. A. Beerel, “Accelerating training
of deep neural networks via sparse edge processing,” in Proc. 26th
Int. Conf. Artif. Neural Netw. (ICANN). Cham, Switzerland: Springer,
Sep. 2017, pp. 273–280.

[21] S. Dey, P. A. Beerei, and K. M. Chugg, “Interleaver design for deep
neural networks,” in Proc. 51st Asilomar Conf. Signals, Syst., Comput.,
Oct./Nov. 2017, pp. 1979–1983.

[22] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Characterizing
sparse connectivity patterns in neural networks,” in Proc. Inf. Theory
Appl. Workshop (ITA), Feb. 2018, pp. 1–9.

[23] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

DEY et al.: PRE-DEFINED SPARSE NEURAL NETWORKS WITH HARDWARE ACCELERATION 345

[24] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-S. Seo, “ALAMO:
FPGA acceleration of deep learning algorithms with a modularized RTL
compiler,” Integration, vol. 62, pp. 14–23, Jun. 2018.

[25] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture (MICRO), 2016, Art. no. 20.

[26] N. Suda et al., “Throughput-optimized OpenCL-based FPGA accelerator
for large-scale convolutional neural networks,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays (FPGA), 2016, pp. 16–25.

[27] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. 19th Int. Conf. Archit. Support
Program. Lang. Operating Syst. (ASPLOS), 2014, pp. 269–284.

[28] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI archi-
tectures for turbo codes,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 7, no. 3, pp. 369–379, Sep. 1999.

[29] T. Brack et al., “Low complexity LDPC code decoders for next genera-
tion standards,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Apr. 2007, pp. 1–6.

[30] S. Crozier and P. Guinand, “High-performance low-memory interleaver
banks for turbo-codes,” in Proc. IEEE 54th Veh. Technol. Conf., vol. 4,
Oct. 2001, pp. 2394–2398.

[31] F. Sun et al., “A high-performance accelerator for large-scale con-
volutional neural networks,” in Proc. IEEE Int. Symp. Parallel Dis-
trib. Process. Appl. IEEE Int. Conf. Ubiquitous Comput. Com-
mun. (ISPA/IUCC), Dec. 2017, pp. 622–629.

[32] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU:
A scalable deep learning accelerator unit on FPGA,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 3, pp. 513–517,
Mar. 2017.

[33] T. Guan, X. Zeng, and M. Seok. (2017). “Recursive binary neural net-
work learning model with 2.28b/weight storage requirement.” [Online].
Available: https://arxiv.org/abs/1709.05306

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[35] J. Yosinski and H. Lipson, “Visually debugging restricted Boltzmann
machine training with a 3D example,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2012, pp. 1–6.

[36] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed. London, U.K.: Pearson, 2010.

[37] S. Dey et al., “A highly parallel FPGA implementation of sparse
neural network training,” in Proc. Int. Conf. Reconfigurable Comput.
FPGAs (ReConFig), Dec. 2018, pp. 1–4. [Online]. Available: https://
arxiv.org/abs/1806.01087

[38] P. Goyal et al. (2017). “Accurate, large minibatch SGD: Training ima-
genet in 1 hour.” [Online]. Available: https://arxiv.org/abs/1706.02677

[39] D. Masters and C. Luschi. (2018). “Revisiting small batch train-
ing for deep neural networks.” [Online]. Available: https://arxiv.org/
abs/1804.07612

[40] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST Database
of Handwritten Digits. Accessed: Jul. 1, 2018. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[41] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A new benchmark
collection for text categorization research,” J. Mach. Learn. Res., vol. 5,
pp. 361–397, Dec. 2004.

[42] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. (2012). “Improving neural networks by preventing
co-adaptation of feature detectors.” [Online]. Available: https://arxiv.org/
abs/1207.0580

[43] J. S. Garofolo et al. TIMIT Acoustic-Phonetic Continuous
Speech Corpus. Accessed: Aug. 28, 2018. [Online]. Available:
https://catalog.ldc.upenn.edu/LDC93S1

[44] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition
using hidden Markov models,” IEEE Trans. Acoust., Speech Signal
Process., vol. 37, no. 11, pp. 1641–1648, Nov. 1989.

[45] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2009.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[47] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2014.

[48] S. Dey, K. M. Chugg, and P. A. Beerel, “Morse code datasets for
machine learning,” in Proc. 9th Int. Conf. Comput., Commun. Netw.
Technol. (ICCCNT), Jul. 2018, pp. 1–7.

[49] J. Ba, V. Mnih, and K. Kavukcuoglu. (2014). “Multiple object
recognition with visual attention.” [Online]. Available: https://arxiv.
org/abs/1412.7755

[50] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” in Proc. Int. Conf. Mach. Learn. (ICML), 2015,
pp. 2048–2057.

[51] M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to
variable selection in least squares problems,” IMA J. Numer. Anal.,
vol. 20, no. 3, pp. 389–403, 2000.

[52] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selec-
tion with sparsity-inducing norms,” J. Mach. Learn. Res., vol. 12,
pp. 2777–2824, Feb. 2011.

Sourya Dey received the B. Tech. degree in instru-
mentation engineering from IIT Kharagpur, India,
in 2014. He is currently pursuing the Ph.D. degree in
electrical engineering with the University of South-
ern California, Los Angeles, CA, USA. His research
focuses on sparsity, model search, and algorithm-
hardware co-design of neural networks in machine
learning.

Kuan-Wen Huang received the B.S. degree in elec-
trical engineering from National Taiwan University,
Taipei, in 2012. He is currently pursuing the Ph.D.
degree in electrical engineering with the University
of Southern California. His current research focuses
primarily on sparse and low-rank signal processing,
optimization, and deep learning.

Peter A. Beerel received the B.S.E. degree in
electrical engineering from Princeton University,
Princeton, NJ, USA, in 1989, and the M.S. and
Ph.D. degrees in electrical engineering from Stan-
ford University, Stanford, CA, USA, in 1991 and
1994, respectively. He is currently a Full Professor
and an Associate Chair of the Computer Engineering
Division, Ming Hsieh Electrical and Computer Engi-
neering Department, University of Southern Califor-
nia. He co-founded TimeLess Design Automation to
commercialize an asynchronous ASIC flow, in 2008,

and sold the company, in 2010, to Fulcrum Microsystems which was bought
by Intel, in 2011. His interests include a variety of topics in CAD, VLSI, and
machine learning.

Keith M. Chugg (S’88–M’95–SM’06–F’10)
received the B.S. degree (Hons.) in engineering
from the Harvey Mudd College, Claremont, CA,
USA, in 1989, and the Ph.D. degree in electrical
engineering from the University of Southern
California (USC), Los Angeles, CA, USA, in 1995.
Since 1996, he has been on the faculty of the
Ming Hsieh Department of Electrical and Computer
Engineering, USC, where he is currently a Professor.
He is a co-founder of TrellisWare Technologies,
Inc., where he serves as the Chief Scientist. His

research interests are in the general areas of signal processing, digital
communications, machine learning, and associated efficient implementations.

