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ABSTRACT

Kearns, Neel, Roth, and Wu [ICML 2018] recently proposed a notion
of rich subgroup fairness intended to bridge the gap between statisti-
cal and individual notions of fairness. Rich subgroup fairness picks
a statistical fairness constraint (say, equalizing false positive rates
across protected groups), but then asks that this constraint hold
over an exponentially or infinitely large collection of subgroups de-
fined by a class of functions with bounded VC dimension. They give
an algorithm guaranteed to learn subject to this constraint, under
the condition that it has access to oracles for perfectly learning ab-
sent a fairness constraint. In this paper, we undertake an extensive
empirical evaluation of the algorithm of Kearns et al. On four real
datasets for which fairness is a concern, we investigate the basic
convergence of the algorithm when instantiated with fast heuristics
in place of learning oracles, measure the tradeoffs between fairness
and accuracy, and compare this approach with the recent algorithm
of Agarwal, Beygelzeimer, Dudik, Langford, and Wallach [ICML
2018], which implements weaker and more traditional marginal
fairness constraints defined by individual protected attributes. We
find that in general, the Kearns et al. algorithm converges quickly,
large gains in fairness can be obtained with mild costs to accuracy,
and that optimizing accuracy subject only to marginal fairness
leads to classifiers with substantial subgroup unfairness. We also
provide a number of analyses and visualizations of the dynamics
and behavior of the Kearns et al. algorithm. Overall we find this
algorithm to be effective on real data, and rich subgroup fairness to
be a viable notion in practice.
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1 INTRODUCTION

The most common definitions of fairness in machine learning are
statistical in nature. They proceed by fixing a small number of “pro-
tected subgroups” (such as racial or gender groups), and then ask
that some statistic of interest be approximately equalized across
groups. Standard choices for these statistics include positive clas-
sification rates [3], false positive or false negative rates [4, 8, 13]
and positive predictive value [4, 13] — see [2] for more examples.
These definitions are pervasive in large part because they are easy
to check, although there are interesting computational challenges
in learning subject to these constraints in the worst case — see e.g.
[16].

Unfortunately, these statistical definitions are not very meaning-
ful to individuals: because they are constraints only over averages
taken over large populations, they promise essentially nothing
about how an individual person will be treated. Dwork et al. [7]
enumerate a “catalogue of evils” which show how definitions of this
sort can fail to provide meaningful guarantees. Kearns et al. [10]
identify a particularly troubling failure of standard statistical def-
initions of fairness, which can arise naturally without malicious
intent, called “fairness gerrymandering”. They illustrate the idea
with the following toy example shown in Figure 1, described as
follows.

Suppose individuals each have two sensitive attributes: race (say
blue and green) and gender (say male and female). Suppose that
these two attributes are distributed independently and uniformly
at random, and are uncorrelated with a binary label that is also
distributed uniformly at random. If we view gender and race as
defining classes of people that we wish to protect, we could take a
standard statistical fairness definition from the literature — say the
equal odds condition of [8], which asks to equalize false positive
rates across protected groups, and instantiate it with the four pro-
tected groups: “Men”, “Women”, “blue people”, and “green people”.
The following classifier satisfies this condition, although only by
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Figure 1: Fairness Gerrymandering: A Toy Example [10]

“cheating” and packing its unfairness into structured subgroups of
the protected populations: it labels a person as positive only if they
are a blue man or a green woman. This equalizes false positive
rates across the four specified groups, but of course not over the
finer-grained subgroups defined by the intersections of the two
protected attributes.

Kearns et al. [10] also proposed an approach to the problem of
fairness gerrymandering: rather than asking for statistical defini-
tions of fairness that hold over a small number of coarsely defined
groups, ask for them to hold over a combinatorially or infinitely
large collection of subgroups defined by a set of functions G of
the protected attributes (Hébert-Johnson et al. [9] independently
made a similar proposal). For example, we could ask to equalize
false positive rates across every subgroup that can be defined as
the intersection or conjunction of d protected attributes, for which
there are 29 such groups. Kearns et al. [10] showed that as long
as the class of functions defining these subgroups has bounded
VC dimension, the statistical learning problem of finding the best
(distribution over) classifiers in H subject to the constraint of equal-
izing the positive classification rate, the false positive rate, or the
false negative rate over every subgroup defined over G is solvable
whenever the dataset size is sufficiently large relative to the VC
dimension of G and H. Taking inspiration from the technique of
Agarwal et al. [1], they were able to show that even with combi-
natorially many subgroup fairness constraints, the computational
problem of learning the optimal fair classifier is once again solvable
efficiently whenever the learner has access to a black-box classi-
fier (oracle) which can solve the unconstrained learning problems
over G and H respectively. Similarly, given access to an oracle
for G, they were able to efficiently solve the problem of auditing
for rich subgroup fairness: finding the g € G that corresponds to
the subgroup for whom the statistical fairness constraint was most
violated.

While the work of Kearns et al. [10] is satisfying from a theocrat-
ical point of view, it leaves open a number of pressing empirical
questions. For example, their theory is built for an idealized setting
with perfect learning oracles — in practice heuristic oracles may fail.
Moreover, perhaps rich subgroup fairness is asking for too much
in practice — maybe enforcing combinatorially many constraints
leads to an untenable tradeoff with error. Finally, perhaps enforcing
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combinatorially many constraints is not necessary — perhaps on
real data, it is enough to call upon the algorithm of [1] for enforc-
ing statistical fairness constraints on the small number of groups
defined by the marginal protected attributes, and rich subgroup
fairness will follow incidentally. Put another way: Is the so-called
fairness gerrymandering problem only a theoretical curiosity, or
does it arise organically when standard classifiers are optimized
subject to marginal statistical fairness constraints?

In this paper, we conduct an extensive set of experiments to
answer these questions. We study the algorithm from [10] — in-
stantiated with fast heuristic learning oracles — when used to train
a linear classifier subject to approximately equalizing false positive
rates across a rich set of subgroups defined by linear threshold
functions. On four real datasets, we characterize:

(1) The basic convergence properties of the algorithm — al-
though this algorithm has provable guarantees when instan-
tiated with learning oracles for G and H, when these oracles
are (necessarily) replaced with heuristics, the guarantees
of the algorithm become heuristic as well. We find that the
algorithm typically converges (Subsection 3.2), and provides
a controllable trade-off between fairness and accuracy de-
spite its heuristic guarantees (Subsection 3.3). We visualize
the optimization trajectory of the algorithm (Subsection 3.5),
and discrimination heatmaps showing the evolution of the
subgroup discrimination of the algorithm over time (Subsec-
tion 3.4).

The trade-off between subgroup fairness and accuracy. We
find that for each dataset, there are appealing compromises
between error and subgroup fairness. Thus achieving rich
subgroup fairness may be possible in practice without a
severe loss in predictive accuracy (Subsection 3.3).

The subgroup (unfairness) that can result when one applies
more standard approaches, that either ignore fairness con-
straints all together, or equalize false positive rates only
across a small number of subgroups defined by individual
protected attributes. By auditing the models produced by
these standard approaches with the rich subgroup auditor
of [10], we find that often subgroup fairness constraints are
violated, even by algorithms which are explicitly equalizing
false positive rates across the groups defined on the marginal
protected attributes.

@)

®)

In light of these findings, we submit that rich subgroup fairness
constraints are both important, and can be satisfied at reasonable
cost: both in terms of computation, and in terms of accuracy. We
hope that algorithms like that of [10] which can be used to satisfy
rich subgroup fairness become part of the standard toolkit for fair
machine learning.

1.1 Further Related Work

While Kearns at al. [10] propose and study rich sub-group fairness
for false positive and negative constraints, Hébert-Johnson et al.
study the analogous notion for calibration constraints, which they
call multi-calibration [9]. Kim et al. extend this style of analysis to
accuracy constraints (asking that a classifier be equally accurate
on a combinatorially large collection of subgroups) [11]. Kim et
al. also extend it to metric fairness constraints [12], converting
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the individual metric fairness constraint of [7] into a statistical
constraint that asks that on average, individuals in (combinatorially
many) subgroups should be treated differently only in proportion
to the average difference between individuals in the subgroups, as
measured with respect to some similarity metric.

2 DEFINITIONS

We begin with some definitions, following the notation in [10]. We
study the classification of individuals defined by a tuple ((x, x’), ),
where x € X denotes a vector of protected attributes, x’ € X’
denotes a vector of unprotected attributes, and y € {0, 1} denotes a
label. We will write X = (x,x”) to denote the joint feature vector.
We assume that points (X, y) are drawn i.i.d. from an unknown
distribution #. Let D be a binary classifier, and let D(X) € {0, 1}
denote the (possibly randomized) classification induced by D on
individual (X, y).

We will be concerned with learning and auditing classifiers D
satisfying a common statistical fairness constraint: equality of false
positive rates (also known as equal opportunity). The techniques in
Agarwal et al. [1] and Kearns et al. [10] also apply equally well to
equality of false negative rates and equality of classification rates
(also known as statistical parity).!

Each fairness constraint is defined with respect to a set of pro-
tected groups. We define sets of protected groups via a family of
indicator functions G for those groups, defined over protected at-
tributes. Each g : X — {0, 1} € G has the semantics that g(x) = 1
indicates that an individual with protected features x is in group g.
We now formally define false positive subgroup fairness.

Definition 2.1 (False Positive Subgroup Fairness). Fix any classi-
fier D, distribution P, collection of group indicators G, and param-
eter y € [0,1]. For each g € G, define

aFP(g’p) = P?}l[g(x) =lLy= O],
ﬂFP(g’D7P) = |FP(D) _FP(D’g)|

where FP(D) = Prp p[D(X) =1 |y = 0]andFP(D, g) = Prp p[D(X) =

1| g(x) = 1,y = 0] denote the overall false-positive rate of D and
the false-positive rate of D on group g respectively.

We say D satisfies y-False Positive (FP) Fairness with respect to
P and G if forevery g € G

arp(g,P) - Brp(9. D, P) < y.
We will sometimes refer to FP(D) FP-base rate.

Since we do not consider other measures in this paper, we refer
to this notion as simply “subgroup fairness.” Given a fixed subgroup
g € G we will refer to the quantity arp(g,P) - frp(g9, D, P) as
the subgroup fairness wrt g, or alternately the y-unfairness of g.
The notion of subgroup fairness imposes a statistical constraint on
combinatorially many groups definable by the protected attributes.
This is in contrast to more common statistical fairness definitions,
defined on coarse groups definable by a single protected attribute.

Given a protected attribute x; and a value for that attribute a, define
Lor more generally to any fairness constraint that can be expressed as a linear equality
on the conditional moments E [#(X, y, D(X)|e(X, y))], where £(X, y) is an event
defined with respect to (X, y), and ¢ : X x {0, 1} X {0, 1} — [0, 1] [1]. Equality of
false positive rate is a particular instantiation of this kind of constraint where ¢ is the
eventy = 0,and ¢t = 1{D(X) = 1}.
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the function g; 4(x) = 1{x; = a} denoting the set of individuals who
have that particular value of their protected attribute. In contrast
to subgroup fairness, we refer to a classifier D as marginally fair
if it satisfies false positive subgroup fairness with respect to the
functions {g; 4} for each protected attribute x; and realization a.

If the algorithm D fails to satisfy the y-subgroup fairness con-
dition, then we say that D is y-unfair with respect to  and G.
We call any subgroup g which witnesses this unfairness a y-unfair
certificate for (D, P).

An auditing algorithm for a notion of fairness is given sample
access to points from the underlying distribution, as well as the
classification outcomes provided by D. It will either deem D to be
fair with respect to P, or else produces a certificate of unfairness.

The algorithms of Agarwal et al. [1] and Kearns et al. [10] stud-
ied in this paper both assume access to oracles which can solve
cost-sensitive classification (CSC) problems. Formally, an instance
of a CSC problem for the class H is given by a set of n tuples
{(Xi, c?, C})}?:l such that cf corresponds to the cost for predicting
label ¢ on point X;. Given such an instance as input, a CSC oracle
finds a hypothesis h € ‘H that minimizes the total cost across all
points:

n
he argminZ[h(xi)c} + (1= h(X;))c"]
heH =31

(1)

Following both [1] and Kearns et al. [10], in all of the experiments
in this paper we take the classes H and G to be linear threshold
functions, and we use a linear regression heuristic for both audit-
ing and learning. The heuristic finds a linear threshold function as
follows:

e Train two linear regression models ry, r; to predict ¢y and
c1 respectively.

e Given a new point x, predict the cost of classifying x as 0
and 1 using our regression models: these are ro(x) and r; (x)
respectively.

e Output the prediction 7 corresponding to lower predicted
cost: § = argmin; g 1) 71 (%)

We leave the precise descriptions of the algorithm from [10] —
which we will refer to as the SUBGROUP algorithm — to the appen-
dix. We refer the reader to [10] for details about its derivation and
guarantees.? At this point we remark only that the algorithm oper-
ates by expressing the optimization problem to be solved (minimize
error, subject to subgroup fairness constraints) as solving for the
equilibrium in a two player zero-sum game, between a Learner and
an Auditor. The Learner has the set of hypothesis H as its action
(pure strategy) space, and the Auditor has the set of subgroups G
as its action space. The best response problem for the Auditor cor-
responds to the auditing problem: finding the subgroup g € G for
which the strategy of the learner violates the fairness constraints
the most. The best response problem for the Learner corresponds

2[10] actually give two algorithms, one of which employs no-regret learning techniques
and converges in a polynomial number of rounds, but is randomized; and the other of
which is known to converge only in the limit (but is conjectured to converge quickly),
and is deterministic. We focus on the deterministic algorithm in this paper, because it
is more amenable to implementation, despite its weaker theoretical guarantees. We
find that it performs well in practice despite its weaker theory.
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to solving a weighted (but unconstrained) empirical risk minimiza-
tion problem. The best response problem for both players can be
expressed as solving a cost sensitive classification problem. The
algorithm SUBGROUP essentially simulates the fictitious play of
this game, which proceeds over rounds, and in each round ¢ both
players best respond to their opponent’s empirical history of play:

e Learner plays h; in H that minimizes objective function
balancing error and unfairness on subgroups gi, . .., gr-1
found by Auditor so far;

e Auditor finds subgroup g; in G on which the uniform distri-
bution over hy, ..., h; violates y-fairness the most.

This can be done efficiently assuming access to oracles which solve
the cost sensitive classification problem over G and H respectively.

3 EMPIRICAL EVALUATION

In this section, we describe an extensive empirical investigation of
the SUBGROUP algorithm on four datasets in which fairness is a
potential concern. Among the questions of primary interest are the
following:

e Does the SUBGROUP algorithm work in practice, despite
the use of imperfect heuristics for the Learner and Auditor?

o Is the notion of subgroup fairness interesting empirically,
in that there are palatable trade-offs between accuracy and
subgroup fairness (as opposed to it being too strong a con-
straint, and thus resulting in a very steep error increase for
even weak subgroup fairness)?

We will answer these questions strongly in the affirmative, which is
perhaps the overarching message of our results. We also carefully
compare subgroup fairness to standard marginal fairness, and show
that optimizing for the latter in general does poorly on the former —
thus something like the SUBGROUP algorithm is actually necessary
to achieve subgroup fairness.

More generally, aside from performance, we provide a number
of empirical analyses that elucidate the underlying behavior and
convergence properties of the SUBGROUP algorithm, and discuss
its strengths and weaknesses.

3.1 Datasets

We ran experiments on 3 datasets from the UCI Machine Learn-
ing Repository [6]: Communities and Crime [14], Adult, and
Student [5], and the Law School dataset from the Law School
Admission Council’s National Longitudinal Bar Passage Study [15].
These datasets were selected due to their potential fairness con-
cerns, including:

e Data points representing individual people (or in the case of
Communities and Crimes, small U.S. communities of people);

e The presence of features capturing properties often asso-
ciated with possible discrimination, including race, gender,
and age;

e Potential sensitivity of the predictions being made, such as
violent crime, income, or performance in school.

The properties of these datasets are summarized in Table 1, in-
cluding the number of instances, the prediction being made, the
overall number of features (which varies from 10 to 128), the number
of protected features in the subgroup class (which varies from 3 to
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18), the nature of the protected features, and the baseline (majority
class) error rate.
Some methodological notes:

e We note that two of the datasets (Law School and Adult)
were initially much larger but were extremely imbalanced
with respect to the predicted label, making sensible error
comparisons numerically difficult. We thus randomly down-
sampled these two datasets to obtain approximately balanced
prediction problems on each.

o All categorical variables have been preprocessed with a one-
hot encoding.

e The SUBGROUP algorithm has two input parameters: the
maximum allowed subgroup fairness violation. y, and a tun-
ing parameter C which represents (in the theoretical deriva-
tion in [10]) an upper bound on the magnitude of the dual
variables needed to express the fairness constrained empiri-
cal risk minimization problem. We view y as an important
control variable allowing us to explore the tradeoff between
fairness and accuracy, and thus will vary it in our experi-
ments. On the other hand, C is more of a nuisance parameter,
and thus for consistency and simplicity we set C = 10 in
all experiments. Experimentation with larger values of C
did not reveal qualitatively different findings on the datasets
investigated.

e We emphasize that all results are reported in-sample on the
datasets, and thus we are treating the empirical distributions
of the datasets as the “true” distributions of interest. We do
this because our primary interest is simply in examining the
performance and behavior of the SUBGROUP algorithm on
the actual data or distributions, and not in generalization per
se. As noted in [10], theoretical generalization bounds for
both error and subgroup fairness can be obtained by standard
methods, and will depend on (e.g.) the VC dimension of the
Learner’s model class H and the Auditor’s subgroup class G.
As usual, we would expect empirical generalization to often
be considerably better than the worst-case theory.

3.2 Empirical Convergence of SUBGROUP

We begin with an examination of the convergence properties of the
SUBGROUP algorithm on the four datasets. Kearns et al. [10] had
already reported preliminary convergence results for the Commu-
nities and Crime dataset, showing that their algorithm converges
quickly, and that varying the input y provides an appealing trade-off
between error and fairness. In addition to replicating those find-
ings for Communities and Crime, we also find that they are not
an optimistic anomaly. For example, for the Law School dataset,
in Figure 2 we plot both the error ¢; (panel (a)) and the fairness
violation y; (panel (b)) as a function of the iteration ¢, for values of
the input y ranging from 0 to 0.03. We see that the algorithm con-
verges relatively quickly (on the order of thousands of iterations),
and that increasing the input y generally yields decreasing error
and increasing fairness violation (typically saturating the input y),
as suggested by the idealized theory.

But on other datasets the empirical convergence does not match
the idealized theory as cleanly, presumably due to the use of imper-
fect Learner and Auditor heuristics. In panels (c) and (d) of Figure 2
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Dataset Size | Prediction #P d | P d Feature Types Baseline
Communities and Crime 1994 High Violent Crime ? 128 18 Race 0.3
Law School 2053 Pass Bar Exam ? 10 4 Race, Income, Age, Gender 0.49
Student 396 Course Performance ? 30 5 Age, Gender, Relationship, Alcohol Use 0.47
Adult 2021 Income >= $50K ? 14 3 Age, Race, Gender 0.50

Table 1: Description of Data Sets.
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Figure 2: Error ¢; and fairness violation y; for Law School dataset (panels (a) and (b)) and Adult data set (panels (c) and (d)), for
values of input y ranging from 0 to 0.03. Dashed horizontal lines on y; plots correspond to varying values of y.

we again plot ¢; and y;, but now for the Adult dataset. Even after
approximately 180,000 iterations, the algorithm does not appear to
have converged, with ¢; still showing long-term oscillatory behav-
ior, y; exhibiting extremely noisy dynamics (especially at smaller
input y values), and there being no clear systematic, monotonic
relationship between the input y and error acheived. But despite
this departure from the theory, it remains the case that varying y
still yields a diverse set of (¢, y;) pairs, as we will see in the next
section. In this sense, even in the absence of convergence the algo-
rithm can be viewed as a valuable search tool for models trading
off accuracy and fairness.

Overall, we found rather similar convergent behavior on the
Communities and Crime and Law School datasets, and less conver-
gent behavior on the Adult and Student datasets.
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3.3 Subgroup Pareto Frontiers and Comparison
to Marginal Fairness

Regardless of convergence, for plots such as those in Figure 2, it
is natural to take the (¢, y;) pairs across all ¢ and all input y, and
compute the undominated or Pareto frontier of these pairs. This
frontier represents the accuracy-fairness tradeoff achieved by the
SUBGROUP algorithm on a given data set, which is arguably its
most important output. The choice of where one wants to be on
the frontier is a policy question that should be made by domain
experts and stakeholders, and dependent on the stakes involved
(e.g. online advertising vs. criminal sentencing).

It is also of interest to compare the subgroup fairness achieved
by the SUBGROUP algorithm (which is explicitly optimizing under
a subgroup fairness constraint) with an algorithm only optimizing
under weaker and more traditional marginal fairness constraints.
To this end, we also implemented a version of the algorithm from
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Figure 3: Left column: The red points show the Pareto frontier of error (x axis) and subgroup fairness violation (y axis) for the
SUBGROUP algorithm across all four data sets, while the blue points show the error and subgroup fairness violation for the
models achieved by the MARGINAL algorithm. Right column: The error and marginal fairness violation for the MARGINAL
algorithm across all four data sets. Ordering of datasets is Communities and Crime, Law School, Adult, and Student.

[1] — which we will refer to as the MARGINAL algorithm — for mar-
ginal fairness.> From a theoretical perspective, a priori we would
expect models trained for marginal fairness to fare poorly on sub-
group fairness. But it is an empirical question — perhaps on some
datasets, demanding marginal fairness already suffices to enforce
subgroup fairness as well. Thus the high-level question is whether
the SUBGROUP framework and algorithm are worth the added
analytical and computational overhead.

3Since some of the protected attributes are continuous rather than discrete, and the
MARGINAL algorithm only handles discrete attributes, in order to run the marginal
fairness algorithm we create sensitive groups by thresholding on the mean of each
sensitive attribute.
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In the left column of Figure 3, we show the SUBGROUP algo-
rithm Pareto frontiers for subgroup fairness on all four datasets,
and also the pairs achieved by the MARGINAL algorithm. In the
right column, we also separately show the marginal fairness fron-
tier achieved by the MARGINAL algorithm. Before discussing the
particulars of each dataset, we first make the following general
observations:

o For most datasets, the SUBGROUP algorithm yields a Pareto
curve that frequently lies well below the straight line con-
necting its endpoints (which we can think of as an empirical
form of strong convexity), and thus there are non-trivial
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tradeoffs between accuracy and fairness to consider. On some
of these curves there are regions of steep descent where sub-
group unfairness can be reduced significantly with negligible
increase in error.

o While the MARGINAL algorithm performs well with respect
to marginal fairness (right column) as expected, it fares much
worse than the SUBGROUP algorithm on subgroup fairness
for three of the datasets. Thus marginal fairness is not just
theoretically, but also empirically a weaker notion, and gen-
erally will not imply subgroup fairness “for free”.

o Nevertheless, there are a handful of points in which the
MARGINAL algorithm produces models that actually lie be-
low (and thus dominate) the SUBGROUP Pareto curve by a
small amount. While this is not possible under the idealized
theory — subgroup fairness is a strictly stronger notion than
marginal fairness — it can again be explained by the use of
imperfect learning heuristics by both algorithms.

e Focusing just on the MARGINAL marginal fairness curves
in the right column, we see that each of them begins with
a steep drop, meaning that in every case, the marginal un-
fairness of the unconstrained error-optimal model can be
significantly improved with little or no increase in error.

e By matching points between the MARGINAL marginal and
subgroup fairness plots, we find that with the exception of
the Student data set, there is a systematic relationship be-

tween marginal and subgroup unfairness: asking the MARGINAL

algorithm to reduce marginal unfairness also causes it to
reduce subgroup unfairness — but not by as much as the
SUBGROUP algorithm achieves.

Together these observations let us conclude that subgroup fair-
ness is a strong but achievable notion in practice (at least on these
datasets), and that the SUBGROUP algorithm appears to be an ef-
fective tool for its investigation.

It is also worth commenting on the differences across datasets,
and focusing not just on the qualitative shapes of the Pareto curves
but their actual numerical specifics — especially since in real appli-
cations, these will matter to stakeholders. For instance, the actual
range of error values spanned by the SUBGROUP Pareto curves
ranges from nearly 10% (Communities and Crime) to less than 2%
(Student). So perhaps for Communities and Crime, the tradeoff is
starker from an accuracy perspective. We now provide some brief
commentary on each dataset.

Communities and Crime (panels (a) and (b)): This is the dataset
with perhaps the cleanest and most convex SUBGROUP Pareto
curve, with steep drops in subgroup unfairness possible for mini-
mal error increase at the beginning. In particular are able to reduce
the initial y-unfairness from 0.026 to less than 0.005 while only
increasing the error from 0.12 to 0.16. This is a meaningful reduc-
tion in unfairness - e.g. reducing a 26% percent difference in false
positive rate on a subgroup comprising 10% of the population, to a
less than 5% false positive rate disparity on a subgroup of the same
size. Eventually the Pareto curve flattens out, resulting in increas-
ing accuracy costs for reduced unfairness. While the MARGINAL
subgroup unfairness curve matches the SUBGROUP Pareto curve
on the far left (for all datasets), since this corresponds to minimizing
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error unconstrained by any fairness notion, the outperformance by
SUBGROUP grows rapidly as we make stronger fairness demands.

Law School (panels (c) and (d)): Here the SUBGROUP Pareto
curve appears to be approximately linear, thus providing a constant
tradeoff between accuracy and subgroup fairness. Interestingly, this
is the one dataset in which asking for marginal fairness appears
to also yield subgroup fairness for free, as the MARGINAL curve
lies very close to the SUBGROUP curve. Since this dataset has the
fewest number of features overall and the second fewest number of
protected features, one might be tempted to conjecture that when
the number of protected features is small, guaranteeing marginal
fairness approximately guarantees rich subgroup fairness. This
claim is falsified by the fact that on the Adult dataset which has
similar dimensionality (see below), there is a large gap between the
SUBGROUP and MARGINAL subgroup fairness curves.

Adult (panels (e) and (f)): Here we see a less smooth SUBGROUP
curve, possibly corresponding to the poorer convergence proper-
ties on this dataset mentioned earlier. Nevertheless, the numerical
tradeoff exhibits regions of both steep, inexpensive reduction in
unfairness and flat, costly reduction. MARGINAL is again consid-
erably worse when evaluated on subgroup fairness, but still shows
a systematic relationship to marginal fairness.

Student (panels (g) and (h)): Similar to Adult, a varied SUBGROUP
curve with multiple tradeoff regimes. This is also the lone dataset in
which reducing marginal fairness appears to have no relationship to
subgroup fairness — while the MARGINAL marginal pareto curve
in panel (h) remains relatively smooth, the subgroup fairness of
the corresponding models in panel (d) is now not only worse than
for SUBGROUP, but shows no monotonicity. SUBGROUP is able to
decrease y-unfairness to 0 with only a 2% increase in error, while
the MARGINAL algorithm only drives the subgroup unfairness to
0.002 at its best, with an over 3% increase in error from the uncon-
strained classifier.

Having established the efficacy of subgroup fairness and the
SUBGROUP algorithm on the four datasets, we now turn to ex-
periments and visualizations allowing us to better understand the
behavior and dynamics of the algorithm.

3.4 Flattening the Discrimination Surface

Recall that in the various analyses and plots above, we rely on
the Auditor of SUBGROUP to detect unfairness. This Auditor is in
turn a heuristic, relying on an optimization procedure without any
theoretical guarantees, which could potentially fail in practice. This
means that while any detected unfairness is a lower bound on the
true subgroup unfairness, it could be the case that the heuristic
Auditor is simply failing to detect a larger disparity, and that the
models learned by SUBGROUP look more fair than they really are.

We explore this possibility on the Communities & Crime dataset
by implementing a brute force Auditor that runs alongside the
SUBGROUP algorithm. To make brute force auditing computa-
tionally tractable, we designate only two attributes as protected;
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pctwhite and pctblack, the percentage of each community that con-
sists of white and black people respectively. While the SUBGROUP
algorithm uses the same heuristic Auditor it always does, at each
round we also perform a brute force audit as follows. Subgroups
gg are defined by a linear threshold function 6 over the 2 sensi-
tive attributes, e.g. (x1, x2) € gg iff (0, (x1,x2)) > 0. We discretize
6 € [-1,1]? in increments of 0.1, and for the subgroup defined by
each 0 in the discretization we compute the y-unfairness. Hence at
each round we can take the current classifier of the Learner, and
plot for each group gy the point (01, 62, ).

Note that in addition to making brute force auditing tractable,
restricting to two dimensions permits direct visualization of dis-
crimination. In Figure 4, we show a sequence of “discrimination
surfaces” for the SUBGROUP algorithm over the 2 protected fea-
tures, with input y = 0. The x — y axes are the coefficients of 6
corresponding to whitepct and blackpct respectively, and the z-axis
is the y-unfairness of the corresponding subgroup. This is our first
non-heuristic view of y-unfairness, and also shows us the entire
surface of y-unfairness, rather than just the most violated subgroup.
Note that perfect subgroup fairness would correspond to an entirely
flat discrimination surface at z = 0.

We observe first that the unconstrained classifier in ¢ = 1 (panel
(a)) shows a very systematic bias along the lines of our sensitive
attributes. In particular groups with whitepct > 0 and blackpct < 0,
e.g. communities with large numbers of white residents and rela-
tively fewer black residents have a much higher false positive rate
for being classified as violent. Conversely, majority black commu-
nities are less likely to be incorrectly labeled as violent. The mean
y-unfairness (base rate - community rate) for whitepct > 0, black-
pct < 0 communities is —0.0242, whereas the mean for whitepct
< 0, blackpct > 0 groups is 0.0247. The maximum y-unfairness in
t = 115 0.028, and 61.25% of the 400 subgroups have y-unfairness
> 0.02. Recall that this corresponds to e.g. a 20% disparity of the
false positive rate from the base rate, for groups as large as 10% of
the population. We are thus far from perfect subgroup fairness.

As the algorithm proceeds, we see this discrimination flip by
t = 7 (panel (b)), into a regime with a higher false positive rate
for predominantly black communities, and then revert again by
t = 13. Over the early iterations these oscillations continue, grow-
ing less drastic as the y-unfairness surface starts to flatten out
noticeably by t = 37 (panel (g)). In panel (h) we plot ¢ = 1301 and
see that the surface has almost completely flattened, with maxi-
mum y-unfairness below .0028. So over the course of the first 1300
iterations of SUBGROUP we’ve reduced the y-unfairness from over
0.02 in most of the subgroups, to less than 0.0028 in every subgroup.
Recall again that this corresponds to false positive rate disparities of
at most 2.8% in subgroups that represent 10% of the population — a
reduction from false positive rate disparities of 20% many similarly
sized subgroups. This represents an order of magnitude improve-
ment that results from using the classifier learned by SUBGROUP.

3.5 Understanding the Dynamics

We conclude by examining the dynamics of the SUBGROUP algo-
rithm on the Communities and Crime dataset in greater detail. More
specifically, since the algorithm is formulated as a game between a
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Learner who at each iteration ¢ is trying to minimize the error &;,
and an Auditor who is trying to minimize subgroup unfairness y;,
we visualize the trajectories traced in (¢, y;) space as t increases.

The plots in Figure 5 correspond to such trajectories for input
y values of 0.001, 0.005, 0.009, and 0.022 (panels (a), (b), (c) and (d)
respectively), which are denoted by the dashed lines on the y; axis
of each figure. The 0.001 and 0.005, 0.009 values correspond to small
and intermediate y regimes, whereas 0.022 is close to (but slightly
below) the subgroup unfairness of the unconstrained classifier. The
trajectories are color coded from colder to warmer colors according
to their iteration number to give a sense of speed of convergence.

The first plot in all four trajectories corresponds to the (&g, yo)
of the unconstrained classifier. Furthermore, as long as the current
v+ values remain above the horizontal dashed line representing the
input y, the trajectories remain identical, as the same subgroups
are being presented to the learner in each trajectory. But when y;
falls below a given input y, that trajectory will follow its own path
going forward.

We first observe that the dynamics exhibit a fair amount of
complexity and subtlety. They all begin with low error and large
unfairness, and quickly follow a brief but large increase in &; as
fairness starts to be enforced. There are steps in which both ¢; and
Yt increase, and a large early loop in trajectory space is observed.
But the first three trajectories (panels (a), (b) and (c), corresponding
to the three smaller values of y) quickly settle near the input y line,
at which point begins a long, oscillatory “border war” around this
line, as the Learner tries to minimize error, but is pushed back below
the line by the Auditor anytime y-fairness is violated. The idealized
theory predicts that each trajectory should end at the input y line
(subgroup fairness constraint saturated), and with larger input y
(weaker fairness constraint) resulting in lower error. The empirical
trajectories indeed conform nicely to the theory, with the final (red)
points near the dashed lines, and further left for larger y.

Panel (d), corresponding to a much larger input y, diverges much
earlier from the other three (on its second step), and early on sees
unfairness driven far below the specified value. The dynamics then
see a slow, gradual decrease of error and increase of unfairness
back to the input value, with the trajectory ending up near where
it began, but just slightly more fair, as specified by y.

4 CONCLUSIONS

In this work we have established the empirical efficacy of the notion
of rich subgroup fairness and the algorithm of [10] on four fairness-
sensitive datasets, and the necessity of explicitly enforcing subgroup
(as opposed to only marginal) fairness. There are a number of
interesting directions for further experimental work we plan to
pursue, including:

e Experiments with richer Learner model classes H, while
keeping the Auditor subgroup class G relatively simple and
fixed. One conjecture is that by making the hypothesis space
richer, more appealing Pareto curves may be achieved. There
is also some rationale for keeping G simple, since we would
like to have some intuitive interpretation of what the sub-
groups represent, while the same constraint may not hold

for H.
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Figure 5: (¢;, y;) trajectories for Communities and Crime, for y € {0.001, 0.005,0.009, 0.022}.

o Implementation and experimentation with the no-regret al-
gorithm of [10], which may have superior convergence and
other properties due to its stronger theoretical guarantees.

e Experiments on the generalization performance of subgroup
fairness in the form of test-set Pareto curves. While as men-
tioned, standard VC theory can be applied to obtain worst-
case bounds, one might expect even better empirical gener-
alization.
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