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Abstract

We study the role of interaction in the Common Random-

ness Generation (CRG) and Secret Key Generation (SKG)

problems. In the CRG problem, two players, Alice and Bob,

respectively get samples X1, X2, . . . and Y1, Y2, . . . with the

pairs (X1, Y1), (X2, Y2), . . . being drawn independently from

some known probability distribution µ. They wish to com-

municate so as to agree on L bits of randomness. The SKG

problem is the restriction of the CRG problem to the case

where the key is required to be close to random even to an

eavesdropper who can listen to their communication (but

does not have access to the inputs of Alice and Bob). In this

work, we study the relationship between the amount of com-

munication and the number of rounds of interaction in both

the CRG and the SKG problems. Specifically, we construct

a family of distributions µ = µr,n,L, parametrized by inte-

gers r, n and L, such that for every r there exists a constant

b = b(r) for which CRG (respectively SKG) is feasible when

(Xi, Yi) ⇠ µr,n,L with r + 1 rounds of communication, each

consisting of O(log n) bits, but when restricted to r/2 � 2

rounds of interaction, the total communication must exceed

⌦(n/ logb(n)) bits. Prior to our work no separations were

known for r � 2.
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1 Introduction

1.1 Problem Definition In this work, we study the
Common Randomness Generation (CRG) and Secret

Key Generation (SKG) problems — two central ques-
tions in information theory, distributed computing and
cryptography — and study the need for interaction in
solving these problems.

In the CRG problem, two players, Alice and Bob,
have access to correlated randomness, with Alice be-
ing given X1, X2, . . . , and Bob being given Y1, Y2, . . . ,
where (X1, Y1), (X2, Y2), . . . are drawn i.i.d from some
known probability distribution µ. Their goal is to agree
on L bits of entropy with high probability while com-
municating as little as possible. In the SKG problem,
the generated random key is in addition required to be
secure against a third player, Eve, who does not have
access to the inputs of Alice and Bob but who can eaves-
drop on their conversation. The CRG and SKG settings
are illustrated in Figures 1 and 2 respectively.

Common random keys play a fundamental role in
distributed computing and cryptography. They can
often be used to obtain significant performance gains
that would otherwise be impossible using deterministic
or private-coin protocols. Under the additional secrecy
constraints, the generated keys are of crucial importance
as they can be used for encryption – a central goal of
cryptography.

Figure 1: Common Randomness Generation (CRG)

This paper investigates the tradeo↵ between rounds
and communication for protocols for common random-
ness and secret key generation: We start with some ter-
minology needed to describe our problem. We say that
a communication protocol ⇧ is an (r, c)-protocol if it in-
volves at most r rounds of interaction with Alice starting
and with the total length of all the messages being at
most c bits. Let H1(·) denote the min-entropy func-
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Figure 2: Secret Key Generation (SKG)

tion. A protocol is said to be an (L, ✏)-CRG scheme
for a correlation source µ if Alice and Bob get a finite
number of i.i.d. samples of µ, and after the final round
of ⇧, Alice outputs a key KA and Bob outputs a key
KB , with KA and KB belonging to a finite set, satis-
fying min{H1(KA), H1(KB)} � L, and with KA and
KB being equal with probability at least 1 � ✏. A pro-
tocol is said to be an (L, ✏)-SKG scheme for µ if it is an
(L, ✏)-CRG scheme for µ and satisfies the additional se-
curity guarantee that max{I(⇧;KA), I(⇧;KB)} = o(1)
where ⇧ is also used to denote the protocol transcript
and I(·; ·) is the mutual information. Then, we define
the r-round communication complexity of (L, ✏)-CRG
of a correlation source µ, denoted by CCr(CRGL,✏(µ)),
as the smallest c for which there is an (r, c)-protocol
that is an (L, ✏)-CRG scheme for µ. We similarly define
the r-round communication complexity of (L, ✏)-SKG of
µ and denote it by CCr(SKGL,✏(µ)). In terms of the
above notation we study the functions CCr(CRGL,✏(µ))
and CCr(SKGL,✏(µ)) as we vary r.

1.2 History The CRG and SKG problems have been
well-studied in information theory and theoretical com-
puter science. In information theory, they go back to the
seminal work of Shannon on secrecy systems [Sha49],
which was followed by the central works of Maurer
[Mau93] and Ahlswede and Csiszár [AC93, AC98]. A
crucial motivation for the study of SKG is the task
of secure encryption, where a common secret key can
potentially be used to encrypt/decrypt messages over
an insecure channel. It turns out that without corre-

lated inputs (and even allowing each party an unlimited
amount of private randomness), e�ciently generating
common randomness is infeasible: agreeing on L bits
of randomness with probability � can be shown to re-
quire communicating at least L � O(log(1/�)) bits 1.
Since the original work of Shannon, the questions of
how much randomness can be agreed on, with what

1This fact is a special case of several known results in the
literature on CRG. In particular, it follows from the lower bound
on agreement distillation in [CGMS17, Theorem 2].

probability, with what type of correlation and with how
many rounds of interaction have attracted significant ef-
fort in both the information theory and theoretical com-
puter science communities (e.g., [Mau93, AC93, AC98,
CN00, GK73, Wyn75, CN04, ZC11, Tya13, LCV15,
LCV16, BM11, CMN14, GR16, GJ18] to name a few).
In particular, Ahlswede and Csiszár studied the CRG
and SKG problems in the case of one-way communica-

tion where they gave a characterization of the ratio of
the entropy of the key to the communication in terms
of the strong data processing constant of the source
(which is closely related to its hypercontractive prop-
erties [AG76, AGKN13]).

We point out that the aforementioned results ob-
tained in the information theory community hold for
the amortized setup where the aim is to characterize
the achievable (H,C) pairs for which for every posi-
tive �, there is a large enough N , such that there is a
CRG/SKG scheme taking as input N i.i.d. copies from
the source and generating (H � �) · N bits of entropy
while communicating at most (C + �) · N bits. More-
over, these results mostly focus on the regime where the
agreement probability gets arbitrarily close to one for
su�ciently large N . The non-amortized setup, where
the entropy of the keys and the communication are po-
tentially independent of the number of i.i.d. samples
drawn from the source, as well as the setting where
the agreement probability is not necessarily close to
one, have been studied in several works within theo-
retical computer science. In particular, for the doubly

symmetric binary source, Bogdanov and Mossel gave
a CRG protocol with a nearly tight agreement prob-
ability in the zero-communication case where Alice and
Bob are not allowed to communicate [BM11]. This
CRG setup can be viewed as an abstraction of practi-
cal scenarios where hardware-based procedures are used
for extracting a unique random ID from process varia-
tions [LLG+05, SHO08, YLH+09] that can then be used
for authentication [LLG+05, SD07]. Guruswami and
Radhakrishnan generalized the study of Bogdanov and
Mossel to the case of one-way communication (in the
non-amortized setup) where they gave a protocol achiev-
ing a near-optimal tradeo↵ between (one-way) com-
munication and agreement probability [GR16]. Later,
[GJ18] gave explicit and sample-e�cient CRG (and
SKG) schemes matching the bounds of [BM11] and
[GR16] for the doubly symmetric binary source and the
bivariate Gaussian source.

Common randomness is thus a natural model for
studying how shared keys can be generated in settings
where only weaker forms of correlation are available. It
is one of the simplest and most natural questions within
the study of correlation distillation and the simulation
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of joint distributions [GK73, Wyn75, Wit75, MO04,
MOR+06, KA15, GKS16b, DMN18, GKR17].

Moreover, when studying the setup of communica-

tion with imperfectly shared randomness, Canonne et
al. used lower bounds for CRG as a black box when
proving the existence of functions having small commu-
nication complexity with public randomness but large
communication complexity with imperfectly shared ran-
domness [CGMS17]. Their setup – which interpolates
between the extensively studied public-coin and private-
coin models of communication complexity – was first
also independently introduced by [BGI14] and further
studied in [GKS16a, GJ18].

Despite substantial work having been done on CRG
and SKG, some very basic questions remained open such
as the the quest of this paper, namely the role of interac-
tion in generating common randomness (or secret keys).
Recently, Liu, Cu↵ and Verdu generalized the CRG and
SKG characterizations of Ahlswede and Csiszár to the
case of multi-round communication [LCV15, LCV16,
Liu16]. Their characterization has been shown by
[GJ18] to be intimately connected to the notions of in-
ternal and external information costs of protocols which
were first defined by [BJKS04, BBCR13] and [CSWY01]
respectively (who were motivated by the study of direct-
sum questions arising in theoretical computer science).
However their work does not yield sources for which ran-
domness generation requires many rounds of interaction
(to be achieved with low commununication). Their work
does reveal sources where interaction does not help. For
example, in the case where the agreement probability
tends to one, Tyagi had shown that for binary symmet-

ric sources, interaction does not help, and conjectured
the same to be true for any (possibly asymmetric) binary
source [Tya13]– a conjecture which was proved by Liu,
Cu↵ and Verdu [LCV16]. Morever, Tyagi constructed a
source on ternary alphabets for which there is a constant
factor gap between the 1-round and 2-round communi-
cation complexity for Common Randomness and Secret
Key Generation. This seems to be the strongest tradeo↵
known for communication complexity of CRG or SKG
till our work.

1.3 Our Results In this work, we study the rela-
tionship between the amount of communication and the
number of rounds of interaction in each of the CRG and
SKG setups, namely: can Alice and Bob communicate
less and still generate a random/secret key by interact-
ing for a larger number rounds?

For every constant r and parameters n and L,
we construct a family of probability distributions µ =
µr,n,L for which CRG (respectively SKG) is possi-
ble with r rounds of communication, each consisting

of O(log n) bits, but when restricted to r/2 rounds,
the total communication of any protocol should ex-
ceed n/ log!(1)(n) bits. Formally, we show that
CCr+1(CRGL,0(µ))  (r + 1) log n while for every
constant ✏ < 1 we have that CCr/2�2(CRG`,✏) �
min{⌦(`), n/poly log n} (and similarly for SKG).

Theorem 1.1. (Rounds Tradeoff for CRG) For

all ✏ < 1, r 2 Z+
, there exist ⌘ > 0, n0,� < 1, such

that for all n � n0, L there exists a source µr,n,L for

which the following hold:

1. There exists an ((r+1), (r+1)dlog ne)-protocol for
(L, 0)-CRG from µr,n,L.

2. For every ` 2 Z+
there is no (r/2 � 2,min{⌘` �

�, n/ log� n})-protocol for (`, ✏)-CRG from µr,n,L.

We also get an analogous theorem for SKG, with
the same source!

Theorem 1.2. (Rounds Tradeoff for SKG) For

all ✏ < 1, r 2 Z+
, there exist ⌘ > 0, n0,� < 1, such

that for all n � n0, L there exists a source µr,n,L for

which the following hold:

1. There exists an ((r+1), (r+1)dlog ne)-protocol for
(L, 0)-SKG from µr,n,L.

2. For every ` 2 Z+
there is no (r/2 � 2,min{⌘` �

�, n/ log� n})-protocol for (`, ✏)-SKG from µr,n,L.

In particular, our theorems yield a gap in the
amount of communication that is almost exponentially

large if the number of rounds of communication is
squeezed by a constant factor. Note that every com-
munication protocol can be converted to a two-round
communication protocol with an exponential blowup in
communication2 – in this sense our bound is close to
optimal. Prior to our work, no separations were known
for any number of rounds larger than two!

1.4 Brief Overview of Construction and Proofs
Our starting point for constructing the source µ is
the well-known “pointer-chasing” problem [NW93] used
to study tradeo↵s between rounds of interaction and
communication complexity. In (our variant of) this
problem Alice and Bob get a series of permutations

2To see this claim, first notice that by incurring a constant
factor blowup of the communication complexity, we may convert
a c-bit communication protocol to a c round protocol in which
Alice transmits one bit to Bob and Bob responds with one bit.
We can then convert this to a two round protocol where Alice
sends Bob at most 2c+1 bits specifying what bit she would send
next for each possible partial transcript. From this information
Bob can simulate the entire protocol and output the answer.
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⇡1,⇡2, . . . ,⇡r : [n] ! [n] along with an initial pointer i0
and their goal is to “chase” the pointers, i.e., compute
ir where ij = ⇡j(ij�1) for every j 2 {1, . . . , r}. Alice’s
input consists of the odd permutations ⇡1,⇡3, . . . , and
Bob gets the initial pointer i0 and the even permuta-
tions ⇡2,⇡4, . . .. The natural protocol to determine ir
takes r+1 rounds of communication with the jth round
involving the message ij (for j = 0, . . . , r). Nisan and
Wigderson show that any protocol with r rounds of in-
teraction requires ⌦(n) bits of communication [NW93].

To convert the pointer chasing instance into
a correlated source, we let the source include
2n strings A1, . . . , An and B1, . . . , Bn 2 {0, 1}L
where (A1, . . . , Bn) is uniform in {0, 1}2nL condi-
tioned on Air = Bir . Thus the source out-
puts X = (⇡1,⇡3, . . . ;A1, . . . , An) and Y =
(i0,⇡2,⇡4, . . . ;B1, . . . , Bn) satisfy Air = Bir with ij =
⇡j(ij�1) for every j 2 {1, . . . , r}. (See Definition 2.1
and Figure 3 for more details.) The natural protocol
for the pointer chasing problem also turns into a nat-
ural protocol for CRG and SKG with r + 1 rounds of
communication, and our challenge is to show that pro-
tocols with few rounds cannot extract randomness.

The lower bound does not follow immediately from
the lower bound for the pointer chasing problem — and
indeed we do not even give a lower bound for r � O(1)
rounds of communication. We explain some of the
challenges here and how we overcome them.

Our first challenge is that there is a low-complexity
“non-deterministic protocol” for common randomness
generation in our setting. The players somehow guess
ir and then verify Air = Bir (by exchanging the first
log 1/✏ bits of these strings) and if they do, then they
output Air and Bir respectively. While the existence
of a non-deterministic protocol does not imply the ex-
istence of a deterministic one, it certainly poses hur-
dles to the lower bound proofs. Typical separations be-
tween non-deterministic communication complexity and
deterministic ones involve lower bounds such as those
for “set-disjointness” [KS92, Raz92, BJKS04] which in-
volve di↵erent reasoning than the “round-elimination”
arguments in [NW93]. Our lower bound would somehow
need to combine the two approaches.

We manage to do so “modularly” at the expense of
a factor of 2 in the number of rounds of communication
by introducing an intermediate “pointer verification
(PV)” problem. In this problem Alice and Bob get
permutations ⇡1, . . . ,⇡r (with Alice getting the odd
ones and Bob the even ones) and additionally Bob
gets pointers i and j. Their goal is to decide if
the final pointer ir equals j given that the initial
pointer i0 is equal to i. The usefulness of this problem
comes from the fact that we can reduce the common

randomness generation problem to the complexity of
the pointer verification problem on a specific (and
natural) distribution: Specifically if PV is hard on this
distribution with r0 rounds of communication, then we
can show (using the hardness of set disjointness as a
black box) that the common randomness generation
problem is hard with r0 � 1 rounds of communication.

We thus turn to showing lower bounds for PV. Be-
fore turning to our proof technique, we note that deci-
sion problem variants of pointer-chasing similar to PV
have previously been studied extensively in the litera-
ture including in [PRV01, GO13]. [GO13] proves ran-
domized communication lower bounds for the multi-
player setting in which there are 2r players, each hold-
ing a single function, and they must determine in r � 1
rounds whether the end pointers of each of two se-
quences of r functions are equal. The work of [PRV01]
proves superlinear lower bounds for the two-player set-
ting where the players must determine only the first
bit of ir. Crucially, these works prove lower bounds
on communication by only considering distributions for
which the players’ inputs are independent (and [PRV01]
only obtains lower bounds for deterministic communi-
cation complexity). However, none of these works give
a lower bound for PV with respect to our distributions.
In particular, in the distribution for PV that we con-
sider, the players’ inputs are correlated, and this poses
significant technical challenges not encountered in these
prior works.

Returning to our goal of showing lower bounds for
PV, we first note that we cannot expect a lower bound
for r rounds of communication: PV can obviously be
solved in r/2 rounds of communication with Alice and
Bob chasing both the initial and final pointers till they
meet in the middle. We also note that one can use the
lower bound from [NW93] as a black box to get a lower
bound of r/2�1 rounds of communication for PV but it
is no longer on the “natural” distribution we care about
and thus this is not useful for our setting.

The bulk of the proof is thus devoted to proving
an r/2 � O(1) round lower bound for the PV problem
on our distribution. We get this lower bound by
roughly following the “round elimination” strategy of
[NW93]. A significant challenge in extending these
lower bounds to our case is that we have to deal
with distributions where Alice and Bob’s inputs are
dependent. This should not be surprising since the
CRG problem provides Alice and Bob with correlated
inputs, and so there is resulting dependency between
Alice and Bob even before any messages are sent.
The dependency gets more complex as Alice and Bob
exchange messages, and we need to ensure that the
resulting mutual information is not correlated with the
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desired output, i.e., the PV value of the game. We
do so by a delicate collection of conditions that allow
the inputs to be correlated while guaranteeing su�cient
independence to carry out a round elimination proof.
We provide details in the complete version of this paper
[BGGS18].

Organization of Rest of the Paper. In Sec-
tion 2, we present our construction of the distribution
µ alluded to in Theorem 1.1 and Theorem 1.2. In Sec-
tion 3 we reduce the task of proving communication
lower bounds for CRG with few rounds to the task
of proving lower bounds for distinguishing some dis-
tributions. We then introduce our final problem, the
Pointer Verification problem, and the distribution on
which we need to analyze it in Section 4. This section
includes the statement of our main technical theorem
about the pointer verification problem (Theorem 4.1)
and the proofs of Theorem 1.1 and Theorem 1.2 assum-
ing this theorem.

2 Construction

We start with some basic notation used in the rest of
the paper. For any positive integer n, we denote by
[n] the set {1, . . . , n}. We use log to denote the log-
arithm to the base 2. For a distribution D on a uni-
verse ⌦ we use the notation X ⇠ D to denote a random
variable X sampled according to D. For any positive
integer t, we denote by Dt the distribution obtained
by sampling t independent identically distributed sam-
ples from D. We use the notation X |= Y to denote
that X is independent of Y and X |= Y |Z to denote that
X and Y are independent conditioned on Z. For ran-
dom variables X,Y , we use [X = Y ] to denote the
random variable that is 1 when X = Y , and 0 other-
wise. We denote by EX⇠D[X] the expectation of X
and for an event E ✓ ⌦, we denote by PrX [E] the
probability of the event E. For i 2 ⌦, Di (and some-
times D(i)) denotes the probability of the element i,
i.e., Di = D(i) = PrX⇠D[X = i]. For distributions

P and Q on ⌦, the total variation distance �(P,Q)
def
=

1
2

P
i2⌦ |Pi � Qi|. The entropy of X ⇠ P is the quan-

tity H(X) = EX⇠P [� logPX ]. The min-entropy of
X ⇠ P is the quantity H1(X) = minx2⌦{� logPx}.
For a pair of random variables (X,Y ) ⇠ P , PX de-
notes the marginal distribution on X and PX|y denotes
the distribution of X conditioned on Y = y. The
conditional entropy H(X|Y )

def
= Ey⇠PY [H(Xy)], where

Xy ⇠ PX|Y=y. The mutual information between X and
Y , denoted I(X;Y ), is the quantity H(X) � H(X|Y ).
The conditional mutual information between X and Y
conditioned on Z, denoted I(X;Y |Z), is the quantity
Ez⇠PZ [H(Xz)�H(Xz|Yz)] where (Xz, Yz) ⇠ PX,Y |Z=z.
We use standard properties of entropy and information

such as the Chain rules and the fact “conditioning does
not increase entropy”. For further background material
on information theory and communication complexity,
we refer the reader to the books [CT12] and [KN97]
respectively.

We start by describing the family of distributions
µr,n,L that we use to prove Theorem 1.1 and Theo-
rem 1.2. For a positive integer n, we let Sn denote
the family of all permutations of [n].

Definition 2.1. (The Source µr,n,L) For positive

integers r, n and L, the support of µ = µr,n,L is

(Sdr/2e
n ⇥ {0, 1}nL) ⇥ ([n] ⇥ Sbr/2c

n ⇥ {0, 1}nL). De-

noting X = (⇡1,⇡3, . . . ,⇡2dr/2e�1, A1, . . . , An) and

Y = (i,⇡2,⇡4, . . . ,⇡2br/2c, B1, . . . , Bn), a sample

(X,Y ) ⇠ µ is drawn as follows:

• i 2 [n] and ⇡1, . . . ,⇡r 2 Sn are sampled uniformly

and independently.

• Let j = ⇡r(⇡r�1(· · ·⇡1(i) · · · )).

• Aj = Bj 2 {0, 1}L is sampled uniformly and

independently of i and ⇡’s.

• For every k 6= j, Ak 2 {0, 1}L and Bk 2 {0, 1}L
are sampled uniformly and independently.

See Figure 3 for an illustration of the inputs to the

Pointer Chasing Source.

𝜋𝜋1

𝜋𝜋2

𝜋𝜋3

𝜋𝜋𝑟𝑟

𝑖𝑖

⋮

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴𝑛𝑛 𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵𝑛𝑛… …

Alice’s Inputs
= (𝜋𝜋1,𝜋𝜋3, … ;𝐴𝐴1, … ,𝐴𝐴𝑛𝑛)

Bob’s Inputs
= (𝑖𝑖;𝜋𝜋2,𝜋𝜋4, … ;𝐵𝐵1, … ,𝐵𝐵𝑛𝑛)

Figure 3: The Pointer Chasing Source

Informally, a sample from µ contains a common hid-
den block of randomness Aj = Bj 2 {0, 1}L that Alice
and Bob can find by following a sequence of pointers,
where Alice holds the odd pointers in the sequence and
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Bob holds the even pointers. The next lemma gives (the
obvious) upper bound on the r-round communication
needed to generate common randomness from µ.

Lemma 2.1. (Upper bound for r-round SKG)
For every r, n and L, there exists an (r + 1, dlog ne)-
protocol for (L, 0)-SKG (and hence also for (L, 0)-CRG)

from µr,n,L with Bob speaking in the first round.

Proof. The protocol ⇧ is the obvious one in which
Bob and Alice alternate by sending a pointer to each
other starting with i and culminating in j, and the
randomness they “agree on” is Aj = Bj .

Formally, for t 2 [r], let it = ⇡t(it�1) with i0 = i. In
odd round t+1, Bob sends it to Alice and in even round
t+ 1, Alice sends it to Bob. At the end of r+ 1 rounds
of communication Alice outputs Air and Bob outputs
Bir .

Note that by the construction of µ, we have that
ir = j and Aj = Bj . Note further that at the beginning
of the (t+1)st round of communication both Alice and
Bob know it�1. Furthermore if t + 1 is odd, then Bob
also knows ⇡t and hence can compute it = ⇡t(it�1) (and
similarly Alice knows her message in even rounds).

Thus we conclude that the above is a valid (r +
1, dlog ne)-protocol for (L, 0)-CRG. Furthermore since
Air = Bir is independent of i0, . . . , ir it follows that
I((i0, . . . , ir);Air ) = I(⇧;KA) = 0 (and similarly for
I(⇧;KB)) and so this is also a valid protocol (L, 0)-
SKG.

In the rest of the paper we show that no r/2�O(1)
round protocol can solve CRG from µr,n,L with non-
trivial communication.

3 Related Indistinguishability Problems

Our lower bound on the number of rounds needed to
generate common randomness comes from an “indistin-
guishability argument”. We show that to protocols with
a small number of rounds and small amount of commu-
nication, the distribution µ is indistinguishable from the
distribution µX ⇥µY , where Alice and Bob’s inputs are
independent. Using the well-known fact that generat-
ing L bits of common randomness essentially requires L
bits of communication in the absence of correlated in-
puts, this leads us to conclude that CRG is hard with
limited number of rounds of communication.

In this section we simply set up the stage by defining
the notion of indistinguishability and connecting it to
the task of common randomness generation, leaving the
task of proving the indistinguishability to later sections.

3.1 The Main Distributions and Indistin-
guishability Claims We start by defining the indis-
tinguishability of inputs to protocols.

Definition 3.1. We say that two distributions D1 and

D2 on (X,Y ) are ✏-indistinguishable to a protocol ⇧
if the distributions of transcripts (the sequence of mes-

sages exchanged by Alice and Bob) generated when

(X,Y ) ⇠ D1 has total variation distance at most ✏ from
the distribution of transcripts when (X,Y ) ⇠ D2.

We say that distributions D1 and D2 are (✏, c, r)-
indistinguishable if they are ✏-indistinguishable to every

(r, c)-protocol ⇧ using public randomness. Conversely,

we say that the distributions D1 and D2 are (✏, c, r)-
distinguishable if they are not (✏, c, r)-indistinguishable.

Fix r, n, L and let µ = µr,n,L. Now let µX de-
note the marginal distribution of X under µ, i.e.,
X = (⇡1,⇡3, . . . ,⇡2dr/2e�1, A1, . . . , An) have all coor-
dinates chosen independently and uniformly from their
domains. Similarly let µY denote the marginal on Y ,
and let µX ⇥µY denote the distribution where X ⇠ µX

and Y ⇠ µY are chosen independently.
Our main technical result (Theorem 4.1 and in

particular its implication Lemma 4.1) shows that
µ and µX ⇥ µY are (✏, r/2 � O(1), n/poly log n)-
indistinguishable, even to protocols with common ran-
domness. In the rest of this section, we explain why this
rules out common randomness generation.

3.2 Reduction to Common Randomness Gen-
eration

Proposition 3.1. There exists a constant ⌘ > 0 such

that for every r, r0, n, L, `, t and ✏ < 1, there is no

(r0, ⌘`�3/2 · log(1/1�✏)�O(1))-protocol for (`, ✏)-CRG
from µt

X ⇥ µt
Y , where µ = µr,n,L with µX and µY being

its marginals.

Proof. This is essentially folklore. For instance it follows
immediately from [CGMS17, Theorem 2.6] using ⇢ =
0 (which corresponds to private-coin protocols). In
particular, any (r0, ⌘`�3/2·log(1/1�✏)�O(1))-protocol
⇧ for (`, ✏)-CRG from µt

X ⇥ µt
Y gives a protocol with

communication ⌘`� 3/2 · log(1/1� ✏)�O(1) for (`, ✏)-
CRG with no inputs since Alice and Bob can draw µt

X
and µt

Y independently using private randomness and
then simulate ⇧.

Proposition 3.2. There is a su�ciently large absolute

constant ⇠ such that the following holds. Let ⌘ be the

constant from Proposition 3.1. If there exists an (r0, c)-
protocol that solves the (`, 1 � �)-CRG problem from

µ = µr,n,L with c < ⌘(`�3)�3/2 · log 1/��⇠, then there

exists some positive integer t for which µt
and µt

X ⇥µt
Y

are (�/10, r0 + 1, c+ ⇠ log 1/�)-distinguishable.

Proof. Let ⇧ be an (r0, c) protocol with private random-
ness for (`, 1��)-CRG from µ and let D1 denote the dis-
tribution of KA conditioned on KA = KB . Let t be the
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number of samples of µ used by ⇧. Let I = [KA = KB ]
be the indicator variable determining if KA = KB . Let
DA

1 be the distribution of (KA, I) when ⇧ is run on sam-
ples from µt. Let DA

2 be the distribution of the (KA, I)
when ⇧ is run on samples from µt

X ⇥ µt
Y . Define DB

1

and DB
2 analogously. We distinguish between the cases

where �(DA
1 , D

A
2 ) and �(DB

1 , DB
2 ) are both small from

the cases where one of them is large.

Case 1: DA
1 is �/4-far from DA

2 (in total variation
distance). We argue that in this case, µt and µt

X ⇥ µt
Y

are distinguishable. Let T be the optimal distinguisher
of DA

1 from DA
2 (i.e., T is a 0/1 valued function with

E(KA,I)⇠DA
1
[T (KA, I)]� E(KA,I)⇠DA

2
[T (KA, I)] � �/4).

Let ↵ denote E(KA,I)⇠DA
2
[T (KA, I)]. We now describe a

protocol ⇧0 which uses public randomness and augments
⇧ by including a bit I 0 (which is usually equal to I) and
T (KA, I 0) as part of the transcript. We consider two
subcases: (1) If Bob is the last speaker in ⇧, then ⇧0

executes ⇧ and then at the conclusion of ⇧, Bob sends a
random hash hB = h(KB) which is O(log 1/�) bits long
(so that for KA 6= KB we have Prh[h(KA) = h(KB)] 
�/20). Alice then sends I 0 = [h(KA) = hB ] and the
bit bI0 = T (KA, I 0). (2) If Alice is the last speaker in ⇧,
then ⇧0 executes ⇧ and then Alice sends hA = h(KA)
to Bob, as well as b0 = T (KA, 0) and b1 = T (KA, 1).
Bob then sends I 0 = [hA = h(KB)] and bI0 .

Note that in both cases ⇧0 has r0 + 1 rounds
of communication and the total number of bits of
communucation is c + O(log 1/�). We now show that
⇧0 distinguishes µt from µt

X ⇥ µt
Y with probability

⌦(�). To see this note that Pr(KA,I)⇠DA
1
[bI0 = 1] �

Pr(KA,I)⇠DA
1
[T (KA, I) = 1]� Prh[I 0 6= [KA = KB ]] �

(↵+ �/4)� �/20 = ↵+ �/5. On the other hand we also
have Pr(KA,I)⇠DA

2
[bI0 = 1]  Pr(KA,I)⇠DA

2
[T (KA, I) =

1] + Prh[I 0 6= [KA = KB ]]  ↵ + �/20. We conclude
that Pr(KA,I)⇠DA

1
[bI0 = 1] � Pr(KA,I)⇠DA

2
[bI0 = 1] �

�/5 � �/20 � �/10. And since bI0 is a part of the
transcript of ⇧0 we conclude that the two distributions
are �/10-distinguished by ⇧0.

Case 2: DB
1 is �/4-far from DB

2 . This is similar to the
above and yields that µt and µt

X ⇥ µt
Y are (�/10, r0 +

1, c+O(log 1/�))-distinguishable.

Case 3: �(DA
1 , D

A
2 )  �/4 and �(DB

1 , DB
2 )  �/4. We

argue that this case can not happen since this allows a
low-communication protocol to solve CRG with private
randomness, thereby contradicting Proposition 3.1. The
details are the following.

Our main idea here is to run ⇧ on µt
X ⇥µt

Y (which,
being a product distribution involves only private ran-
domness). The proximity of DA

1 to DA
2 implies that the

probability that KA = KB when ⇧ is run on µt
X ⇥µt

Y is

at least 3�/4 (since the probability that KA = KB on µt

is at least � and the probability that I = [KA = KB ]
is di↵erent under µt than under µt

X ⇥ µt
Y is at most

�/4). But we are not done since the min-entropy of KA

or KB when ⇧ is run on µt
X ⇥ µt

Y might not be lower-
bounded by `. So we modify ⇧ to get a protocol ⇧0 as
follows: Run ⇧ and let (KA,KB) be the output of ⇧.
(The output of ⇧0 will be di↵erent as we see next.) If
the probability of outputting KA is more than 4 · 2�`

then letK 0
A be a uniformly random string in {0, 1}`, else

let K 0
A = KA. Similarly if the probability of outputting

KB is more than 4 · 2�` then let K 0
B be a uniformly

random string in {0, 1}`, else let K 0
B = KB . (Note that

whenK 0
A 6= KA thenK 0

A andK 0
B are independent.) Let

(K 0
A,K

0
B) be the outputs of ⇧

0. We claim below that ⇧0

solves the (`�3, 1��/12)-CRG from µt
X⇥µt

Y which con-
tradicts Proposition 3.1 if c < ⌘(`�3)�3/2·log(12/�)�⇠
for a su�ciently large constant ⇠. First note that by de-
sign the probability of outputting any fixed output k0A is
at most 4·2�`+2�` < 2�(`�3). (If Pr[KA = k0A] � 4·2�`

then Pr[K 0
A = k0A]  2�`, else Pr[K 0

A = k0A]  Pr[KA =
k0A]+2�`.) It remains to see that Pr[K 0

A = K 0
B ] � �/12.

First note that Pr[KA 6= K 0
A]  �/3. This is so since

every k0A such that Pr[KA = k0A] � 4 · 2�` contributes
at least Pr[KA = k0A] � 2�` � (3/4) · Pr[KA = k0A]
to �(DA

1 , D
A
2 ) (the probability of k0A on µt is at most

2�`). Thus using �(DA
1 , D

A
2 )  �/4, we conclude

Pr[KA 6= K 0
A]  (4/3)�(DA

1 , D
A
2 )  �/3. But now

we have Pr[K 0
A = K 0

B ] � Pr[KA = KB ] � (Pr[KA 6=
K 0

A] + Pr[KB 6= K 0
B ]) � 3�/4� 2�/3 = �/12.

3.3 Reduction to the Case t = 1 Next we show
that we can work with the case t = 1 without loss of
generality. Roughly the intuition is that all permuta-
tions look the same, and so chasing one series of point-
ers ⇡1, . . . ,⇡r is not harder than chasing a sequence of t
pointers of the form (⇡0

1,⌧ . . . ,⇡
0
r,⌧ )⌧2[t]. Informally, even

if the players in latter problem are given the extra infor-
mation (⇡0

`,⌧ )
�1⇡`, for every ` 2 [r] and ⌧ 2 [t], they still

have to e↵ectively chase the pointers ⇡1, . . . ,⇡r. This
intuition is formalized in the reduction below.

Proposition 3.3. Fix r, n, L and let µ = µr,n,L and

µX and µY be its marginals. If there exists ✏, r0, c, t
such that µt

and µt
X ⇥ µt

Y are (✏, r0, c)-distinguishable,
then µ0 = µr,n,Lt and (µ0)X ⇥ (µ0)Y are (✏, r0, c)-
distinguishable.

Proof. Suppose ⇧ is a (r0, c)-protocol that ✏-
distinguishes µt from µt

X ⇥ µt
Y . We show how to

distinguish µ0 from (µ0)X⇥(µ0)Y using ⇧. Let (X,Y ) be
an instance of the µ0 vs. (µ0)X⇥(µ0)Y distinguishability
problem. We now show how Alice and Bob can use com-
mon randomness to generate (X 0

1, Y
0
1), . . . , (X

0
t, Y

0
t ) such
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that ((X 0
1, Y

0
1), . . . , (X

0
t, Y

0
t )) ⇠ µt if (X,Y ) ⇠ µ0 and

((X 0
1, Y

0
1), . . . , (X

0
t, Y

0
t )) ⇠ µt

X⇥µt
Y if (X,Y ) ⇠ µ0

X⇥µ0
Y .

It follows that by applying ⇧ to ((X 0
1, Y

0
1), . . . , (X

0
t, Y

0
t )),

Alice and Bob can distinguish µ0 from µ0
X ⇥ µ0

Y .
Let X = (⇡1,⇡3, . . . ,⇡2dr/2e�1, A1, . . . , An) and

Y = (i,⇡2,⇡4, . . . ,⇡2br/2c, B1, . . . , Bn), where ⇡` 2 Sn

and Ak, Bk 2 {0, 1}Lt. Further, let Ak = Ak,1� · · ·�Ak,t

and Bk = Bk,1 � · · · � Bk,t where Ak,⌧ , Bk,⌧ 2 {0, 1}L
and � denotes concatenation. Alice and Bob use their
common randomness to generate permutations �`,⌧ , for
` 2 {0, . . . , r} and ⌧ 2 [t], uniformly and independently
from Sn. Now let ⇡0

`,⌧ = �`⌧ ·⇡` ·��1
`�1,⌧ . Let i

0
⌧ = �0,⌧ (i).

And let A0
k,⌧ = A�r,⌧ (k),⌧ and B0

k,⌧ = B�r,⌧ (k),⌧ . Finally,
let X 0

⌧ = (⇡0
1,⌧ ,⇡

0
3,⌧ , . . . ,⇡

0
2dr/2e�1,⌧ , A

0
1,⌧ , . . . , A

0
n,⌧ ) and

Y 0
⌧ = (i0⌧ ,⇡

0
2,⌧ ,⇡

0
4,⌧ , . . . ,⇡

0
2br/2c,⌧ , B

0
1,⌧ , . . . , B

0
n,⌧ ). We

claim that this sequence (X 0
⌧ , Y

0
⌧ ) has the claimed prop-

erties.
First note that the permutations ⇡0

`,⌧ are uniform
and independent from Sn due to the fact that the
�`,⌧ ’s are uniform and independent. Similarly i0⌧ ’s are
uniform and independent of the ⇡0

`,⌧ s. If (X,Y ) ⇠
µ0
X ⇥ µ0

Y then the A0
k,⌧ ’s and B0

k,⌧ ’s are also uniform
and independent of i0s and ⇡0’s, estabilishing that
((X 0

1, Y
0
1), . . . , (X

0
t, Y

0
t )) ⇠ µt

X⇥µt
Y if (X,Y ) ⇠ µ0

X⇥µ0
Y .

If (X,Y ) ⇠ µ0 then note that j0⌧ = ⇡0
r,⌧ (· · · (⇡0

1,⌧ (i
0
⌧ ))) =

�r,⌧ (⇡r(· · · (⇡1(i)))) = �r,⌧ (j). We thus have that
A0

j0⌧ ,⌧
= Aj,⌧ = Bj,⌧ = B0

j0⌧
and otherwise the A0

k,⌧ ’s and
B0

k,⌧ ’s are uniform and independent. This establishes
that ((X 0

1, Y
0
1), . . . , (X

0
t, Y

0
t )) ⇠ µt if (X,Y ) ⇠ µ0, and

thus the proposition is proved.

4 The Pointer Verification Problem

When L is very large compared to n, there are two
possible natural options for trying to distinguish µ from
µX ⇥ µY . One option is for Alice and Bob to ignore
the pointers (⇡1, . . . ,⇡r) and simply try to see if there
exists j 2 [n] such that Aj = Bj . The second option is
for Alice and Bob to ignore the A0s and the B0s while
communicating and simply try to find the end of the
chain of pointers i0 = i, . . . , i` = ⇡`(i`�1), . . . , ir and
then check to see if Air = Bir .

The former turns out to be a problem that is at
least as hard as Set Disjointness on n bit inputs (and
so requires ⌦(n) bits of communication). The latter
requires ⌦̃(n) bits of communication with fewer than
r rounds. But combining the two lower bounds seems
like a non-trivial challenge. In this section we introduce
an intermediate problem, that we call the pointer veri-
fication (PV) problem, that allows us to modularly use
lower bounds on the set disjointness problem and on
the (small-round) communication complexity of PV, to
prove that µ is indistinguishable from µX ⇥ µY .

The main di↵erence between PV and pointer chas-
ing is that here Alice and Bob are given both a source
pointer i0 and a target pointer j0 and simply need to
decide if chasing pointers from i0 leads to j0. We note
that the problem is definitely easier than pointer chas-
ing in that for a sequence of r pointers, Alice and Bob
can decide PV in r/2 rounds (by “chasing i0 forward
and j0 backwards simultaneously”). This leads us to a
bound that is weaker in the round complexity by a fac-
tor of 2, but allows us the modularity alluded to above.
Finally the bulk of the paper is devoted to proving a
communication lower bound for r/2 � O(1) round pro-
tocols for solving PV (or rather again, an indistinguisha-
bility result for two distributions related to PV). This
lower bound is similar to the lower bound of Nisan and
Wigderson [NW93] though the proofs are more complex
due to the fact that we need to reason about settings
where Alice’s input and Bob’s input are correlated.

We start with the definition of a distributional
version of the Pointer Verification Problem and then
relate it to the complexity of distinguishing µ from
µX ⇥ µY .

Definition 4.1. For integers r and n with r being

odd, the distributions DY
PV = DY

PV(r, n) and DN
PV =

DN
PV(r, n) are supported on ((Sdr/2e

n ) ⇥ ([n]2 ⇥ Sbr/2c
n ).

DN
PV is just the uniform distribution over this domain.

On the other hand, (X,Y ) ⇠ DY
PV is sampled as

follows: Sample ⇡1, . . . ,⇡r uniformly and independently

from Sn and further sample i0 2 [n] uniformly and

independently. Finally let j0 = ⇡r(· · · (⇡1(i0))), and let

X = (⇡1,⇡3, . . . ,⇡r) and Y = (i0, j0,⇡2,⇡4, . . . ,⇡r�1).

Our main theorem about Pointer Verification is the
following:

Theorem 4.1. For every ✏ > 0 and odd r there exists

�, n0 such for every n � n0, DY
PV(r, n) and DN

PV(r, n)
are (✏, (r � 1)/2, n/ log� n)-indistinguishable.

The proof of Theorem 4.1 is provided in the full
version of our paper [BGGS18]. We now show that
this su�ces to prove our main theorem. First we prove
in Lemma 4.1 below that µ is indistinguishable from
µX ⇥ µY . This proof uses the theorem above, and the
fact that set disjointness cannot be solved with o(n) bits
of communication, that we recall next.

Theorem 4.2. ([Raz92]) For every ✏ > 0 there exists

� > 0 such that for all n the following holds: Let DisjY,
respectively DisjN, be the uniform distribution on pairs

(U, V ) with U, V ✓ [n] and |U | = |V | = n/4 such that

|U \ V | = 1 (respectively |U \ V | = 0). Then DisjY and

DisjN are (✏, �n, �n)-indistinguishable to Alice and Bob,

if Alice gets U and Bob gets V as inputs.

Copyright © 2019 by SIAM
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Remark 4.1. We note that the theorem in [Raz92]

explicitly only rules out (1 � ✏0,⌦(n),⌦(n))-
distinguishability of DisjY and DisjN for some ✏0 > 0.
But we note that the distinguishability gap of any

protocol can be amplified in this case (even though we

are in the setting of distributional complexity) since

by applying a random permutation to [n], Alice and

Bob can simulate independent inputs from DisjY (or

DisjN) given any one input from its support. Thus an

(r, c) protocol that ✏-distinguishes DisjY from DisjN
can be converted to an (r, (c/✏2) log(1/✏0))-protocol that
(1 � ✏0)-distinguishes DisjY from DisjN, implying the

version of the theorem above.

Lemma 4.1. For every ✏ > 0 and odd r there exists

�, n0 such for every n � n0 and L, the distributions

µ = µr,n,L and µX ⇥ µY are (2✏, (r � 1)/2, n/ log� n)
indistinguishable.

Proof. We use a new distribution µmid which is a hy-
brid of µ and µX ⇥ µY where (X,Y ) ⇠ µmid is
sampled as follows: Sample ⇡1, . . . ,⇡r 2 Sn inde-
pendently and uniformly. Further sample i, j 2 [n]
uniformly and independently (of each other and the
⇡’s). Finally sample Aj = Bj 2 {0, 1}L uniformly
and A�j and B�j uniformly and independently from
{0, 1}(n�1)L. Let X = (⇡1,⇡3, . . . ,⇡r, A1, . . . , An) and
Y = (i,⇡2,⇡4, . . . ,⇡r�1, B1, . . . , Bn). (So µmid does
force a correlation between A and B, but the permu-
tations do not lead to this correlated point.)

We show below that µmid and µX ⇥µY are indistin-
guishable to low-communication protocols (due to the
hardness of Set Disjointness), while µ and µmid are in-
distinguishable to low-round low-communication proto-
cols, due to Theorem 4.1. The lemma follows by the tri-
angle inequality for indistinguishability (which follows
from the triangle inequality for total variation distance).

We now use the fact (Theorem 4.2) that disjointness
is hard, and in particular o(n)-bit protocols cannot
distinguish between (U, V ) ⇠ DisjY and (U, V ) ⇠ DisjN.
Note in particular that DisjY is supported on pairs
(U, V ) such that U\V = {j} where j 2 [n] is distributed
uniformly. Specifically, we have that for every ✏ > 0
there exists � > 0 such that DisjY and DisjN are
(✏, �n, �n)-indistinguishable.

We now show how to reduce the above to the
task of distinguishing µmid and µX ⇥ µY (using shared
randomness and no communication). Alice and Bob
share W1, . . . ,Wn 2 {0, 1}L distributed uniformly and
independently. Given U ✓ [n], Alice picks ⇡1,⇡3, . . .
uniformly and independently, lets A` = W` if ` 2 U
and samples A` 2 {0, 1}L uniformly otherwise, and
lets X = (⇡1,⇡3, . . . ,⇡r, A1, . . . , An). Similarly Bob
samples i 2 [n] uniformly, and ⇡2,⇡4, . . . ,⇡r�1 2 Sn

uniformly and independently. Let B` = W` if ` 2 V
and let B` be drawn uniformly from {0, 1}L otherwise.
Let Y = (i,⇡2,⇡4, . . . ,⇡r�1, B1, . . . , Bn). It can be
verified that (X,Y ) ⇠ µmid if (U, V ) ⇠ DisjY and
(X,Y ) ⇠ µX ⇥ µY if (U, V ) ⇠ DisjN. Thus we conclude
that µmid and µX ⇥µY are (✏, �n, �n)-indistinguishable.

Next we turn to the (in)distinguishability of µ vs.
µmid. We reduce the task of distinguishing DY

PV and
DN

PV to distinguishing µ and µmid. Given an instance
(X,Y ) of pointer verification with X = (⇡1,⇡3, . . . ,⇡r)
and Y = (i, j,⇡2,⇡4, . . . ,⇡r�1), we generate an instance
(X 0, Y 0) as follows: Let W1, . . . ,Wn be uniformly and
independently chosen elements of {0, 1}L shared by
Alice and Bob. Alice lets A` = W` for every ` and
lets X 0 = (⇡1, . . . ,⇡r, A1, . . . , An). Bob lets Bj = Wj

and samples B` uniformly and independently for ` 2
[n] � {j}, and lets Y 0 = (i,⇡2, . . . ,⇡r�1, B1, . . . , Bn).
It can be verified that (X 0, Y 0) ⇠ µ if (X,Y ) ⇠ DY

PV
and (X 0, Y 0) ⇠ µmid if (X,Y ) ⇠ DN

PV. It follows from
Theorem 4.1 that µ and µmid are (✏, (r�1)/2, n/ log� n)-
indistinguishable.

Combining the two we get that µ and µX ⇥ µY

are (2✏, (r�1)/2, n/ log� n)-indistinguishable (assuming
(r� 1)/2 < �n and n/ log� n < �n, which are both true
for su�ciently large n).

We are ready to prove Theorem 1.1, which says that
we cannot generate ` bits of common randomness from
µr,n,L in r/2� 2 rounds using only min(O(`), n/ log� n)
communication.

Proof. (of Theorem 1.1) We start with the case of odd
r. We use the distribution µ = µr,n,L in this case.
Part (1) of the theorem which says that one can gener-
ate common randomness using an (r + 1, r + 1dlog ne)
protocol, follows from Lemma 2.1. Part (2) of Theo-
rem 1.1 claims that using r/2 rounds and insu�cient
communication one cannot generate common random-
ness. This follows by combining Lemma 4.1 with Propo-
sition 3.3 and Proposition 3.2. In particular, let ⌘ be
the constant from Proposition 3.2 (and also Proposi-
tion 3.1), ⇠ be the constant from Proposition 3.2, and
�0 be the constant � from Lemma 4.1 given the num-
ber of rounds r and (1 � ✏)/40 for the variational dis-
tance parameter. Finally let � be a constant such
that � > max{�0, 3⌘ + 3/2 · log 1/(1 � ✏) + ⇠} and
n/ log� n + ⇠ log 1/(1 � ✏)  n/ log�0 n, which is pos-
sible for su�ciently large n. Suppose for the pur-
pose of contradiction that for some ` 2 Z+, there
were a ((r � 3)/2,min{⌘` � �, n/ log� n})-protocol for
(`, ✏)-CRG from µr,n,L. By Proposition 3.2, there is
some positive integer t for which µt and µt

X ⇥ µt
Y are

((1�✏)/10, (r�1)/2,min{⌘`, n/ log� n}+⇠ log 1/(1�✏))-
distinguishable. But now let µ0 = µr,n,Lt. Then
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by Proposition 3.3 and our assumption on �, µ0 and
(µ0)X ⇥ (µ0)Y are ((1 � ✏)/10, (r � 1)/2, n/ log�0 n)-
distinguishable. But this contradicts Lemma 4.1, which
states that µ0 and (µ0)X ⇥ (µ0)Y are ((1 � ✏)/20, (r �
1)/2, n/ log�0 n)-indistinguishable.

For even r, we just use the distribution µr�1,n,L.
Part (1) continues to follow from Lemma 2.1. And
for Part (2) we can reason as above, with the caveat
that the bound on round complexity from Lemma 4.1
now is “only” ((r � 1)� 1)/2. The additional loss from
Proposition 3.2 is one more round, leading to a final
lower bound of r/2� 2.

Proof. (of Theorem 1.2) Part (1) of the theorem follows
from Lemma 2.1. Part (2) follows from Part (2) of
Theorem 1.1 since SKG is a strictly harder task.
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