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ABSTRACT

Settings such as lending and policing can be modeled by a

centralized agent allocating a scarce resource (e.g. loans or

police officers) amongst several groups, in order to maximize

some objective (e.g. loans given that are repaid, or criminals

that are apprehended). Often in such problems fairness is also

a concern. One natural notion of fairness, based on general

principles of equality of opportunity, asks that conditional on

an individual being a candidate for the resource in question,

the probability of actually receiving it is approximately inde-

pendent of the individual’s group. For example, in lending this

would mean that equally creditworthy individuals in different

racial groups have roughly equal chances of receiving a loan.

In policing it would mean that two individuals committing

the same crime in different districts would have roughly equal

chances of being arrested.

In this paper, we formalize this general notion of fairness

for allocation problems and investigate its algorithmic conse-

quences. Our main technical results include an efficient learn-

ing algorithm that converges to an optimal fair allocation even

when the allocator does not know the frequency of candidates

(i.e. creditworthy individuals or criminals) in each group. This

algorithm operates in a censored feedback model in which

only the number of candidates who received the resource in a

given allocation can be observed, rather than the true number

of candidates in each group. This models the fact that we do

not learn the creditworthiness of individuals we do not give

loans to and do not learn about crimes committed if the police

presence in a district is low.

As an application of our framework and algorithm, we

consider the predictive policing problem, in which the resource
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being allocated to each group is the number of police officers

assigned to each district. The learning algorithm is trained on

arrest data gathered from its own deployments on previous

days, resulting in a potential feedback loop that our algorithm

provably overcomes. In this case, the fairness constraint asks

that the probability that an individual who has committed a

crime is arrested should be independent of the district in which

they live. We investigate the performance of our learning

algorithm on the Philadelphia Crime Incidents dataset.
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1 INTRODUCTION

The bulk of the literature on algorithmic fairness has focused

on classification and regression problems (see e.g. [3, 4, 6ś

8, 10, 14, 16, 17, 19, 20, 24ś26] for a collection of recent work),

but fairness concerns also arise naturally in many resource

allocation settings. Informally, a resource allocation problem

is one in which there is a limited supply of some resource to

be distributed across multiple groups with differing needs.

Resource allocation problems arise in financial applications

(e.g. allocating loans), disaster response (allocating aid), and

many other domains Ð but the primary example that we will

focus on in this paper is policing. In the predictive policing

problem, the resource to be distributed is police officers, which

can be dispatched to different districts. Each district has a

different crime distribution, and the goal (absent additional
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fairness constraints) might be to maximize the number of

crimes caught.1

Of course, fairness concerns abound in this setting, and

recent work (see e.g. [11, 12, 21]) has highlighted the extent to

which algorithmic allocation might exacerbate those concerns.

For example, Lum and Isaac [21] show that if predictive polic-

ing algorithms such as PredPol are trained using past arrest

data to predict future crime, then pernicious feedback loops

can arise, which misestimate the true crime rates in certain

districts, leading to an overallocation of police.2 Since the com-

munities that Lum and Isaac [21] showed to be overpoliced

on a relative basis were primarily poor and minority, this is

especially concerning from a fairness perspective. In this work,

we study algorithms that avoid this kind of under-exploration

and incorporate quantitative fairness constraints.

In the predictive policing setting, Ensign et al. [11] implic-

itly consider an allocation to be fair if police are allocated

across districts in direct proportion to the district’s crime rate;

generally extended, this definition asks that units of a resource

are allocated according to the group’s share of the total can-

didates for that resource. In our work, we study a different

notion of allocative fairness that has a similar motivation to

the notion of equality of opportunity proposed by Hardt et al.

[14] in classification settings. Informally speaking, it asks that

the probability that a candidate for a resource be allocated a

resource be independent of his group membership. In the pre-

dictive policing setting, it asks that conditional on committing

a crime, the probability that someone is apprehended should

not depend on the district in which they commit the crime.

To illustrate that our notions of fairness do not depend on

whether individuals would prefer to receive or not receive the

resource, we highlight another setting in which allocative fair-

ness is a natural concern: hiring.3 Suppose a company wishes

to recruit machine learning programmers by advertising on a

social media platform. Many such platforms offer the ability to

advertise to different demographics of users and charge by the

number of times the advertisement is shown to different users

(i.e., the number of impressions); a fixed advertising budget

can then be viewed as a number of impressions to allocate. De-

pending on how well the platform can identify programmers

within each demographic, the ad may be shown to a higher

or lower number of programmers. In this setting, our notion

of allocative fairness asks that the probability a programmer

is exposed to the hiring ad (and thus, receives the opportu-

nity to apply for a job) does not depend on the programmer’s

demographic, and the allocation problem is to maximize the

number of programmers reached via the choice of impressions

across each demographic, subject to fairness constraints.

1We understand that policing has many goals besides simply apprehending
criminals, including preventing crimes in the first place, fostering healthy com-
munity relations, and generally promoting public safety. But for concreteness
and simplicity we consider the limited objective of apprehending criminals.
2Predictive policing algorithms are often proprietary, and it is not clear whether
in deployed systems, arrest data (rather than 911 reported crime) is used to train
the models.
3Dwork and Ilvento [9] consider such a setting under different fairness notions
and with different research questions in mind.

1.1 Our Results

To define the extent to which an allocation satisfies our fair-

ness constraint, we must model the specific mechanism by

which resources deployed to a particular group reach their

intended targets. We study two such discovery models, and we

view the explicit framing of this modeling step as one of the

contributions of our work; the implications of a fairness con-

straint depend strongly on the details of the discovery model,

and specifying such a model is an important step in making

one’s assumptions transparent.

We study two discovery models, which capture two ex-

tremes of targeting ability. In the random discovery model,

regardless of the number of units allocated to a given group,

all individuals within that group are equally likely to be as-

signed a unit, regardless of whether they are a candidate for

the resource or not. In other words, the probability that a can-

didate receives a resource is equal to the ratio of the number

of units of the resource assigned to his group to the size of his

group (independent of the number of candidates in the group).

At the other extreme, in the precision discovery model, units

of the resource are given only to actual candidates within a

group, as long as there is sufficient supply of the resource. That

is, the probability that a candidate receives a resource is equal

to the ratio of the number of units of the resource assigned to

his group to the number of candidates in his group.

In the policing setting, these models can be viewed as two

extremes of police targeting ability for an intervention like

stop-and-frisk. In the random model, police are viewed as stop-

ping people uniformly at random. In the precision model, po-

lice have the omniscient ability to identify individuals with

contraband, and stop only them. Of course, reality lies some-

where in between.

These discovery models have different implications for fair-

ness. In the random model, fairness constrains resources to be

distributed in amounts proportional to group sizes, regardless

of the distribution of candidates, and so is uninteresting from

a learning perspective. On the other hand, the precision model

yields an interesting fairness-constrained learning problem

when the distribution of the number of candidates in each

group must be learned via observation, and what counts as a

‘fair’ allocation depends greatly on these distributions.

We study learning in a censored feedback setting: each

round, the algorithm can choose a feasible deployment of

resources across groups. Then the number of candidates for

the current round in each group is drawn from a fixed, but

unknown group-dependent distribution (which might be not

be independent from the distributions in other groups). The

algorithm does not observe the number of candidates present

in each group, but only the number of candidates that received

the resource. In the policing setting, this corresponds to the

algorithm being able to observe the number of arrests, but not

the actual number of crimes in each of the districts. Thus, the

extent to which the algorithm can learn about the distribution

in a particular group is limited by the number of resources it

deploys there. The goal of the algorithm is to converge to an

optimal fairness-constrained allocation, where here both the

2
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objective value of the solution and the constraints imposed on

it depend on the unknown distributions.

One trivial solution to the learning problem is to sequen-

tially deploy all of one’s resources to each group in turn for

a sufficient amount of time to accurately learn the candidate

distributions. This would reduce the learning problem to an

offline constrained optimization problem, which we show can

be efficiently solved by a greedy algorithm. But this algorithm

is unreasonable: it has a large exploration phase in which it

uses nonsensical deployments, vastly overallocating to some

groups and underallocating to others. A much more realistic,

natural approach is a greedy-style learning algorithm which at

each round uses its current best-guess estimate for the distribu-

tion in each group and deploys an optimal fairness-constrained

allocation according to these estimates. Unfortunately, as we

show, if one makes no assumptions on the underlying distri-

butions, any algorithm that has a guarantee of converging to

a fair allocation must behave like the trivial one, deploying

vast numbers of resources to each group in turn.

This impossibility result motivates us to consider the learn-

ing problem in which the unknown distributions are from a

known parametric family. The natural greedy algorithm uses

an optimal fair deployment at each round given the maximum

likelihood estimates of candidate distributions given its (cen-

sored) observations so far; for concreteness, we consider the

case of the Poisson distribution, and show that it converges to

an optimal fair allocation, but our analysis generalizes for any

single-parameter Lipschitz-continuous family of distributions.

Finally, we conduct an empirical evaluation of our algorithm

on the Philadelphia Crime Incidents dataset, which records

all crimes reported to the Philadelphia Police Department’s

INCT system between 2006 and 2016. We verify that the crime

distributions in each district are in fact well-approximated

by Poisson distributions, and that our algorithm converges

quickly to an optimal fair allocation (as measured according

to the empirical crime distributions in the dataset). We also

systematically evaluate the Price of Fairness, and plot the Pareto

curves that trade off the number of crimes caught versus the

slack allowed in our fairness constraint, for different sizes of

police force, on this dataset. For the random discovery model,

we prove worst-case bounds on the Price of Fairness.

1.2 Further Related Work

Our precision discovery model is inspired by and has tech-

nical connections to Ganchev et al. [13], which models the

dark pool problem from quantitative finance, in which a trader

wishes to execute a specified number of trades across a set of

exchanges of unknown but independently distributed liquidity.

In Ganchev et al. [13], the authors design an optimal allocation

algorithm under the censored feedback of the precision model.

It is straightforward to map their setting onto ours, but they

assume independence between different exchanges, while the

candidate distributions in our setting need not be indepen-

dent. Regardless, we show that their allocation algorithm can

be used to compute an optimal allocation (ignoring fairness)

even when the independence assumption is relaxed (see Re-

mark 1). Later, Agarwal et al. [1] extend the dark pool problem

to an adversarial (rather than distributional) setting. This is

quite closely related to the work of Ensign et al. [12] who also

consider the precision model (under a different name) in an

adversarial predictive policing setting. They provide no-regret

algorithms for this setting by reducing the problem to learn-

ing in a partial monitoring environment. Since their setting is

equivalent to that of Agarwal et al. [1], the algorithms in Agar-

wal et al. [1] can be directly applied to the problem studied by

Ensign et al. [12].

Our desire to study the natural greedy algorithm rather than

an algorithm which uses łunreasonablež allocations during an

exploration phase is an instance of a general concern about

exploration in fairness-related problems [5]. Recent works

have studied the performance of greedy algorithms in different

settings for this reason [2, 18, 23].

Lastly, the term fair allocation appears in the fair division

literature (see e.g. [22] for a survey), but that body of work is

technically quite distinct from the problem we study here.

2 SETTING

We study an allocator who hasV units of a resource and is

tasked with distributing them across a population partitioned

into G groups. Each group is divided into candidates, who

are the individuals the allocator would like to receive the re-

source, and non-candidates, who are the remaining individuals.

We let mi denote the total number of individuals in group

i . The number of candidates ci in group i is a random vari-

able drawn from a fixed but unknown distribution Ci called

the (marginal) candidate distribution. We do not make any

assumptions about the relationship between the candidate

distributions across different groups and in particular these

distributions need not be independent. We use M to denote

the total size of all groups (i.e.,M = Σi ∈[G]mi ). An allocation

v = (v1, . . . ,vG ) is a partitioning of these V units, where

vi ∈ {0, . . . ,V} denotes the units of resources allocated to

group i . Every allocation is bound by a feasibility constraint

which requires that Σi ∈[G]vi ≤ V .

A discovery model disc(vi , ci ) is a (possibly randomized)

function mapping the number of units vi allocated to group

i and the number of candidates ci in group i to the number

of candidates discovered in group i . In the learning setting,

upon fixing an allocation v, the learner will get to observe (a

realization of) disc(vi , ci ) for the realized value of ci for each

group i . Fixing an allocation v, a discovery model disc(·) and

candidate distributions for all groups C = {Ci : i ∈ [G]}, we

define the total expected number of discovered candidates,

χ (v, disc(·),C), as

χ (v, disc(·),C) =
∑

i ∈[G]

E
ci∼Ci

[
disc(vi , ci )

]
, (1)

where the expectation is taken over Ci and any randomization

in the discovery model disc(·). When the discovery model

and the candidate distributions are fixed, we will simply write

χ (v) for brevity. We also use the total expected number of

discovered candidates and (expected) utility exchangeably. We

refer to an allocation that maximizes the expected number

of discovered candidates over all feasible allocations as an

optimal allocation and denote it by w∗.

3
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2.1 Allocative Fairness

For the purposes of this paper, we say that an allocation is

fair if it satisfies approximate equality of candidate discovery

probability across groups. We call this discovery probability

for brevity. This formalizes the intuition that it is unfair if

candidates in one group have an inherently higher probability

of receiving the resource than candidates in another. Formally,

we define our notion of allocative fairness as follows.

Definition 1. Fix a discovery model disc(·) and the candi-

date distributions C. For an allocation v, let

fi (vi , disc(·),Ci ) = E
ci∼Ci

[
disc (vi , ci )

ci

]
,

denote the expected probability that a random candidate from

group i receives a unit of the resource at allocation v (i.e. the

discovery probability in group i). Then for any α ∈ [0, 1], v is

α-fair if

����fi (vi , disc(·),Ci ) − fj
(

vj , disc(·),Cj
) ���� ≤ α ,

for all pairs of groups i and j.

When it is clear from the context, for brevity, wewrite fi (vi )

for the discovery probability in group i . We emphasize that

this definition (1) depends crucially on the chosen discovery

model, and (2) requires nothing about the treatment of non-

candidates. We think of this as aminimal definition of fairness,

in that one might want to further constrain the treatment of

non-candidates Ð but we do not consider that extension.

Since discovery probabilities fi (vi ) and fj (vj ) are in [0, 1],

the absolute value of their difference is in [0, 1]. By setting

α = 1 we impose no fairness constraints whatsoever on the

allocations, and by setting α = 0 we require exact fairness.

We refer to an allocation v that maximizes χ (v) subject

to α-fairness and the feasibility constraint as an optimal α-

fair allocation and denote it by wα . In general, χ (wα ) is a

non-increasing quantity in α , since as α diminishes, the utility

maximization problem becomes more constrained.

Remark 1. We note that both the utility and discovery prob-

abilities can be written solely in terms of the marginal candidate

distributions in each of the groups, even when these distribu-

tions are not independent. This is because we have (implicitly)

assumed that the number of candidates discovered in a group

depends only on the number of candidates in the group and the

allocation to that group, regardless of the allocations to and the

number of candidates in other groups. This assumption together

with the linearity of expectation allows us to write the expected

utility as in the right hand side of Equation 1.

3 THE PRECISION DISCOVERY MODEL

We begin by describing the precision model of discovery. Al-

locating vi units to group i in the precision model results in

the discovery of disc(ci ,vi ) ≜ min(ci ,vi ) candidates. This

models the ability to perfectly discover and reach candidates

in a group with resources deployed to that group, limited

only by the number of deployed resources and the number of

candidates present.

The precision model results in censored observations that

have a particularly intuitive form. Recall that in general, a

learning algorithm at each round gets to choose an allocation

v and then observes disc(vi , ci ) for each group i . In the preci-

sion model, this results in the following kind of observation:

when vi is larger than ci , the allocator learns the number of

candidates ci present on that day exactly. We refer to this kind

of feedback as an uncensored observation. When vi is smaller

than ci , all the allocator learns is that the number of candidates

is at least vi . We call this a censored observation.

The rest of this section is organized as follows. In Sec-

tions 3.1 and 3.2 we characterize optimal and optimal fair

allocations for the precision model when the candidate dis-

tributions are known. In Section 3.3 we focus on learning an

optimal fair allocation when these distributions are unknown.

We show that any learning algorithm that is guaranteed to find

a fair allocation in the worst case over candidate distributions

must have the undesirable property that at some point, it must

allocate a vast number of its resources to each group individu-

ally. To bypass this hurdle, in Section 3.4 we show that when

the candidate distributions have a parametric form, a natural

greedy algorithm which always uses an optimal fair allocation

for the current maximum likelihood estimates of the candidate

distributions converges to an optimal fair allocation.

3.1 Optimal Allocation

We first describe how an optimal allocation (absent fairness

constraints) can be computed efficiently when the candidate

distributions Ci are known. In Ganchev et al. [13], the authors

provide an algorithm for computing an optimal allocation

when the distributions over the number of shares present in

each dark pool are known and the trader wishes to maximize

the expected number of traded shares. They assume that the

distributions of shares across different dark pools are inde-

pendent, but our formulation does not require this assump-

tion of independence. Still, we can use the same algorithm as

in Ganchev et al. [13] to compute an optimal allocation in our

setting; this is because, as stated in Remark 1, the utility in

both settings can be written solely in terms of the (marginal)

candidate distributions even when the candidate distributions

are not independent across groups. Here, we present the high

level ideas of their algorithm in the language of our model.

Let Ti (c ) = Prci∼Ci [ci ≥ c] denote the probability that

there are at least c candidates in group i . We refer to Ti (c )

as the tail probability of Ci at c . Recall that the value of the

cumulative distribution function (CDF) of Ci at c is defined to

be

Fi (c ) =
∑

c ′≤c

Prci∼Ci
[

ci = c
′] .

So Ti (c ) can be written in terms of CDF values as Ti (c ) =

1 − Fi (c − 1).

First, observe that the expected total number of candidates

discovered by an allocation in the precision model can be

written in terms of the tail probabilities of the candidate dis-

tributions i.e.

χ (v, disc(·),C) =
∑

i ∈[G]

E
ci∼Ci

[min (vi , ci )] =
∑

i ∈[G]

vi
∑

c=1

Ti (c ).

4
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Since the objective function is concave (as Ti (c ) is a non-

increasing function in c for all i), a greedy algorithm which

iteratively allocates the next unit of the resource to a group in

argmax
i ∈[G]

(

Ti
(

vti + 1
)

− Ti
(

vti

))

,

where vti is the current allocation to group i in the t th round

achieves an optimal allocation.

3.2 Optimal Fair Allocation

We next show how to compute an optimal α-fair allocation

in the precision model when the candidate distributions are

known and do not need to be learned.

To build intuition for how the algorithm works, imagine

that the group i has the highest discovery probability in wα ,

and the allocation wα
i to that group is somehow known to

the algorithm ahead of time. The constraint of α-fairness then

implies that the discovery probability for each other group j

inwα must satisfy fj ∈ [fi −α , fi ]. This in turn implies upper

and lower bounds on the feasible allocations wα
j to group j.

The algorithm is then simply a constrained greedy algorithm:

subject to these implied constraints, it iteratively allocates

units so as to maximize their marginal probability of reaching

another candidate. Since the group i maximizing the discovery

probability inwα and the corresponding allocationwα
i are not

known ahead of time, the algorithm simply iterates through

each possible choice of i .

Algorithm 1 Computing an optimal fair allocation in the

precision model

Input: α , C andV .

Output: An optimal α-fair allocation wα .

wα ← 0⃗.

χmax ← 0.

for i ∈ [G] do

v← 0⃗.

for vi ∈ {0, . . .V} do

Set vi in v and compute fi (vi ).

ubi ← vi .

lbi ← vi .

for j , i, j ∈ [G] do

Update lbj and ubj using fi (vi ), α and Cj .

vj ← lbj .

if Σi ∈[G]vi > V then

continue.

Vr = V − Σi ∈[G]vi
for t = 1, . . . ,Vr do

j∗ ∈ argmax
j ∈[G]

(

Tj (vj + 1) − Tj (vj )
)

s.t. vj < ubj .

vj∗ ← vj∗ + 1.

χ (v) = Σi ∈[G]Σ
vi
c=1Ti (c ).

if χ (v) > χmax then

χmax ← χ (v).

wα ← v.

return wα .

Pseudocode is given in Algorithm 1. We prove that Algo-

rithm 1 returns an optimal α-fair allocation in Theorem 1. We

defer all the omitted proofs and details to the full version.

Theorem 1. Algorithm 1 computes an optimal α -fair alloca-

tion for the precision model in time O (GV (GV +M )).

3.3 Learning Fair Allocations Generally

Requires Brute-Force Exploration

In Sections 3.1 and 3.2 we assumed the candidate distributions

were known. When the candidate distributions are unknown,

learning algorithms intending to converge to optimal α-fair

allocations must learn a sufficient amount about the distribu-

tions in question to certify the fairness of the allocation they

finally output. Because learners must deal with feedback in the

censored observation model, this places constraints on how

they can proceed. Unfortunately, as we show in this section,

if candidate distributions are allowed to be worst-case, this

will force a learner to engage in łbrute-force explorationž Ð

the iterative deployment of a large fraction of the resources to

each subgroup in turn. This is formalized in Theorem 2.

Theorem 2. Define m∗ = maxi ∈[G]mi to be the size of

the largest group and assume mi > 6 for all i and G ≥ 2.

Let α ∈ [0, 1/(2m∗)), δ ∈ (0, 1/2), and A be any learning

algorithm for the precision model which runs for a finite number

of rounds and outputs an allocation. Suppose that there is some

group i for which A has not allocated at leastmi/2 units for

at least k ln(1/δ )/(αmi ) rounds upon termination, where k is

an absolute constant. Then there exists a candidate distribution

such that, with probability at least δ , A outputs an allocation

that is not α-fair.

Sketch of the Proof. Let i denote a group in which A

has not allocated at leastmi/2 units for at leastk ln(1/δ )/(αmi )

rounds upon its termination and let v denote an arbitrary al-

location. We will design two candidate distributions for group

i which have true discovery probabilities that are at least 2α

apart given vi , but which are indistinguishable given the ob-

servations of the algorithm with probability at least δ . If theA

cannot distinguish between Ci and C
′
i , it cannot distinguish

between fi and f ′i , and thus cannot guarantee whether group

i’s discovery probability is indeed within α of every other

group’s discovery probability.

To design these candidate distributions, consider distribu-

tions Ci and C
′
i which satisfy the following four conditions.

(1) Ci and C
′
i agree on all values less thanmi/2 − 2.

(2) The total mass of both distributions belowmi/2 − 2 is

1 − 2αmi .

(3) The remaining 2αmi mass of Ci is on the valuemi/2−1.

(4) The remaining 2αmi mass of C′i is on the valuemi .

Distinguishing between Ci and C
′
i requires at least one un-

censored observation beyondmi/2 − 2. However, conditioned

on allocating at leastmi/2 units, the probability of observing

an uncensored observation is at most 2αmi . So to distinguish

between Ci and C
′
i with confidence 1−δ , and therefore to guar-

antee an α-fair allocation, a learning algorithm must allocate

at leastmi/2 units to group i for k ln(1/δ )/(αmi ) rounds. □

5
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Recall that we used m∗ to denote the size of the largest

group. When m∗ > 2V , then Theorem 2 implies that no

algorithm can guarantee α-fairness for sufficiently small α .

Moreover, even when m∗ ≤ 2V , Theorem 2 shows that in

general, if we want algorithms that have provable guarantees

for arbitrary candidate distributions, it is impossible to avoid

something akin to brute-force search (recall that there is a

trivial algorithm which simply allocates all resources to each

group in turn, for sufficiently many rounds to approximately

learn the CDF of the candidate distribution, and then solves

the offline problem). In the next section, we circumvent this by

giving an algorithm with provable guarantees, assuming that

the candidate distributions have a known parametric form.

3.4 Poisson Distributions and Convergence

of the MLE

In this section, we assume that all the candidate distributions

have a particular and known parametric form but that the

parameters of the these distributions are not known to the

allocator. Concretely, we assume that the candidate distribu-

tion for each group is Poisson4 (denoted by C (λ)) and write

λ
∗
= (λ∗1, . . . , λ

∗
G
) for the true underlying parameters of the

candidate distributions; this choice appears justified, at least

in the predictive policing application, as the candidate dis-

tributions in the Philadelphia Crime Incidents dataset are

well-approximated by Poisson distributions (see Section 4 for

further discussion). This assumption allows an algorithm to

learn the tails of these distributions without needing to rely

on brute-force search, thus circumventing the limitation given

in Theorem 2. Indeed, we show that (a small variant of) the

natural greedy algorithm incorporating these distributional

assumptions converges to an optimal fair allocation.

For simplicity, we assume a parametric form on the mar-

ginal candidate distribution in each of the groups. We could

have equivalently assumed that the candidates across groups

are drawn from amultivariate Poisson distribution to highlight

the (potential) correlation between candidates distributions.

However, since for a given multivariate Poisson distribution

the marginal distribution on each group is itself a Poisson

distribution [15], we made our parametric assumption directly

on these marginal distributions.

At a high level, in each round, our algorithm uses Algo-

rithm 1 to calculate an optimal fair allocation with respect to

the current maximum likelihood estimates of the group dis-

tributions; then, it uses the new observations it obtains from

this allocation to refine these estimates for the next round.

This is summarized in Algorithm 2. The algorithm differs from

this pure greedy strategy in one respect, to overcome the fol-

lowing subtlety: there is a possibility that Algorithm 1, when

operating on a preliminary estimate for the candidate distri-

butions, will suggest sending zero units to some group, even

when the optimal allocation for the true distributions sends

some units to every group. Such a deployment would result

in the algorithm receiving no feedback for the zero-allocated

4To match our model, we would technically need to assume a truncated Poisson
distribution to satisfy the bounded support condition. However, the distinction
will not be important for the analysis, and so to minimize technical overhead,
we perform the analysis assuming an untruncated Poisson.

group that round. If this suggestion is followed and a lack

of feedback is allowed to persist indefinitely, the algorithm’s

parameter estimate for the zero-allocated group will also stop

updating Ð potentially at an incorrect value. In order to avoid

this problem and continue making progress in learning, our

algorithm chooses another allocation in this case. As we show,

any allocation that allocates positive resources to all groups

will suffice; in particular, our algorithm simply repeats the

allocation from the previous round.

Algorithm 2 Learning an optimal fair allocation

Input: α ,V and T (total number of rounds).

Output: An allocation vT+1 and estimates to parameters

{λTi }.

v1 ← (⌊(V/G)⌋, . . . , ⌊(V/G)⌋).

for rounds t = 1, . . . ,T do

if ∃i such that vti == 0 then

vt ← vt−1.

Observe oti = min{vti , c
t
i } for each group.

for i = 1, . . . ,G do

Update history ht+1i with oti and v
t
i .

λ̂ti ← argmaxλ∈[λmin,λmax]
L̂ (ht+1i , λ).

vt+1 ← Algorithm 1(α , {C (λ̂ti )},V ).

return vT+1 and {λTi }.

Notice that Algorithm 2 chooses an allocation at every

round which is fair with respect to its estimates of the param-

eters of the candidate distributions; hence, asymptotic con-

vergence of its output to an optimal α-fair allocation follows

directly from the convergence of the estimates to true param-

eters. However, we seek a stronger, finite sample guarantee,

as stated in Theorem 3.

Theorem 3. Let ϵ,δ > 0. Suppose that the candidate distribu-

tions are Poisson distributions with unknown parameters in the

vector λ∗, where λ∗ lies in the known interval [λmin, λmax]
G .

Suppose we run Algorithm 2 for t > Õ (ln(G/δ )/(η(ϵ ))2) ≜

Tmax rounds, where η(·) is some distribution specific function to

get an allocation v̂ and estimated parameters λ̂i for all groups i .

Then with probability at least 1 − δ

(1) For all i in [G], |λ̂i − λ
∗
i | ≤ ϵ .

(2) Let D = maxi ∈[G] DTV (C (λ∗i ),C (λ̂i )) where DTV de-

notes the total variation distance between two distribu-

tions. Then v̂

• is (α + 4D)-fair.

• has utility at most 4DGV smaller than the utility

of an optimal (α − 4D)-fair allocation i.e. χ (v̂) ≥

χ (wα−4D ) − 4DGV .

Remark 2. Theorem 3 implies that in the limit, the allocation

from Algorithm 2 will converge to an optimal α-fair allocation.

As t → ∞, λ̂i
p
→ λ∗i for all i , meaning D → 0 and more

importantly, v̂ will be α-fair and optimal.

To prove Theorem 3, we first show that any sequence of

allocations selected by Algorithm 2 will eventually recover the

true parameters. There are two conceptual difficulties here:
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where C ranges over all possible candidate distributions.

We can fully characterize this worst-case PoF in the random

discovery model.

Theorem 4. The PoF in the random discovery model is

PoF(α ) =


1, V
m1
≤ α ,

M
m1+α (M−m1 )

, V
m1
> α .

The PoF in the random model can be as high as M/m1 in

the worst case. If all groups are identically sized, this grows

linearly with the number of groups.

6 CONCLUSION AND FUTURE

DIRECTIONS

Our presentation of allocative fairness provides a family of

fairness definitions, modularly parameterized by a łdiscov-

ery modelž. What counts as łfairž depends a great deal on

the choice of discovery model, which makes explicit what

would otherwise be unstated assumptions about the process

of tasks like policing. The random and precision models of

discovery studied in this paper represent two extreme points

of a spectrum. In the predictive policing setting, the random

model of discovery assumes that officers have no advantage

over random guessing when stopping individuals for further

inspection. The precision model assumes they can oracularly

determine offenders, and stop only them. An interesting direc-

tion for future work is to study discovery models that lie in

between these two.

We have also made a number of simplifying assumptions

that could be relaxed. For example, we assumed the candidate

distributions are stationary Ð fixed independently of the ac-

tions of the algorithm. Of course, the deployment of police

officers can change crime distributions. Modeling this kind

of dynamics, and designing learning algorithms that perform

well in such dynamic settings would be interesting. Finally,

we have assumed that the same discovery model applies to

all groups. One friction to fairness that one might reasonably

conjecture is that the discovery model may differ between

groups Ð being closer to the precision model for one group,

and closer to the random model for another. We leave the

study of these extensions to future work.
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