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a b s t r a c t

We present a novel approach for joint image segmentation and nonrigid registration
using bidirectional composition based level set formulation. This efficient framework
incorporates automatic structural analysis from image segmentation into the registration
framework. This method has shown an improved performance as compared to carrying
out segmentation and registration separately. Unlike previous approaches, the implicit
level set function defining the segmentation contour and the spatial transformation func-
tion that maps the deformation for image registration are both defined using B-splines.
This joint level set framework uses a variational form of an atlas-based segmentation
together with large deformation based nonrigid registration. In addition, a bidirectional
composition framework is introduced to incorporate a more symmetric update. The
minimization of the variational form is accomplished by dynamic evaluations on a set
of successively refined adaptive grids at multiple image resolutions. The improvement
in the description of the segmentation result using higher order splines leads to a better
accuracy of both the image segmentation and registration process. The performance of
the proposed method is demonstrated on synthetic and medical images to show the
improvement as compared to other registration methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Image registration is the process of finding accurate spatial correspondence between two or more images [1,2]. This
field has several applications such as feature tracking [3] and fusion of images taken at different perspectives, time frames
or even modalities [4]. Image segmentation is the process of delineating the shape of important features from images.
The image is partitioned into multiple labeled regions denoting each object of interest [5]. This field incorporates shape
information into the image analysis framework and is used for object recognition and classification of different regions
of the image. Due to the large number of applications, both image segmentation and registration are important and
challenging problems in image analysis.

Image registration can be classified into rigid and nonrigid registration based on the type of spatial mapping [6]. In
rigid registration the image deformation is restricted to affine transformations such as translation, rotation, shearing and
scaling. In nonrigid registration, more complex and localized deformations can be captured. However, the evaluation of
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an optimal smooth transformation in nonrigid registration is very difficult to attain [7]. Many registration algorithms have
been proposed to achieve invertible and smooth transformation mappings, also known as diffeomorphisms. While many
registration algorithms focus on achieving diffeomorphic transformations [8–14], it is still a very challenging problem.
According to [15], the challenge in diffeomorphic transformation is how to evaluate a spatial mapping such that the
composition of the forward and backward transformations is the identity transformation.

Image segmentation is a prolific research domain with a very large number of applications. In [16], an active contour
model for segmentation was proposed based on the Mumford–Shah functional and level set method, which can carry
out segmentation of complex structures in images. However, segmentation of noisy image data is a very challenging
problem, particularly when working with images of poor resolution or when there are large inhomogeneities in the
image intensities [17]. Thus, atlas-based segmentation methods were introduced in order to overcome the limitation of
the segmentation algorithms. In these methods, the expertly segmented image known as the atlas, is used as the template
image. Nonrigid deformation of the atlas is carried out to compute the segmentation of the target image which is generally
noisy [18]. This problem is reduced to a registration algorithm and automatic segmentation of the target image is carried
out even if the object boundaries are not very clear [19]. The unification of the atlas-based segmentation and registration
methods in a joint framework is thus an interesting direction to pursue.

While image registration and segmentation are two different image analysis techniques that are performed for different
applications, they pose several challenges when performed separately. Image registration can become challenging for
large and complex image deformations. The minimization problem can become highly unconstrained and requires a
considerable computational effort to achieve the optimal transformation. Thus several methods have been proposed to
combine these two techniques to remove their respective drawbacks. Joint approaches have been shown to converge to
better segmentation and registration results as compared to performing them separately [20,21]. Segmentation brings
in structural information to give a good initial guess for the registration algorithm. The registration algorithm uses the
object boundary information to accurately deform the features within the images. For the segmentation of noisy images,
the atlas image which does not have any noise is first accurately segmented and deformed to align with the noisy target
image. Thus, we obtain the segmentation result of the target image which is devoid of noise.

In this paper, an atlas-based joint segmentation and registration approach is proposed using truncated hierarchical
B-splines (THB-splines). Here, the image is represented using B-spline based approximation method [22]. Through this
approach, we can represent both the segmentation result and the evolving source image as a C2 continuous object. The
deformation field is represented using THB-splines to obtain more smooth and realistic deformations as compared to the
finite difference method [20,21]. The main contributions of this paper are as follows:

• A joint variational level set framework based on THB-splines is proposed where image segmentation and registration
are simultaneously carried out.

• Both the registered image and the level set function defining the segmentation contour are represented using C2

continuous B-splines. The smooth description of the segmentation result using higher order splines improves the
accuracy of the joint framework.

• The deformation fields are represented using higher order THB-splines. A bidirectional composition update for the
deformation field is introduced to ensure smoothness and increased symmetry of the spatial mapping.

The paper is organized as follows: in Section 2, we introduce the joint image segmentation and registration framework.
We apply the algorithm to 2D and 3D synthetic and medical image datasets in Section 3. Finally, concluding remarks and
possibilities for future work are included in Section 4.

2. Mathematical model

In this section we discuss various components of the proposed joint segmentation and registration framework in
detail. The smooth image representation using B-spline level set function is described in Section 2.1. The joint image
segmentation and registration framework is described in Section 2.2 along with the proposed bidirectional compositional
mapping. The description of adaptive local refinement using THB-splines and software implementation are provided in
Sections 2.3 and 2.4, respectively.

2.1. Smooth representation of images

Accurate computation of the image gradient is essential towards improving the accuracy of image processing algo-
rithms. In [22], a C2 smooth representation of grayscale images was proposed using a B-spline level set function. This was
implemented in [14] for image registration to improve the numerical accuracy of gradient computation. In this paper, we
represent registered and segmented images using the B-spline level set representation.

A grayscale image is a piecewise constant function that does not have a smooth representation of the object boundaries.
Finite difference method cannot provide accurate gradient computation especially when the intensity changes abruptly
or is subject to noise. A smooth representation of the image can improve the accuracy and convergence of the numerical
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method through a more accurate computation of image gradients [14,22]. The B-spline level set function, s(x), for the
smooth reconstruction of the image is defined as

s(x) =

n3∑
k=1

n2∑
j=1

n1∑
i=1

ai,j,kN
p
i,j,k(x, y, z), (1)

where each level set coefficient ai,j,k is computed as

ai,j,k =

∫
Ω
Np

i,j,k(x, y, z)g(x, y, z) dΩ∫
Ω
Np

i,j,k(x, y, z) dΩ
. (2)

Here g(x, y, z) is the intensity value of the image and Np
i,j,k(x, y, z) represents a trivariate pth order B-spline basis function

evaluated at x = (x, y, z). Ω is the image domain and n1, n2 and n3 denote the number of univariate basis functions in
each direction. We define R =

∫
Ω
Np

i,j,k(x, y, z) dΩ .
The computation of level set coefficients can be carried out efficiently using filtering methods [14]. A discrete B-spline

kernel K is constructed using cardinal basis functions. In 1D, the cubic cardinal basis function B3(x) is defined as

B3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 + x)3

6
, −2 ≤ x < −1,

2
3

− x2 −
x3

2
, −1 ≤ x < 0,

2
3

− x2 +
x3

2
, 0 ≤ x < 1,

(2 − x)3

6
, 1 ≤ x < 2,

0, otherwise.

(3)

The smooth representation of the grayscale image at the voxel center (x, y, z) can be written as

s(x, y, z) =

m1+3∑
i=m1

m2+3∑
j=m2

m3+3∑
k=m3

ai,j,kB3(x − i)B3(y − j)B3(z − k), (4)

where m1 = ⌈x − 2⌉, m2 = ⌈y − 2⌉ and m3 = ⌈z − 2⌉. The smooth representation can be easily evaluated as a convolution
operation. The discrete cubic B-spline kernel K ([4 × 4 × 4]) is given as

K =

m1+3∑
i=m1

m2+3∑
j=m2

m3+3∑
k=m3

B3(x − i)B3(y − j)B3(z − k). (5)

Thus we can write the convolution as

s(x, y, z) = K ⊗ ai,j,k, (6)

where ⊗ represents the convolution operator. Eq. (2) can be rewritten as

ai,j,k =
1
R
(K ⊗ M), (7)

where the matrix M consists of grayscale intensity values in the integration domain. Details of how to evaluate M can be
found in [14]. The B-spline kernel is of the same form as digital filters which are commonly used in image processing. The
smooth representation removes irregularity of the image intensities and thus is an approximation to a Gaussian filter.

2.2. Joint level set and registration

We propose a variational formulation for the joint image segmentation and registration framework based on bidirec-
tional composed updates. Given the source Is(x) and the target It (x) images, the spatial transformation function T (x)
corresponds to the optimum alignment between Is(x) and It (x). In [23,24], the variational formulation for the active
contour based segmentation is not solved using level set formulation [25], instead the segmented source image is
deformed to align with the target image. In other words, an atlas-based segmentation model is used to evaluate the
segmentation of the target image. From the source image, also known as the atlas, the level set contour φ(x) for the
expertly segmented binary image is generated. Through the evaluation of the spatial transformation function T (x), we
compute φ(T (x)) and Is(T (x)) such that Is(T (x)) ≈ It (x) and φ(T (x)) defines the level set contour for the segmented target
image. To evaluate T (x), we solve an optimization problem, which is given in a variational formulation. The minimization
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of the energy functional is solved in iterative steps. At every time step, the spatial transformation function at the next
time step T (x)n+1 can be computed from the transformation function at the current time step T (x)n and the displacement
field obtained in the next time step Vn+1 in the following two ways:

• Additive update: T (x)n+1 = T (x)n + Vn+1;

• Composite update: T (x)n+1 = T (x)n ◦ (x + Vn+1).

The additive update is faster but cannot accurately represent large deformations. Composition updates can capture larger
deformations which lead to faster convergence. However the computation of the composite update is more complex
and time-consuming. In this paper, we follow the computation of the composition update using B-splines [14]. The
transformation function at the next time step Tn+1(x) is evaluated as

Tn+1(x) = T (x)n ◦ (x + Vn+1)

=

m1+3∑
i=m1

m2+3∑
j=m2

m3+3∑
k=m3

An
i,j,kN

p
i,j,k(x + Vn+1), (8)

where An
i,j,k = [ax,ni,j,k, a

y,n
i,j,k, a

z,n
i,j,k] are the B-spline level set coefficients updated at the current time step and Np

i,j,k(x+Vn+1)
are the B-spline basis functions evaluated at the displacement (x + Vn+1). To evaluate these coefficients, the discrete B-
spline basis function kernel, K , is applied to the evaluated spatial transformation function Tn(x). This results in a B-spline
transformation function of the same order. Given Tn(x) = [T x

n (x), T
y
n (x), T z

n (x)], the level set coefficients are computed
through convolution with the discrete B-spline basis kernel. Thus, we can write:

ax,ni,j,k =
1
R
(K ⊗ T x

n (x)),

ay,ni,j,k =
1
R
(K ⊗ T y

n (x)), (9)

az,ni,j,k =
1
R
(K ⊗ T z

n (x)).

We introduce a bidirectional mapping to increase the symmetry in image registration. In forward registration, the
transformation function f (x) is evaluated by morphing Is(x) to It (x), whereas in backward registration, the spatial
transformation function b(x) is evaluated by morphing It (x) to Is(x). At each iterative step, the control grid is initialized
to identity transformation where the control points are set to Greville Abscissae in the image coordinate space [26]. The
displacement field is evaluated by updating the position of control points at the particular iteration. In the bidirectional
framework, the displacement fields in the forward (Vf (x)) and backward (Vb(x)) directions are defined as

Vf (x) =

Nb∑
m=1

Cf
mBm(x) − x, (10)

Vb(x) =

Nb∑
m=1

Cb
mBm(x) − x, (11)

where Cf
m and Cb

m are a set of control points associated with the trivariate basis functions Bm(x). Nb represents the total
number of basis functions with n1, n2 and n3 as the number of basis functions in each parametric direction. Bm(x) is
the tensor product of pth order univariate B-spline basis functions Ni,p(u), Nj,p(v) and Nk,p(w) defined on the open knot
vectors U = {u1, . . . , un1+p+1}, V = {v1, . . . , vn2+p+1} and W = {w1, . . . , wn3+p+1} spanning the image coordinate space
in u, v and w directions, respectively. For 2D image registration, we use cubic B-splines to compute the displacement
field (p = 3), whereas quadratic B-splines (p = 2) are used in 3D image registration. We use triquadratic basis functions
for the 3D image registration to reduce the computational cost. The framework can be easily generalized to tricubic basis
functions.

The energy functional for the joint framework is given as

E(f (x), b(x)) = Efid(f (x), b(x)) + Ereg (Vf (x), Vb(x)), (12)

where Efid(f (x), b(x)) is the fidelity term that carries out the joint segmentation and registration, and Ereg (Vf (x), Vb(x))
regularizes the displacement field. The energy functional is minimized in two steps [27]. We first minimize Efid(f (x), b(x))
to find new positions of the control points Cf

m and Cb
m. These control points are further optimized to Pf

m and Pb
m by

minimizing Ereg (Vf (x), Vb(x)). The fidelity term is defined as

Efid(f (x), b(x)) = θ1

∫
Ω

[(It (x) − cin)2 Hϵ(φ̃(x)) + (It (x) − cout )2(1 − Hϵ(φ̃(x)))]dΩ

+ θ2

∫
Ω

[g f (x)(Ĩs(x) − It (x))2 + gb(x)(Ĩt (x) − Is(x))2] dΩ, (13)
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where φ̃(x) = φ(f (x)), Ĩs(x) = Is(f (x)) and Ĩt (x) = It (b(x)). The first term corresponding to θ1 represents the binary
segmentation of the target image by deforming the level set contour of the atlas image. Hϵ(x) is the regularized Heaviside
function and is defined as Hϵ(x) =

1
2 (1+

2
π
arctan( x

ϵ
)), where ϵ is the regularization parameter. cin and cout are the average

intensities in the interior and exterior regions of the segmented target image and are defined as

cin =

∫
Ω
It (x)Hϵ(φ̃(x)) dΩ∫
Ω
Hϵ(φ̃(x)) dΩ

, (14)

cout =

∫
Ω
It (x)(1 − Hϵ(φ̃(x))) dΩ∫
Ω
(1 − Hϵ(φ̃(x))) dΩ

, (15)

respectively. The second term associated with θ2 minimizes the sum of squared difference (SSD) in intensity values
between the images. θ1 and θ2 are weighting parameters to balance segmentation and registration in the joint framework.
The functions

g f (x) =
1√

γ + ( ∂ Ĩs(x)
∂u )2 + ( ∂ Ĩs(x)

∂v
)2 + ( ∂ Ĩs(x)

∂w
)2

(16)

and

gb(x) =
1√

γ + ( ∂ Ĩt (x)
∂u )2 + ( ∂ Ĩt (x)

∂v
)2 + ( ∂ Ĩt (x)

∂w
)2

(17)

are used to slow down the registration near the image boundaries while accelerating it in the homogeneous regions [28,
29], where γ is set to 10−12 to prevent division by zero. The energy functional is minimized using the L2 gradient flow
method with respect to the control points Cf (t) and Cb(t), where the variational formulation is converted to an ordinary
differential equation. This is solved in a dynamic framework by updating the control point locations. We have

dCf
m(t)
dt

= −δE f
m,fid(f (x), b(x)) (18)

and
dCb

m(t)
dt

= −δEb
m,fid(f (x), b(x)). (19)

The first order variation of the energy function Efid(f (x), b(x)) with respect to Cf
m(t) and Cb

m(t) is given as

δE f
m,fid(f (x), b(x)) =θ1

∫
Ω

[(It (x) − cin)2 − (It (x) − cout )2]H ′

ϵ(φ̃(x))∇φ̃(x)Bm(x) dΩ

+2θ2

∫
Ω

g f (x)[Ĩs(x) − It (x)]∇ Ĩs(x)Bm(x) dΩ,

(20)

δEb
m,fid(f (x), b(x)) = 2θ2

∫
Ω

gb(x)[Ĩt (x) − Is(x)]∇ Ĩt (x)Bm(x)dΩ. (21)

The control points are updated based on the dynamic scheme [29]:

Cf
m − Cf

m,0

ϵt
= −δE f

m,fid(f (x), b(x)), (22)

Cb
m − Cb

m,0

ϵt
= −δEb

m,fid(f (x), b(x)), (23)

where Cf
m and Cb

m represent the control points computed at the current time step, and Cf
m,0 and Cb

m,0 are the control points
defined at the initial transformation. ϵt is the time step which can be set using a line search algorithm. The displacement
fields in the forward (Vf (x)) and backward (Vb(x)) directions are evaluated using Eqs. (10) and (11), respectively.

In the second step, the computed displacement fields are regularized through the minimization of the energy functional
Ereg (Vf (x), Vb(x)). We have

Ereg (Vf (x), Vb(x)) = λ1

∫
Ω

(∥x + Vf ,u(x)∥2
2 + ∥x + Vf ,v(x)∥2

2 + ∥x + Vf ,w(x)∥2
2) dΩ

+ λ2

∫
Ω

(∥x + Vb,u(x)∥2
2 + ∥x + Vb,v(x)∥2

2 + ∥x + Vb,w(x)∥2
2) dΩ

+ λ3

∫
Ω

[(lf (x)◦lb(x)−x)2 +(lb(x)◦lf (x)−x)2] dΩ, (24)
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where lf (x) = x + Vf (x) and lb(x) = x + Vb(x). Regularization of the transformation function is a crucial step in order to
ensure smooth and realistic deformation of the image. There are three terms added for regularization in the optimization
process. The first order regularization terms corresponding to λ1 and λ2 maintain smoothness in the deformations in each
parametric direction [28–31]. We set λ1 = λ2 to maintain symmetry in the optimization. The bidirectional composition
regularization term associated with λ3 constrains the composition of the forward and backward transformations to be
identity. This makes the framework more symmetric, which is desirable for reducing bias in medical image registration.
The energy functional is minimized using the L2 gradient flow method as shown in Eqs. (18) and (19). Thus the control
points are updated as follows

Pf
m − Cf

m

ϵt
= −δE f

m,reg (Vf (x), Vb(x)), (25)

Pb
m − Cb

m

ϵt
= −δEb

m,reg (Vf (x), Vb(x)), (26)

where Cf
m, Cb

m and Pf
m, Pb

m are control points computed at the first and second step of the minimization respectively. The
first order variation of the energy functional is given as

δE f
m,reg (Vf (x), Vb(x)) = 2λ1

∫
Ω

[Vf ,u(x)Bm,u(x) + Vf ,v(x)Bm,v(x) + Vf ,w(x)Bm,w(x)] dΩ

+ 2λ3

∫
Ω

(lf (x) ◦ lb(x) − x)Bm(lb(x)) dΩ

+ 2λ3

∫
Ω

(lb(x) ◦ lf (x) − x)D(lb(lf (x)))Bm(x) dΩ, (27)

δEb
m,reg (Vf (x), Vb(x)) = 2λ2

∫
Ω

[Vb,u(x)Bm,u(x) + Vb,v(x)Bm,v(x) + Vb,w(x)Bm,w(x)] dΩ

+ 2λ3

∫
Ω

(lf (x) ◦ lb(x) − x)D(lf (lb(x)))Bm(x) dΩ

+ 2λ3

∫
Ω

(lb(x) ◦ lf (x) − x)Bm(lf (x)) dΩ. (28)

Here D(lb(lf (x))) and D(lf (lb(x))) are the Jacobian matrices with respect to lf (x) and lb(x) respectively. Bm,u(x), Bm,v(x) and
Bm,w(x) are the partial derivatives of the basis functions Bm(x) with respect to u, v and w. The final displacement fields
for both the forward and backward transformation functions are evaluated using Eqs. (10) and (11). The gradients of Is(x)
and It (x) and the level set contour φ(x) are computed by evaluating the derivatives of the B-spline kernel. Thus we can
obtain smooth deformation field and smooth geometric representation of the segmentation result simultaneously, unlike
finite difference based algorithms. The level set contours represent the geometry more accurately.

2.3. Adaptive refinement using THB-splines

Local refinement plays an important role in improving the efficiency of the joint framework. Due to the tensor
product nature of B-splines, it is difficult to perform local and adaptive refinement. Therefore, several methods such
as T-splines [32], hierarchical B-splines [33], LR-splines [34] and PHT-splines [35] were proposed by modifying the basis
functions to support local refinement. As compared to PHT-splines, HB-splines and THB-splines are a better choice for the
image registration framework because they allow for more general refinements. It is preferable to work with hierarchical
splines due to the ease of construction. In addition, PHT-splines have reduced continuity as compared to THB-splines of
the same polynomial order. This results in higher number of degrees of freedom for the same level of accuracy.

Hierarchical B-splines (HB-splines) have been shown to improve the efficiency of image registration algorithms [28,30,
36]. In HB-splines, the regions of interest are locally refined by introducing hierarchy of tensor-product B-splines defined at
multiple refinement levels. These basis functions are non-negative and linearly independent. We explain the construction
of HB-splines for univariate splines (see Fig. 1). The tensor product nature of HB-splines allows a simple extension to
higher dimensions. Consider the univariate cubic B-splines, B0,3(u), defined over the domain u ∈ Ω0 = [0, 10]. The
knot vector is given as U = 0, 1, . . . , 10. Each B-spline B0,3

i (u) in this parametric domain has local support defined as
supp(B0,3

i (u)) = [ui, ui+p+1], where p = 3 is the degree of the B-spline basis function. The B-spline basis function (the red
curve in Fig. 1(a)) is replaced by its five children basis functions (the green curves in Fig. 1(c)) at the next refinement
level (Ω1), where the knot vector is obtained by bisecting the knot vector of the previous refinement level. In general,
any inactive basis function at the refinement level l can be represented as the linear combination of its children B-splines
at refinement level l + 1, which are set as active. Such refinability property gives

Bl,3
i (u) =

Nc∑
j=1

ci,jB
(l+1),3
j (u), (29)
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Fig. 1. Schematic representation of the construction of HB-splines versus THB-splines. First column: B-splines at coarser level (a), B-splines at finer
level, the children B-splines are shown in dark green color (c), collecting active splines from both the levels to construct HB-splines (e). Second
column: B-splines at coarser level, truncated B-splines are shown in blue color (b), B-splines at finer level, the children B-splines are shown in dark
green color (d), collecting active splines from both the levels to construct THB-splines (f). The active splines are shown in black, dark green and
blue colors. The inactive splines are shown in red color.

where ci,j are the subdivision coefficients determined using the knot insertion algorithm and Nc is the number of
children B-splines. By performing the two-step refinement of HB-splines recursively, the refinement can be extended to
multiple levels. Although HB-splines provide an efficient implementation of local refinement, there are certain drawbacks
associated with the basis functions. In particular, the basis functions have more overlap, which subsequently increases
with the number of refinement levels. In addition, the partition of unity property is not satisfied. THB-splines [37] are
an improvement over HB-splines, in which they preserve all the useful properties but in addition have reduced overlap
between basis functions at different levels and form a partition of unity. As can be seen in Fig. 1(b), in addition to the
inactive basis function (the red curve), the basis functions with partial support in Ω1 are truncated (the blue curves). The
refinability equation (given in Eq. (29)) for the truncated basis functions is modified as

Bl,3
i (u) =

Nc∑
j=1,supp(B(l+1),3

j (u))/∈Ω1

ci,jB
(l+1),3
j (u), (30)

by removing the support of the children B-splines already set as active in Ω1. The construction of THB-splines involves
the assembly of active basis functions at the levels l and l + 1:

BTHB,3(u) = Bl,3(u) ∪ B(l+1),3(u). (31)

In the proposed method, we demonstrate adaptive local refinement using THB-splines in a multiresolution framework
as shown in Algorithm 1. We perform the joint framework on images by first constructing an image pyramid. For each
image resolution, adaptive refinement is carried out. The spatial transformation computed at a lower image resolution is
projected to the next level. In this way, we can improve the computational efficiency. Instead of performing the joint
segmentation and registration at one image resolution, we split up the computation by first computing the coarser
deformation at the lower image resolution and finer deformation at the higher image resolution.
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2.4. Software implementation

We have developed an open source software package in MATLAB 2018a environment with all the examples included
in the article for reference at the link: (https://github.com/arpawar/JISR). In this package, we have divided the code into
separate modules to make it easier for the user to modify. The parameters θ1, θ2, ρ, ϵ, λ1, λ2, λ3, the number of elements
at the first level, the maximum number of levels and the maximum number of iterations can be set in the setparameters.m
file. Most examples can be run on a computer with 2.5 GHz quad-core Intel Core i7 processor and 16 GB RAM.

Since we perform a bidirectional composite update using B-splines, the computation can become expensive. We have
introduced parallel computation in the subroutines where the computations are intensive. We use the Parallel Computing
Toolbox in MATLAB, specifically the parfor loops to increase the computation speed. Moreover, the functions that are
computationally expensive can be converted into C++ functions using MEX functions. Utilizing C++ functions increases the
code efficiency. The parfor loops in the MEX functions are further converted to OpenMP to utilize multiple cores to carry
out the computation. For 3D images with larger sizes, the results have been computed on the supercomputers at Extreme
Science and Engineering Discovery Environment (XSEDE) supercomputer called Bridges [38] in Pittsburgh Supercomputer
Center. Here the software was run on a node with 28 cores having RAM capacity of 128 GB.

Algorithm 1: Description of the joint framework with local refinement using THB-splines

Input : Source (atlas) image Is(x), segmented atlas image φ(x) and target image It (x) of resolution N . Cf
0 and Cb

0 are the initialized
B-spline control points for the forward and backward displacement fields such that Vf (x) = 0 and Vb(x) = 0. f (x) = x and
b(x) = x.

Output: f (x) and b(x) such that Is(f (x)) ≈ It (x), φ(f (x)) represents segmented target image and It (b(x)) ≈ Is(x).
1: for level l = 1 to l_max do
2: Scale I ls(f (x)), φl(f (x)) and I lt (b(x)) to the resolution N

2lmax−l
3: if l > 1 then
4: Compute Ig = |∇(I l−1

s (f (x)) − It (x))| at the centroids of the elements of the control grid, where I l−1
s (f (x)) is the evolving

image obtained at the end of the previous refinement level. Evaluate Gmean = mean(Ig ).
5: for all the active B-splines BTHB(x) at level = l − 1 do
6: Compute Gj which is the average Ig value for elements within the support of each active B-spline BTHB

j (x)
7: if Gj > ρGmean then
8: REFINE BTHB

j (x)
9: end if
10: end for
11: end if
12: Assemble active basis functions to obtain hierarchical structure. Set the iteration counter i = 0.
13: While DS(i + 1) − DS(i) > ∆ OR i < MAXITER:

1. STEP 1: Evaluate the new positions of the control points for both the forward and backward displacement fields Cf ,l

and Cb,l using Eqs. (22)-(23).
2. Compute the displacement field for the first step Vf (x) and Vb(x) using Eqs. (10)-(11).
3. STEP 2: Update the active control points Pf ,l and Pb,l using the control points Cf ,l and Cb,l as given in Eqs. (25)-(26).

Using Pf ,l and Pb,l, compute the displacement field for the second step Vf (x) and Vb(x) using Eqs. (10)-(11).
4. Compute the spatial transformation function: fi+1(x) = fi(x) ◦ (x + Vf (x)). Similarly, in the backward direction,

bi+1(x) = bi(x) ◦ (x + Vb(x)). Compute the evolving images I ls(f (x)), I lt (b(x)) and the level set function defining the
segmentation contour φl(f (x)).

5. i = i + 1

14: Scale the images I ls(f (x)), φl(f (x)) and I lt (f (x)) to full image resolution.
15: end for

3. Numerical results and discussion

In this section, we evaluate the performance of our proposed joint segmentation and registration algorithm on synthetic
and medical images. The comparison of the accuracy is shown for our method along with other segmentation [39] and
registration methods [14,28]. Since we apply our joint framework on grayscale images with the same range of intensity
values, we use Mean Squared Difference (MSD) as a similarity metric to correlate the images and quantify the registration
error. For a pair of grayscale images Is and It with the total number of pixels as N , MSD is defined as

MSD =

∑N
i=1 (Is (i) − It (i))2

N
. (32)

MSD gives a good estimation of the average error between the registered and the target image, where a smaller value
corresponds to a better match between images. To assess the segmentation accuracy we use the Dice Similarity (DS)

The Trial Version

https://github.com/arpawar/JISR


Please cite this article as: A. Pawar, Y.J. Zhang, C. Anitescu et al., Joint image segmentation and registration based on a dynamic level set approach using
truncated hierarchical B-splines, Computers and Mathematics with Applications (2019), https://doi.org/10.1016/j.camwa.2019.04.026.

A. Pawar, Y.J. Zhang, C. Anitescu et al. / Computers and Mathematics with Applications xxx (xxxx) xxx 9

Table 1
Parameter values for the examples shown.
Images θ1 θ2 λ1 λ2 λ3 ρ (levels: 2, 3) ϵ (levels: 1, 2, 3)

C-shape (Fig. 2) 100 1 0.01 0.01 0.01 (0.50, 1.00) (0.40, 0.40, 0.40)
Triangle (Fig. 3) 100 1 0.10 0.10 0.01 (0.05, 0.10) (0.35, 0.35, 0.35)
Brain MRI (Fig. 5) 0.5 2 0.01 0.01 0.01 (0.20, 0.50) (0.50, 0.50, 0.50)
Lung CT (Fig. 6) 1 2 0.01 0.01 0.01 (0.50, 1.00) (0.10, 0.10, 0.20)
Bunny image (Fig. 7) 50 1 0.10 0.10 0.01 (0.50, 1.00) (0.20, 0.15, 0.08)
Brain MRI (Fig. 8) 1 1 0.001 0.001 0.001 (0.50, 3.50) (0.20, 0.15, 0.08)

Table 2
Comparison of the MSD and DS metrics of the level set method, the DTHB_2D method and our
joint segmentation and registration method.
Images MSD DS

Level set DTHB_2D Joint S-R Level set DTHB_2D Joint S-R

C-shape (Fig. 2) 4.9 × 10−3 7.4 × 10−3 3.1 × 10−3 98.28% 96.98% 98.81%
Triangle (Fig. 3) 5.1 × 10−3 7.6 × 10−3 1.1 × 10−3 98.11% 95.56% 99.58%
Brain MRI (Fig. 5) 3.9 × 10−3 8.4 × 10−3 2.8 × 10−3 91.54% 86.05% 93.14%
Lung CT (Fig. 6) 5.7 × 10−4 3.10 × 10−3 5.4 × 10−4 93.89% 92.67% 94.63%

metric which evaluates the spatial overlap of the different labeled regions of the segmented image with the ground truth
image. The DS metric for a particular class label denoting the region of interest is defined as

DS(label) =
2Nc

Nr + Nt
× 100%, (33)

where Nc , Nr and Nt are the number of voxels identified as a particular label for the regions common to both the registered
and target images, the registered images and the target images, respectively. As the value of DS approaches 100%, the
segmentation result is closer to the ground truth image. During segmentation, the image is partitioned into several regions
and assigned the class labels. This coefficient gives a good quantitative estimation of the overlap of the regions identified
in the segmented image with the ground truth.

Initial discretization influences the convergence of the solution during the optimization process. Using a very coarse
initial grid can speed the optimization but can sometimes lead to divergence and unrealistic deformations. By observing
the convergence of the solution and the final accuracy, we can choose an optimal size of the initial grid. We use the
same number of elements for the initial grid for the synthetic and medical images. This makes the method more general,
requiring fewer manual adjustments. Sometimes due to the increased complexity of the medical images, a finer initial
grid is chosen in order to get better accuracy.

3.1. 2D images

In Figs. 2–6, we demonstrate the implementation of the joint framework for 2D synthetic and medical images. The
parameters for each example are shown in Table 1. In order to improve efficiency, we implement the framework using
a multiresolution scheme, where at each image resolution level we compute the spatial transformation function on the
corresponding adaptive grids. For all the examples, we use three levels of resolution. The accuracy of the segmentation
and registration is shown in Table 2, as compared to the level set method [14] and the dynamic 2D registration method
using THB-splines (DTHB_2D) [28].

In Fig. 2 we perform a large deformation based registration of a circle to a C-shape. Note that the intensities of the
images are normalized. The output of the joint algorithm is the registered image (Fig. 2(g)) with the final deformation
mapping (Fig. 2(l, p)) and the segmentation result (Fig. 2(o)). The contour shows the demarcation of the boundaries of
the image at the sign-change boundary. Through the comparison of results in Table 2, we can see that our algorithm
outperforms other methods. Moreover, we show that we can capture smooth mapping for the forward and backward
transformation functions simultaneously.

In Figs. 3–4, we demonstrate the robustness of our method towards capturing large deformation mappings between
images that are corrupted with noise. We first show the application of the joint segmentation and registration framework
to registering a circle to a triangle shape shown in Fig. 3. We carry out the joint method on three multiresolution levels.
The evolving images obtained at the end of each image resolution are shown. We can see that our method shows the
highest DS metric value and the lowest MSD value as compared to other methods. Next, we evaluate the robustness of
our method to perform segmentation of images corrupted with noise as shown in Fig. 4. The four target images have the
noise intensities 0.02, 0.05, 0.1 and 0.15. The comparison of the DS metric of segmentation result obtained by our joint
approach and the level set segmentation [39] is shown in Table 3. We can see from Fig. 4 that the segmented images
contain no noise and have accurately segmented boundaries in comparison to performing image segmentation alone.

The Trial Version



Please cite this article as: A. Pawar, Y.J. Zhang, C. Anitescu et al., Joint image segmentation and registration based on a dynamic level set approach using
truncated hierarchical B-splines, Computers and Mathematics with Applications (2019), https://doi.org/10.1016/j.camwa.2019.04.026.

10 A. Pawar, Y.J. Zhang, C. Anitescu et al. / Computers and Mathematics with Applications xxx (xxxx) xxx

Fig. 2. Registration of circle to white C: the initial source image, the target image, the segmented source image and the initial image difference are
shown in (a–d). The registered images obtained at each image resolution and the final image difference are shown in (e–h). The adaptively refined
levels of B-splines at each image resolution level are shown in (i–k). The final level set contours overlaying the target images computed by the level
set method, DTHB_2D and the joint framework are shown in (m–o). The forward and backward deformation grids are shown in (l) and (p).

From Table 3 the DS metric for the segmentation result obtained through our joint approach is consistently higher than
the image obtained from the level set segmentation method.

Unlike synthetic images, the segmentation and registration of medical images is more difficult to evaluate because they
contain more detailed and complex physiological features. In Fig. 5 we study the application of the joint segmentation and
registration framework for a brain MRI image [40]. The atlas image consists of the correctly labeled white matter region
(see Fig. 5(c)), which is the input for the joint framework along with its corresponding MRI image (Fig. 5(a)). We evaluate
the result on three image resolutions. At each image resolution an adaptive THB-spline grid is constructed. The regions of
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Fig. 3. Registration of circle to triangle: the initial source image, the target image, the segmented source image and the initial image difference are
shown in (a–d). The registered images obtained at each image resolution and the final image difference are shown in (e–h). The adaptively refined
levels of B-splines at each image resolution level are shown in (i–k). The final segmentation result by the level set method, DTHB_2D and the joint
framework are shown in (m–o). The forward and backward deformation grids are shown in (l) and (p).

the image with larger errors are identified and locally refined to capture finer details. The final segmented white matter
of the target image (see Fig. 5(b)) is shown in Fig. 5(l). Certain concave and thin regions of the white matter are accurately
determined in our result. This is largely due to the capturing of finer features by the fine splines in the adaptive grids. As
seen from Table 2, we obtain a higher accuracy of both the segmentation and registration results. By introducing smooth
representation of the evolving image and the level set function φ, there is intrinsic smoothness in the resultant images.
We also demonstrate that we can obtain smooth and realistic forward and backward transformation functions as can be
seen in Fig. 5(m, n).
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Fig. 4. Registration of circle in Fig. 3(a) to triangle: the target image with noise intensities 0.02, 0.05, 0.1 and 0.15 (a–d). The corresponding
registered images with the segmentation contours (free of noise) using our joint approach are shown in (e–h). The segmentation results obtained
for the corresponding noise intensities using the level set segmentation method [39] are shown in (i–l) where the segmented contours are noisy.

Table 3
The DS metric of the triangle image with different noise intensities for the level set
segmentation method [39] and our joint framework.
Noise intensity Level set segmentation Joint S-R

0.02 99.32% 99.41%
0.05 96.76% 99.34%
0.10 91.83% 99.08%
0.15 85.39% 98.96%

In Fig. 6 we study the joint image segmentation and registration for lung images [41]. We evaluate the non-rigid
deformation of the lungs during a breathing cycle. The source and target images are taken from the inhale and exhale
stages, respectively. We evaluate the segmentation contour for the source image using the level set segmentation
method [39]. The evolving images are shown for each resolution level in Fig. 6(e–g). We can see that we get higher
accuracy and at the same time capture the smooth deformation in order to correctly align the images. The final
segmentation result correctly classifies the boundary of the lung for exhale stage in the target image. Local refinement
is carried out near the lung boundaries, thus enabling the capture of finer scale deformations to correctly compute the
deformation of the lung boundaries during the breathing cycle.
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Fig. 5. Registration of brain atlas images: the initial source image, the target image, the segmented source image and the initial image difference are
shown in (a–d). The registered images obtained at each image resolution and the final image difference are shown in (e–h). The adaptively refined
levels of B-splines and the final segmentation result are shown in (i–l). The forward and backward deformation grids are shown in (m) and (n).

3.2. 3D Images

The joint image segmentation and registration method proposed in [23,24] computes accurate segmentation result by
imposing hyperelasticity constraints to capture the complex deformations. However it can become computationally very
expensive when extended for 3D images and is thus limited to 2D images only. Since we use free-form deformation with
B-splines to capture the complex deformations, our approach can be easily extended to 3D. In Fig. 7 the joint approach
is implemented to compute the large deformation of the sphere to a bunny image. This is a classic example for a large
deformation study, where there are some sharp and concave features present in the target image (near the ears of the
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Fig. 6. Registration of lung images: the initial source image, the target image, the segmented source image and the initial image difference are
shown in (a–d). The registered images obtained at each image resolution and the final image difference are shown in (e–h). The adaptively refined
levels of B-splines and the final segmentation result are shown in (i–l). The forward and backward deformation grids are shown in (m) and (n).

bunny). Since this is a binary image, the demarcation of the boundary is very clear. Thus the parameter associated with
segmentation (θ1) is set to a higher value than the parameter associated with the registration (θ2). We evaluate the
solution on three image resolution levels. At each step we compute the solution on adaptive grids fitted to the image
resolution. The initial grid size is set as 20 × 20 × 20. The proposed algorithm correctly captures the boundaries of the
highly complex shape of the bunny model as compared to the level set method. As seen from the registration result in
Fig. 7(e), the algorithm can accurately capture the concave and thin structures that are present in the image. The DS
metric for the image is 98.86%. In comparison, the DS metric for the segmented images obtained using the level set [14]
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Fig. 7. Registration of sphere to bunny: the initial source image, the target image and the initial image difference are shown in (a–c). The adaptively
refined grid of THB-splines obtained at the maximum refinement level, the registered images obtained by our joint S-R method, the final image
difference and the registered image using the level set method [14] are shown in (d–g).

and DTHB3D_Reg [28] methods are 98.68% and 95.96%, respectively. This example perfectly exemplifies the robustness
of our method as compared to other approaches.

As shown in Fig. 8, we conduct an experiment for the joint segmentation and registration of brain MRI images
taken from Brainweb database [40]. Here we use 10 pairs of images to perform the evaluation of the accuracy. The
ground truth segmentation of gray matter is used as the input for the framework. Adaptive refinement is carried out for
three multiresolution levels. Due to the larger size of images and the increased complexity of the physiological features
represented by the MRI scans, it can be challenging to efficiently perform the joint algorithm. The goal is to increase the
accuracy while at the same time not increase the computational effort. Here adaptive refinement is crucial to improve
the efficiency of our algorithm, as the algorithm automatically adds control points in regions where finer details need to
be captured. This saves a lot of computational time while maintaining high accuracy.

In order to measure the accuracy of the registered images by our method, we evaluate the DS metric for 10 pairs
of images for different regions of the brain anatomy as shown in Fig. 9. We compute the DS metric for 12 materials of
the brain MRI images. The DS metric for these labels is compared with the level set method [14] and the DTHB3D_Reg
method [28]. Here we can see that for most of the materials, we can get similar or higher accuracy for image segmentation.
Since we used the ground truth segmentation of the gray matter as the input, our approach shows slightly higher DS metric
for the same, 82.60% vs. 82.29% (the level set method) and 78.93% (the DTHB3D_Reg method).

Different from our previous work [28,30], in this paper we develop a joint segmentation and registration framework
to improve the registration accuracy. Since in this framework both registration and segmentation are carried out, the
computational cost is larger than our previous registration framework. Unlike our previous approach, where the spatial
transformation function is evaluated at the full image resolution, we adopt a multiresolution framework where local re-
finement of B-splines is carried out on an image pyramid. This improves the efficiency and robustness of the computation.
To improve the accuracy as compared to [28,30], we introduce smooth image representation and bidirectional registration.
Finally, we implement composition update in order to capture large deformation more accurately as compared to the
additive update used in [28,30].

4. Conclusion and future work

A joint variational level set framework based on THB-splines is proposed where image segmentation and registration
are simultaneously carried out. We represent the level set function defining the segmentation result and the spatial
transformation mapping using B-splines. In addition, a bidirectional composition update for the deformation field is
introduced to ensure smoothness and increase symmetry in the transformation mapping. We show an improvement in
the accuracy for both segmentation and registration of 2D and 3D images. All the source code of our software is available
in the public domain (https://github.com/arpawar/JISR).
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Fig. 8. Inter-patient registration of brain MRI images: the axial slice of the initial source image, the target image and the initial image difference
are shown in (a–c). The adaptively refined THB-spline grids at the three refinement levels are shown in (d–f). The final registered images obtained
using the level set method and our joint S-R method are shown in (g–h). The final image difference is shown in (i).

Fig. 9. Average segmentation accuracy between the registered images and the target images of 10 pairs of brain MRI evaluated using the level set
method, the DTHB3D_Reg method and our joint segmentation and registration method, respectively.
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In our future work, we will apply our joint segmentation and registration technique to patient-specific modeling from
medical images. From an atlas image with expert aided segmentation result, a template geometry is created. By computing
the physical deformation from the template to a patient-specific image, we can directly morph the template geometry
to obtain patient-specific models. In the long run, these computational models will help medical professionals achieve
a faster and better understanding of certain diseases, with more individualized treatments. In the current work, we
use the Chan–Vese model [25] to perform the binary segmentation in the joint framework. We plan to extend this to
perform multi-phase image segmentation with intensity heterogeneity [42]. We also plan to study the role of different
local refinement techniques such as p-refinement and hp-refinement using B-splines in order to generalize and extend
our joint framework.
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