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ABSTRACT

We study a two-stage model, in which students are 1) admitted to

college on the basis of an entrance exam which is a noisy signal

about their qualifications (type), and then 2) those students who

were admitted to college can be hired by an employer as a function

of their college grades, which are an independently drawn noisy sig-

nal of their type. Students are drawn from one of two populations,

which might have different type distributions. We assume that the

employer at the end of the pipeline is rational, in the sense that

it computes a posterior distribution on student type conditional

on all information that it has available (college admissions, grades,

and group membership), and makes a decision based on posterior

expectation. We then study what kinds of fairness goals can be

achieved by the college by setting its admissions rule and grading

policy. For example, the college might have the goal of guaran-

teeing equal opportunity across populations: that the probability

of passing through the pipeline and being hired by the employer

should be independent of group membership, conditioned on type.

Alternately, the college might have the goal of incentivizing the

employer to have a group blind hiring rule. We show that both

goals can be achieved when the college does not report grades. On

the other hand, we show that under reasonable conditions, these

goals are impossible to achieve even in isolation when the college

uses an (even minimally) informative grading policy.
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1 INTRODUCTION

For a variety of reasons, including unequal access to primary edu-

cation, family support, and enrichment activities, different demo-

graphic groups can vary widely in their level of preparation by the

time they reach their senior year of high school, when they apply

for college. In an attempt to correct for this unfortunate reality,

many colleges in the United States follow some sort of affirmative

action policy in their admissions, which is to say, their admissions

decisions explicitly take demographics into account. What is of-

ten unstated (and perhaps not even explicitly considered by the

colleges) is what exactly the long term goals of these policies are,

beyond the short term goal of having a diverse freshman class. In

this paper, we consider two explicit goals, and study the extent to

which they can be met in a simple two stage model:

(1) Equal opportunity: The probability that an individual is

accepted to college and then ultimately hired by an employer

may depend on an individual’s type, but conditioned on their

type, should not depend on their demographic group.

(2) Elimination of Downstream Bias: Rational employers se-

lecting employees from the college population should not

make hiring decisions based on group membership.

Neither of these desiderata will necessarily be achieved by ad-

missions rules that ignore demographic information. For example,

suppose college admissions is set by a uniform admissions thresh-

old on entrance exam scores. Assuming these scores are equally

informative about all groups, this will guarantee that conditioned

on a student’s type, whether or not she is admitted to college will

be independent of her group membership, but it does not imply

that whether or not she is ultimately hired is independent of her

group! This is because exam scores are only a noisy signal about

student type. Therefore, if two groups have different prior distri-

butions on type, they will have different posterior distributions on

type when conditioned on being admitted to college according to

a group-blind admissions rule. The result will be that a Bayesian

employer will insist that students from a group with lower mean

or higher variance will have to cross a higher threshold on their

college grades in order to be hired. In addition to incentivizing ex-

plicit group-based discrimination by the employer, this also results

in a failure of equal opportunity for the students, because once

admitted to college, two individuals of the same type might have to

cross different grade thresholds in order to be hired. Thus, a simple

łgroup blindž admissions rule fails to achieve either goal 1 or 2 as

laid out above. In this paper, we study the extent to which these

goals can be achieved via other means available to the college: in

particular, how it admits and grades students.
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1.1 Limitations of our Model

When interpreting our results, it is important to understand the

scope and limitations of our model. First, this paper considers fair-

ness goals that are limited to preventing inequity from being further

propagated Ð treating opportunities at the high school level and

earlier as fixed Ð and that do not attempt to correct for past in-

equity. This manifests itself in that our łequal opportunityž goal

takes as given that the prospects for employment may łfairlyž vary

as a function of an individual’s type at the time at which they apply

for college, and does not attempt to address or correct the historical

forces that might have resulted in different groups having different

type distributions to begin with. Attempting to correct for this kind

of historical inequity would require a łvalue-added modelž of edu-

cation, in which colleges can change the type distributions of their

student population either through the direct effect of education,

or through a second order effect on student behavior before they

apply. In our model, colleges do not change student types, they only

serve as signaling mechanisms. Similarly, our łequal opportunityž

goal aims to equalize the probability that students are hired condi-

tioned on their types Ð but one might reasonably instead ask for a

corrective notion of fairness, in which the probability of passing

through the pipeline is higher for the historically disadvantaged

group conditioned on type. We do not consider this.

Our model also ignores the possibility that exam scores and

grades are themselves biased. We explicitly assume the opposite

Ð that exam scores and grades are unbiased estimators of student

types, for both groups. If instead exam scores were systematically

biased downwards for one group, then the response of a rational

employer to an admissions policy would be very different Ð because

students who made it through the college pipeline despite negative

bias would have a higher relative posterior probability of having a

high type. There is evidence that effects of this sort are real [2].

Further, the abstraction of one dimensional, stable łtypesž it-

self (common in economic models) is clearly an enormous sim-

plification. In reality, the kind of talents valued by employers are

multi-dimensional, and dynamically changing. We ignore these

complications for simplicity, but believe that studying them are

natural and interesting directions for future work.

The two kinds of fairness goals that we study do not speak to

the size of the student of employee population coming from each

group. For example, in principle, one could satisfy both the equal

opportunity and elimination-of-downstream-bias goals that we

propose, but at a cost of employing very few individuals from one

of the groups. However, we show that even without an additional

goal of having large representation from both groups, the fairness

goals we set out cannot generally be achieved.

Finally, we assume that employers are single-minded expectation

maximizers, with no explicit desire for fairness or diversity. Of

course this is often not the case.

Despite these limitations and simplifying assumptions, we find

that in the model we study, many natural fairness goals are al-

ready impossible. Our paper should be regarded as taking a first

step in the study of fairness for pipelines of algorithmic decisions.

We think that these negative results are likely to persist in more

complex models that attempt to capture additional realism. It is

worth exploring whether positive results can be achieved for natu-

ral approximations of our fairness notions. If positive results can

be found, it would be good to see if they continue to hold as we

relax some of the limiting assumptions in our model.

1.2 Our Model and Results

We consider a simple model of admissions, grading and hiring that

views the role of colleges only as a means of signaling quality and

performing a gatekeeping function, rather than as providing explicit

value added1. We consider two groups representing pre-defined sub-

sets of the population, divided according to socio-economic or other

demographic lines. Each student from group i is endowed with a

type t , which is drawn independently from a Gaussian type distri-

bution Pi that is dependent on the students’ group membership. A

student’s type ultimately measures her value to an employer. We

model employers as having a fixed cost C for hiring an individual,

and a gain that is proportional to their type. If the employer hires

an individual who has type t , they obtain utility t −C . A college

can choose an admissions rule and a grading policy. Although stu-

dents types are unobservable, each student has an admissions exam

score that is an observable unbiased estimator of their type. We

model exam scores as being distributed as a unit variance Gaussian,

centered at the student’s type. An admissions policy for the school

is a mapping between exam scores and admissions probabilities.

We allow schools to set different admissions policies for different

groups, but for most of our results, we require the natural condition

that admissions probabilities within a group be monotonically non-

decreasing in exam scores2. Deterministic monotone admissions

policies simply correspond to setting admissions thresholds based

on exam scores. For simplicity, in the body of the paper, we restrict

attention to deterministic admissions rules, but in the Appendix,

we extend our results to cover probabilistic admissions rules as

well.

Schools may also set a grading policy. A grade is also modeled

as a Gaussian centered at a student’s true type, but the school may

choose the variance of the distribution, for example, by controlling

the number of conditionally independent evaluations that go into a

student’s grade. We assume that a student’s grade is conditionally

independent of her entrance exam score, conditioned on her type.

One limiting extreme (infinite variance) corresponds to committing

not to report grades at all. This limiting case is actually achievable

because schools can simply opt not to share grades Ð in fact, this

practice has been adopted at several top business schools [7]. At the

other limiting extreme, types are perfectly observable. This extreme

is generally not achievable, and we do not consider it in this paper.

In between, the school can modulate the strength of the signal that

employers get about student type, beyond the simple indicator that

they were admitted to college.

Employers know the prior distributions Pi on student types, as

well as the admissions and grading policy of the school. They are

1This is consistent with the signaling view of the role of colleges in the economics
literature, beginning with [15]
2A non-monotone admissions rule would have the property that sometimes a student
with a lower exam score would have a higher probability of admission that a student
with a higher exam score. Non-monotonicity within a group is highly undesirable,
because it would give some students a perverse incentive to intentionally try and lower
their exam scores. If such incentives were present, it would no longer be reasonable to
model exam scores as unbiased estimators of student types.
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rational expectation maximizers. When deciding whether or not

to hire a student, they will condition on all information available

to them Ð a student’a group membership, the fact that she was

admitted to college under the college’s admissions policy, and the

grade that she received under the college’s grading policy Ð to

form a posterior distribution about the student’s type. They will

hire exactly those students for whom they have positive expected

utility under this posterior distribution.

In order to incentivize a particular employer to use a hiring rule

that is independent of group membership, it is necessary to set

admissions and grading policies such that for every student admit-

ted to the school, and for every grade д that she may receive, the

indicator that the conditional expectation of her type t is above the

employer’s hiring costC is independent of the student’s groupmem-

bership. If there is uncertainty about what the employer’s hiring

cost C is, or if there are multiple employers, then it is necessary to

guarantee this property for an interval of hiring costsC ∈ [C−,C+]

rather than for just a fixed cost. We distinguish these two cases.

We call this property Irrelevance of Group Membership (IGM), in

the single threshold and multiple threshold case respectively. A

seemingly stronger property that we might desire is that the pos-

terior distribution on student types conditional on admission to

college is identical for both groups. We call this property strong

Irrelevance of Group Membership (sIGM). Because it symmetrizes

the two groups, it in particular guarantees that members of both

groups will be treated identically by rational decision makers at

any further stage down the decision making pipeline. It also is a

natural goal in and of itself in a competitive market with employers

who may offer different wages to different employees (which might

here be modelled as differing costs C for employment). In such

a market, employees will in equilibrium be offered the posterior

expectation of their type as their wage Ð and so the sIGM property

can be viewed as asking that for any two students with the same

type, their expected wage conditional on being admitted to college

should be identical, independent of their group. We show that in

the presence of finite, nonzero variance in both exam scores and

grades, IGM in the multiple threshold case implies sIGM. Finally,

we say that an admissions rule and grading policy satisfy the equal

opportunity condition, if a student’s probability of making it all

the way through the pipeline Ð i.e. being admitted to college and

then being hired by the employer, is independent of her group con-

ditioned on her type. Trivially, any group-symmetric admissions

policy will satisfy both conditions if the two group type distribu-

tions are identical, so for the results that follow, we always assume

that the group type distributions are distinct Ð differing in their

mean, their variance, or both.

First, to emphasize that our impossibility results will crucially

depend on the fact that exam scores are only a noisy signal of

student ability, we consider the noiseless case, in which college

admissions can be decided directly as a function of student type (this

corresponds to the case in which exam scores have no noise). In this

case, we can łhave it allž: there is a simple monotone admissions

rule that guarantees both the equal opportunity condition, and

satisfies IGM for multiple thresholds Ð for any grading policy that

the school might choose. After establishing this simple result, in

the rest of the paper we move on to the more realistic case in which

exam scores are only a noisy signal of student type.

Next, we study what is possible if the college chooses to not

report grades at all. In this case, we can also łhave it allž Ð simply by

setting a sufficiently high, group independent admissions threshold,

a school can achieve both equal opportunity and IGM for multiple

thresholds. This gives another view of the effects of practicing grade

non-disclosure at highly selective schools [7].

Finally, in the bulk of the paper, we study the common case in

which the college uses informative grades Ð i.e. sets the variance

of its grade distribution to be some finite value. In this case, we

show that it is possible to obtain IGM in the single threshold case,

but that no monotone admissions rule can obtain sIGM. Because of

the equivalence between sIGM and IGM for the multiple threshold

case, this implies that no monotone admissions rule can obtain IGM

in the multiple threshold case, even in isolation. Next, we consider

the equal opportunity condition. One trivial way to obtain it is to

simply admit nobody to college. We show that this is in general the

only way in the multiple thresholds case: no non-zero monotone

admissions rule can satisfy the equal opportunity condition, even

in isolation.

1.3 Related Work

Our work fits into two streams of research. Within the recent line of

work on algorithmic fairness, the most closely related work is that

of Chouldechova [3] and Kleinberg, Mullainathan, and Raghavan

[12]. Both of these papers prove the impossibility of simultane-

ously satisfying certain fairness desiderata in batch classification

and regression settings. Broadly speaking, both papers show the

impossibility of simultaneously equalizing false positive and false

negative rates (related to our equal opportunity goal Ð see also

[8]) and positive predictive value or calibration (related to our IGM

goals). Our work is quite different, however: the goals that we study

are not direct properties of the classification rule in question (in

our case, the college admissions rule), but instead properties of

its downstream effects. And while the work of [3, 12] shows the

impossibility of simultaneously satisfying these fairness criteria, in

our setting, we show that they are often impossible to satisfy even

in isolation.

Our paper also fits into an older line of work studying economic

models of discrimination and affirmative action, which has its mod-

ern roots in [1] and [14]. For example, Coate and Loury [5] and

Foster and Vohra [6] study two stage models in which students

from two different groups (who are a-priori identical) can in the

first stage choose whether or not to make a costly investment in

themselves, which will increase their value to employers. In the

2nd stage, employers may set a hiring rule that acts on a noisy

signal about student quality. These works show the existence of

a self-confirming equilibrium, in which only one group makes in-

vestments in themselves and are subsequently given employment

opportunities, and consider interventions which can escape these

discriminatory equilibria. These works can be viewed as studying

the łupstream effectsž of affirmative action policies, and explaining

the mechanics by which different student populations may end up

with different type distributions. The effect of the interventions

proposed in thesemodels is very slow, because it requires a new gen-

eration of students to recognize the opportunities made available to

them via affirmative action policies and make costly investments in
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their education in response, well before they enter the job market.

In contrast, our work can be viewed as studying the łdownstream

effectsž of these policies and examining shorter term effects which

can be realized in a time frame that need not be long enough for

type distributions to change.

More recently, the computer science community has begun study-

ing fairness desiderata in dynamic models. Jabbari et al study the

costs (measured as their effect on the rate of learning) of impos-

ing fairness constraints on learners in general Markov decision

processes [10]. Hu and Chen [9] study a dynamic model of the

labor market similar to that of [5, 6] in which two populations are

symmetric, but can choose to exert costly effort in order to improve

their value to an employer. They study a two stage model of a labor

market in which interventions in a łtemporaryž labor market can

lead to high welfare symmetric equilibrium in the long run. Liu

et al. [13] study a two round model of lending in which lending

decisions in the first round can change the type distribution of

applicants in the 2nd round, according to a known, exogenously

specified function. They study how statistical constraints on the

lending rule can improve or harm outcomes as compared to a my-

opic (i.e. ignoring dynamic effects) profit maximizing rule, and find

that for two kinds of interventions, both improvement and harm are

possible, depending on the details of how lending effects the type

distribution. Finally, [11] studied the regulator’s problem of provid-

ing financial incentives for a lender to satisfy fairness constraints

in an online classification setting.

2 MODEL

We consider two populations of students, 1 and 2. In population i ∈

{1, 2}, each student has a type drawn from a Gaussian distribution

Pi = N
(
µi ,σ

2
i

)
with mean µi and variance σ 2

i . Since our problem

is trivial if P1 = P2, in this paper we assume always that P1 , P2, i.e.

the type distributions differ either in their mean, or their variance, or

both. We denote byTi the random variable that represents the type

of a student from population i . Throughout the paper, ϕ denotes the

probability density function and Φ the cumulative density function

of a standard normal random variable with mean 0 and variance 1.

Each student takes a standardized test (SAT, etc.) and obtains a

score given by

Si = Ti + X

where X follows a normal distribution with mean 0 and variance 1,

that does not depend on the population i , i.e., the student’s score is

a noisy but unbiased estimate of his type.

Additionally, we consider a university that admits students from

both populations. The university designs an admission rule Ai :

R → [0, 1] for each population i , such that a student from pop-

ulation i with score s is accepted with probability Ai (s). We also

abuse notation and letAi denote the binary random variable whose

value is 1 if a student is accepted, and 0 otherwise. This admission

rule is required to be monotone non-decreasing; i.e. an increase

in exam score cannot lead to a decrease in admissions probability.

We say that an admissions rule is deterministic if Ai (s) ∈ {0, 1}.

A deterministic monotone admissions rule is characterized by a

threshold βi such that a student is accepted if and only if Si ≥ βi .

We call such rulesłthresholding admissions rulesž. We focus on

thresholding admissions rules in the body of this paper, but extend

our results to probabilistic admissions rules to the Appendix. For

simplicity of notation, we will often write xi (t) = Pr [Ai = 1|Ti = t]

(Note that xi (t) = Pr [Si ≥ βi |Ti = t] in the deterministic case).

Every student who is admitted to the university receives a grade,

given by:

Gi = Ti + Y

where Y follows a normal distribution with mean 0 and variance

γ 2 that does not depend on the population i . γ can be set by the

university, and represents the strength of the signal provided by

a grading policy3. In our model, the University must commit to a

single grading policy to use across groups.

Finally, an employer makes a hiring decision for each student

that graduates from the university. The employer knows the priors

Pi , the admission rules A1, A2 used by the school, the grading

policy γ , and observes the grades of the students (as well as the fact

that they were admitted to the school). The employer’s expected

utility for accepting a university graduate from population i with

grade д is then given by

E [Ti |Gi = д,Ai = 1] −C

whereC is the cost for the employer to hire a student. The employer

hires a university graduate from population i with grade д if and

only if

E [Ti |Gi = д,Ai = 1] ≥ C

Throughout the paper, we study the feasibility of achieving the

following fairness goals:

Definition 1 (Eqal opportunity). Equal opportunity holds if

and only if the probability of a student being hired by the employer

conditional on his type is independent of the student’s group. I.e. if

for all types t ∈ R,∫
д
Pr [G1 = д,A1 = 1|T1 = t]1{E [T1 |G1 = д,A1 = 1] ≥ C}dд

=

∫
д
Pr [G2 = д,A2 = 1|T2 = t]1{E [T2 |G2 = д,A2 = 1] ≥ C}dд

Definition 2 (Irrelevance of Group Membership). Irrele-

vance of Group Membership (IGM) holds if and only if, conditional

on admission by the school and on grade д, the employer’s decision

on whether to hire a student is independent of the student’s group. I.e.

if for all grades д ∈ R,

E [T1 |G1 = д,A1 = 1] ≥ C ⇔ E [T2 |G2 = д,A2 = 1] ≥ C

We further introduce a robust version of IGM, called strong Irrele-

vance of Group Membership, that symmetrizes the two populations

and guarantees that members of both populations will be treated

identically by rational decision makers at any further stage of the

decision making pipeline.

Definition 3 (strong Irrelevance of Group Membership).

Strong Irrelevance of Group Membership (sIGM) holds if and only if,

conditional on admission by the school and on grade д, the employer’s

3In actuality, of course, students receive many grades, not just one. But note that when
one averages two normally distributed random variables, the result is also normally
distributed, but with lower variance. Hence, one way to modulate the variance of a
grade signal is to modulate the number of grades computed. The more assignments
and exams that are graded, the lower the variance of the signal. The fewer that are
graded, the higher the variance.
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posterior on a student’s type is independent of the student’s population.

I.e., for all д ∈ R, for all t ∈ R,

Pr [T1 = t |G1 = д,A1 = 1] = Pr [T2 = t |G2 = д,A2 = 1]

We note that sIGM holds if and only if the posterior on students’

types conditional on admission by the school are identical:

Claim 1. sIGM holds if and only if for all t ∈ R:

Pr [T1 = t |A1 = 1] = Pr [T2 = t |A2 = 1]

Proof. See Appendix. �

3 INFERENCE PRELIMINARIES

In this section, we derive some basic properties of the joint distribu-

tions on student types, exam scores, admissions rules, and grades

that are relevant for reasoning about the employer’s Bayesian in-

ference task. We will draw upon these basic results in the coming

sections.

3.1 Preliminaries on Gaussians and
Multivariate Gaussians

First, we observe that together, student types, exam scores, and

grades are distributed according to a multi-variate Gaussian.

Claim 2. (Ti , Si ,Gi ) follows a multivariate normal distribution.

Proof. A set of random variables is distributed according to a

multivariate normal distribution if every linear combination of the

variables is distributed as a univariate normal distribution. For all

a,b, c ∈ R, aTi + bSi + cGi = (a + b + c)Ti + bXi + cYi follows

a normal distribution as the sum of independent normal random

variables. �

We now quote a basic fact about the conditional distribution that

results when one starts with a multi-variate normal distribution,

and conditions on the realization of a subset of its coordinates.

Claim 3. Letn ≥ 2 be an integer. LetZ ∈ Rn be a random variable

following a multi-variate normal distribution. Let Z = (Z1,Z2) where

Zi ∈ R
ni with n1 +n2 = n. Suppose Z has meanm = (m1,m2) where

mi ∈ R
ni , and covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]

where Σi j ∈ R
ni×nj . Then E [Z1 |Z2 = z2] =m1 + Σ12Σ

−1
22 (z2 −m2)

and Var [Z1 |Z2 = z2] = Σ11 − Σ12Σ
−1
22 Σ21.

Proof. See lecture notes [4]. �

The following technical lemma will also be useful for us.

Claim 4. The hazard rate H (x) =
ϕ(x )

1−Φ(x )
of a standard normal

random variable is increasing, and satisfies

lim
x→−∞

H (x) = 0, H (x) = x + ox→+∞(1)

This is a commonly known result in the literature on probability

theory and statistics. For completeness, we provide a proof in the

Appendix.

3.2 Employer’s First Moment Inference

Themain lemma of this section characterizes the employer’s Bayesian

inference task when the college is using a threshold admissions

rule: the posterior expectation of a student’s type, conditioned on

their exam score being sufficiently high to cross the admissions

threshold, and on their observed grade. In the appendix, we give

the corresponding inference rule for the employer when the college

can use an arbitrary monotone admissions rule.

Lemma 1.

E [Ti |Si ≥ βi ,Gi = д]

=

γ 2

σ 2
i + γ

2
µi +

σ 2
i

σ 2
+ γ 2

д

+

γ 2σ 2
i√

(σ 2
i + γ

2)(σ 2
i + γ

2
+ γ 2σ 2

i )

· H
©­­«
(σ 2
i + γ

2) · βi − γ 2µi − σ 2
i д√

(σ 2
i + γ

2)(σ 2
i + γ

2
+ γ 2σ 2

i )

ª®®¬
where H (x) =

ϕ(x )
1−Φ(x )

is the Hazard function of a standard normal

random variable.

Proof. The proof is given in Appendix. �

A corollary of the previous lemma is that the posterior expec-

tation computed by the employer will satisfy a number of nice

regularity conditions which will be useful in proving our impossi-

bility results:

Corollary 1. ei (µi ,σi , βi ,д) = E [Ti |Si ≥ βi ,Gi = д] is contin-

uous, differentiable, and strictly increasing in each of µi , д and βi .

Further,

lim
д→−∞

e(µi ,σi , βi ,д) = −∞,

lim
д→+∞

ei (µi ,σi , βi ,д) = +∞,

and

lim
βi→−∞

e(µi ,σi , βi ,д) =
γ 2

σ 2
i + γ

2
µi +

σ 2
i

σ 2
+ γ 2

д,

lim
βi→+∞

e(µi ,σi , βi ,д) = +∞.

Proof. See Appendix. �

Finally, we define a quantity that will be useful to make reference

to in a number of our forthcoming arguments: the minimum grade

that results in a student from group i being hired by the employer,

given a fixed admissions rule.

Definition 4 (Hiring threshold on grades). Wedefineд∗i (C) =

min{д : E [Ti |Si ≥ βi ,Gi = д] ≥ C} the inverse function of д →

E [Ti |Si ≥ βi ,Gi = д].

By Corollary 1, д∗i (.) is a well-defined function on domain R, and

is continuous, differentiable, and strictly increasing.
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3.3 Moments of the posterior distribution for
monotone admission rules

The following lemma holds for the general case of monotone, ran-

domized admission rules, and is useful in characterizing the mo-

ments of the distribution of types conditional on Ai = 1 and G = д

in population i:

Lemma 2. Let Ai (.) be a non-decreasing, non-zero, possibly ran-

domized admission rule. For all д ∈ R, E
[
T ki |Gi = д,Ai = 1

]
is finite

and differentiable in д, and its derivative satisfies the following equa-

tion:

∂

∂д
Ei

[
T ki

���Gi = д,Ai = 1
]

=

1

γ 2
Ei

[
T k+1i

���Gi = д,Ai = 1
]

−
1

γ 2
Ei

[
T ki

���Gi = д,Ai = 1
]
· Ei [Ti |Gi = д,Ai = 1] .

Proof. The proof is given in Appendix. �

4 WHEN BOTH CONDITIONS ARE
SATISFIABLE

In this section, we observe that there are two settings in which

it is possible to łhave it allž Ð satisfying both IGM and equal op-

portunity even in the multiple threshold case. The first setting is

that of noiseless exam scores: when student types are perfectly

observable by the school. The second setting is when the school

opts not to report grades. We view the first setting as generally

unrealisable, since any student evaluation will involve some degree

of stochasticity. However the 2nd case Ð in which a school opts

not to report grades Ð can be realized.

4.1 Noiseless Exam Scores (Observable Types)

First, we observe that if schools can perfectly observe student types

(we have noiseless exam scores with Si = Ti ), then there is a simple

threshold admissions rule that simultaneously achieves IGM and

equal opportunity, even in the multiple threshold case. The ideas

is simple: Given a range of employer costs [C−,C+], the college

simply sets an admissions threshold ofC+ or higher, using the same

threshold for members of both groups. Because the threshold is the

same for both groups, the probability of being admitted to college

is a function only of type, and independent of group membership

conditioned on type. Because scores were noiseless, admissions to

college deterministically certifies that a student’s type ti ≥ C+, and

so the employer chooses to hire everyone, independently of the

grade they receive (and independently of their group membership).

Hence, the probability of being hired is the same as the probability of

being accepted to college, and is independent of group membership

conditioned on type, and the employer’s hiring rule is independent

of group membership.

Claim 5. Suppose Si = Ti , i.e. a student’s score perfectly reveals

his type. Then for any hiring interval of hiring costs [C−,C+] ∈ R,

the non-zero admissions rule:

Ai (s) = 1 ⇔ s ≥ C+

for both groups i ∈ {1, 2} satisfies IGM and equal opportunity when

paired with any grading policy.

Proof. See Appendix. �

Claim 6. Suppose the school does not assign grades to students.

Then for any hiring interval of hiring costs [C−,C+] ∈ R, the non-zero

thresholding admissions rule:

Ai (s) = 1 ⇔ s ≥ β

for both groups i ∈ {1, 2} satisfies IGM and equal opportunity when

β is large enough.

Proof. For β big enough, E [Ti |Si ≥ β] ≥ C+ as

limβ→+∞ E [Ti |Si ≥ β] = +∞; this can be seen either by following

the same steps as in the proof of Lemma 1 to obtain that

E [Ti |Si ≥ β] = µi +
σ 2
i√

1 + σ 2
i

H
©­­«
βi − µi√
1 + σ 2

i

ª®®¬
which tends to +∞ when βi → +∞ by Claim 4. Another way

of deriving this expression is by noting that not having a grade is

equivalent to having an uninformative grade, i.e. to havingγ → +∞.

Now, let β be large enough such that in both populations, such that

E [Ti |Si ≥ β] ≥ C+. IGM immediately holds as every student that is

accepted by the school is hired by the employer. Equal opportunity

holds because the probability of a student with type t being hired

by the employer is exactly the probability that he is admitted by

the school (every student admitted by the school is hired by the

employer), hence is given by

Pr [Si ≥ β |Ti = t] =

∫
s≥β

ϕ(s − t)dt ,

and is independent of the student’s population. �

Note that this result is achieved by having the school set a very

high admissions threshold (uniformly for both groups), and de-

clining to give grades. Hence, declining to give grades may be a

reasonable strategy for promoting our fairness goals in a highly

selective school, but does not work when admissions thresholds

must be lower. We note that the practice of grade witholding in

MBA programs seems to be limited to the very top programs [7].

In the remainder of the paper we consider the case in which

exam scores have positive finite variance, and in which the college

uses a grading policy with positive finite variance. What will be

possible will depend on whether we are in the single or multiple

threshold case.

5 THE SINGLE THRESHOLD CASE

In this section, we consider what is possible when there is only a

single employer with a hiring cost C that is known to the college.

We show that in this case, IGM can always be achieved, but that it

is impossible to achieve sIGM.

245



Downstream Effects of Affirmative Action FAT* ’19, January 29ś31, 2019, Atlanta, GA, USA

5.1 IGM can always be achieved

The main idea is as follows: For any grading scheme, and with a

single threshold C in mind, the college can separately set different

admissions thresholds β∗1 and β∗2 for the two groups respectively

such that the posterior expectation for a student type from each

group crosses the threshold ofC at a gradeд∗, which can be made to

be the same for both populations. Since the only thing that matters

in the employer’s hiring decision is whether or not the student’s

expected type is above or below C , this is enough to cause the

employer’s hiring decision to be independent of group membership.

The next lemma establishes that it is always possible to find such

thresholds:

Lemma 3. For any C in R, there exists thresholds β∗1 and β∗2 and a

grade д∗ such that

E
[
T1 |G1 = д

∗, S1 ≥ β∗1
]
= E

[
T2 |G2 = д

∗, S2 ≥ β∗2
]
= C

Proof. It follows by Corollary 1 that

E [Ti |Gi = д, Si ≥ βi ]

is continuous in βi and must reach any value between
γ 2

σ 2
i +γ

2 µi +

σ 2
i

σ 2
i +γ

2д and +∞. For д∗ small enough, it must be the case that

γ 2

σ 2
i + γ

2
µi +

σ 2
i

σ 2
i + γ

2
д∗ ≤ C < +∞,

hence there exists β∗i such that

E
[
Ti |Gi = д

∗, Si ≥ β∗i
]
= C .

�

Corollary 2. Fix any C in R. When the school uses thresholding

admission rules with thresholds β∗1 and β∗2 , IGM holds for that C .

Proof. E
[
Ti |Gi = д, Si ≥ β∗i

]
is a strictly increasing function of

д by Corollary 1 , therefore the employer accepts students from any

population if and only ifд ≥ д∗ whereд∗ is population-independent,

which proves the results. �

5.2 sIGM is impossible

We now show that strong IGMÐmaking the posterior distributions

for both groups identical Ð is impossible. In addition to its intrinsic

interest, this result will be a key ingredient in our impossibility

results for the multiple threshold setting.

Lemma 4. Suppose the priors are distinct. For any two thresholds

β1 and β2, there must exists t ∈ R such that

Pr [T1 = t |S1 ≥ β1] , Pr [T2 = t |S2 ≥ β2]

I.e., sIGM cannot hold.

Proof. Let xi (t) = Pr [Si ≥ βi |Ti = t]. Suppose for all t ∈ R,

sIGM holds, i.e.

Pr [T1 = t |S1 ≥ β1] , Pr [T2 = t |S2 ≥ β2]

by Claim 1. Then

x1(t)ϕ
(
t−µ1
σ1

)
Pr [S1 ≥ β1]

=

x2(t)ϕ
(
t−µ2
σ2

)
Pr [S2 ≥ β2]

hence

x1(t)

x2(t)
=

σ1 Pr [S1 ≥ β1]

σ2 Pr [S2 ≥ β2]
· exp

(
(t − µ2)

2

2σ2
−
(t − µ1)

2

2σ 2
1

)

x1(.) and x2(.) are non-decreasing functions with values in [0, 1],

and xi (t) =
∫
s≥βi

ϕ(s − t)ds is non-zero; therefore, limt=+∞ xi (t)

exists and is strictly positive. It must then be the case that
x1(t )
x2(t )

has

a finite and strictly positive limit in +∞. On the other hand,

exp

(
(t − µ2)

2

2σ2
−
(t − µ1)

2

2σ 2
1

)
= K exp

(
t2

2

(
1

σ 2
2

−
1

σ 2
1

)
+

(
µ1

σ 2
1

−
µ2

σ 2
2

)
t

)

for some constant K . It is easy to see that the above quantity tends

to either +∞ or 0 as t → +∞ as long as either σ1 , σ2 or µ1 , µ2
(one of 1

σ 2
2

− 1
σ 2
1

and
µ1
σ 2
1

−
µ2
σ 2
2

must be non-zero). This leads to a

contradiction. �

5.3 Equal opportunity

We defer the technical results of this section to the Appendix.

Lemma 5 shows that for thresholding admission rules, IGM and

equal opportunity cannot simultaneously hold for Gaussian priors

with the same variance but different mean. This shows that obtain-

ing fairness in the general case is significantly more difficult than in

the simple cases in which the types are observable and the school

does not assign grades. Lemma 6 shows that arguably stringent con-

ditions on the grade accuracy and the thresholds set by the school

must hold for equal opportunity to be possible. We conjecture that

these conditions are, in general, impossible to satisfy, making equal

opportunity impossible to satisfy even in isolation, in the single

threshold case. As we will see in the next section, it is impossible

to satisfy in the multiple-threshold case.

6 THE MULTIPLE THRESHOLD CASE

In this section, we turn to the multiple threshold case, which we

view as the main setting of interest. In this case, we ask whether

we can achieve IGM and equal opportunity not just with respect to

a single known hiring cost C , but with respect to an entire interval

of hiring costs C ∈ [C−,C+]. This will be the case when there

are multiple employers, or simply when there is some uncertainty

about the hiring threshold used by a single employer.

6.1 IGM is Impossible

In this section, we show that IGM is impossible to achieve even

in isolation. The proof proceeds by showing that in the multiple

threshold case, IGM must imply sIGM Ð i.e. that the posterior

distributions conditional on admission to college are identical for

both groups. Impossibility then follows from the impossibility of

achieving sIGM (even for a single threshold), which we proved in

the last section.

We first state a technical lemma, showing that if we satisfy IGM

for every employer costC in a continuous interval, we must actually

be equalizing the posterior expected type across groups for every

grade д in some other continuous interval.

Claim 7. Let C
¯
< C̄ . Suppose that for all C ∈ (C

¯
, C̄),

E [T1 |G1 = д, S1 ≥ β1] ≥ C ⇔ E [T2 |G2 = д, S2 ≥ β2] ≥ C,
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then it must be the case that for д in some interval (a,b),

E [T1 |G1 = д, S1 ≥ β1] = E [T2 |G2 = д, S2 ≥ β2]

Proof. Let a = д∗1(C¯
) and b = д∗1(C̄) where д

∗
1(.) is the strictly

increasing inverse of д → E [T1 |G1 = д,A1 = 1] as per Claim 1 and

Definition 4. Suppose there exists д ∈ (a,b) such that

E [T1 |A1 = 1,G1 = д] > E [T2 |A2 = 1,G2 = д] ,

then forC = E [T1 |A1 = 1,G1 = д] ∈ (C
¯
, C̄), it must be the case that

E [T1 |A1 = 1,G1 = д] ≥ C > E [T2 |A2 = 1,G2 = д]

which contradicts the assumption of the claim. Now, suppose there

exists д ∈ (a,b) such that

E [T1 |A1 = 1,G1 = д] < E [T2 |A2 = 1,G2 = д] ,

then for ϵ > 0 small enough,C = E [T1 |A1 = 1,G1 = д]+ϵ ∈ (C
¯
, C̄)

and

E [T1 |A1 = 1,G1 = д] < C ≤ E [T2 |A2 = 1,G2 = д]

which also contradicts the assumption of the claim. Therefore, it

must be the case that for all д ∈ (a,b),

E [T1 |A1 = 1,G1 = д] = E [T2 |A2 = 1,G2 = д]

�

We can now go on to prove the main theorem in this section:

Theorem 1. Suppose the priors are distinct, then IGM cannot for

all hiring costs C ∈ (C
¯
, C̄).

Proof. By Claim 7, it must be the case that for all д ∈ (a,b) for

some interval (a,b),E [T1 |G1 = д, S1 ≥ β1] = E [T2 |G2 = д, S2 ≥ β2].

For all д in (a,b), by Lemma 2

∂

∂д
E [T1 |G1 = д, S1 ≥ β1] =

∂

∂д
E [T2 |G2 = д, S2 ≥ β2]

and hence E
[
T 2
1 |G1 = д, S1 ≥ β1

]
= E

[
T 2
2 |G2 = д, S2 ≥ β2

]
. It is

easy to see that using the same argument by induction yields that

for all integers k ,

E

[
T k1 |G1 = д, S1 ≥ β1

]
= E

[
T k2 |G2 = д, S1 ≥ β1

]
Since the distributions of types for the two populations conditional

on Gi = д, Si ≥ βi admit a moment generating function (this fol-

lows immediately from the fact that Pi admits a moment generating

function) and have identical moments, it must be that the distri-

butions are the same for all д ∈ (a,b). I.e., for all д ∈ (a,b), we

have

Pr [T1 = t |G1 = д, S1 ≥ β1] = Pr [T2 = t |G2 = д, S1 ≥ β1]

We have that in population i ,

Pr [Ti = t |Gi = д, Si ≥ βi ] =
Pr [Ti = t |Si ≥ βi ]ϕ

(
д−t
γ

)
∫
t
Pr [Ti = t |Si ≥ βi ]ϕ

(
д−t
γ

)
dt

Note that
∫
t
Pr [Ti = t |Si ≥ βi ]ϕ

(
д−t
γ

)
dt is a function of д only,

that we will denote pi (д) from now on.

Pr [T1 = t |G1 = д, S1 ≥ βi ] = Pr [T2 = t |G2 = д, S2 ≥ β2]

implies

Pr [T1 = t |S1 ≥ β1]

Pr [T2 = t |S2 ≥ β2]
=

p1(д)

p2(д)

for allд ∈ (a,b) and t ∈ R. Pr [T1 = t |S1 ≥ β1] and Pr [T2 = t |S2 ≥ β2]

are both probability density functions that integrate to 1, so it must

be the case that
p1(д)
p2(д)

= 1 and Pr [T1 = t |S1 ≥ β1] = Pr [T2 = t |S2 ≥ β2].

Therefore, sIGM must hold, which we have shown is impossible in

Lemma 4. �

6.2 Equal opportunity cannot hold

Finally, we show that in the multiple threshold case, it is also im-

possible to satisfy the equal opportunity condition.

Theorem 2. Suppose the priors are distinct. There exist no thresh-

olding admission rules such that equal opportunity is guaranteed for

all C ∈ (C
¯
, C̄), for any C

¯
< C̄ .

Proof. It is easy to see xi (t) =
∫
s
Ai (s)ϕ(s − t)ds =

∫
u
Ai (u +

t)ϕ(u)du is monotone non-decreasing in t and non-zero. Remember

ei (д) = E [Ti |Gi = д, Si ≥ βi ]

has a strictly increasing and differentiable inverseд∗i (.) on (−∞,+∞)

by Corollary 1, and a student is hired by the employer if and only

if д ≥ д∗i (C). A student with type t in population i gets therefore

hired with probability∫
д≥д∗(C)

xi (t)ϕ

(
д − t

γ

)
dt = xi (t)

(
1 − Φ

(
д∗i (C) − t

γ

))

equal opportunity then imply that ∀t ∈ R,C ∈ (C
¯
, C̄),

x1(t)

x2(t)
·

(
1 − Φ

(
д∗1(C) − t

γ

))
=

(
1 − Φ

(
д∗2(C) − t

γ

))

Taking the first order derivative in C of both sides of the above

equation, we have that for all C ∈ (C
¯
, C̄), for all t ∈ R,

x1(t)

x2(t)
·

∂д∗1
∂C

(C)

∂д∗2
∂C

(C)
=

ϕ
(
д∗2 (C)−t

γ

)
ϕ

(
д∗1 (C)−t

γ

)
Suppose for some C ∈ (C

¯
, C̄), д∗1(C) , д

∗
2(C). Without loss of gener-

ality, renumber the populations such that д∗2(C) > д∗1(C). We have

that

ϕ
(
д∗2 (C)−t

γ

)
ϕ

(
д∗1 (C)−t

γ

) = exp

(
2
(
д∗2(C) − д∗1(C)

)
t + д∗1(C)

2 − д∗2(C)
2

2γ 2

)

and we know that д∗i (.) is a strictly increasing function so
∂д∗2
∂C

(C) >

0 so it must be the case that

lim
t→+∞

x1(t)

x2(t)
= +∞.

Since x1(t) is upper-bounded by 1, this implies in particular that

x2(t) → 0 as t → +∞, which contradicts x2(.) being a non-zero,

non-decreasing function. Hence, it must be the case that for all

C ∈ (C
¯
, C̄), д∗1(C) = д∗2(C), i.e. IGM holds. By Lemma 1, this is

impossible. �
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7 CONCLUSION

We consider two natural fairness goals that a college might have

for its affirmative action policies: granting equal opportunity to

individuals with the same type when graduating from high school,

independent of their group membership, and incentivizing down-

stream employers to make hiring decisions that are independent

of group membership. We show that these goals can be simulta-

neously achieved by highly selective colleges (i.e. those with very

high admissions thresholds) Ð but only if they do not report grades

to employers. This provides another view on this practice, which is

followed by several highly selective MBA programs. On the other

hand, we find that these goals are generally unachievable even in

isolation if schools report informative grades. These impossibility

results crucially hinge on the fact that exam scores and grades

provide only noisy signals about student types, and hence require

rational expectation maximizers to reason about prior type distri-

butions, which can vary by group.

Our paper leaves open a natural technical question: can a college

set admissions and informative grading policies to realize the equal

opportunity condition, in the single threshold case? We conjecture

that the answer to this question is no, and in the Appendix, we give

a theorem supporting this conjecture Ð ruling out the possibility

for deterministic admissions rules in every case except when the

grading variance is exactly 1.

Finally, a natural question left open by our work is quantifying

the extent to which approximate notions of our fairness goals are

achievable, and at what cost. For example, can one guarantee that

the ratio of the probabilities of a positive outcome between two

students with the same type, but from different populations is close

to 1? For students with the same grade? Given a constraint on the

ratio, what is the most equal representation in the college class that

we can guarantee for the two populations?
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