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ABSTRACT

We study a two-stage model, in which students are 1) admitted to
college on the basis of an entrance exam which is a noisy signal
about their qualifications (type), and then 2) those students who
were admitted to college can be hired by an employer as a function
of their college grades, which are an independently drawn noisy sig-
nal of their type. Students are drawn from one of two populations,
which might have different type distributions. We assume that the
employer at the end of the pipeline is rational, in the sense that
it computes a posterior distribution on student type conditional
on all information that it has available (college admissions, grades,
and group membership), and makes a decision based on posterior
expectation. We then study what kinds of fairness goals can be
achieved by the college by setting its admissions rule and grading
policy. For example, the college might have the goal of guaran-
teeing equal opportunity across populations: that the probability
of passing through the pipeline and being hired by the employer
should be independent of group membership, conditioned on type.
Alternately, the college might have the goal of incentivizing the
employer to have a group blind hiring rule. We show that both
goals can be achieved when the college does not report grades. On
the other hand, we show that under reasonable conditions, these
goals are impossible to achieve even in isolation when the college
uses an (even minimally) informative grading policy.
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1 INTRODUCTION

For a variety of reasons, including unequal access to primary edu-
cation, family support, and enrichment activities, different demo-
graphic groups can vary widely in their level of preparation by the
time they reach their senior year of high school, when they apply
for college. In an attempt to correct for this unfortunate reality,
many colleges in the United States follow some sort of affirmative
action policy in their admissions, which is to say, their admissions
decisions explicitly take demographics into account. What is of-
ten unstated (and perhaps not even explicitly considered by the
colleges) is what exactly the long term goals of these policies are,
beyond the short term goal of having a diverse freshman class. In
this paper, we consider two explicit goals, and study the extent to
which they can be met in a simple two stage model:

(1) Equal opportunity: The probability that an individual is
accepted to college and then ultimately hired by an employer
may depend on an individual’s type, but conditioned on their
type, should not depend on their demographic group.

(2) Elimination of Downstream Bias: Rational employers se-
lecting employees from the college population should not
make hiring decisions based on group membership.

Neither of these desiderata will necessarily be achieved by ad-
missions rules that ignore demographic information. For example,
suppose college admissions is set by a uniform admissions thresh-
old on entrance exam scores. Assuming these scores are equally
informative about all groups, this will guarantee that conditioned
on a student’s type, whether or not she is admitted to college will
be independent of her group membership, but it does not imply
that whether or not she is ultimately hired is independent of her
group! This is because exam scores are only a noisy signal about
student type. Therefore, if two groups have different prior distri-
butions on type, they will have different posterior distributions on
type when conditioned on being admitted to college according to
a group-blind admissions rule. The result will be that a Bayesian
employer will insist that students from a group with lower mean
or higher variance will have to cross a higher threshold on their
college grades in order to be hired. In addition to incentivizing ex-
plicit group-based discrimination by the employer, this also results
in a failure of equal opportunity for the students, because once
admitted to college, two individuals of the same type might have to
cross different grade thresholds in order to be hired. Thus, a simple
“group blind” admissions rule fails to achieve either goal 1 or 2 as
laid out above. In this paper, we study the extent to which these
goals can be achieved via other means available to the college: in
particular, how it admits and grades students.
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1.1 Limitations of our Model

When interpreting our results, it is important to understand the
scope and limitations of our model. First, this paper considers fair-
ness goals that are limited to preventing inequity from being further
propagated — treating opportunities at the high school level and
earlier as fixed — and that do not attempt to correct for past in-
equity. This manifests itself in that our “equal opportunity” goal
takes as given that the prospects for employment may “fairly” vary
as a function of an individual’s type at the time at which they apply
for college, and does not attempt to address or correct the historical
forces that might have resulted in different groups having different
type distributions to begin with. Attempting to correct for this kind
of historical inequity would require a “value-added model” of edu-
cation, in which colleges can change the type distributions of their
student population either through the direct effect of education,
or through a second order effect on student behavior before they
apply. In our model, colleges do not change student types, they only
serve as signaling mechanisms. Similarly, our “equal opportunity”
goal aims to equalize the probability that students are hired condi-
tioned on their types — but one might reasonably instead ask for a
corrective notion of fairness, in which the probability of passing
through the pipeline is higher for the historically disadvantaged
group conditioned on type. We do not consider this.

Our model also ignores the possibility that exam scores and
grades are themselves biased. We explicitly assume the opposite
— that exam scores and grades are unbiased estimators of student
types, for both groups. If instead exam scores were systematically
biased downwards for one group, then the response of a rational
employer to an admissions policy would be very different — because
students who made it through the college pipeline despite negative
bias would have a higher relative posterior probability of having a
high type. There is evidence that effects of this sort are real [2].

Further, the abstraction of one dimensional, stable “types” it-
self (common in economic models) is clearly an enormous sim-
plification. In reality, the kind of talents valued by employers are
multi-dimensional, and dynamically changing. We ignore these
complications for simplicity, but believe that studying them are
natural and interesting directions for future work.

The two kinds of fairness goals that we study do not speak to
the size of the student of employee population coming from each
group. For example, in principle, one could satisfy both the equal
opportunity and elimination-of-downstream-bias goals that we
propose, but at a cost of employing very few individuals from one
of the groups. However, we show that even without an additional
goal of having large representation from both groups, the fairness
goals we set out cannot generally be achieved.

Finally, we assume that employers are single-minded expectation
maximizers, with no explicit desire for fairness or diversity. Of
course this is often not the case.

Despite these limitations and simplifying assumptions, we find
that in the model we study, many natural fairness goals are al-
ready impossible. Our paper should be regarded as taking a first
step in the study of fairness for pipelines of algorithmic decisions.
We think that these negative results are likely to persist in more
complex models that attempt to capture additional realism. It is
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worth exploring whether positive results can be achieved for natu-
ral approximations of our fairness notions. If positive results can
be found, it would be good to see if they continue to hold as we
relax some of the limiting assumptions in our model.

1.2 Our Model and Results

We consider a simple model of admissions, grading and hiring that
views the role of colleges only as a means of signaling quality and
performing a gatekeeping function, rather than as providing explicit
value added!. We consider two groups representing pre-defined sub-
sets of the population, divided according to socio-economic or other
demographic lines. Each student from group i is endowed with a
type t, which is drawn independently from a Gaussian type distri-
bution P; that is dependent on the students’ group membership. A
student’s type ultimately measures her value to an employer. We
model employers as having a fixed cost C for hiring an individual,
and a gain that is proportional to their type. If the employer hires
an individual who has type t, they obtain utility ¢ — C. A college
can choose an admissions rule and a grading policy. Although stu-
dents types are unobservable, each student has an admissions exam
score that is an observable unbiased estimator of their type. We
model exam scores as being distributed as a unit variance Gaussian,
centered at the student’s type. An admissions policy for the school
is a mapping between exam scores and admissions probabilities.
We allow schools to set different admissions policies for different
groups, but for most of our results, we require the natural condition
that admissions probabilities within a group be monotonically non-
decreasing in exam scores?. Deterministic monotone admissions
policies simply correspond to setting admissions thresholds based
on exam scores. For simplicity, in the body of the paper, we restrict
attention to deterministic admissions rules, but in the Appendix,
we extend our results to cover probabilistic admissions rules as
well.

Schools may also set a grading policy. A grade is also modeled
as a Gaussian centered at a student’s true type, but the school may
choose the variance of the distribution, for example, by controlling
the number of conditionally independent evaluations that go into a
student’s grade. We assume that a student’s grade is conditionally
independent of her entrance exam score, conditioned on her type.
One limiting extreme (infinite variance) corresponds to committing
not to report grades at all. This limiting case is actually achievable
because schools can simply opt not to share grades — in fact, this
practice has been adopted at several top business schools [7]. At the
other limiting extreme, types are perfectly observable. This extreme
is generally not achievable, and we do not consider it in this paper.
In between, the school can modulate the strength of the signal that
employers get about student type, beyond the simple indicator that
they were admitted to college.

Employers know the prior distributions P; on student types, as
well as the admissions and grading policy of the school. They are

IThis is consistent with the signaling view of the role of colleges in the economics
literature, beginning with [15]

2 A non-monotone admissions rule would have the property that sometimes a student
with a lower exam score would have a higher probability of admission that a student
with a higher exam score. Non-monotonicity within a group is highly undesirable,
because it would give some students a perverse incentive to intentionally try and lower
their exam scores. If such incentives were present, it would no longer be reasonable to
model exam scores as unbiased estimators of student types.
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rational expectation maximizers. When deciding whether or not
to hire a student, they will condition on all information available
to them — a student’a group membership, the fact that she was
admitted to college under the college’s admissions policy, and the
grade that she received under the college’s grading policy — to
form a posterior distribution about the student’s type. They will
hire exactly those students for whom they have positive expected
utility under this posterior distribution.

In order to incentivize a particular employer to use a hiring rule
that is independent of group membership, it is necessary to set
admissions and grading policies such that for every student admit-
ted to the school, and for every grade g that she may receive, the
indicator that the conditional expectation of her type ¢ is above the
employer’s hiring cost C is independent of the student’s group mem-
bership. If there is uncertainty about what the employer’s hiring
cost C is, or if there are multiple employers, then it is necessary to
guarantee this property for an interval of hiring costs C € [C~,C*]
rather than for just a fixed cost. We distinguish these two cases.
We call this property Irrelevance of Group Membership (IGM), in
the single threshold and multiple threshold case respectively. A
seemingly stronger property that we might desire is that the pos-
terior distribution on student types conditional on admission to
college is identical for both groups. We call this property strong
Irrelevance of Group Membership (sIGM). Because it symmetrizes
the two groups, it in particular guarantees that members of both
groups will be treated identically by rational decision makers at
any further stage down the decision making pipeline. It also is a
natural goal in and of itself in a competitive market with employers
who may offer different wages to different employees (which might
here be modelled as differing costs C for employment). In such
a market, employees will in equilibrium be offered the posterior
expectation of their type as their wage — and so the sIGM property
can be viewed as asking that for any two students with the same
type, their expected wage conditional on being admitted to college
should be identical, independent of their group. We show that in
the presence of finite, nonzero variance in both exam scores and
grades, IGM in the multiple threshold case implies SIGM. Finally,
we say that an admissions rule and grading policy satisfy the equal
opportunity condition, if a student’s probability of making it all
the way through the pipeline — i.e. being admitted to college and
then being hired by the employer, is independent of her group con-
ditioned on her type. Trivially, any group-symmetric admissions
policy will satisfy both conditions if the two group type distribu-
tions are identical, so for the results that follow, we always assume
that the group type distributions are distinct — differing in their
mean, their variance, or both.

First, to emphasize that our impossibility results will crucially
depend on the fact that exam scores are only a noisy signal of
student ability, we consider the noiseless case, in which college
admissions can be decided directly as a function of student type (this
corresponds to the case in which exam scores have no noise). In this
case, we can “have it all”: there is a simple monotone admissions
rule that guarantees both the equal opportunity condition, and
satisfies IGM for multiple thresholds — for any grading policy that
the school might choose. After establishing this simple result, in
the rest of the paper we move on to the more realistic case in which
exam scores are only a noisy signal of student type.
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Next, we study what is possible if the college chooses to not
report grades at all. In this case, we can also “have it all” — simply by
setting a sufficiently high, group independent admissions threshold,
a school can achieve both equal opportunity and IGM for multiple
thresholds. This gives another view of the effects of practicing grade
non-disclosure at highly selective schools [7].

Finally, in the bulk of the paper, we study the common case in
which the college uses informative grades — i.e. sets the variance
of its grade distribution to be some finite value. In this case, we
show that it is possible to obtain IGM in the single threshold case,
but that no monotone admissions rule can obtain sSIGM. Because of
the equivalence between sIGM and IGM for the multiple threshold
case, this implies that no monotone admissions rule can obtain IGM
in the multiple threshold case, even in isolation. Next, we consider
the equal opportunity condition. One trivial way to obtain it is to
simply admit nobody to college. We show that this is in general the
only way in the multiple thresholds case: no non-zero monotone
admissions rule can satisfy the equal opportunity condition, even
in isolation.

1.3 Related Work

Our work fits into two streams of research. Within the recent line of
work on algorithmic fairness, the most closely related work is that
of Chouldechova [3] and Kleinberg, Mullainathan, and Raghavan
[12]. Both of these papers prove the impossibility of simultane-
ously satisfying certain fairness desiderata in batch classification
and regression settings. Broadly speaking, both papers show the
impossibility of simultaneously equalizing false positive and false
negative rates (related to our equal opportunity goal — see also
[8]) and positive predictive value or calibration (related to our IGM
goals). Our work is quite different, however: the goals that we study
are not direct properties of the classification rule in question (in
our case, the college admissions rule), but instead properties of
its downstream effects. And while the work of [3, 12] shows the
impossibility of simultaneously satisfying these fairness criteria, in
our setting, we show that they are often impossible to satisfy even
in isolation.

Our paper also fits into an older line of work studying economic
models of discrimination and affirmative action, which has its mod-
ern roots in [1] and [14]. For example, Coate and Loury [5] and
Foster and Vohra [6] study two stage models in which students
from two different groups (who are a-priori identical) can in the
first stage choose whether or not to make a costly investment in
themselves, which will increase their value to employers. In the
2nd stage, employers may set a hiring rule that acts on a noisy
signal about student quality. These works show the existence of
a self-confirming equilibrium, in which only one group makes in-
vestments in themselves and are subsequently given employment
opportunities, and consider interventions which can escape these
discriminatory equilibria. These works can be viewed as studying
the “upstream effects” of affirmative action policies, and explaining
the mechanics by which different student populations may end up
with different type distributions. The effect of the interventions
proposed in these models is very slow, because it requires a new gen-
eration of students to recognize the opportunities made available to
them via affirmative action policies and make costly investments in
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their education in response, well before they enter the job market.
In contrast, our work can be viewed as studying the “downstream
effects” of these policies and examining shorter term effects which
can be realized in a time frame that need not be long enough for
type distributions to change.

More recently, the computer science community has begun study-
ing fairness desiderata in dynamic models. Jabbari et al study the
costs (measured as their effect on the rate of learning) of impos-
ing fairness constraints on learners in general Markov decision
processes [10]. Hu and Chen [9] study a dynamic model of the
labor market similar to that of [5, 6] in which two populations are
symmetric, but can choose to exert costly effort in order to improve
their value to an employer. They study a two stage model of a labor
market in which interventions in a “temporary” labor market can
lead to high welfare symmetric equilibrium in the long run. Liu
et al. [13] study a two round model of lending in which lending
decisions in the first round can change the type distribution of
applicants in the 2nd round, according to a known, exogenously
specified function. They study how statistical constraints on the
lending rule can improve or harm outcomes as compared to a my-
opic (i.e. ignoring dynamic effects) profit maximizing rule, and find
that for two kinds of interventions, both improvement and harm are
possible, depending on the details of how lending effects the type
distribution. Finally, [11] studied the regulator’s problem of provid-
ing financial incentives for a lender to satisfy fairness constraints
in an online classification setting.

2 MODEL

We consider two populations of students, 1 and 2. In population i €
{1, 2}, each student has a type drawn from a Gaussian distribution
Pi=N (y,-, 0'112 ) with mean y; and variance Uiz. Since our problem
is trivial if P; = Py, in this paper we assume always that P; # P, i.e.
the type distributions differ either in their mean, or their variance, or
both. We denote by T; the random variable that represents the type
of a student from population i. Throughout the paper, ¢ denotes the
probability density function and ® the cumulative density function
of a standard normal random variable with mean 0 and variance 1.

Each student takes a standardized test (SAT, etc.) and obtains a
score given by

Si=Ti+X
where X follows a normal distribution with mean 0 and variance 1,
that does not depend on the population i, i.e., the student’s score is
a noisy but unbiased estimate of his type.

Additionally, we consider a university that admits students from
both populations. The university designs an admission rule A; :
R — [0, 1] for each population i, such that a student from pop-
ulation i with score s is accepted with probability A;(s). We also
abuse notation and let A; denote the binary random variable whose
value is 1 if a student is accepted, and 0 otherwise. This admission
rule is required to be monotone non-decreasing; i.e. an increase
in exam score cannot lead to a decrease in admissions probability.
We say that an admissions rule is deterministic if A;(s) € {0, 1}.
A deterministic monotone admissions rule is characterized by a
threshold f; such that a student is accepted if and only if S; > f;.
We call such rules“thresholding admissions rules”. We focus on
thresholding admissions rules in the body of this paper, but extend
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our results to probabilistic admissions rules to the Appendix. For
simplicity of notation, we will often write x;(¢) = Pr[A; = 1|T; = ¢]
(Note that x;(t) = Pr[S; > Bi|Ti = t] in the deterministic case).

Every student who is admitted to the university receives a grade,

given by:

Gi=Ti+Y
where Y follows a normal distribution with mean 0 and variance
y? that does not depend on the population i. y can be set by the
university, and represents the strength of the signal provided by
a grading policy>. In our model, the University must commit to a
single grading policy to use across groups.

Finally, an employer makes a hiring decision for each student
that graduates from the university. The employer knows the priors
P;, the admission rules A1, Az used by the school, the grading
policy y, and observes the grades of the students (as well as the fact
that they were admitted to the school). The employer’s expected
utility for accepting a university graduate from population i with
grade g is then given by

E[Ti|Gi = g9,A; =1] - C

where C is the cost for the employer to hire a student. The employer
hires a university graduate from population i with grade g if and
only if
E[Ti|Gi =g, Ai=1] 2 C
Throughout the paper, we study the feasibility of achieving the
following fairness goals:

DEFINITION 1 (EQUAL OPPORTUNITY). Equal opportunity holds if
and only if the probability of a student being hired by the employer
conditional on his type is independent of the student’s group. Le. if
forall typest € R,

/PI[GI =g,A = 1|T1 = t]]l{E[TllGl =g,A1 = 1] > C}dg
9

= /Pr[Gz =g,A2 = 1|T; = t] I{E[T2|G; = g, A2 = 1] > C}dg
g9

DEFINITION 2 (IRRELEVANCE OF GROUP MEMBERSHIP). Irrele-
vance of Group Membership (IGM) holds if and only if, conditional
on admission by the school and on grade g, the employer’s decision
on whether to hire a student is independent of the student’s group. Le.
if for all grades g € R,

E[T]|G1 Zg,Al = 1] > C'{:?E[Tzle Zg,Az = 1] >C

We further introduce a robust version of IGM, called strong Irrele-
vance of Group Membership, that symmetrizes the two populations
and guarantees that members of both populations will be treated
identically by rational decision makers at any further stage of the
decision making pipeline.

DEFINITION 3 (STRONG IRRELEVANCE OF GROUP MEMBERSHIP).
Strong Irrelevance of Group Membership (sIGM) holds if and only if;
conditional on admission by the school and on grade g, the employer’s

3In actuality, of course, students receive many grades, not just one. But note that when
one averages two normally distributed random variables, the result is also normally
distributed, but with lower variance. Hence, one way to modulate the variance of a
grade signal is to modulate the number of grades computed. The more assignments
and exams that are graded, the lower the variance of the signal. The fewer that are
graded, the higher the variance.
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posterior on a student’s type is independent of the student’s population.
Le, forallg € R, forallt € R,

Pr[Ty = t|G1 = ¢9,A1 = 1] =Pr[Iz = t|Gy = g, Az = 1]

We note that sIGM holds if and only if the posterior on students’
types conditional on admission by the school are identical:

Cram 1. sIGM holds if and only if for all t € R:
Pr[Ty = t|A1 = 1] =Pr [Ty = t|A2 = 1]

PRrROOF. See Appendix. O

3 INFERENCE PRELIMINARIES

In this section, we derive some basic properties of the joint distribu-
tions on student types, exam scores, admissions rules, and grades
that are relevant for reasoning about the employer’s Bayesian in-
ference task. We will draw upon these basic results in the coming
sections.

3.1 Preliminaries on Gaussians and
Multivariate Gaussians

First, we observe that together, student types, exam scores, and
grades are distributed according to a multi-variate Gaussian.

Cram 2. (T}, S;, G;) follows a multivariate normal distribution.

PRrROOF. A set of random variables is distributed according to a
multivariate normal distribution if every linear combination of the
variables is distributed as a univariate normal distribution. For all
a,b,c € R, aT; + bS; + ¢G; = (a + b + ¢)T; + bX; + cY; follows
a normal distribution as the sum of independent normal random
variables. ]

We now quote a basic fact about the conditional distribution that
results when one starts with a multi-variate normal distribution,
and conditions on the realization of a subset of its coordinates.

Cramm 3. Letn > 2 be an integer. Let Z € R™ be a random variable
following a multi-variate normal distribution. Let Z = (Z1, Z,) where
Z; € R™ withny +ny = n. Suppose Z has mean m = (my, my) where
m; € R™, and covariance matrix

Z12 ]
222

2:[ 211

221
where 2ij € R™*1  ThenE[Z1|Zy = z2] = my + 2122521(22 - my)
and Var [Z1|Zy = z3] = 211 — 2122521221‘

PrOOF. See lecture notes [4]. O

The following technical lemma will also be useful for us.

CrAaM 4. The hazard rate H(x) = %

random variable is increasing, and satisfies

of a standard normal

lim H(x) =0, H(x) = x + 0x—>+00(1)
X——00

This is a commonly known result in the literature on probability
theory and statistics. For completeness, we provide a proof in the
Appendix.
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3.2 Employer’s First Moment Inference

The main lemma of this section characterizes the employer’s Bayesian
inference task when the college is using a threshold admissions
rule: the posterior expectation of a student’s type, conditioned on
their exam score being sufficiently high to cross the admissions
threshold, and on their observed grade. In the appendix, we give
the corresponding inference rule for the employer when the college
can use an arbitrary monotone admissions rule.

LeEmMMmA 1.

E[Ti|S; = fi,Gi = g]

2 2
Y 9;
= Hit [
2 2. 2
of +y? al+y
. y*a? (07 +v%) - Bi —v?pi — olg

V@ 4y +y2 eyl \ (o +yD0F +y2 4 y2o?)
where H(x) = ﬁg&)
random variable.

is the Hazard function of a standard normal

Proor. The proof is given in Appendix. O

A corollary of the previous lemma is that the posterior expec-
tation computed by the employer will satisfy a number of nice
regularity conditions which will be useful in proving our impossi-
bility results:

COROLLARY 1. €;(uj, 0i, Bi,g9) = E[Ti|Si > Bi, Gi = g] is contin-
uous, differentiable, and strictly increasing in each of i, g and p;.
Further,

9&1’_100 e(ui, i, fi, g) = —o0,
gng ei(pi, 01, fi, g) = +oo,
and

2 o
r
+y

lim e(y;, o4, fi.g) = 2
i g

lim e(y;, i, fi,g) = +o0.
i—+00

i

PRroOF. See Appendix.

Finally, we define a quantity that will be useful to make reference
to in a number of our forthcoming arguments: the minimum grade
that results in a student from group i being hired by the employer,
given a fixed admissions rule.

DEFINITION 4 (HIRING THRESHOLD ON GRADES). We define g (C) =
min{g : E[T;|S; > f;,Gi = g] = C} the inverse function of g —
E[T;|S; = Bi,Gi = g].

By Corollary 1, g;(.) is a well-defined function on domain R, and
is continuous, differentiable, and strictly increasing.



FAT™ ’19, January 29-31, 2019, Atlanta, GA, USA

3.3 Moments of the posterior distribution for
monotone admission rules

The following lemma holds for the general case of monotone, ran-
domized admission rules, and is useful in characterizing the mo-
ments of the distribution of types conditional on A; = 1and G = ¢
in population i:

LEmMA 2. Let A;(.) be a non-decreasing, non-zero, possibly ran-

domized admission rule. Forallg € R,E [Tik|Gi =g,A;i = 1] is finite

and differentiable in g, and its derivative satisfies the following equa-
tion:

0
6_gEi [le Gi =g,A;i = 1]
1
= —in [Tik+1 Gi=g,A;i = 1]
Y
1
- FEi [Tik|Gi =g,Ai = 1] -Ei [TilGi = g, A = 1].

Proor. The proof is given in Appendix.

4 WHEN BOTH CONDITIONS ARE
SATISFIABLE

In this section, we observe that there are two settings in which
it is possible to “have it all” — satisfying both IGM and equal op-
portunity even in the multiple threshold case. The first setting is
that of noiseless exam scores: when student types are perfectly
observable by the school. The second setting is when the school
opts not to report grades. We view the first setting as generally
unrealisable, since any student evaluation will involve some degree
of stochasticity. However the 2nd case — in which a school opts
not to report grades — can be realized.

4.1 Noiseless Exam Scores (Observable Types)

First, we observe that if schools can perfectly observe student types
(we have noiseless exam scores with S; = T;), then there is a simple
threshold admissions rule that simultaneously achieves IGM and
equal opportunity, even in the multiple threshold case. The ideas
is simple: Given a range of employer costs [C~,C*], the college
simply sets an admissions threshold of C* or higher, using the same
threshold for members of both groups. Because the threshold is the
same for both groups, the probability of being admitted to college
is a function only of type, and independent of group membership
conditioned on type. Because scores were noiseless, admissions to
college deterministically certifies that a student’s type t; > C*, and
so the employer chooses to hire everyone, independently of the
grade they receive (and independently of their group membership).
Hence, the probability of being hired is the same as the probability of
being accepted to college, and is independent of group membership
conditioned on type, and the employer’s hiring rule is independent
of group membership.

CrLam 5. Suppose S; = Tj, i.e. a student’s score perfectly reveals
his type. Then for any hiring interval of hiring costs [C~,C*] € R,
the non-zero admissions rule:

Ais)=1es>C"
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for both groups i € {1, 2} satisfies IGM and equal opportunity when
paired with any grading policy.

PRrooOF. See Appendix.

CLAIM 6. Suppose the school does not assign grades to students.
Then for any hiring interval of hiring costs [C~,C*] € R, the non-zero
thresholding admissions rule:

Ais)=1os2p

for both groups i € {1, 2} satisfies IGM and equal opportunity when
B is large enough.

Proor. For B big enough, E[T;|S; > f] = CT as
limg_, 00 E[Ti]S; 2 B] = +oo; this can be seen either by following
the same steps as in the proof of Lemma 1 to obtain that

2
E[Ti|S; = fl = pi + - H bi—
1/1+0i2 1+0i2

which tends to +co when f; — +co by Claim 4. Another way
of deriving this expression is by noting that not having a grade is
equivalent to having an uninformative grade, i.e. to having y — +o0.
Now, let ff be large enough such that in both populations, such that
E[Ti|Si = f] > C*.IGM immediately holds as every student that is
accepted by the school is hired by the employer. Equal opportunity
holds because the probability of a student with type ¢ being hired
by the employer is exactly the probability that he is admitted by
the school (every student admitted by the school is hired by the
employer), hence is given by

Pr[S; > pIT; =t] = / ¢(s — t)dt,
s>f

and is independent of the student’s population. O

Note that this result is achieved by having the school set a very
high admissions threshold (uniformly for both groups), and de-
clining to give grades. Hence, declining to give grades may be a
reasonable strategy for promoting our fairness goals in a highly
selective school, but does not work when admissions thresholds
must be lower. We note that the practice of grade witholding in
MBA programs seems to be limited to the very top programs [7].

In the remainder of the paper we consider the case in which
exam scores have positive finite variance, and in which the college
uses a grading policy with positive finite variance. What will be
possible will depend on whether we are in the single or multiple
threshold case.

5 THE SINGLE THRESHOLD CASE

In this section, we consider what is possible when there is only a
single employer with a hiring cost C that is known to the college.
We show that in this case, IGM can always be achieved, but that it
is impossible to achieve sSIGM.
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5.1 IGM can always be achieved

The main idea is as follows: For any grading scheme, and with a
single threshold C in mind, the college can separately set different
admissions thresholds f; and f; for the two groups respectively
such that the posterior expectation for a student type from each
group crosses the threshold of C at a grade g*, which can be made to
be the same for both populations. Since the only thing that matters
in the employer’s hiring decision is whether or not the student’s
expected type is above or below C, this is enough to cause the
employer’s hiring decision to be independent of group membership.
The next lemma establishes that it is always possible to find such
thresholds:

LemMa 3. For any C in R, there exists thresholds f and 8} and a
grade g* such that
E[NIG1=¢".5 2 fi] =E[RIG2 = ¢".52 = B3] = C
Proor. It follows by Corollary 1 that
E[T;|G;i = g,Si > pi]

2
is continuous in f; and must reach any value between azyTyZ Hi +
i

2

520;")/2 g and +oo. For g* small enough, it must be the case that

2 2

4 P+ % "< C< 400
22t T 22 = '
ity i TY

hence there exists 5 such that
E[Ti|Gi = ¢%.Si > Bi] = C.
]

CoROLLARY 2. Fix any C in R. When the school uses thresholding
admission rules with thresholds i and B, IGM holds for that C.

Proor. E [T;|G; = g,Si > /J’:‘] is a strictly increasing function of
g by Corollary 1, therefore the employer accepts students from any
population ifand only if g > g* where g* is population-independent,
which proves the results. O

5.2

We now show that strong IGM — making the posterior distributions
for both groups identical — is impossible. In addition to its intrinsic
interest, this result will be a key ingredient in our impossibility
results for the multiple threshold setting.

sIGM is impossible

LEMMA 4. Suppose the priors are distinct. For any two thresholds
P1 and Pa, there must exists t € R such that

Pr[Ty = t|S1 = f1] # Pr[Tz = t|S2 = f2]
Le., sIGM cannot hold.
Proor. Let x;(t) = Pr[S; > Bi|T; = t]. Suppose for all t € R,
sIGM holds, i.e.
Pr[Ty = t[S1 = p1] # Pr[Tz = t[S2 2 fBs]
by Claim 1. Then

a0 () xe
Pr(S: > p1]

I—po
o

Pr[S2 > f2]
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hence

x1(t) _ o1Pr[S1 > il (t—p)® (£ —m)?
— = - exp - 5
x2(t) 02 Pr[Sz 2 f2] 207 20°
x1(.) and x2(.) are non-decreasing functions with values in [0, 1],
and x;(t) = ./.;>ﬁ4 ¢(s — t)ds is non-zero; therefore, lims=o0 x;(t)
x(t) has

x(t)
a finite and strictly positive limit in +co. On the other hand,

(t—pm)*  (t—m) RIS N VIR A
P 207 202 o o2 o2 o2
1 2 1 1 2

exists and is strictly positive. It must then be the case that

tZ

= Kexp

for some constant K. It is easy to see that the above quantity tends
to either +o00 or 0 as t — +oo as long as either oy # o3 or 1 # p2

(one of X — L and £ — £ must be non-zero). This leads to a
0'2 O'l 0'1 0'2

contradiction. O

5.3 Equal opportunity

We defer the technical results of this section to the Appendix.
Lemma 5 shows that for thresholding admission rules, IGM and
equal opportunity cannot simultaneously hold for Gaussian priors
with the same variance but different mean. This shows that obtain-
ing fairness in the general case is significantly more difficult than in
the simple cases in which the types are observable and the school
does not assign grades. Lemma 6 shows that arguably stringent con-
ditions on the grade accuracy and the thresholds set by the school
must hold for equal opportunity to be possible. We conjecture that
these conditions are, in general, impossible to satisfy, making equal
opportunity impossible to satisfy even in isolation, in the single
threshold case. As we will see in the next section, it is impossible
to satisfy in the multiple-threshold case.

6 THE MULTIPLE THRESHOLD CASE

In this section, we turn to the multiple threshold case, which we
view as the main setting of interest. In this case, we ask whether
we can achieve IGM and equal opportunity not just with respect to
a single known hiring cost C, but with respect to an entire interval
of hiring costs C € [C~,C*]. This will be the case when there
are multiple employers, or simply when there is some uncertainty
about the hiring threshold used by a single employer.

6.1 IGM is Impossible

In this section, we show that IGM is impossible to achieve even
in isolation. The proof proceeds by showing that in the multiple
threshold case, IGM must imply sIGM — i.e. that the posterior
distributions conditional on admission to college are identical for
both groups. Impossibility then follows from the impossibility of
achieving sIGM (even for a single threshold), which we proved in
the last section.

We first state a technical lemma, showing that if we satisfy IGM
for every employer cost C in a continuous interval, we must actually
be equalizing the posterior expected type across groups for every
grade g in some other continuous interval.

Cramv 7. Let C < C. Suppose that for all C € (C,C),
E[T1|G1=¢.512 1] 2C © E[T2|G2 = g,52 2 2] 2 C,
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then it must be the case that for g in some interval (a, b),
E[T1|G1 = ¢,51 = p1] = E[T2|G2 = g, S2 > f]
ProOF. Let a = g;(C) and b = gi‘(C‘) where g7 (.) is the strictly

increasing inverse of g — E[T1|G1 = g, A1 = 1] as per Claim 1 and
Definition 4. Suppose there exists g € (a, b) such that

E[T1|A1 =1,G1 :g] > E[T2|A2 =1,Gy Zg],
then for C = E[Ty|A; = 1,G; = ¢g] € (C, C), it must be the case that
E[T]|A1 =1,G; zg] >C > E[T2|A2 =1,Gy :g]

which contradicts the assumption of the claim. Now, suppose there
exists g € (a, b) such that

E[T1|A1 =1,G1 = g] < E[T2|A2 = 1,G2 = ¢],

then for € > 0 small enough, C = E[T1|A; = 1,G; = g] +¢€ € (C,C)
and

E[T]|A1 =1,G; :g] <C SE[T2|A2 =1,Gy :g]

which also contradicts the assumption of the claim. Therefore, it
must be the case that for all g € (a, b),

E[T1]A1 =1,G1 = g] =E[T2|A2 = 1,G2 = g]
]
We can now go on to prove the main theorem in this section:

THEOREM 1. Suppose the priors are distinct, then IGM cannot for
all hiring costs C € (C,C).

Proor. By Claim 7, it must be the case that for all g € (a, b) for

some interval (a, b),E[T1|G1 = 9,51 = f1] = E[T2|G2 = 9,52 = f2].

For all g in (a, b), by Lemma 2
0 0
—E[T1|G1 =951 > = —E[R|Gy =95 >
39[1|1 9,51 > pil 69[2|2 9,52 > pal

and hence E [T12|G1 =g,51 > ﬂl] =E [T22|G2 =g,5) > ﬁz] It is
easy to see that using the same argument by induction yields that
for all integers k,

E[T1k|Gl =951 2 ﬂl] =E [TZk|G2 =951 2 ﬁ1]

Since the distributions of types for the two populations conditional
on G; = ¢,S; > fi admit a moment generating function (this fol-
lows immediately from the fact that P; admits a moment generating
function) and have identical moments, it must be that the distri-
butions are the same for all g € (a,b). Le., for all g € (a,b), we
have

Pr[Ty = t|G1 = 9,51 = p1] = Pr [Tz = t|G2 = ¢,51 = pi1]
We have that in population i,
Pr(T; = 1IS; > fil ¢ (97*’)
—t
[, PrTi = tIS; = Bil ¢ (97) dt

Pr[T; = t|G; = ¢,S; = Bi] =

Note that /t Pr[T; =t|S; = Bil ¢ (gT_t) dt is a function of g only,
that we will denote p;(g) from now on.

Pr[T; = t|Gy = ¢,51 2 fi] =Pr[T2 = t|G2 = 9,52 2 B2l
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implies

Pr[Ty = t|S1 > 1] _ pi(g)

Pr(Ty=tlS2 > f2] ~ pa(9)
forallg € (a,b)andt € R.Pr[Ty = t|S1 > f1]andPr [Ty = ¢[S2 > 2]
are both probability density functions that integrate to 1, so it must
be the case that% =1landPr [Ty =¢t|S1 > f1] =Pr[Tz = t|Sz = fa].
Therefore, sSIGM must hold, which we have shown is impossible in
Lemma 4. m]

6.2 Equal opportunity cannot hold

Finally, we show that in the multiple threshold case, it is also im-
possible to satisfy the equal opportunity condition.

THEOREM 2. Suppose the priors are distinct. There exist no thresh-
olding admission rules such that equal opportunity is guaranteed for
allC € (C,C), forany C < C.

Proor. It is easy to see x;(t) = fsAi(s)da(s —t)ds = /uAi(u +
t)¢(u)du is monotone non-decreasing in ¢t and non-zero. Remember
ei(9) = E[Ti|Gi = ¢,5i > il

has a strictly increasing and differentiable inverse g7 (.) on (—co, +c0)
by Corollary 1, and a student is hired by the employer if and only
if g > g;(C). A student with type ¢ in population i gets therefore
hired with probability

/ xi(t)¢(g—_t) dt = xi(t)(l —¢(&))
9297(C) Y »

equal opportunity then imply that Vt € R, C € (C,C),

s (e 55D = (o 557)
x2(t) Y Y

Taking the first order derivative in C of both sides of the above
equation, we have that for all C € (C,C), for all t € R,
dg* g5(C)-t
a o (%)
N og *(C)—t
xg( ) 6_96%(C) ¢ (91 . )

Suppose for some C € (C,C), g;(C) # g;(C). Without loss of gener-
ality, renumber the populations such that g;(C) > g7(C). We have
that

5(C0)-
¢(g Y t) . (Z(gS(C)—gi‘(C))Hgi‘(C)Z—gZ(C)Z)

(5

and we know that g7 (.) is a strictly increasing function so % (C) >
0 so it must be the case that

x1(t)
im —= =
t—+o0 x5(t)

Since x1(t) is upper-bounded by 1, this implies in particular that
x2(t) — 0 ast — +oo, which contradicts x3(.) being a non-zero,
non-decreasing function. Hence, it must be the case that for all
C € (¢, 0), g1(C) = g5(C), i.e. IGM holds. By Lemma 1, this is
impossible. O
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7 CONCLUSION

We consider two natural fairness goals that a college might have
for its affirmative action policies: granting equal opportunity to
individuals with the same type when graduating from high school,
independent of their group membership, and incentivizing down-
stream employers to make hiring decisions that are independent
of group membership. We show that these goals can be simulta-
neously achieved by highly selective colleges (i.e. those with very
high admissions thresholds) — but only if they do not report grades
to employers. This provides another view on this practice, which is
followed by several highly selective MBA programs. On the other
hand, we find that these goals are generally unachievable even in
isolation if schools report informative grades. These impossibility
results crucially hinge on the fact that exam scores and grades
provide only noisy signals about student types, and hence require
rational expectation maximizers to reason about prior type distri-
butions, which can vary by group.

Our paper leaves open a natural technical question: can a college
set admissions and informative grading policies to realize the equal
opportunity condition, in the single threshold case? We conjecture
that the answer to this question is no, and in the Appendix, we give
a theorem supporting this conjecture — ruling out the possibility
for deterministic admissions rules in every case except when the
grading variance is exactly 1.

Finally, a natural question left open by our work is quantifying
the extent to which approximate notions of our fairness goals are
achievable, and at what cost. For example, can one guarantee that
the ratio of the probabilities of a positive outcome between two
students with the same type, but from different populations is close
to 1? For students with the same grade? Given a constraint on the
ratio, what is the most equal representation in the college class that
we can guarantee for the two populations?
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