
Hybrid non-uniform recursive subdivision with improved convergence rates

Xin Lia,∗, Xiaodong Weib, Yongjie Jessica Zhangb

aSchool of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China
bDepartment of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

This paper introduces a new non-uniform subdivision surface representation, called hybrid non-uniform sub-

division surface (for short, HNUSS). The subdivision scheme is constructed through two steps. The first

step inserts a set of edges and converts a valence-n extraordinary point into a valence-n face. The second

step combines both primal and dual subdivision schemes to define the subdivision rules. The developed

subdivision scheme generalizes bi-cubic NURBS to arbitrary topology and is proved to be G1-continuous for

any valence extraordinary points and any non-negative knot intervals. The HNUSS limit surface has compa-

rable shape quality as non-uniform subdivision via eigen-polyhedron [1] and has better shape quality than

all the other subdivision schemes. In addition, numerical experiments show that HNUSS based isogeometric

analysis yields improved convergence rates compared to any existing non-uniform subdivision schemes.
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1. Introduction

Isogeometric analysis (IGA) has emerged as a unification technology between computer-aided design

(CAD) and numerical simulation. The key insight of IGA is the fact that numerical simulation relies on

finite element method with discrete approximation of models from CAD, which is classically based on non-

uniform rational B-splines (NURBS). The main advantages of the IGA include the elimination of both the

geometry approximation error and the computation cost of changing the representation between design and

analysis. NURBS are the current standard geometry representation in CAD. NURBS provide intuitive

control in the design process, and support fast and stable evaluation. NURBS also offer many advantages in

the analysis through IGA [2, 3, 4, 5]. However, a major drawback of NURBS is the tensor-product structure

that makes it difficult to model freeform geometry with arbitrary topology. Such a geometry needs to be

decomposed into a set of C−1-continuous patches, which often leads to continuity problems during analysis.

There are two main categories of approaches to define representations for extraordinary points (EPs).

The first category utilizes a finite number of patches to fill the neighboring region around EPs with many

methods developed [6, 7, 8, 9, 10, 11, 12, 13]. Among these methods, manifold splines [13] and smooth cubic

splines [14, 15] observe optimal convergence rates. The other category utilizes subdivision with an infinite

number of patches around the EPs [16]. Subdivision algorithms are a generalization of splines to define free-

form surfaces of arbitrary topology, which is the standard in the animation industry. Subdivision surfaces

are also attractive in IGA [17, 18, 19, 20, 21, 22]. Subdivision-based local refinement and its application

in IGA have been studied for both Catmull-Clark subdivision [23, 24] and Loop subdivision [25]. However,

these subdivision schemes are limited to generalizations of uniform splines. In order to make subdivision

∗Corresponding author, lixustc@ustc.edu.cn, tel: 86-551-63607202

Preprint submitted to Elsevier April 22, 2019

The Trial Version



compatible to NURBS, we need to derive subdivision schemes which can support non-uniform splines. This

issue was firstly addressed in [26], and later was extended in [27, 28, 29, 30, 1].

In this paper, we aim to develop a subdivision technique which can support non-uniform splines with

arbitrary topology and improved convergence rates. Particularly, this paper focuses on how to define a non-

uniform subdivision scheme such that it can be used for both design (shape quality near EPs) and analysis

(with improved convergence rates). For this purpose, we present a new Hybrid Non-Uniform Subdivision

Scheme (for short, HNUSS). The HNUSS is constructed through two steps. The first step converts each

EP into an extraordinary face by inserting a set of edges, and then in the second step we define a new

subdivision scheme which combines the primal and dual subdivision schemes in the subsequent levels. The

main features of the new subdivision scheme include:

1. The HNUSS generalizes bi-cubic NURBS to arbitrary topology;

2. The HNUSS limit surface is proved to be G1-continuous for any valence EPs and has satisfactory

geometric quality for non-uniform parameterization. To the authors’ best knowledge, this is the first

paper which can prove G1 continuity for non-uniform EPs.

3. Numerical experiments show that HNUSS-based IGA yields improved convergence rates compared to

all the existing non-uniform subdivision schemes.

The rest of the paper is organized as follows. Section 2 reviews the existing non-uniform subdivision

schemes and then we discuss how to construct the new HNUSS in Section 3. Geometric modeling and

isogeometric analysis based on HNUSS are discussed in Sections 4 and 5, respectively. The last section

draws conclusion and points out future work.

2. Existing non-uniform subdivision schemes

The most popular way to generalize splines to arbitrary topology is using subdivision. This has been well

studied for uniform splines [31]. In the non-uniform case, subdivision in regular regions away from EPs is

equivalent to NURBS refinement, which relies on the conventional knot insertion: a knot is inserted midway

between each pair of existing knots. Referring to the notations in Figure 1, V , Ei and Fi denote the control

points at the current level and V , Ei, F i denote the corresponding control points after subdivision. Then the

refinement rule can be summarized as follows. Each face/edge/vertex point is updated using its neighboring

vertex points, edge points and face points, for example,

F 0 =
(d1 + 2d0)(e1 + 2e0)V + (d1 + 2d2)(e1 + 2e0)E0 + (d1 + 2d0)(e1 + 2e2)E1 + (d1 + 2d2)(e1 + 2e2)F0

4(d0 + d1 + d2)(e0 + e1 + e2)
, (1)

E0 =
e2F 0 + e1F 3

2(e1 + e2)
+

M0

2
, (2)

V =
e2E1 + e1E3

2(e1 + e2)
+

d2M0 + d1M2

4(d1 + d2)
+

V

4
, (3)

where M0 = (d1+2d0)V+(d1+2d2)E0

2(d0+d1+d2)
and M2 = (d2+2d3)V+(d2+2d1)E2

2(d1+d2+d3)
.

There are several different methods to define non-uniform subdivision around EPs, where knot infor-

mation are coupled with knot intervals by assigning a non-negative number to each edge of the control

grid. In [26], the subdivision rule around EPs was formulated by replacing the undefined knot intervals in

Equations (1), (2) and (3) by the average of some knot intervals. Another prior art that aims to unify cubic

NURBS and Catmull-Clark surfaces into a single representation includes Extended Subdivision Surfaces [27]

and Dinus [29]. These schemes handle EPs by reverting to Catmull-Clark rules, and ignoring the actual knot
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Figure 1: Bi-cubic NURBS can be regarded as the limit of knot splitting process.

intervals. A strategy [28] was proposed to minimize the difference in knot intervals around an EP, which

repeatedly splits the largest knot interval at an EP if it is more than twice as large as the smallest knot

interval at that EP, and then performs a local refinement to make all knot intervals the same. The refine-

ment rules in [26] was modified by changing the average to the maximal knot interval in [30]. All the above

schemes suffer from the same problem of their corresponding limit surfaces: with non-uniform knot intervals,

the blending functions of EPs can have two local maxima. This problem has been solved by the technique

of eigen-polyhedron [1], where numerical experiments showed that the limit surface is G1-continuous at the

EPs of valence between 3 and 8. However, it is still an open problem to provide a solid proof for that.

3. Construction of HNUSS

In this section, we discuss how to contruct HNUSS in detail. Given a control grid of arbitrary topology

with predefined knot intervals, we need to define a blending function for each vertex such that it specializes

to NURBS when the valence of each vertex is four. As shown in Figure 2, di, d̃i, d̄i, and ai, ãi, āi are

knot intervals and can be any non-negative real numbers. Our discussion assumes that the control grid is a

regular manifold grid and all the faces are quadrilaterals. If the assumption does not hold initially, we apply

a single NURSS refinement [26, 1] in advance. We assume knot intervals on the opposite edges are the same,

i.e., di = d̃i = d̄i, and ai = ãi = āi.

On a quadrilateral mesh, a regular vertex has a valence of four in the interior, a valence of three on the

boundary and a valence of two at the corner. It is called an irregular vertex or extraordinary point otherwise.

Topologically a regular vertex in the interior is a crossing of two coordinate lines in a 2D cartesian grid,

where we can easily build a right-handed local coordinate system cyclically. A parametric line is generated

by tracing a local coordinate direction through regular vertices and ending with extraordinary points or

boundary vertices. It is a connected by a sequence of edges, such that two subsequent edges are always

connected through a regular vertex where both edges belong to the same local parametric direction. Vertices

and edges on the parametric lines are called virtual vertices and virtual edges, the meaning of which will

become clear in the following. As illustrated in Figure 3 (a), all the red edges are virtual edges and all the

black and green vertices are virtual vertices. Here red dots represent regular vertices.

The hybrid subdivision contains two steps of rules: a topological step and a geometric step. The topo-

logical rules of the first step yield a hybrid dual mesh, as illustrated in Figure 3. At the first level, if a

valence-n virtual vertex connects more than two virtual edges, then it is replaced by a dual face consisting
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Figure 2: The notations for the initial control grid and knot intervals.
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(a) The virtual edges (b) The topological rule

Figure 3: The topological rule of the first level for HNUSS. In (a), the red edges are virtual edges, the black

and green vertices are virtual vertices, where two black ones are also EPs. The final mesh after first level

subdivision is shown in (b).

of n new vertices, and otherwise it splits into two new vertices. Each virtual edge is then replaced by a dual

face. In this manner, we obtain a hybrid dual mesh; see the blue vertices in Figure 3 (b). Edges of each dual

face corresponding to an EP are assigned with zero knot intervals and the knot intervals of edges touching

non-virtual vertices are kept unchanged. Knot intervals for the other dual edges can be inferred from the

opposite edges.

The topological rule for the subsequent levels is based on the hybrid dual mesh of the first level, where

there are three different types of faces, referring to Figure 4.

• A face with all zero-knot-interval edges: we will not split it topologically;

• A face with two opposite edges of nonzero knot intervals: we spit it into two faces at each level;

• A face with all the four edges of nonzero knot intervals: we spit it into four faces at each level;

Now, we focus on the geometric rules based on the notations in Figure 5. For the regular control grid,

the geometric rule of the first level corresponds to insertion of zero knot intervals. Thus, we can derive the

4
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Figure 4: The topological rule of the subsequent levels for HNUSS. (a) shows three different types of face

splitting and (b) shows the final mesh after subdivision.

rules directly from non-uniform B-spline knot insertion. Similar to [26], we can derive a heuristic rule for

the EPs. Let the grey control grid be the initial control grid and V , Ei, Fi be its vertices. Vertices of the

first-level hybrid dual mesh that needs to be updated are calculated as

P 1,1
i = Fi,

P 1,0
i = piFi + (1− pi)Ei,

P 0,1
i = qiFi + (1− qi)Ei+1,

P 0,0
i = piqiFi + (1− pi)qiEi + pi(1− qi)Ei+1 + (1− pi)(1− qi)V,

where pi =
di−1

di−1+di+1+ai+1
and qi =

di+2

di+2+di+ai
. The rule obtained from the above equations is simple but

has poor shape quality for non-uniform knot intervals (see Figure 6 as an example). Our construction to

define P 0,0
i will be discussed in detail in the next section.

The geometric rules for the subsequent levels utilize the notations in Figure 5 (b), where P j,k
i denotes

the control points at the current level and P
j,k

i denotes the corresponding control points after subdivision.

We only provide the refinement rules for points P
0,0

i , P
1,0

i , P
1,1

i and P
0,1

i , and the others can be derived

from NURBS refinement rules such as Equations (1), (2) and (3). We have

P
1,1

i =
didi+1P

1,1
i + di(di+1 + 2ai+1)P

1,0
i + di+1(di + 2ai)P

0,1
i + (di + 2ai)(di+1 + 2ai+1)P

0,0
i

4(di + ai)(di+1 + ai+1)
,

P
1,0

i =
didi+1P

0,1
i−1 + di(di+1 + 2di−1)P

1,0
i + di+1(di + 2ai)P

0,0
i−1 + (di + 2ai)(di+1 + 2di−1)P

0,0
i

4(di−1 + di+1)(di + ai)
,

P
0,1

i =
didi+1P

1,0
i+1 + di+1(2di+2 + di)P

0,1
i + di(di+1 + 2ai+1)P

0,0
i+1 + (di+1 + 2ai+1)(di + 2di+2)P

0,0
i

4(di−1 + di+1)(di + ai)
,

P
0,0

i =
P 0,0
i + C

2
+ αi(−nP 0,0

i +

n−1∑
j=0

(1 + 2 cos(
2(j − i)π

n
))P 0,0

j ),

where αj =
1
n

dj−1dj+2

(dj−1+dj+1)(dj+dj+2)
and

C =

∑n−1
i=0 (di−1 + di+3)(diP

0,0
i+1 + di+2P

0,0
i )∑n−1

j=0 (dj + dj+2)(dj−1 + dj+3)

.
=

n−1∑
i=0

βiP
0,0
i . (4)
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Figure 5: The geometric rules for the HNUSS. (a) is the rule for the first level while (b) is the rule for the

subsequent levels.

Remark 1. There are two main differences between the geometric rule for P
0,0

i and the non-uniform Doo-

Sabin subdivision scheme [26]. One is the rule to define αi: our proposed rule can guarantee that both the

second and the third eigenvalues of the subdivision matrix are 1
2 while the non-uniform Doo-Sabin subdivision

scheme can be divergent. The second difference is the rule to define the point C in equation (4) which can

be used to prove the characterization map is regular and injective.

Remark 2. The HNUSS can be generalized to the rational representation by assigning a weight for each

vertex. The rational control points can be projected into R4, subdivided using the same rule, and then projected

back into R3.

Theorem 1. The HNUSS limit surface is globally G1-continuous on 2-manifold control mesh with arbitrary

topology and any positive knot intervals.

Proof. This theorem follows directly from Lemma 1 and Lemma 3 according to the subdivision book [32].

Details of their proofs are given in the appendix.

4. Geometric modeling with HNUSS

Although the first level of geometric rule does not change the continuity and convergence rates, the

geometric rule is very important for the final shape quality; see Figure 6 as an example. The rule derived

in Section 3 cannot provide satisfactory shape quality for non-uniform knot intervals. In this section, we

provide improved geometric rules for the first level hybrid dual mesh. The basic idea is to use the limit point

and tangent plane of the non-uniform subdivision via eigen-polyhedron to guide the construction of these

rules.

4.1. NURSS scheme and non-uniform subdivision via eigen-polyhedron

In this section, we first review the NURSS scheme in [26] and non-uniform subdivision via eigen-

polyhedron [1]. Figure 7 shows a valence-n EP V with the neighboring control points Ei and Fi, the

knot intervals di and ai, i = 0, . . . , n− 1. We need to define rules to compute new control points V , Ei and

6
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(a) The first level grid (b) The second level grid (c) The corresponding limit surface

Figure 6: The blending functions for a valence-5 EP with non-uniform knot intervals using the rule in

Section 3 could produce a poor-quality surface even though the surface is G1-continuous.

F i. Let P = [V,E0, . . . , En−1, F0, . . . , Fn−1]
T and P = [V ,E0, . . . , En−1, F 0, . . . , Fn−1]

T , the rules in [26]

can be written into a matrix form P = MP .

V
E

E F

E
F

i

ii+1

i-1
i-1

V

E
F

E

F

i

i

i-1

i+1

di ai

di+1

l0

F 0

l1

ln-1

En-1

F n-1

E1

E0

(a) 1-ring control points (b) Eigen-polyhedron

Figure 7: Notations for defining the non-uniform subdivision rule.

• Face points:

F i = ωiωi+1Fi + (1− ωi)ωi+1Ei+1 + (1− ωi+1)ωiEi + (1− ωi)(1− ωi+1)V, (5)

where ωi =
di−2+di+2+di

di−2+di+2+2di+2ai
.

• Edge points:

Ei =
di−1

2(di−1 + di+1)
F i +

di+1

2(di−1 + di+1)
F i−1 +

1

2
Mi, (6)

where Mi = ωiEi + (1− ωi)V .

• Vertex Point:

V =
n− 3

n
V +

3

n

∑n−1
i=0 (miMi + fiF i)∑n−1

i=0 (mi + fi)
, (7)

where fi = di−1di+2, mi = fi + fi−1.

Instead of defining the rules directly, a polyhedron in R2 called the eigen-polyhedron is first defined

and then the subdivision rules are defined based on the eigen-polyhedron. Referring to Figure 7, denote

7
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γ = 4

cos( 2π
n )+1+

√
(cos( 2π

n )+9)(cos( 2π
n )+1)

and λ = 1+γ
4γ . Let li =

2di+d−
i

3 , where d−i = di−2di+1+di+2di−1

di−1+di+1
. We

define a set of points V̂ , Êi and F̂i in R2, i.e., V̂ = (0, 0), Êi = li(cos
2iπ
n , sin 2iπ

n ) and F̂i = γ(Êi + Êi+1).

Then the subdivision rules can be defined in the following and the relationship can be written into a matrix

form P = NP .

• Vertex Point: the same as the NURSS rules and let V be the point of applying Equation (7) by

replacing V , Ei and Fi with V̂ , Êi and F̂i, respectively.

• Face points:

F i = αi,1αi,2Fi + (1− αi,1)αi,2Ei+1 + αi,1(1− αi,2)Ei + (1− αi,1)(1− αi,2)V, (8)

where αi,1 and αi,2 are the unique solution of the function

V + λF̂i = αi,1αi,2F̂i + (1− αi,1)αi,2Êi+1 + αi,1(1− αi,2)Êi + (1− αi,1)(1− αi,2)V̂ . (9)

• Edge points:

Ei = (1− βi,2)(
1− βi,1

2
Pi,1 +

βi,1

2
Pi,2 +

1

2
V ) + βi,2(

1− βi,1

2
Pi,3 +

βi,1

2
Pi,4 +

1

2
Ei), (10)

where

Pi,1 = (1− αi−1,1)V + αi−1,1Ei−1, Pi,2 = (1− αi,2)V + αi,2Ei+1; (11)

Pi,3 = (1− αi−1,1)Ei + αi−1,1Fi−1, Pi,4 = (1− αi,2)Ei + αi,2Fi, (12)

and βi,1 and βi,2 are the unique solution of the function

V + λÊi = (1− βi,2)(
1− βi,1

2
P̂i,1 +

βi,1

2
P̂i,2 +

1

2
V̂ ) + βi,2(

1− βi,1

2
P̂i,3 +

βi,1

2
P̂i,4 +

1

2
Êi), (13)

where P̂i,j are defined by replacing V , Ei and Fi in Equation (11) with V̂ , Êi and F̂i.

4.2. Geometric rule for the first level

Based on the knowledge of eigen-polyhedron, here we provide an improved method to obtain P 0,0
i . The

basic idea is to define P 0,0
i as a linear combination of V , Ei and Fi with the guide of the limit point and the

tangent plane of the limit surface produced by subdivision via eigen-polyhedron. All the information can be

directly computed from the subdivision matrix using Jordan decomposition of matrix N [32].

1. Compute the limit point C for the subdivision scheme based on eigen-polyhedron.

Denote the normalized left eigenvector corresponding to the eigenvalue 1 by L0 = [L0
0, . . . , L

0
2n] and we

have
∑2n

j=0 L
0
j = 1. The limit point is C = L0MTP according to [32]. Here we also use matrix M

because the subdivision scheme based on eigen-polyhedron uses the NURSS rule at the first level.

2. Compute the tangent plane for the subdivision scheme based on eigen-polyhedron.

We define two 2n×2nmatrices M̂ and N̂ , where N̂i,j = Ni+1,j+1−N0,j+1, M̂i,j = ci(Mi+1,j+1−M0,j+1),

ci =
2d−

i

2d−
i +di

, i = 0, 1, . . . , n−1 and ci+n = ci+ci+1

2 . Let P̂ = [E0−V, . . . , En−1−V, F0−V, . . . , Fn−1−V ]T .

Note that according to [1], λ is the leading eigenvalue for the matrix N̂ . N̂ can be written into the form

of N̂ = UΛU−1, where Λ is a diagonal matrix with the elements being the eigenvalues. Suppose i1 and

i2 are two indices such that Λ(i1, i1) = Λ(i2, i2) = λ. Let Λ̂ be a new diagonal matrix where all the

elements are zero except that Λ̂(i1, i1) = Λ̂(i2,i2) = 1. Then we can define a new matrix Q = U Λ̂U−1.

Now, we can define a set of vectors V i = [M̂QP̂ ]n+i.

8
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Figure 8: Notations for defining the new HNUSS rule in the first level.

3. Define the subdivision scheme for the EPs at the first level.

Since we have defined the HNUSS for the subsequent levels, the corresponding matrix can define the

limit point according to [32]. Denote the limit point C ′ by applying our new HNUSS subdivision to the

control points V i, then

P 0,0
i = V i + C − C ′.

Now, we show some HNUSS limit surface examples and compare them with the existing non-uniform

subdivision schemes. We first show the graphs of blending functions for the EPs with different valences, such

as valence-5 EP in the Figure 9, valence-6 EP in the Figure 10 and valence-7 EP in the Figure 11. We can

observe that the HNUSS and the rule in [1] have limit surfaces with similar quality which are much better

than the results produced by any other schemes.

(a) The control grid (b) Result produced by [26] (c) Result produced by [28]

(d) Result produced by [30] (e) Result produced by [1] (f) Result of HNUSS

Figure 9: The blending function for a valence-5 non-uniform EP using different approaches, where the knot

intervals of the red edges are 10 and those of the other edges are 1.
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(a) The control grid (b) Result produced by [26] (c) Result produced by [28]

(d) Result produced by [30] (e) Result produced by [1] (f) Result of HNUSS

Figure 10: The blending functions for a valence-6 non-uniform EP using different approaches, where the

knot intervals of the red edges are 10 and those of the other edges are 1.

(a) The control grid (b) Result produced by [30]

(c) Result produced by [1] (d) Result of HNUSS

Figure 11: The blending functions for a valence-7 non-uniform EP using different approaches, where the

knot intervals for the red edges are 7 and those of the other edges are 1.
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The improvement of the blending functions leads to the shape improvement in real-world models, such

as the ring model in Figure 12, the helmet model in Figure 13 and Figure 14.

(a) Result in [30] (b) Result in [1] (c) Result of HNUSS

Figure 12: A comparison of three methods ([30], [1] and HNUSS) applied to the ring model. The artifact in

the red box of (a) is removed in (b) and (c).

(a) Result produced by [26] (b) Result of HNUSS

Figure 13: A comparison of two methods ([26] and HNUSS) applied to the helmet model. Some artifacts in

(a) are removed in (b).

5. Isogeometric analysis with HNUSS

In this section, we apply the HNUSS to IGA. We first perform a patch test by solving the Poisson’s

equation on a unit square [0, 1]2 with the following manufactured solution,

u = x+ y.

The input control mesh is shown in Figure 15(a). We strongly impose the Dirichlet boundary condition on

the entire boundary, where a least-squares fitting is performed to obtain prescribed values corresponding to

boundary control points. To retain the accuracy of numerical integration, we subdivide an irregular element
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(a) Result in [26] (b) Result of HNUSS (c) Result in [30] (d) Result of HNUSS

Figure 14: The reflection lines for the helmet and ring models. (a) is the result produced by [26], (c) is the

result produced by [30] and (b), (d) are results produced by HNUSS.

several times and adopt 4-point Gaussian quadrature rule for each subelement, which is a common method

also used in [12, 24]. The patch test is passed with machine precision with the overall L2- and H1-norm

errors in the order of 10−13 and 10−11, respectively; similar results were also observed in [24].

We next numerically test the convergence behavior of the hybrid subdivision. We solve the Poisson’s

equation on four meshes with EPs of different valence numbers, ranging from 3 to 8; see the input meshes

in Figures 15−18. We adopt the following two manufactured solutions,

u = sin(πx) sin(πy), (14)

and

u = e(x+y)/2. (15)

L2- and H1-norm errors are evaluated on six meshes that are obtained through global refinement, which are

shown in solid curves in Figures 15−18. The element size is reduced by half in each refinement if measured in

the parametric domain, so over refinement we adopt element sizes as 1, 1/2, 1/4, etc. Classical Catmull-Clark

subdivision functions [31] are also used to solve the problem for comparison; see dashed curves. We observe

that in all the tested meshes, HNUSS possesses faster convergence rates than Catmull-Clark subdivision.

Particularly in the high valence cases (valence 6, 7 and 8), HNUSS converges one order faster than Catmull-

Clark subdivision. There are also some other papers working on the problem. For example, [22] constructs

the subdivision scheme with adapted refinement weights to improve the approximation error, which observes

the similar convergence rate as Catmull-Clark subdivision but with small approximation error. We also

notice that our results are comparable to those reported in [20], where a dynamic weighted refinement

was proposed to make the size of refined irregular elements more uniform than Catmull-Clark subdivision.

However, HNUSS can be used in the non-uniform case while the dynamic weighted refinement only supports

uniform cases to the authors’ best knowledge.

6. Conclusion and future work

This paper has introduced a new non-uniform subdivision scheme called Hybrid Non-Uniform Subdivision

Surface or HNUSS. The subdivision scheme generalizes bi-cubic NURBS to arbitrary topology with satisfac-

tory shape quality for non-uniform splines with EPs. The subdivision scheme is proved to be G1-continuous

for any valence EPs with any non-negative knot intervals. HNUSS-based isogeometric analysis has better

convergence rates than the Catmull-Clark subdivision scheme. As the HNUSS representation can be used

in both design and analysis, we believe it is a technology with great potential to handle EPs. In the future,

we plan to improve HNUSS such that it can achieve optimal convergence rates.
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(a) (b) (c)

Figure 15: Solving the Poisson’s equation on a unit square domain. (a) The input control mesh, and (b, c)

convergence curves plotted using the solutions in Equations (14) and (15), respectively.

(a) (b) (c)

Figure 16: Solving the Poisson’s equation on a valence six domain. (a) The input control mesh, and (b, c)

convergence curves plotted using the solutions in Equations (14) and (15), respectively.
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Appendix: proof of the continuity

The new HNUSS surface is always G1-continuous for any valence and any non-negative knot intervals.

Referring to Figure 19 for the notations, after enough refinement, the hybrid subdivision rule can be written

into the following equations.

P
0,0
j =

C + P 0,0
j

2
+ αj [−nP 0,0

j +

n−1∑
i=0

(1 + 2 cos(
2(j − i)π

n
))P 0,0

i ],

P
1,0
j =

6dj−1 + 3dj+1

8(dj−1 + dj+1)
P 0,0
j +

3dj+1

8(dj−1 + dj+1)
P 0,0
j−1 +

2dj−1 + dj+1

8(dj−1 + dj+1)
P 1,0
j +

dj+1

8(dj−1 + dj+1)
P 0,1
j−1,

P
0,1
j−1 =

3dj−1

8(dj−1 + dj+1)
P 0,0
j +

3dj−1 + 6dj+1

8(dj−1 + dj+1)
P 0,0
j−1 +

dj−1

8(dj−1 + dj+1)
P 1,0
j +

dj−1 + 2dj+1

8(dj−1 + dj+1)
P 0,1
j−1,

P
1,1
j =

9

16
P 0,0
j +

3

16
P 0,0
j +

3

16
P 0,0
j +

1

16
P 1,1
j .
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(a) (b) (c)

Figure 17: Solving the Poisson’s equation on a valence seven domain. (a) The input control mesh, and (b,

c) convergence curves plotted using the solutions in Equations (14) and (15), respectively.

(a) (b) (c)

Figure 18: Solving the Poisson’s equation on a valence eight domain. (a) The input control mesh, and (b,

c) convergence curves plotted using the solutions in Equations (14) and (15), respectively.

The above relation can be written into a matrix form P = SnP , and we have

P
0,0

0

...

P
0,0

n−1

P
1,0

0

...

P
0,1

n−1

P
1,1

0

...

P
1,1

n−1



=



Qn 0 0

T0 . . . 0

>
...

. . . 0 0

0 0 Tn−1

1
16 0 0

> >
...

. . .

0 0 1
16





P 0,0
0
...

P 0,0
n−1

P 1,0
0
...

P 0,1
n−1

P 1,1
0
...

P 1,1
n−1



. (16)

Denote Qn = (Qi,j), i, j ∈ [0, n− 1], then we obtain

Qi,j =

{
(
βj

2 + (1 + 2 cos( 2(j−i)π
n ))αi, j 6= i,

1
2 + βi

2 − (n− 3)αi, j = i,
(17)

and

Tj =

(
2dj−1+dj+1

8(dj−1+dj+1)
dj+1

8(dj−1+dj+1)
dj−1

8(dj−1+dj+1)
dj−1+2dj+1

8(dj−1+dj+1)

)
. (18)

In order to prove the HNUSS is G1-continuous, we need to prove that the spectrum of the subdivision

14

The Trial Version



P i

Pi-1

P i

P i

Pi

P i-1

Pi

Pi

Pi

di
di

di+1

1,0

1,1

0,1

0,10,0

1,0

1,1

0,1

0,0

Figure 19: Define the HNUSS subdivision matrix Sn for the 2-ring neighborhood of points around an

extraordinary point, where P j,k
i are points before subdivision and P

j,k

i are points after subdivision.

matrix Sn satisfies some constraints and the associated characterization map is regular and injective. Our

proof includes three steps:

1. Prove that the subdivision matrix satisfies the relationship in Lemma 1.

2. Construct the 1-ring neighborhood of control points for the characterization map in Lemma 2;

3. Compute the 4-ring neighborhood of control points for the characterization map and prove that the

characterization map is regular and injective in Lemma 3.

Lemma 1. For any valence EPs, the eigenvalues of the HNUSS subdivision matrix Sn satisfy

λ1 = 1 > λ2 = λ3 =
1

2
> |λk|, k = 4, 5, . . . , 4n. (19)

Proof. Since the HNUSS subdivision matrix Sn remains constant through all the subsequent subdivision

steps, we can use the eigenstructure of Sn to define the characterization map and analyze the continuity. The

eigenvalues of Sn consist of those of matrices Qn, Ti and
1
16In, where Qn and Ti are defined in Equations (17),

and (18) respectively, and In is an n× n identity matrix.

It is obvious that the matrix 1
16In has n identical eigenvalues 1

16 and it is easy to verify that the eigenvalues

of the 2 × 2 matrix Ti are 1
4 and 1

8 . It remains to look into the eigenvalues of Qn. We use the discrete

Fourier transform to analyze the eigenproperties. Let pk and pk, (k = 0, . . . , n − 1) be be Fourier vectors

corresponding to Pj and P j , i.e.,

pk = 1
n

∑n−1
j=0 P 0,0

j ωjk, pk =
1

n

n−1∑
j=0

P
0,0

j ωjk, (20)

P 0,0
k =

∑n−1
j=0 pjω

jk, P
0,0

k =

n−1∑
j=0

pjω
jk, (21)

where ω = e
2π
n and ω = e−

2π
n . Now the refinement rule can be formulated in terms of the Fourier vectors,

n−1∑
k=0

pkω
jk =

n−1∑
k=0

(

n−1∑
j=0

βj

2
ωjk)pk + p0 +

ωj

2
p1 +

ωj(n−1)

2
pn−1 + (

1

2
− nαj)

n−2∑
k=2

pkω
jk. (22)
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Using the inverse discrete Fourier transform and we can obtain
p0
p1
...

pn−1

 =


1 β1

2 · · · βn−1

2

0 1
2 > 0

0 0 Bn−3 0

0 0 > 1
2




p0

p1
...

pn−1

 , (23)

where

Bn−3 =
1

2
I −


∑n−1

j=0 αj

∑n−1
j=0 αjω

j . . .
∑n−1

j=0 αjω
(n−4)j∑n−1

j=0 αjω
(n−1)j

∑n−1
j=0 αj · · ·

∑n−1
j=0 αjω

(n−5)j

...
...

. . .
...∑n−1

j=0 αjω
4j

∑n−1
j=0 αjω

5j · · ·
∑n−1

j=0 αj

 . (24)

However, it is not easy to directly compute the eigenvalue for Bn−3. Instead we can construct a circulant

matrix Gn as follows:

Gn =


∑n−1

j=0 αj

∑n−1
j=0 αjω

j . . .
∑n−1

j=0 αjω
(n−1)j∑n−1

j=0 αjω
(n−1)j

∑n−1
j=0 αj · · ·

∑n−1
j=0 αjω

(n−2)j

...
...

. . .
...∑n−1

j=0 αjω
j

∑n−1
j=0 αjω

2j · · ·
∑n−1

j=0 αj

 . (25)

The eigenvalues µk for Gn can be computed explicitly, where µk = nαn−k ∈ (0, 1), k = 1, . . . , n. Denote the

the eigenvalues for Bn−3 by λB,i, then we can prove that λB,i lies in the domain (− 1
2 ,

1
2 ). Actually, Gn is

a positive definite matrix, so 1
2I − Bn−3 is also positive definite, which means that λB,i <

1
2 . On the other

hand, as µk < 1, I −Gn is a positive definite matrix, so I − ( 12I − Bn−3) is also positive definite, and thus

λB,i > − 1
2 . Therefore we can conclude that the eigenvalues of Sn are

λ1 = 1 > λ2 = λ3 =
1

2
> |λk|, k = 4, 5, . . . , 4n. (26)

The next step is to compute the characterization map and prove it is regular and injective. We first prove

the following lemma.

Lemma 2. Let Pi = (cos( 2iπn ), sin( 2iπn )) ∈ R2, i = 0, . . . , n − 1, C =
∑n−1

i=0 βiPi, and P be a n × 2 vector

containing all the Pi, i.e., P = [P0, P1, . . . , Pn−1]
T , then the HNUSS subdivision matrix Sn satisfies

Sn(P − C) =
1

2
(P − C). (27)

Proof. Denote P = SnP , then we have

P j − C =
Pj − C

2
+ αj [−n(cos(

2jπ

n
), sin(

2jπ

n
)) +

n−1∑
i=0

(1 + 2 cos(
2(j − i)π

n
))(cos(

2iπ

n
), sin(

2iπ

n
))]

=
Pj − C

2
+ αj [−n(cos(

2jπ

n
), sin(

2jπ

n
)) +

n−1∑
i=0

2 cos(
2(j − i)π

n
)(cos(

2iπ

n
), sin(

2iπ

n
))]

=
Pj − C

2
+ αj [−n(cos(

2jπ

n
), sin(

2jπ

n
))+

n−1∑
i=0

(cos(
2jπ

n
) + cos(

2(j − 2i)π

n
), sin(

2jπ

n
)− sin(

2(j − 2i)π

n
))]

=
Pj − C

2
.
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The above equation can be applied to any 0 ≤ j ≤ n− 1, therefore we can obtain

Sn(P − C) =
1

2
(P − C). (28)

Pi-10,0

Ei-1

Ei

C

Pi-10,1 P i-10,2 P i-10,3

P i0,0 P i1,0 P i2,0 P i3,0

P i0,1

Pi0,2

P i0,3

P i1,1 Pi2,1 P i3,1

P i1,2 P i2,2 P i3,2

P i1,3 P i2,3 P i3,3

P1

P2P3

Figure 20: Define the characterization map for HNUSS. The points satisfy Mn[P
0,0
0 − C, . . . , P 0,0

n−1 − C]T =
1
2 [P

0,0
0 − C, . . . , P 0,0

n−1 − C]T , where Mn is the HNUSS subdivision matrix for the 4-ring neighborhood of

points around an extraordinary point.

Lemma 3. The characterization map for HNUSS is regular and injective for any valence and any positive

knot intervals.

Proof. In order to prove the characterization map is regular and injective, around an EP we need to include

4×4 grid of control points in each segment to prove G1 continuity. We first need to compute the coordinates of

the involved control points, which are used to define the characterization map. The basic idea is based on the

fact that applying the subdivision rules to the related control grid is to scale the control grid by half. Referring

to Figure 20, let the control grid be P j,k
i , 0 ≤ j, k ≤ 3, 0 ≤ i ≤ n − 1, and the corresponding subdivision

matrix be Mn. According to Lemma 2, denote P 0,0
i = Pi = (cos( 2iπn ), sin( 2iπn )) ∈ R2, i = 0, . . . , n − 1,

C =
∑n−1

i=0 βiPi, then Mn[P
0,0
0 − C, . . . , P 0,0

n−1 − C]T = 1
2 [P

0,0
0 − C, . . . , P 0,0

n−1 − C]T .

Let Ei =
di

di+di+2
P 0,0
i+1 +

di+2

di+di+2
P 0,0
i . For the points P 0,1

i−1 and P 1,0
i , according to the fact that the new

grid after subdivision is the scale of 1
2 of the given control grid. Using this relationship, we have

(1− 2di−1 + di+1

4(di−1 + di+1)
)P 1,0

i − di+1

4(di−1 + di+1)
P 0,1
i−1 =

6di−1 + 3di+1

4(di−1 + di+1)
P 0,0
i +

3di+1

4(di−1 + di+1)
P 0,0
i−1 − C,

(1− 2di+1 + di−1

4(di−1 + di+1)
)P 0,1

i−1 −
di−1

4(di−1 + di+1)
P 1,0
i =

3di−1 + 6di+1

4(di−1 + di+1)
P 0,0
i−1 +

3di−1

4(di−1 + di+1)
P 0,0
i − C.

Solving the linear systems we get

P 1,0
i − P 0,0

i = P 0,1
i−1 − P 0,0

i−1 = 2(Ei−1 − C). (29)

Similarly, we can compute P 2,0
i , P 3,0

i , P 0,3
i−1, P

0,3
i−1 as

P 2,0
i − P 1,0

i = P 0,2
i−1 − P 0,1

i−1 = 3(Ei−1 − C),

P 3,0
i − P 2,0

i = P 0,3
i−1 − P 0,2

i−1 = 3(Ei−1 − C).
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Let p = P 0,0
i − C, v = Ei−1 − C and w = Ei − C, then we compute the remaining control points P j,k

i such

that Mn[P
0,0
0 − C,P 1,0

0 − C, . . . , P 3,3
n−1 − C]T = 1

2 [P
0,0
0 − C,P 1,0

0 − C, . . . , P 3,3
n−1 − C]T . We obtain P 3,1

i P 3,2
i P 3,3

i

P 2,1
i P 2,2

i P 2,3
i

P 1,1
i P 1,2

i P 1,3
i

 = C +


93p+12v+222w

35
939p+393v+1014w

217
5853p+2523v+2523w

1085
87p+18v+123w

35
3987p+2523(v+w)

1085
939p+1014v+393w

217
15p+6(v+w)

7
87p+123v+18w

35
93p+222v+18w

35

 . (30)

With all these control points, we can extract the Bézier control points for the patches P1, P2 and P3.

For example, the 4× 4 Bézier control points for patch P2 has the explicit form

C +


1901p+1354v+1354w

1085
2221p+2119v+1034w

1085
473p+612v+178w

217
9899p+16141v+3121w

4340
2221p+1034v+2119w

1085
535p+333v+333w

217
2901p+2524v+1439w

1085
3074p+3436v+1266w

1085
473p+178v+612w

217
2901p+1439v+2524w

1085
3229p+2196v+2196w

1085
3482p+3082v+1943w

1085
9899p+3121v+16141w

4340
3074p+1266v+3436w

1085
3482p+1943v+3028w

1085
3802p+2708v+2708w

1085

 .

Then two directional derivatives of patch P2,
∂P2

∂t and ∂P2

∂s , are bi-degree 3 × 2 and 2 × 3 Bézier patches

respectively, where vectors of the control points are

∂P2

∂t
:


64p−64v+153w

217
454p−454v+631w

1085
536p−536v+549w

1085
2397p−2397v+1943w

4340
144p−144v+941w

1085
226p−226v+859w

1085
328p−328v+757w

1085
408p−408v+677w

1085
439p−439v+3901w

4340
173p−173v+912w

1085
253p−253v+832w

1085
64p−64v+153w

217

 , (31)

∂P2

∂s
:


64p+153v−64w

217
144p+941v−144w

1085
439p+3901v−439w

4340
454p+631v−454w

1085
226p+859v−226w

1085
173p+912v−173w

1085
536p+549v−536w

1085
328p+757v−328w

1085
253p+832v−253w

1085
2397p+1943v−2397w

4340
408p+677v−408w

1085
64p+153v−64w

217

 . (32)

From Equation (4), we can observe that C is a convex combination of the points Ei, so the control

points P 0,0
i lie in the regions bounded by two rays CEi−1 and CEi. The control points for ∂P2

∂t are convex

combinations of vectors p, −v and w, while the control points for ∂P2

∂s are convex combinations of vectors

p, v and −w, so the patch of P2 is regular and injective. On the other hand, from the above computation,

we can observe that for any i, the control points P 0,0
i , P 1,0

i , P 2,0
i and P 3,0

i are also collinear, the control

points P 0,0
i−1, P

0,1
i−1, P

0,2
i−1 and P 0,3

i−1 are collinear, and these two lines are parallel. In addition, according to

Equation (30), the points P j,k
i , 0 ≤ j, k ≤ 3, all lie in the regions bounded by two rays CEi−1 and CEi.

Thus, the characterization map of HNUSS is regular and injective for any valence and any positive knot

intervals.
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