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Abstract

This paper introduces a new non-uniform subdivision surface representation, called hybrid non-uniform sub-
division surface (for short, HNUSS). The subdivision scheme is constructed through two steps. The first
step inserts a set of edges and converts a valence-n extraordinary point into a valence-n face. The second
step combines both primal and dual subdivision schemes to define the subdivision rules. The developed
subdivision scheme generalizes bi-cubic NURBS to arbitrary topology and is proved to be G'-continuous for
any valence extraordinary points and any non-negative knot intervals. The HNUSS limit surface has compa-
rable shape quality as non-uniform subdivision via eigen-polyhedron [1] and has better shape quality than
all the other subdivision schemes. In addition, numerical experiments show that HNUSS based isogeometric

analysis yields improved convergence rates compared to any existing non-uniform subdivision schemes.
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1. Introduction

Isogeometric analysis (IGA) has emerged as a unification technology between computer-aided design
(CAD) and numerical simulation. The key insight of IGA is the fact that numerical simulation relies on
finite element method with discrete approzimation of models from CAD, which is classically based on non-
uniform rational B-splines (NURBS). The main advantages of the IGA include the elimination of both the
geometry approximation error and the computation cost of changing the representation between design and
analysis. NURBS are the current standard geometry representation in CAD. NURBS provide intuitive
control in the design process, and support fast and stable evaluation. NURBS also offer many advantages in
the analysis through IGA [2, 3, 4, 5]. However, a major drawback of NURBS is the tensor-product structure
that makes it difficult to model freeform geometry with arbitrary topology. Such a geometry needs to be
decomposed into a set of C'~!-continuous patches, which often leads to continuity problems during analysis.

There are two main categories of approaches to define representations for extraordinary points (EPs).
The first category utilizes a finite number of patches to fill the neighboring region around EPs with many
methods developed [6, 7, 8, 9, 10, 11, 12, 13]. Among these methods, manifold splines [13] and smooth cubic
splines [14, 15] observe optimal convergence rates. The other category utilizes subdivision with an infinite
number of patches around the EPs [16]. Subdivision algorithms are a generalization of splines to define free-
ascs of arbitrary topology, which is the standard in the animation industry. Subdivision surfaces
ractive in IGA [17, 18, 19, 20, 21, 22]. Subdivision-based local refinement and its application
e been studied for both Catmull-Clark subdivision [23, 24] and Loop subdivision [25]. However,
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compatible to NURBS, we need to derive subdivision schemes which can support non-uniform splines. This
issue was firstly addressed in [26], and later was extended in [27, 28, 29, 30, 1].

In this paper, we aim to develop a subdivision technique which can support non-uniform splines with
arbitrary topology and improved convergence rates. Particularly, this paper focuses on how to define a non-
uniform subdivision scheme such that it can be used for both design (shape quality near EPs) and analysis
(with improved convergence rates). For this purpose, we present a new Hybrid Non-Uniform Subdivision
Scheme (for short, HNUSS). The HNUSS is constructed through two steps. The first step converts each
EP into an extraordinary face by inserting a set of edges, and then in the second step we define a new
subdivision scheme which combines the primal and dual subdivision schemes in the subsequent levels. The

main features of the new subdivision scheme include:

1. The HNUSS generalizes bi-cubic NURBS to arbitrary topology;

2. The HNUSS limit surface is proved to be G'-continuous for any valence EPs and has satisfactory
geometric quality for non-uniform parameterization. To the authors’ best knowledge, this is the first
paper which can prove G! continuity for non-uniform EPs.

3. Numerical experiments show that HNUSS-based IGA yields improved convergence rates compared to

all the existing non-uniform subdivision schemes.

The rest of the paper is organized as follows. Section 2 reviews the existing non-uniform subdivision
schemes and then we discuss how to construct the new HNUSS in Section 3. Geometric modeling and
isogeometric analysis based on HNUSS are discussed in Sections 4 and 5, respectively. The last section

draws conclusion and points out future work.

2. Existing non-uniform subdivision schemes

The most popular way to generalize splines to arbitrary topology is using subdivision. This has been well
studied for uniform splines [31]. In the non-uniform case, subdivision in regular regions away from EPs is
equivalent to NURBS refinement, which relies on the conventional knot insertion: a knot is inserted midway
between each pair of existing knots. Referring to the notations in Figure 1, V', E; and F; denote the control
points at the current level and V, E;, F; denote the corresponding control points after subdivision. Then the
refinement rule can be summarized as follows. Each face/edge/vertex point is updated using its neighboring
vertex points, edge points and face points, for example,
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re several different methods to define non-uniform subdivision around EPs, where knot infor-
.- pdfe|ement coupled with knot intervals by assigning a non-negative number to each edge of the control
e v B ], the subdivision rule around EPs was formulated by replacing the undefined knot intervals in
1), (2) and (3) by the average of some knot intervals. Another prior art that aims to unify cubic
and Catmull-Clark surfaces into a single representation includes Extended Subdivision Surfaces [27]

and Dinus [29]. These schemes handle EPs by reverting to Catmull-Clark rules, and ignoring the actual knot
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Figure 1: Bi-cubic NURBS can be regarded as the limit of knot splitting process.

intervals. A strategy [28] was proposed to minimize the difference in knot intervals around an EP, which
repeatedly splits the largest knot interval at an EP if it is more than twice as large as the smallest knot
interval at that EP, and then performs a local refinement to make all knot intervals the same. The refine-
ment rules in [26] was modified by changing the average to the maximal knot interval in [30]. All the above
schemes suffer from the same problem of their corresponding limit surfaces: with non-uniform knot intervals,
the blending functions of EPs can have two local maxima. This problem has been solved by the technique
of eigen-polyhedron [1], where numerical experiments showed that the limit surface is G''-continuous at the

EPs of valence between 3 and 8. However, it is still an open problem to provide a solid proof for that.

3. Construction of HNUSS

In this section, we discuss how to contruct HNUSS in detail. Given a control grid of arbitrary topology
with predefined knot intervals, we need to define a blending function for each vertex such that it specializes
to NURBS when the valence of each vertex is four. As shown in Figure 2, d;, d;, d;, and a;, @;, a; are
knot intervals and can be any non-negative real numbers. Our discussion assumes that the control grid is a
regular manifold grid and all the faces are quadrilaterals. If the assumption does not hold initially, we apply
a single NURSS refinement [26, 1] in advance. We assume knot intervals on the opposite edges are the same,
ie., d; = Cii = CL', and a; = a; = a;.

On a quadrilateral mesh, a regular vertex has a valence of four in the interior, a valence of three on the
boundary and a valence of two at the corner. It is called an irregular vertex or extraordinary point otherwise.
Topologically a regular vertex in the interior is a crossing of two coordinate lines in a 2D cartesian grid,
where we can easily build a right-handed local coordinate system cyclically. A parametric line is generated
by tracing a local coordinate direction through regular vertices and ending with extraordinary points or
boundary vertices. It is a connected by a sequence of edges, such that two subsequent edges are always
hrough a regular vertex where both edges belong to the same local parametric direction. Vertices

bn the parametric lines are called wvirtual vertices and virtual edges, the meaning of which will
.- pdfelement wr in the following. As illustrated in Figure 3 (a), all the red edges are virtual edges and all the
S : reen vertices are virtual vertices. Here red dots represent regular vertices.
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rid subdivision contains two steps of rules: a topological step and a geometric step. The topo-
logical rules of the first step yield a hybrid dual mesh, as illustrated in Figure 3. At the first level, if a

valence-n virtual vertex connects more than two virtual edges, then it is replaced by a dual face consisting
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Figure 3: The topological rule of the first level for HNUSS. In (a), the red edges are virtual edges, the black
and green vertices are virtual vertices, where two black ones are also EPs. The final mesh after first level

subdivision is shown in (b).

of n new vertices, and otherwise it splits into two new vertices. Each virtual edge is then replaced by a dual
face. In this manner, we obtain a hybrid dual mesh; see the blue vertices in Figure 3 (b). Edges of each dual
face corresponding to an EP are assigned with zero knot intervals and the knot intervals of edges touching
non-virtual vertices are kept unchanged. Knot intervals for the other dual edges can be inferred from the
opposite edges.

The topological rule for the subsequent levels is based on the hybrid dual mesh of the first level, where

there are three different types of faces, referring to Figure 4.
b with all zero-knot-interval edges: we will not split it topologically;

||
] pdfelement b with two opposite edges of nonzero knot intervals: we spit it into two faces at each level;
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b with all the four edges of nonzero knot intervals: we spit it into four faces at each level;

Now, we focus on the geometric rules based on the notations in Figure 5. For the regular control grid,

the geometric rule of the first level corresponds to insertion of zero knot intervals. Thus, we can derive the
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(a) Three different types of face splitting (b) Topological rule for the subsequent levels

Figure 4: The topological rule of the subsequent levels for HNUSS. (a) shows three different types of face
splitting and (b) shows the final mesh after subdivision.

rules directly from non-uniform B-spline knot insertion. Similar to [26], we can derive a heuristic rule for
the EPs. Let the grey control grid be the initial control grid and V', F;, F; be its vertices. Vertices of the
first-level hybrid dual mesh that needs to be updated are calculated as

P = F

(2

P =piFi + (1 - pi)E;,

Pio’l =q¢Fi+(1—¢)Ei,
P = pigiFy + (1 — pi)@iEi + pi(1 — @) Eiyr + (1 — pi)(1 — @)V,

dit2

di=1 and ¢; = TatdTar The rule obtained from the above equations is simple but

di—1tdip1+aitr
has poor shape quality for non-uniform knot intervals (see Figure 6 as an example). Our construction to

define PZ-O’O will be discussed in detail in the next section.

where p; =

The geometric rules for the subsequent levels utilize the notations in Figure 5 (b), where Pij * denotes

. =4,k . . e
the control points at the current level and Pg denotes the corresponding control points after subdivision.
We only provide the refinement rules for points ﬁ?’07 Pﬁ ’0, ﬁ; * and P?’17 and the others can be derived

from NURBS refinement rules such as Equations (1), (2) and (3). We have
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Figure 5: The geometric rules for the HNUSS. (a) is the rule for the first level while (b) is the rule for the

subsequent levels.

Remark 1. There are two main differences between the geometric rule for ﬁ?’o and the non-uniform Doo-
Sabin subdivision scheme [26]. One is the rule to define a;: our proposed rule can guarantee that both the
second and the third eigenvalues of the subdivision matriz are % while the non-uniform Doo-Sabin subdivision
scheme can be divergent. The second difference is the rule to define the point C' in equation (4) which can

be used to prove the characterization map is reqular and injective.

Remark 2. The HNUSS can be generalized to the rational representation by assigning a weight for each
vertez. The rational control points can be projected into R*, subdivided using the same rule, and then projected
back into R3.

Theorem 1. The HNUSS limit surface is globally G -continuous on 2-manifold control mesh with arbitrary

topology and any positive knot intervals.

Proof. This theorem follows directly from Lemma 1 and Lemma 3 according to the subdivision book [32].

Details of their proofs are given in the appendix. [

4. Geometric modeling with HNUSS

Although the first level of geometric rule does not change the continuity and convergence rates, the
geometric rule is very important for the final shape quality; see Figure 6 as an example. The rule derived
in Section 3 cannot provide satisfactory shape quality for non-uniform knot intervals. In this section, we
provide improved geometric rules for the first level hybrid dual mesh. The basic idea is to use the limit point

anoent plane of the non-uniform subdivision via eigen-polyhedron to guide the construction of these
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section, we first review the NURSS scheme in [26] and non-uniform subdivision via eigen-
polyhedron [1]. Figure 7 shows a valence-n EP V with the neighboring control points E; and Fj, the

knot intervals d; and a;, i = 0,...,n — 1. We need to define rules to compute new control points V, E; and



(a) The first level grid (b) The second level grid  (c) The corresponding limit surface

Figure 6: The blending functions for a valence-5 EP with non-uniform knot intervals using the rule in

Section 3 could produce a poor-quality surface even though the surface is G'-continuous.

F;. Let P=[V,Eo,....,En_1,Fo,...,F_1]T and P = [V, Eq,...,En_1,Fo,...,Fp_1]T, the rules in [26]
can be written into a matrix form P = M P.

(a) 1-ring control points (b) Eigen-polyhedron

Figure 7: Notations for defining the non-uniform subdivision rule.

e Face points:

Fi = winlFi + (]. — wi)wi+1Ei+1 + (]. — wi+1)wiEi + (]. — wz)(l — (J.}i+1)‘/, (5)
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Instead of defining the rules directly, a polyhedron in R? called the eigen-polyhedron is first defined
and then the subdivision rules are defined based on the eigen-polyhedron. Referring to Figure 7, denote
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define a set of points V, E; and F; in R?, i.e., V= (0,0), El = [;(cos %,sin 217”) and }/7‘\1 = 'y(El + Ei+1).
Then the subdivision rules can be defined in the following and the relationship can be written into a matrix
form P = NP.

e Vertex Point: the same as the NURSS rules and let V be the point of applying Equation (7) by
replacing V', F; and F; with ‘A/, Ei and l?’i, respectively.

e Face points:
Fi=a10;0F + (1 —aj1)aioEiv1 +ai1(1— i) B+ (1 — a;1)(1 — ai2)V, (8)
where «; 1 and o 2 are the unique solution of the function
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Ps = (1-0i—11)EBi+0i—11Fiq, Py=(1-0w2)E; +F;, (12)

and ;1 and ;2 are the unique solution of the function

1— 0 Bi1
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N ~ . 1~ N N
V+AE; = (1 - Bi2)( P+ Pio+ §V) + Bia( Pis+ P4+

where ﬁ” are defined by replacing V, F; and F; in Equation (11) with ‘7, EZ and E.

4.2. Geometric rule for the first level

Based on the knowledge of eigen-polyhedron, here we provide an improved method to obtain PZ-O’O. The
basic idea is to define Pio,o as a linear combination of V| F; and F; with the guide of the limit point and the
tangent plane of the limit surface produced by subdivision via eigen-polyhedron. All the information can be

directly computed from the subdivision matrix using Jordan decomposition of matrix N [32].

1. Compute the limit point C' for the subdivision scheme based on eigen-polyhedron.
Denote the normalized left eigenvector corresponding to the eigenvalue 1 by L° = [L§,..., L3,] and we
have Z?Zo LY = 1. The limit point is C = LM P according to [32]. Here we also use matrix M
because the subdivision scheme based on eigen-polyhedron uses the NURSS rule at the first level.
2. Compute the tangent plane for the subdivision scheme based on eigen-polyhedron.
We define two 2n x 2n matrices M and Z\Af7 where ]\Afm = Nit1,j4+1—Noj+1, Z\ZJ =¢;(Mit1,j41—Mo j11),
S i=0,1... n-land iy = Gt Let P=[Ey-V,...,En1—V,Fo—V,...,Fpo1—V]T.
.- pdfe|emeht at according to [1], A is the leading eigenvalue for the matrix N. N can be written into the form

UAU™!, where A is a diagonal matrix with the elements being the eigenvalues. Suppose i; and
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wo indices such that A(i1,71) = A(i2,i2) = A. Let A be a new diagonal matrix where all the

elements are zero except that A(i1, i) = K(1212) — 1. Then we can define a new matrix Q = UAU L.

Now, we can define a set of vectors V; = [M\Qﬁ]nﬂ



Figure 8: Notations for defining the new HNUSS rule in the first level.

3. Define the subdivision scheme for the EPs at the first level.
Since we have defined the HNUSS for the subsequent levels, the corresponding matrix can define the
limit point according to [32]. Denote the limit point C’ by applying our new HNUSS subdivision to the

control points V;, then
P =V, +C-C".

Now, we show some HNUSS limit surface examples and compare them with the existing non-uniform
subdivision schemes. We first show the graphs of blending functions for the EPs with different valences, such
as valence-5 EP in the Figure 9, valence-6 EP in the Figure 10 and valence-7 EP in the Figure 11. We can
observe that the HNUSS and the rule in [1] have limit surfaces with similar quality which are much better

A

(a) The control grid (b) Result produced by [26] (c) Result produced by [28]

. \

than the results produced by any other schemes.
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the red edges are 10 and those of the other edges are 1.
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(a) The control grid ) Result produced by [26] ) Result produced by [28]
) Result produced by [30] (e) Result produced by [1 ) Result of HNUSS

Figure 10: The blending functions for a valence-6 non-uniform EP using different approaches, where the
knot intervals of the red edges are 10 and those of the other edges are 1.

(a) The control grid ) Result produced by [30]
— pdfe|emeht ) Result produced by [1] ) Result of HNUSS
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The blending functions for a valence-7 non-uniform EP using different approaches, where the

knot intervals for the red edges are 7 and those of the other edges are 1.
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The improvement of the blending functions leads to the shape improvement in real-world models, such
as the ring model in Figure 12, the helmet model in Figure 13 and Figure 14.

) Result in [30] ) Result in [1] ) Result of HNUSS

Figure 12: A comparison of three methods ([30], [1] and HNUSS) applied to the ring model. The artifact in
the red box of (a) is removed in (b) and (c).

) Result produced by [26] ) Result of HNUSS

Figure 13: A comparison of two methods ([26] and HNUSS) applied to the helmet model. Some artifacts in
(a) are removed in (b).

5. Isogeometric analysis with HNUSS

In this section, we apply the HNUSS to IGA. We first perform a patch test by solving the Poisson’s
o 2 unit square [0, 1) with the following manufactured solution,

B pdfelement w=z+y.

I Tl Sl ontrol mesh is shown in Figure 15(a). We strongly impose the Dirichlet boundary condition on
Boundary, where a least-squares fitting is performed to obtain prescribed values corresponding to

boundary control points. To retain the accuracy of numerical integration, we subdivide an irregular element

11



(a) Result in [26] (b) Result of HNUSS (c) Result in [30] (d) Result of HNUSS

Figure 14: The reflection lines for the helmet and ring models. (a) is the result produced by [26], (¢) is the
result produced by [30] and (b), (d) are results produced by HNUSS.

several times and adopt 4-point Gaussian quadrature rule for each subelement, which is a common method
also used in [12, 24]. The patch test is passed with machine precision with the overall L?- and H!-norm
errors in the order of 10713 and 10711, respectively; similar results were also observed in [24].

We next numerically test the convergence behavior of the hybrid subdivision. We solve the Poisson’s
equation on four meshes with EPs of different valence numbers, ranging from 3 to 8; see the input meshes

in Figures 15—18. We adopt the following two manufactured solutions,
u = sin(7x) sin(my), (14)

and

w = e&Tv)/2 (15)
L?- and H'-norm errors are evaluated on six meshes that are obtained through global refinement, which are
shown in solid curves in Figures 15—18. The element size is reduced by half in each refinement if measured in
the parametric domain, so over refinement we adopt element sizes as 1, 1/2, 1/4, etc. Classical Catmull-Clark
subdivision functions [31] are also used to solve the problem for comparison; see dashed curves. We observe
that in all the tested meshes, HNUSS possesses faster convergence rates than Catmull-Clark subdivision.
Particularly in the high valence cases (valence 6, 7 and 8), HNUSS converges one order faster than Catmull-
Clark subdivision. There are also some other papers working on the problem. For example, [22] constructs
the subdivision scheme with adapted refinement weights to improve the approximation error, which observes
the similar convergence rate as Catmull-Clark subdivision but with small approximation error. We also
notice that our results are comparable to those reported in [20], where a dynamic weighted refinement
was proposed to make the size of refined irregular elements more uniform than Catmull-Clark subdivision.
However, HNUSS can be used in the non-uniform case while the dynamic weighted refinement only supports

uniform cases to the authors’ best knowledge.

6. Conclusion and future work

paper has introduced a new non-uniform subdivision scheme called Hybrid Non-Uniform Subdivision
NUSS. The subdivision scheme generalizes bi-cubic NURBS to arbitrary topology with satisfac-

.- pdfe|emeht huality for non-uniform splines with EPs. The subdivision scheme is proved to be G!-continuous
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bnce EPs with any non-negative knot intervals. HNUSS-based isogeometric analysis has better
b rates than the Catmull-Clark subdivision scheme. As the HNUSS representation can be used
in both design and analysis, we believe it is a technology with great potential to handle EPs. In the future,

we plan to improve HNUSS such that it can achieve optimal convergence rates.
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Figure 15: Solving the Poisson’s equation on a unit square domain. (a) The input control mesh, and (b, c)

convergence curves plotted using the solutions in Equations (14) and (15), respectively.
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Figure 16: Solving the Poisson’s equation on a valence six domain. (a) The input control mesh, and (b, c)

convergence curves plotted using the solutions in Equations (14) and (15), respectively.
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Appendix: proof of the continuity

The new HNUSS surface is always G'-continuous for any valence and any non-negative knot intervals.
Referring to Figure 19 for the notations, after enough refinement, the hybrid subdivision rule can be written
into the following equations.

— C + p>° n-l 27 — i
PO = S gl + Y (14 2eos( 20T
=0
pro_ 64 3djt1 poo B poo o 241 +dinn pio dji 01
j 8(dj—1+djt1) ? 8(dj—1 + djt1) j—1 8(dj_1 +dj41) ? 8(dj_1 +d;1) G—1s
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Figure 17: Solving the Poisson’s equation on a valence seven domain. (a) The input control mesh, and (b,

¢) convergence curves plotted using the solutions in Equations (14) and (15), respectively.
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Figure 18: Solving the Poisson’s equation on a valence eight domain. (a) The input control mesh, and (b,
¢) convergence curves plotted using the solutions in Equations (14) and (15), respectively.

The above relation can be written into a matrix form P = S,, P, and we have

P’ RO
: Qn 0 0 :
ﬁ(r)z’gl P
ﬁ(l)’o T ... 0 polvo
: = % o0 0 : (16)
?27; 0 0 To PS’—I1
P oo | A
; % x :
P, 00 )\ e
Denote @, = (Qi,;),%,7 € [0,n — 1], then we obtain
0us — (% + (14 2cos(2U=0T )0y, j £ 1, -
R o el e P i=i
a pdfelement
The Trial Version T — 82(32;;111) 85?;;53;11) . (18)

8(dj—1+djr1)  8(dj—1+djy1)

In order to prove the HNUSS is G'-continuous, we need to prove that the spectrum of the subdivision

14



Figure 19: Define the HNUSS subdivision matrix S,, for the 2-ring neighborhood of points around an

. . ik . .. —=J,k . .
extraordinary point, where P/"" are points before subdivision and P;" are points after subdivision.

matrix S, satisfies some constraints and the associated characterization map is regular and injective. Our

proof includes three steps:

1. Prove that the subdivision matrix satisfies the relationship in Lemma 1.
2. Construct the 1-ring neighborhood of control points for the characterization map in Lemma 2;
3. Compute the 4-ring neighborhood of control points for the characterization map and prove that the

characterization map is regular and injective in Lemma 3.

Lemma 1. For any valence EPs, the eigenvalues of the HNUSS subdivision matriz S, satisfy

1
)\1:1>)\2:>\3:§>|)\k|7 k=4,5,...,4n. (19)

Proof. Since the HNUSS subdivision matrix 5,, remains constant through all the subsequent subdivision
steps, we can use the eigenstructure of S, to define the characterization map and analyze the continuity. The
eigenvalues of S,, consist of those of matrices @,,, T; and 11—6[”, where @,, and T; are defined in Equations (17),
and (18) respectively, and I,, is an n X n identity matrix.

It is obvious that the matrix 1—16[ » has n identical eigenvalues % and it is easy to verify that the eigenvalues
of the 2 x 2 matrix T; are i and %. It remains to look into the eigenvalues of @,. We use the discrete
Fourier transform to analyze the eigenproperties. Let py and Py, (kK = 0,...,n — 1) be be Fourier vectors

corresponding to P; and Pj, ie.,

_ . 1 _ —0.0_ .
n—1 50,0— _ 0_
Pk = %ijo P; wik, P, = n Z P; Wk, (20)
§=0
00 n—1
0,0 n—1 ; -0, _
= RO =Eimopet P =3 pet 21)
m pdfelement j=0
The Trial Version % and w = e~ . Now the refinement rule can be formulated in terms of the Fourier vectors,
n—1 n—1 n—1 ; ; n—2
_ . ﬁ . w? w](n_l) 1 .
Domw =3 T okt po+ e+ T pan1 + (5 —nay) Y pre’™ (22)
k=0 k=0 ;=0 k=2
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Using the inverse discrete Fourier transform and we can obtain

D B B
Po I Ert Po
D 1 .
D1 _ 0 5 * 0 p1 7 (23)
: 0 0 By 0 :
_ . 1
Pn-1 00 * 2 Pn—1
where |
Z;:ol aj s oawl Z;?;Ol ajwm=4i
n=l =1 n—1 n—1 _  (n—5)j
1 Z‘:O W Z i—0 a Z':O oW
Pnos =51 - ] : ’ : 3 : : : (24)
1 1 1
Z;L o ajwt Z? o QW Z?:o a;

However, it is not easy to directly compute the eigenvalue for B, _3. Instead we can construct a circulant

matrix G, as follows:

-1 1 -1 1)

Z;;l 0o % Z;L 0 1%“’] Z?:ol ajw( =17

n n n— —_ ]
o Zj 0 O wn—1)j ZFO ; ijo ozjw(” 2)j (25)

n — . . . .
n— 1 n— 1. 24 n;l
Z] 0 ajw’ Zg 0 W e Zj:o Qj

The eigenvalues puy for G,, can be computed explicitly, where pup = na,—x € (0,1), k = 1,...,n. Denote the

the eigenvalues for B,,_3 by Ap;, then we can prove that Ap; lies in the domain (— 2, 2) Actually, G, is
a positive definite matrix, so %I — B, _3 is also positive definite, which means that Ap; < 2. On the other
hand, as up < 1, I — G, is a positive definite matrix, so I — (%I — By,_3) is also positive definite, and thus
A, > —3. Therefore we can conclude that the eigenvalues of S, are

1
)\1:1>)\2:)\3:§>|)\k|7 k=4,5,...,4n. (26)
0

The next step is to compute the characterization map and prove it is regular and injective. We first prove

the following lemma.

Lemma 2. Let P; = (cos(2%),sin(2%)) € R?, i =0,...,n—1, C = E?:_Ol BiP;, and P be a n x 2 vector
containing all the P;, i.e., P = [Py, Py,...,P,_1]T, then the HNUSS subdivision matriz S,, satisfies
1
Sp(P—C) = i(P_C)' (27)

Proof. Denote P = S, P, then we have

P;-C 5 2_ ¢ t+aj [‘MCOS(%),S&H( Qi )+ Z (1+ 2COS(@))(COS(?),$D(%))]

=0

:Pj;O + aj[—n(cos( J )’Sm(QiLﬂ n 22COS #)(co (l)7s (227”))]
i=0

B pdfelement _Pj;O +O‘J[_”(COS(2]TW)’S (2‘%)”
The Trial Version — (COS(%) i Cos(2(j *n Z)ﬂ), n(QJTﬂ) n(Q(j ;22)71'))]
i=0
P -C
2
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The above equation can be applied to any 0 < j < n — 1, therefore we can obtain

1
Sn(PfC)zi(PfC). (28)
O]
pY’ s
LGP pis
GRY l
i , Pg,z P3,2
1
P3 PZ
7 27 P!
i 2 P, P;
Ei 570 pr P20 pio
A ol L L . SR !
c Eig

Figure 20: Define the characterization map for HNUSS. The points satisfy M, [Pg’o -C,..., ngl —-C|" =
%[Pg’o -C,..., P,?fl — C)T, where M, is the HNUSS subdivision matrix for the 4-ring neighborhood of

points around an extraordinary point.

Lemma 3. The characterization map for HNUSS is reqular and injective for any valence and any positive
knot intervals.

Proof. In order to prove the characterization map is regular and injective, around an EP we need to include
4 x4 grid of control points in each segment to prove G* continuity. We first need to compute the coordinates of
the involved control points, which are used to define the characterization map. The basic idea is based on the
fact that applying the subdivision rules to the related control grid is to scale the control grid by half. Referring
to Figure 20, let the control grid be Pij’k, 0<74,k<3 0<i<n-—1, and the corresponding subdivision
matrix be M,,. According to Lemma 2, denote Pio’O = P; = (cos(%™) sin(%%)) € R?, i = 0,...,n — 1,

n n

C =10 BiP;, then M, [P — C,..., P — 0T =3[P —C,...,PX° —O]T.
Let E; = Mﬁﬂ&’% + %Pf’o. For the points PZ-0;11 and Pil’o, according to the fact that the new
grid after subdivision is the scale of % of the given control grid. Using this relationship, we have
(- 2d;_1 + dij1 \PLo dit1 pol _ 6d;_1 + 3d;11 poo | 3dit1 00 _ &
Addimr +digr)” " Udi—y +div1) T Adimg +digr) " ddi—q +dip1) ’
(1- 2d;i41 + di—1 POl di—1 1.0 _ 3di—1 + 6d;41 0.0 3di—1 PoO_ o
A(dimy +dig1)” 71 A(dioy + digr) Adim1 +dig1) T Adimy + dipa)
Solving the linear systems we get
P PP = P>l - P =2(E,_, - C). (29)

a pdfelement

2,0 p3,0 p03 10,3
e can compute P, P77, P, P24 as

The Trial Version

2,0 1,0 _ 0,2 0,1
P =P =P - P,

3,0 2,0 _ 10,3 0,2
P =P =P — P

3(E;i_y — O),
3(E;i_, — C).
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Let p = PZ-O’0 —C,v=F;_1 —C and w = F; — C, then we compute the remaining control points Pfk such
that M, [Py’ — C,Py° = C,...,P>% — O = L[P)° —C, P;° — C,..., P> — C]T. We obtain

3,1 3,2 3,3 93p+12v+222w  939p+393v+101dw  5853p+2523v+2523w
A 5 a > 3087p-+ 3593 Py
2,1 2,2 o :
p>' p*? p> .3 —C+ 87p+1837é+123w p+1085 (v+w) 939p+1021147v+393w _ (30)
1,1 1,2 1 3 15p+6(v+w) 87p+123v+18w 93p-+222v+18w
P P p 7 35 35

With all these control points, we can extract the Bézier control points for the patches Py, P> and Ps.

For example, the 4 x 4 Bézier control points for patch P, has the explicit form

1901p+1354v+1354w 2221p+2119v+1034w 473p+612v4+178w 9899p+16141v+3121w

1085 1085 217 4340
2221p+41034v+2119w 535p+333v+333w 2901p+42524v4-1439w 3074p+3436v+1266w

C + 1085 217 1085 1085
473p+178v+612w 2901p+4-1439v+2524w 3229p4-2196v+2196w 3482p+4-3082v+1943w

217 1085 1085 1085
9899p+3121v+16141w 3074p+1266v+3436w 3482p+1943v+3028w 3802p+-2708v+2708w
4340 1085 1085 1085

Then two directional derivatives of patch P, % and aap; 22, are bi-degree 3 x 2 and 2 x 3 Bézier patches

respectively, where vectors of the control points are

64p—64v+153w 454p—454v+631w 536p—536v+549w 2397p—2397v+1943w

OP 217 1085 1085 4340
2, 144p—144v4+941w  226p—226v+859w  328p—328v+757w  408p—408v+677w (31)
ot 1085 1085 1085 1085 ’
439p—439v+3901w  173p—173v+912w  253p—253v+832w 64p—64v+153w
4340 1085 1085 217
64p+153v—64w 144p+941v—144w  439p+3901v—439w
217 1085 4340
P 454p+631v—454w  226p+859v—226w  173p+912v—173w
2. 1085 1085 1085 (32)
s 536p+549v—536w  328p+75Tv—328w  253p+832v—253w
1085 1085 1085
2397p+19430—2397w  408p+677v—408w  64p+153v—G6dw
4340 1085 217

From Equation (4), we can observe that C is a convex combination of the points Fj;, so the control
points P0 % Jie in the regions bounded by two rays CE;_; and CE;. The control points for 8—; are convex
combinations of vectors p, —v and w, while the control points for % are convex combinations of vectors
p, v and —w, so the patch of P, is regular and injective. On the other hand, from the above computation,
we can observe that for any i, the control points Pio’O PI’O Pf’o and P?’ 0 are also collinear, the control
points Pio_’o17 Pio_’ll, Pio_’2 and P 1 are collinear, and these two lines are parallel. In addition, according to
Equation (30), the points PZ-]’ ,0 < 4,k < 3, all lie in the regions bounded by two rays CE;_1 and CF;.

Thus, the characterization map of HNUSS is regular and injective for any valence and any positive knot

intervals. O
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