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Abstract
Motivated by settings in which predictive models

may be required to be non-discriminatory with re-

spect to certain attributes (such as race), but even

collecting the sensitive attribute may be forbidden

or restricted, we initiate the study of fair learn-

ing under the constraint of differential privacy.

Our first algorithm is a private implementation

of the equalized odds post-processing approach

of (Hardt et al., 2016). This algorithm is appeal-

ingly simple, but must be able to use protected

group membership explicitly at test time, which

can be viewed as a form of “disparate treatment”.

Our second algorithm is a differentially private

version of the oracle-efficient in-processing ap-

proach of (Agarwal et al., 2018) which is more

complex but need not have access to protected

group membership at test time. We identify new

tradeoffs between fairness, accuracy, and privacy

that emerge only when requiring all three proper-

ties, and show that these tradeoffs can be milder if

group membership may be used at test time. We

conclude with a brief experimental evaluation.

1. Introduction

Large-scale algorithmic decision making, often driven by

machine learning on consumer data, has increasingly run

afoul of various social norms, laws and regulations. A

prominent concern is when a learned model exhibits dis-

crimination against some demographic group, perhaps based

on race or gender. Concerns over such algorithmic discrimi-

nation have led to a recent flurry of research on fairness in

machine learning, which includes both new tools and meth-

ods for designing fair models, and studies of the tradeoffs

between predictive accuracy and fairness (ACM, 2019).

At the same time, both recent and longstanding laws and
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regulations often restrict the use of “sensitive” or protected

attributes in algorithmic decision-making. U.S. law pre-

vents the use of race in the development or deployment

of consumer lending or credit scoring models, and recent

provisions in the E.U. General Data Protection Regulation

(GDPR) restrict or prevent even the collection of racial data

for consumers. These two developments — the demand for

non-discriminatory algorithms and models on the one hand,

and the restriction on the collection or use of protected at-

tributes on the other — present technical conundrums, since

the most straightforward methods for ensuring fairness gen-

erally require knowing or using the attribute being protected.

It seems difficult to guarantee that a trained model is not

discriminating against (say) a racial group if we cannot even

identify members of that group in the data.

A recent line of work (Veale & Binns, 2017; Kilbertus et al.,

2018) made these cogent observations, and proposed an

interesting solution employing the cryptographic tool of se-

cure multiparty computation (commonly abbreviated MPC).

In this model, we imagine a commercial entity with ac-

cess to consumer data that excludes race, but this entity

would like to build a predictive model for, say, commer-

cial lending, under the constraint that the model be non-

discriminatory by race with respect to some standard fair-

ness notion (e.g. equality of false rejection rates). In order

to do so, the company engages in MPC with a set of reg-

ulatory agencies, which are either trusted parties holding

consumers’ race data (Veale & Binns, 2017), or hold among

them a secret sharing of race data, provided by the con-

sumers themselves (Kilbertus et al., 2018). Together the

company and the regulators apply standard fair machine

learning techniques in a distributed fashion. In this way

the company never directly accesses the race data, but still

manages to produce a fair model, which is the output of the

MPC. The guarantee provided by this solution is the stan-

dard one of MPC — namely, the company learns nothing

more than whatever is implied by its own consumer data,

and the fair model returned by the protocol.

Our point of departure stems from our assertion that MPC

is the wrong guarantee to give if our motivation is ensuring

that data about an individual’s race does not “leak” to the

company via the model. In particular, MPC implies nothing

about what individual information can already be inferred
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from the learned model itself . The guarantee we would

prefer is that the company’s data and the fair model do not

leak anything about an individual’s race beyond what can be

inferred from “population level” correlations. That is, the

fair model should not leak anything beyond inferences that

could be carried out even if the individual in question had

declined to provide her racial identity. This is exactly the

type of promise made by differential privacy (Dwork et al.,

2006b), but not by MPC.

The insufficiency of MPC. To emphasize the fact that con-

cerns over leakage of protected attributes under the guar-

antee of MPC are more than hypothetical, we describe a

natural example where this leakage would actually occur.

Example. An SVM model, trained in the standard way, is

represented by the underlying support vectors, which are

just data points from the training data. Thus, if race is

a feature represented in the training data, an SVM model

computed under MPC reveals the race of the individuals rep-

resented in the support vectors. This is the case even if race

is uncorrelated with all other features and labels, in which

case differential privacy would prevent such inferences. We

note that there are differentially private implementations of

SVMs.

The reader might object that, in this example, the algorithm

is trained to use racial data at test time, and so the output of

the algorithm is directly affected by race. But there are also

examples in which the same problems with MPC can arise

even when race is not an input to the learned model, and

race is again uncorrelated with the company’s data. We

also note that SVMs are just an extreme case of a learned

model fitting, and thus potentially revealing, its training

data. For example, points from the training set can also be

recovered from trained neural networks (Song et al., 2017).

Our approach: differential privacy. These examples

show that cryptographic approaches to “locking up” sensi-

tive information during a training process are insufficient as

a privacy mechanism — we need to explicitly reason about

what can be inferred from the output of a learning algo-

rithm, not simply say that we cannot learn more than such

inferences. In this paper we thus instead consider the prob-

lem of designing fair learning algorithms that also promise

differential privacy with respect to consumer race, and thus

give strong guarantees about what can be inferred from the

learned model.

We note that the guarantee of differential privacy is some-

what subtle, and does not promise that the company will

be unable to infer race. For example, it might be that a

feature that the company already has, such as zip codes, is

perfectly correlated with race, and a computation that is dif-

ferentially private might reveal this correlation. In this case,

the company will be able to infer racial information about its

customers. However, differential privacy prevents leakage

of individual racial data beyond what can be inferred from

population-level correlations.

Like (Veale & Binns, 2017), our approach can be viewed as

a collaboration between a company holding non-sensitive

consumer data and a regulator holding sensitive data. Our

algorithms allow the regulator to build fair models from the

combined data set (potentially also under MPC) in a way

that ensures the company, or any other party with access

to the model or its decisions, cannot infer the race of any

consumer in the data much more accurately than they could

do from population-level statistics alone. Thus, we comply

with the spirit of laws and regulations asking that sensitive

attributes not be leaked, while still allowing them to be used

to enforce fairness.

1.1. Our Results

We study the problem of learning classifiers from data with

protected attributes. More specifically, we are given a class

of classifiers H and we output a randomized classifier in

∆pHq (i.e. a distribution over H). The training data consists

of m individual data points of the form pX,A, Y q. Here

X P X is the vector of unprotected attributes, A P A is the

protected attribute and Y is the binary label. As discussed

above, our algorithms achieve three goals simultaneously:

• Differential privacy: Our learning algorithms satisfy

differential privacy (Dwork et al., 2006b) with respect

to protected attributes. (They need not be differentially

private with respect to the unprotected attributes X —

although sometimes are.)

• Fairness: Our learning algorithms guarantee approx-

imate notions of statistical fairness across the groups

specified by the protected attribute. The particular sta-

tistical fairness notion we focus on is Equalized Odds

(Hardt et al., 2016), which in the binary classification

case reduces to asking that false positive rates and false

negative rates be approximately equal, conditional on

all values of the protected attribute (but our techniques

apply to other notions of statistical fairness as well,

including statistical parity).

• Accuracy: Our output classifier has error rate compa-

rable to non-private benchmarks in ∆pHq consistent

with the fairness constraints.

We evaluate fairness and error as in-sample quantities. Out-

of-sample generalization for both error and fairness follow

from standard sample-complexity bounds in learning theory,

and so we elide this complication for clarity (but see e.g. the

treatment in (Kearns et al., 2018b) for formal generalization

bounds).

We start with a simple extension of the post-processing ap-
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Algorithm
Assumptions

on H

Fairness

Guarantee

Needs

access to A

at test time?

Does it

guarantee

privacy of

X as well?

Error Fairness Violation

DP-postprocessing None
Equalized

Odds
Yes No rO

´
|A|
mε

¯
1 rO

´
1

min q̂aymε

¯

DP-oracle-learner

dH ă 8
dH :“ V CpHq

Equalized

Odds
No No rO

ˆ
B

min q̂ay

b
|A|dH

mε

˙
B´1 ` rO

ˆ
1

min q̂ay

b
|A|dH

mε

˙

|H| ă 8 Equalized

Odds
No Yes rO

ˆ
B

min q̂ay

b
|A| lnp|H|q

mε

˙
B´1 ` rO

ˆ
1

min q̂ay

b
|A| lnp|H|q

mε

˙

|H| ă 8,

H has maximally

discriminatory

classifiers

Equalized

False Positive

Rate

Yes Yes rO
ˆ

|A|
min q̂ay

b
|A| lnp|H|q

mε

˙
rO

ˆ
|A|

min q̂ay

b
|A| lnp|H|q

mε

˙

Table 1: Summary of Results for Our Differentially Private Fair Learning Algorithms. In this table, m is the training sample size, q̂ay is
the fraction of data with A “ a and Y “ y, |A| is the number of protected groups, and ε is the privacy parameter. B is explained in text.
For all but the marked error bound, the comparison benchmark is the optimal fair classifier. The marked bound is compared to a weaker
benchmark: the outcome of the non-private post-processing procedure.

proach of (Hardt et al., 2016). Their algorithm starts with a

possibly unfair classifier pY and derives a fair classifier by

mixing pY with classifiers which are based on protected at-

tributes. This involves solving a linear program which takes

quantities q̂ŷay as input. Here q̂ŷay is the fraction of data

points with pY “ ŷ, A “ a, Y “ y. To make this approach

differentially private with respect to protected attributes, we

start with pY which is learned without using protected at-

tributes and we use standard techniques to perturb the q̂ŷay’s

before feeding them into the linear program, in a way that

guarantees differential privacy. We analyze the additional

error and fairness violation that results from the perturbation.

Detailed results can be found in Section 3.

Although having the virtue of being exceedingly simple, this

first approach has two significant drawbacks. First, even

without privacy, this post-processing approach does not in

general produce classifiers with error that is comparable to

that of the best fair classifiers, and our privacy preserving

modification inherits this limitation. Second, and often

more importantly, this post-processing approach crucially

requires that protected attributes can be used at test time,

and this isn’t feasible (or legal) in certain applications. Even

when it is, if racial information is held only by a regulator,

although it may be feasible to train a model once using

MPC, it probably is not feasible to make test-time decisions

repeatedly using MPC.

We then consider the approach of (Agarwal et al., 2018),

which we refer to it as in-processing (to distinguish it from

post-processing). They give an oracle-efficient algorithm,

which assumes access to a subroutine that can optimally

solve classification problems absent a fairness constraint

(in practice, and in our experiments, these “oracles” are

implemented using simple learning heuristics). Their ap-

proach does not have either of the above drawbacks: it does

not require that protected features be available at test time,

and it is guaranteed to produce the approximately optimal

fair classifier. The algorithm is correspondingly more com-

plicated. The main idea of their approach (following the

presentation of (Kearns et al., 2018b)) is to show that the

optimal fair classifier can be found as the equilibrium of a

zero-sum game between a “Learner” who selects classifiers

in H and an “Auditor” who finds fairness violations. This

equilibrium can be approximated by iterative play of the

game, in which the Auditor plays exponentiated gradient de-

scent and the Learner plays best responses (computed via an

efficient cost-sensitive classification oracle). To make this

approach private, we add Laplace noise to the gradients used

by the Auditor and we let the Learner run the exponential

mechanism (or some other private learning oracle) to com-

pute approximate best responses. Our technical contribution

is to show that the Learner and the Auditor still converge to

an approximate equilibrium despite the noise introduced for

privacy. Detailed results can be found in Section 4.

One of the most interesting aspects of our results is an in-

herent tradeoff that arises between privacy, accuracy, and

fairness, that doesn’t arise when any two of these desiderata

are considered alone. This manifests itself as the parameter

“B” in our in-processing result (see Table 1) which mediates

the tradeoff between error, fairness and privacy. This param-

eter also appears in the (non-private) algorithm of (Agarwal

et al., 2018)—but there it serves only to mediate a tradeoff

between fairness and running time. At a high level, the rea-

son for this difference is that without the need for privacy,

we can increase the number of iterations of the algorithm to

decrease the error to any desired level. However, when we

also need to protect privacy, there is an additional tradeoff,
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and increasing the number of iterations also requires increas-

ing the scale of the gradient perturbations, which may not

always decrease error.

This tradeoff exhibits an additional interesting feature. Re-

call that as we discussed above, the in-processing approach

works even if we can not use protected attributes at test time.

But if we are allowed to use protected attributes at test time,

we are able to obtain a better tradeoff between these quan-

tities — essentially eliminating the role of the variable B

that would otherwise mediate this tradeoff. We give details

of this improvement in section 4.1 (for this result, we also

need to relax the fairness requirement from Equalized Odds

to Equalized False Positive Rates). The main step in the

proof is to show that, for small constant B and H containing

certain “maximally discriminatory” classifiers which make

decisions solely on the basis of group membership, we can

give a better characterization of the Learner’s strategy at the

approximate equilibrium of the zero-sum game.

Finally, we provide evidence that using protected attributes

at test time is necessary for obtaining this better tradeoff. In

Section 4.2, we consider the sensitivity of computing the

error of the optimal classifier subject to fairness constraints.

We show that this sensitivity can be substantially higher

when the classifier cannot use protected attributes at test

time, which shows that higher error must be introduced to

estimate this error privately.

1.2. Related Work

The literature on algorithmic fairness is growing rapidly,

and is by now far too extensive to exhaustively cover here.

See (Chouldechova & Roth, 2018) for a recent survey. Our

work builds directly on that of (Hardt et al., 2016), (Agarwal

et al., 2018), and (Kearns et al., 2018b). In particular, (Hardt

et al., 2016) introduces the “equalized odds” definition that

we take as our primary fairness goal, and gave a simple post-

processing algorithm that we modify to make differentially

private. (Agarwal et al., 2018) derives an “oracle efficient”

algorithm which can optimally solve the fair empirical risk

minimization problem (for a variety of statistical fairness

constraints, including equalized odds) given oracles (im-

plemented with heuristics) for the unconstrained learning

problem. (Kearns et al., 2018b) generalize this algorithm to

be able to handle infinitely many protected groups. We give

a differentially private version of (Agarwal et al., 2018) as

well.

Our paper is directly inspired by (Kilbertus et al., 2018),

who study how to train fair machine learning models by en-

crypting sensitive attributes and applying secure multiparty

computation (MPC). We share the goal of (Kilbertus et al.,

2018): we want to train fair classifiers without leaking infor-

mation about an individual’s race through their participation

in the training. Our starting point is the observation that dif-

ferential privacy, rather than secure multiparty computation,

is the right tool for this.

We use differential privacy (Dwork et al., 2006b) as our

notion of individual privacy, which has become an influen-

tial “solution concept” for data privacy in the last decade.

See (Dwork & Roth, 2014) for a survey. We make use of

standard tools from this literature, including the Laplace

mechanism (Dwork et al., 2006b), the exponential mecha-

nism (McSherry & Talwar, 2007) and composition theorems

(Dwork et al., 2006a; 2010).

2. Model and Preliminaries

Suppose we are given a data set of m individuals drawn

i.i.d. from an unknown distribution P where each individual

is described by a tuple pX,A, Y q. X P X forms a vector

of unprotected attributes, A P A is the protected attribute

where |A| ă 8, and Y P Y is a binary label. Without

loss of generality, we write A “ t0, 1, . . . , |A| ´ 1u and

let Y “ t0, 1u. Let pP denote the empirical distribution

of the observed data. Our primary goal is to develop an

algorithm to learn a (possibly randomized) fair classifier pY ,

with an algorithm that guarantees the privacy of the sensitive

attribute A. By privacy, we mean differential privacy, and by

fairness, we mean (approximate versions of) the Equalized

Odds condition of (Hardt et al., 2016). Both of these notions

are parameterized: differential privacy has a parameter ε,

and the approximate fairness constraint is parameterized

by γ. Our main interest is in characterizing the tradeoff

between ε, γ, and classification error. Here we provide

basic definitions of fairness and differential privacy. See the

supplementary file for a detailed discussion of them.

Notations: pP throughout refers to the probability taken

w.r.t pP . q̂ŷay :“ pP rpY “ ŷ, A “ a, Y “ ys, and

q̂ay :“ pP rA “ a, Y “ ys. xFPappY q “ pP rpY “ 1 |A “
a, Y “ 0s, xTPappY q “ pP rpY “ 1 |A “ a, Y “ 1s are

the false and true positive rates of pY in the subpopula-

tion tA “ au. ∆xFPappY q “ |xFPappY q ´ xFP0ppY q| and

∆xTPappY q “ |xTPappY q ´ xTP0ppY q| are used to measure
pY ’s false/true positive rate discrepancies across groups.

xerr ppY q “ pP rpY ‰ Y s is the error of pY .

2.1. Fairness

Definition 2.1 (γ-Equalized Odds Fairness). A classifier
pY satisfies the γ-Equalized Odds condition with respect to

the attribute A, if for all a P A, the false and true positive

rates of pY in the subpopulations tA “ au and tA “ 0u
are within γ of one another. In other words, for all a ‰ 0,

∆FPappY q ď γ and ∆TPappY q ď γ.
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2.2. Differential Privacy

Let D be a data universe from which a database D of size

m is drawn and let M : Dm Ñ O be an algorithm that takes

a database D as input. Differential privacy requires that

the addition or removal of a single data entry should have

little (distributional) effect on the output of the mechanism.

In other words, for every pair of neighboring databases

D „ D1 P Dm that differ in at most one entry, differential

privacy requires that the distribution of MpDq and MpD1q
are “close” to each other, measured by parameters ε and δ.

Definition 2.2 (pε, δq-Differential Privacy (DP) (Dwork

et al., 2006b)). A randomized algorithm M : Dm Ñ O

is said to be pε, δq-differentially private if for all pairs of

neighboring databases D,D1 P Dm and all O Ď O,

PrMpDq P Os ď eε PrMpD1q P Os ` δ

if δ “ 0, M is said to be ε-differentially private.

Recall that our data universe is D “ pX ,A,Yq, which will

be convenient to partition as pX ,Yq ˆ A. Given a dataset

D of size m, we will write it as a pair D “ pDI , DSq
where DI P pX ,Yqm represent the insensitive attributes

and DS P Am represent the sensitive attributes. We will

sometimes incidentally guarantee differential privacy over

the entire data universe D (see Table 1), but our main goal

will be to promise differential privacy only with respect to

the sensitive attributes. Write DS „ D1
S to denote that DS

and D1
S differ in exactly one coordinate (i.e. in one person’s

group membership). An algorithm is pε, δq-differentially

private in the sensitive attributes if for all DI P pX ,Yqm
and for all DS „ D1

S P Am, we have:

P rMpDI , DSq P Os ď eε P
“
MpDI , D

1
Sq P O

‰
` δ

3. DP Fair Learning: Post-Processing

In this section we will present our first differentially pri-

vate fair learning algorithm which will be called DP-

postprocessing. The DP-postprocessing algorithm (Algo-

rithm 1) is a private variant of the algorithm introduced in

(Hardt et al., 2016).

(Hardt et al., 2016)’s approach starts with a base classifier
pY which is learned without using protected attributes. They

derive a fair classifier pYp by mixing pY with classifiers de-

pending on the protected attributes. pYp is specified by a

parameter p “ ppŷaqŷ,a, a vector of probabilities such that

pŷa :“ P rpYp “ 1 | pY “ ŷ, A “ as. Among all fair pYp’s,

the one with minimum error can be found by solving a linear

program which takes as input the aggregate statistics q̂ŷay
for all ŷ, a, y.

In Algorithm 1, we make the above approach differentially

private. Notice this method depends on the protected at-

tributes only to compute the quantities q̂ŷay. To guarantee

Algorithm 1 ε-DP fair classification: DP-postprocessing

Input: privacy parameter ε, confidence parameter β, fair-

ness violation γ, training examples tpXi, Ai, Yiqumi“1

Train the base classifier pY on tpXi, Yiqumi“1.

Compute q̂ŷay “ pP rpY “ ŷ, A “ a, Y “ ys.
Sample Wŷay

i.i.d.„ Lap p2{mεq for all ŷ, a, y.

Perturb each q̂ŷay with noise: q̃ŷay “ q̂ŷay ` Wŷay .

Solve ĂLP (1) to get the minimizer p̃‹.

Output: p̃‹, the trained classifier pY

differential privacy, Algorithm 1 computes q̃ŷay (a noisy

version of q̂ŷay) and then feeds q̃ŷay into the linear program

ĂLP (1). In this linear program, terms with tildes (e.g. q̃ay,

Ăerr , ĂFP, ĂTP) are defined with respect to q̃ŷay instead of q̂ŷay .

We analyze the performance of Algorithm 1 in Theorem 3.1.

Its proof is deferred to the supplementary file. The main

step of the proof is to understand how the introduced noise

propagates to the solution of the linear program. We also

briefly review the approach of (Hardt et al., 2016) in the

supplementary file.

ĂLP: ε-Differentially Private Linear Program

argmin
p

Ăerr ppYpq

s.t. @a P A
a‰0

∆ĂFPappYpq ď γ ` 4 ln p4|A|{βq
mintq̃a0, q̃00umε

∆ĂTPappYpq ď γ ` 4 ln p4|A|{βq
mintq̃a1, q̃01umε

0 ď pŷa ď 1 @ŷ, a
(1)

Ăerr
´

pYp

¯
:“

ř
ŷ,a

pq̃ŷa0 ´ q̃ŷa1q ¨ pŷa `
ř

ŷ,a
q̃ŷa1

∆ĂFPa

´
pYp

¯
:“

ˇ̌
ˇĂFPap pY q ¨ p1a `

´
1 ´ ĂFPap pY q

¯
¨

p0a ´ ĂFP0p pY q ¨ p10 ´
´
1 ´ ĂFP0p pY q

¯
¨ p00

ˇ̌
ˇ

∆ĂTPa

´
pYp

¯
:“

ˇ̌
ˇĂTPap pY q ¨ p1a `

´
1 ´ ĂTPap pY q

¯
¨

p0a ´ ĂTP0p pY q ¨ p10 ´
´
1 ´ ĂTP0p pY q

¯
¨ p00

ˇ̌
ˇ

Theorem 3.1 (Error-Privacy, Fairness-Privacy Tradeoffs).

Suppose mina,ytq̂ayu ą 4 ln p4|A|{βq { pmεq. Let pp‹

be the optimal γ-fair solution of the non-private post-

processing algorithm of (Hardt et al., 2016) and let rp‹ be

the output of Algorithm 1 which is the optimal solution of
ĂLP (1). With probability at least 1 ´ β,

xerr

´
pYrp‹

¯
ď xerr

´
pYpp‹

¯
` 24|A| ln p4|A|{βq

mε
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and for all a ‰ 0,

∆xFPa

´
pYrp‹

¯
ď γ ` 8 ln p4|A|{βq

mintq̂a0, q̂00umε ´ 4 ln p4|A|{βq

∆xTPa

´
pYrp‹

¯
ď γ ` 8 ln p4|A|{βq

mintq̂a1, q̂01umε ´ 4 ln p4|A|{βq

We emphasize that the accuracy guarantee stated in Theorem

3.1 is relative to the non-private post-processing algorithm,

not relative to the optimal fair classifier. This is because

the non-private post-processing algorithm itself has no such

optimality guarantees.

4. DP Fair Learning: In-Processing

In this section we will introduce our second differentially

private fair learning algorithm: DP-oracle-learner (Algo-

rithm 3). It is based on the fair learning algorithm presented

in (Agarwal et al., 2018). Essentially, (Agarwal et al., 2018)

reduces the γ-fair learning problem into the following La-

grangian min-max problem:

min
Q P ∆pHq

max
λ P Λ

LpQ,λq :“ xerr pQq ` λ
JprpQq (2)

Here H is a given class of binary classifiers with dH “
V CDpHq ă 8, and prpQq is a vector of fairness viola-

tions of the classifier Q across groups, and λ P Λ “ tλ :

||λ||1 ď Bu is the dual variable. In this work,

prpQq :“

»
———–

xFPapQq ´ xFP0pQq ´ γ
xFP0pQq ´ xFPapQq ´ γ
xTPapQq ´ xTP0pQq ´ γ
xTP0pQq ´ xTPapQq ´ γ

fi
ffiffiffifl

aPA
a‰0

P R
4p|A|´1q

λ “
“
λpa,0,`q, λpa,0,´q, λpa,1,`q, λpa,1,´q

‰J

aPA
a‰0

P R
4p|A|´1q

The method developed by (Agarwal et al., 2018), in the

language of (Kearns et al., 2018b), gives a reduction from

finding an optimal fair classifier to finding the equilibrium

of a two-player zero-sum game played between a “Learner”

(Q-player) who needs to solve an unconstrained learning

problem (given access to an efficient cost-sensitive classi-

fication oracle) and an “Auditor” (λ-player) who weights

(λ) the fairness violations. Having the learner play its best

response and the auditor play a no-regret learning algorithm

guarantees convergence of the average plays to the equilib-

rium.

In Algorithm 3, to make the above approach private, Laplace

noise is added to the gradients used by the Auditor (who

plays exponentiated gradient descent with learning rate η)

and we let the Learner run the exponential mechanism (or

some other private learning oracle) to compute approximate

Subroutine 2 BESTε1

h

Input: λ, training examples tpXi, Ai, Yiqumi“1, privacy

guarantee ε1

for i “ 1, . . . ,m do

C0
i Ð 1tYi ‰ 0u (cost of labeling 0)

C1
i Ð 1tYi ‰ 1u ` λpAi,Yi,`q´λpAi,Yi,´q

q̂AiYi

1tAi ‰ 0u ´
ř
aPA
a‰0

λpa,Yi,`q´λpa,Yi,´q

q̂AiYi

1tAi “ 0u (cost of labeling 1)

end for

Call CSCε1 pHq with tXi, C
0
i , C

1
i umi“1 to get h‹.

Output: h‹

Algorithm 3 pε, δq-differentially private fair classification:

DP-oracle-learner

Input: privacy parameters ε, δ, bound B, VC dimension

dH, confidence parameter β, fairness violation γ, training

examples tpXi, Ai, Yiqumi“1

T Ð B
?

lnp4|A|´3q mε

2p2|A|B`1q
?

lnp1{δqpdH lnpmq`lnp2{βqq

η Ð 1
2

b
lnp4|A|´3q

T

rθ1 Ð 0 P R
4p|A|´1q

for t “ 1, . . . , T do

rλt,k Ð B
expprθt,kq

1`
ř

k1 expprθt,k1 q
for all k

rht Ð BESTε1

h prλtq with ε1 “ ε{p4
a
T lnp1{δqq

Sample W t: Wt,k
i.i.d.„ Lapp 8|A|

?
T lnp1{δq

pmina,ytq̂ayu m´1q¨ε q
rrt Ð prtprhtq ` W t

rθt`1 Ð rθt ` ηrrt
end for
rQ Ð 1

T

řT
t“1

rht, rλ Ð 1
T

řT
t“1

rλt

Output: p rQ, rλq

best responses. Subroutine 2 reduces the Learner’s best

response problem to privately solving a cost sensitive clas-

sification problem solved with a private oracle CSCε1 pHq.

Here we sketch the main steps of analyzing Algorithm 3.

All the proofs and a review of the approach of (Agarwal

et al., 2018) are deferred to the supplementary file.

We first bound the regret of the Learner and the Auditor in

Lemma 4.1 and 4.2 by understanding how the introduced

perturbations affect these regret terms.

Lemma 4.1 (Regret of the Private Learner). Suppose

trhtuTt“1 is the sequence of best responses to trλtuTt“1 by

the private Learner over T rounds. We have that with prob-
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ability at least 1 ´ β{2,

1

T

Tÿ

t“1

Lprht, rλtq ´ 1

T
min

QP∆pHq

Tÿ

t“1

LpQ, rλtq ď

8 p2|A|B ` 1q
a
T ln p1{δq pdH ln pmq ` ln p2T {βqq

pmina,ytq̂ayum ´ 1q ¨ ε

Lemma 4.2 (Regret of the Private Auditor). Let trλtuTt“1 be

the sequence of exponentiated gradient descent plays (with

learning rate η) by the private Auditor to given trhtuTt“1 of

the private Learner over T rounds. With probability at least

1 ´ β{2,

1

T
max
λPΛ

Tÿ

t“1

Lprht,λq ´ 1

T

Tÿ

t“1

Lprht, rλtq ď

B lnp4|A| ´ 3q
ηT

` 4ηB

¨
˚̋
1 `

4|A|
b
T ln

`
1
δ

˘
ln

´
8T |A|

β

¯

pmina,ytq̂ayum ´ 1q ¨ ε

˛
‹‚

2

Now in Theorem 4.3, given Lemma 4.1 and 4.2, we can

characterize the average plays of both players.

Theorem 4.3. Let p rQ, rλq be the output of Algorithm 3. We

have that with probability at least 1 ´ β, p rQ, rλq is a ν-

approximate solution of the game, i.e.,

Lp rQ, rλq ď LpQ, rλq ` ν for all Q P ∆pHq
Lp rQ, rλq ě Lp rQ,λq ´ ν for all λ P Λ

and that

ν “ rO

¨
˝ B

min
a,y

tq̂ayu

d
|A|

a
ln p1{δq ln pmdH{βq

mε

˛
‚

where we hide further logarithmic dependence on m, ε, and

|A| under the rO notation.

We are now ready to conclude the DP-oracle-learner algo-

rithm’s analysis with our main theorem.

Theorem 4.4 (Error-Privacy, Fairness-Privacy Tradeoffs).

Let ν be as in Theorem 4.3. Let p rQ, rλq be the output of

Algorithm 3 and let Q‹ be the solution to the non-private

γ-fair ERM problem. We have that with probability at least

1 ´ β, xerr p rQq ď xerr pQ‹q ` 2ν and for all a ‰ 0,

∆xFPap rQq ď γ ` 1 ` 2ν

B
, ∆xTPap rQq ď γ ` 1 ` 2ν

B

Remark 4.1. The bounds above reveal a tradeoff between

accuracy and fairness violation by controlling through the

parameter B. As B increases, the upper bound on error

gets looser while the one on fairness violation gets tighter.

Remark 4.2. We assumed in this section that the protected

attribute A is not available to the classifiers in H (“A-blind”

classification) and stated all our bounds in terms of dH. In

the more general setting where classifiers in H could depend

on A (“A-aware” classification), similar results hold. The

only change to make is to replace ln pmdHq with ln p|H|q in

the bounds. See the supplementary file for more details.

4.1. Better Tradeoffs for A-aware Classification

In this subsection we show that if we only ask for equalized

false positive rates (instead of equalized odds, which also

requires equalized true positive rates), and moreover, if we

assume H includes all “maximally discriminatory” classi-

fiers (see Assumption 4.1), the fairness violation guarantees

given in Theorems 4.4 can be improved.

Assumption 4.1. H includes all group indicator functions:

thapX,Aq “ 1A“a, h̄apX,Aq “ 1A‰a |a P Au Ď H.

Theorem 4.5 (Error-Privacy, Fairness-Privacy Tradeoffs).

Let p rQ, rλq be the output of Algorithm 3, and let Q‹ be the

solution to the non-private γ-fair ERM problem. Under

assumptions 4.1, and B ą |A| ´ 1, with probability at least

1 ´ β, xerr p rQq ď xerr pQ‹q ` 2ν , and for all a ‰ 0,

∆xFPap rQq ď γ ` 2ν

B ´ p|A| ´ 1q

where

ν “ rO
ˆ

B
mina,ytq̂ayu

b
|A|

?
lnp1{δq lnp|H|{βq

mε

˙

4.2. A Separation: A-blind vs. A-aware Classification

In this subsection we show that the sensitivity of the error

of the optimal classifier subject to fairness constraints can

be substantially higher if it is prohibited from using sen-

sitive attributes at test time, and thus we need more noise

to estimate this error subject to differential privacy. This

shows a fundamental tension between the goals of trading

off privacy and approximate equalized odds, with the goal of

preventing “disparate treatment” (using protected attributes

explicitly in classification).

Given a data set D of m individuals, define fpDq to be the

optimal error rate of any classifier constrained to have a

false positive rate disparity ď γ. Now consider the follow-

ing problem instance. Let X be the unprotected attribute

taking value in X “ tU, V u, and let A be the protected

attribute taking value in A “ tR,Bu. Suppose H con-

sists of two classifiers h0 and hU where h0pX,Aq “ 0

and hU pX,Aq “ 1X“U . Notice that both h0 and hU de-

pend only on the unprotected attribute. Let hR and hB be

two other classifiers that depend on the protected attribute:

hRpX,Aq “ 1A“R and hBpX,Aq “ 1A“B .
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Figure 1: Left figure shows the Pareto frontier of error and (equalized odds) fairness violation for the DP-oracle-learner algorithm on the
Communities dataset across different privacy parameters . Right figure shows the corresponding Pareto curves for the DP-postprocessing
algorithm. Each point on the private curves is averaged over many rounds to reduce the effect of noise variance. See text for details.

Theorem 4.6. Consider γ ą 1{m and datasets with

mina q̂a0 ě C for some constant C ą 0. If H “ th0, hUu,

the sensitivity of f is Ω p1{pγmqq. If the “maximally dis-

criminatory” classifiers hR and hB are also included in H,

i.e. H “ th0, hU , hR, hBu, the sensitivity of f is O p1{mq.

5. Experimental Evaluation

As a proof of concept, we empirically evaluate our two

algorithms on a common fairness benchmark dataset: the

Communities and Crime dataset 2 from the UC Irvine Ma-

chine Learning Repository. We refer the reader to (Kearns

et al., 2018a) for an outline of potential fairness concerns

present in the dataset. We clean and preprocess the data

identically to (Kearns et al., 2018a). Our main experimental

goal is to obtain, for both algorithms, the Pareto frontier

of error and fairness violation tradeoffs for different levels

of differential privacy. To elaborate, for a given setting of

input parameters, we start with the target fairness violation

bound γ “ 0 and then increase it over a rich pre-specified

subset of r0, 1s while recording for each γ the error and the

(realized) fairness violation of the classifier output by the

algorithm. We take H to be the class of linear threshold

functions, β “ 0.05, and δ “ 10´7.

Logistic regression is used as the base classifier of the DP-

postprocessing algorithm in our experiments. To imple-

ment the Learner’s cost-sensitive classification oracle used

in the DP-oracle-learner algorithm, following (Kearns

et al., 2018a), we build a regression-based linear predic-

tor for each vector of costs (C0 and C1), and classify a point

according to the lowest predicted cost. We made this private

following the method of (Smith et al., 2017): computing

each regression as pXTXq´1XTCb, and adding appropri-

ately scaled Laplace noise to both XTX and XTCb. Note

2Briefly, each record in this dataset summarizes aggregate so-
cioeconomic information about both the citizens and police force
in a particular U.S. community, and the problem is to predict
whether the community has a high rate of violent crime.

when the sensitive attribute A is not included in X (the A-

blind case, as in our experiments) noise need not be added

to XTX as we only need to guarantee the privacy of A.

The theory is ambiguous in its predictions about which algo-

rithm should perform better: the “privacy cost” is higher for

the in-processing algorithm, but the benchmark that the post-

processing algorithm competes with is weaker. We would

generally expect therefore that on sufficiently large datasets,

the in-processing algorithm would obtain better tradeoffs,

but on small datasets, the post-processing algorithm would.

Our experimental results appear in Fig. 1. Indeed, on our

relatively small dataset (m « 2K), the post-processing al-

gorithm can obtain good tradeoffs between accuracy and

fairness at meaningful levels of ε, whereas the in-processing

algorithm cannot. Nevertheless, we can empirically obtain

the “shape” of the Pareto curve trading off accuracy and

fairness for unreasonable levels of ε using our algorithm.

This is still valuable, because the value of ε obtained by

our algorithms predictably decreases as the dataset size m

increases without otherwise changing the dynamics of the

algorithm. For example, if we “upsampled” our dataset by a

factor of 10 (i.e. taking 10 copies of the dataset), the result

would be a reasonably sized dataset of m « 20K. Our algo-

rithm run on this upsampled dataset would obtain the same

tradeoff curve but now with meaningful values of ε. In the

left panel of Fig. 1, ε is the actual privacy parameter used

in the experiments; while ε1 is the value that the privacy

parameter would take on the upsampled dataset.

Recall that the post-processing approach requires the use

of the protected attribute at test time, but the in-processing

approach does not. Our results therefore suggest that the

requirement that we not use the protected attribute at test

time (i.e. that we be avoid “disparate treatment”) might be

extremely burdensome if we also want the protections of

differential privacy and have only small dataset sizes. In con-

trast, it can be overcome with the in-processing algorithm

at larger dataset sizes.



Differentially Private Fair Learning

Acknowledgements

AR is supported in part by NSF grants AF-1763307 and

CNS-1253345. JU is supported by NSF grants CCF-

1718088, CCF-1750640, and CNS-1816028, and a Google

Faculty Research Award. Alina Oprea was partially sup-

ported by the Combat Capabilities Development Command

Army Research Laboratory under Cooperative Agreement

Number W911NF-13-2-0045 (ARL Cyber Security CRA).

The views and conclusions contained in this document are

those of the authors and should not be interpreted as repre-

senting the official policies, either expressed or implied, of

the Combat Capabilities Development Command Army Re-

search Laboratory or the U.S. Government. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints

for Government purposes not withstanding any copyright

notation here on.

References

ACM. ACM Conference on Fairness, Accountability and

Transparency. 2019. URL https://fatconference.org/index.

html.

Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J.,

and Wallach, H. A reductions approach to fair classifi-

cation. In Dy, J. and Krause, A. (eds.), Proceedings of

the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research,
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