Computer-Aided Design 114 (2019) 155-163

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Interpolatory Curve Modeling with Feature Points Control™ "

Check for
Updates

Zhonggui Chen?, Jinxin Huang "¢, Juan Cao ", Yongjie Jessica Zhang ¢

2 Department of Computer Science, Xiamen University, Xiamen, 361000, China

b School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China

¢ Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen
University, Xiamen, 361005, China

4 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

ARTICLE INFO ABSTRACT
Keywords: In curve modeling, interpolation allows users to directly control the location of curve features. While
Interpolation previous literatures have focused on generating interpolatory curves with properties of smoothness

Feature points

¢ and locality, they usually have difficulty in controlling over geometric feature points (e.g., cusps, loops,
Curve modeling

and inflection points) that mark salient intrinsic features of curve shapes. In this paper, we propose
an intuitive and efficient method for constructing planar cubic curves that are curvature continuous
almost-everywhere and interpolate a sequence of input data points. Our method provides a good
control over the location and type of the geometric feature points. In particular, cusps and loops only
occur at specified input data points, while inflection points only occur at specified input data points
and joints. We refer to such feature points controlled interpolatory curves as FPC-Curves for short. To
construct FPC-Curves, we focus on piecewise cubic curves, where the occurrence of loops, cusps and
inflection points is mutually exclusive. We also provide a simple yet efficient algorithm for real-time
interactive design of cubic FPC-Curves. Various experimental results show the efficacy and flexibility
of our new approach for curve modeling.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Planar curve modeling has wide-range applications in geo-
metric design, including computer graphics, animation, computer
aided geometric design, and computer numerical control. There
are basically three techniques for planar curve modeling: in-
terpolation, approximation and direct manipulation of Bézier/B-
spline control points. Among them, interpolation is a popular
technique through a sequence of relatively sparse data points.
These data points are input from designers for resulting shape
control. The most important advantage of interpolation over the
other two methods is its direct association between the input and
the resulting curves. In the literature, people focus on different
properties of interpolating curves, such as fairness, extensionality,
monotone curvature and locality.

* This paper has been recommended for acceptance by Pierre Alliez, Yong-Jin

ed _with this paper has disclosed any potential or
ay be perceived to have impending conflict with
P statements refer to https://doi.org/10.1016/j.cad.
a pdfelement
School of Mathematical Sciences, Xiamen
China

xmu.edu.cn (J. Cao).

The Trial Version

https://doi.org/10.1016/j.cad.2019.05.010
0010-4485/© 2019 Elsevier Ltd. All rights reserved.

In this paper, we focus on constructing smooth 2D curves
controlled by salient geometric feature points (including cusps,
loops, and inflection points) through a given set of sparse data
points. Each resulting curve segment will pass through a given
data point, where the data point becomes a cusp, a loop, an in-
flection point or a regular point as pre-specified. We refer to such
feature points controlled interpolatory curves as FPC-Curves for
short. This design task domain is quite different from the problem
arising from reverse engineering and computer numerical control,
where the curves with cusps, inflection points, and loops should
be avoided. The primary application envisioned for our work is
more for artistic design, where geometric feature points marking
salient intrinsic features are desired; see Fig. 1.

We should point out that salient geometric feature points can
also be created by previous interpolation methods. However, it
is usually less-intuitive and labor intensive for users to control
the location of feature points, and it may introduce unwanted
cusps or loops; see Fig. 2. In this paper, we propose to create in-
terpolatory FPC-Curves using cubic Bézier segments, where each
segment contains at most one interior feature point at the user-
specified position. Our method creates a concatenation of cubic
Bézier curves joining G?> continuously almost everywhere except
at joints with sign change curvature, where curves are G! continu-
ous. Differing from most applications in CAD, where G? continuity
is usually desired, the G! continuity of our FPC-Curves is good

https://doi.org/10.1016/j.cad.2019.05.010
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2019.05.010&domain=pdf
https://doi.org/10.1016/j.cad.2019.05.010
https://doi.org/10.1016/j.cad.2019.05.010
mailto:juancao@xmu.edu.cn
https://doi.org/10.1016/j.cad.2019.05.010

156 Z. Chen, J. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163

A cusp O Loop * Inflection point Regular point I End point

Fig. 1. Our method constructs cubic FPC-Curves (top row) that are G continuous
almost everywhere and interpolate sequences of input geometric feature points
(bottom row).

enough for artistic design. In particular, the specific contributions
of this paper are as follows:

1. We propose an intuitive and efficient method for constructing
cubic FPC-Curves that are G? continuous almost every-
where and interpolate a sequence of control points. This
method provides a good control over the location and type
of the geometric feature points. In particular, cusps and
loops only occur at control points, while inflection points
only occur at control points and joints.

2. We tailor an iterative optimization algorithm to achieve the
real-time interactive design. To create interpolatory curves
with satisfying properties, we focus on cubic Bézier seg-
ments, which are the lowest degree polynomial curves
that take on loops, cusps, or inflection points within a
single segment. We study the geometric conditions for
cubic curves (having loops, cusps, or inflection points) and
G? continuity, based on which we provide a simple yet
efficient optimization framework that creates desired FPC-
Curves.

The remainder of this paper is organized as follows. Section 2
reviews the related work. The geometric constraints for a para-
metric cubic curve taking on a loop, cusp, or inflection points,
and G? continuous constraints are studied in Section 3. Section 4
presents the algorithm and implementation for our interpolatory
FPC-Curve construction. Results and discussion are presented in

a pdfelement

The Trial Version ®)

Section 5. Finally, in Section 6 conclusions and future work are
proposed.

2. Related work

A large number of spline interpolation methods have been
developed for constructing planar curves from a sequence of
input data points. A comprehensive survey is given by [3]; we
only focus on the most relevant previous work here.

The properties desired for planar interpolating splines may
vary in different applications. Fairness or smoothness is generally
the most important property in almost all applications. One way
to generate smooth splines is to optimize metrics that correlate
reasonable wellness with the perception of fairness, e.g., the
total bending energy stored in the spline [4]. This approach may
compromise with other important properties, such as locality,
roundness and stability [5]. Another way to create smooth splines
is to impose constraints on the degree of continuity, a concrete
property that relates to the fairness. The continuity can be evalu-
ated either parametrically or geometrically [6], corresponding to
C* and G, respectively. Although continuity is not the same as
fairness, there is a widespread agreement that the higher degree
of continuity a curve possesses, the fairer the curve looks. In
practice, C? or G? (curvature continuity) is demanded for a fair
spline. Piecewise quadratic splines [7], cubic splines [1,8] or even
subdivision curves [9] are usually exploited in the interpolatory
curve construction to achieve C? or G? continuity. However, these
curves either introduce unexpected cusps/loops away from con-
trol points or have difficulty in controlling the location and type
of feature points.

Curvature is also an objective mathematical property that
is intimately tied to fairness. Some literature focus on gener-
ating curves with minimum curvature variation, e.g., minimum
variation curves (MVCs). Most MVCs are constructed by approx-
imation, such as using quantic polynomials [10]. Curvature plot
consisting of relatively few monotone pieces is considered to be
another fairness metric [11]. As minima and maxima of curvature
are also argued to be salient features, it is suggested that all
curvature extrema should coincide with the given data points
in the interpolation [1]. A fair amount of literature addresses
the problem of constraining curves to have monotone curva-
tures, e.g., Logarithmic spirals [12], Euler spirals (also known as
Clothoids or Cornu spirals) [13] and class A curves [14,15]. These
curves can be adopted in data interpolation such that curvature of
in-between spline segments varies monotonously. As monotone
curvature segments are not as flexible as the usual Bézier/B-spline
curves, it is not easy to manipulate them. Piecewise quadratic
curves are used in interpolating control points with local maxima
of curvature only at the input data points [2]. Since these curves
are free of cusps, loops and inflection points in the interior of
each segment, modeling feature points at control points is less
intuitive and labor-intensive in the sense that more data points
are needed; see Figs. 2(c-d).

(© ()

urves with other interpolatory curves in modeling loops. (a) C? interpolatory cubic B-spline [1], which creates a small loop away

from the input data points; (b) cubic Bézier curves interpolating 6 regular points generated by our method; (c) interpolatory quadratic Bézier curves [2], where at
least 5 input data points are needed to create two loops, and it is hard to control the location of loops; (d) our FPC-Curve, where only 3 control points are needed
to model two loops that occur at two input data points (green circles). Orange squares and green circles denote the input data points.

Z. Chen,]. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163 157

In interactive artistic design of fair curves, the number, lo-
cation, and type of feature points that mark the salient shape
features are required by the designer. Hence, it is reasonable
to expect the designer to place these points first, and then the
splines accommodate the designer’s requirements by preserving
these feature points. The lack of easy control of feature points
inspires us to provide a method for constructing aesthetic curves
with a good control over feature points. To achieve this goal,
we adopt cubic Bézier curves, which are of the lowest degree
to have interior cusps, loops, or inflection points. These curves
have limited diversity of their characterizations. That is to say,
a non-degenerate parametric cubic curve can have a cusp, a
loop, or zero to two inflection points, and their occurrence is
mutually exclusive [16,17]. There are several methods for deter-
mining whether a parametric cubic curve has any loops, cusps,
or inflection points. For instance, an algorithm based on algebraic
properties of polynomial coefficients [16] was developed, where
some geometric tests using B-spline control polygons were also
included. In [17] and [18], geometric methods were presented
for determining whether a cubic curve has any loops, cusps,
or inflection points. By considering the position of one control
point, the method in [18] is simpler and more instructive, which
analyzes the lengths of tangent vectors at the ends. Our analysis
of geometric constraints is based on [18].

3. Geometric constraints

For interpolatory curves, here we clarify the required ge-
ometric properties and discuss their corresponding geometric
conditions. Given a sequence of data pointsv; e R%,i=1,...,N,
with specified types (including cusps, loops, inflection points, and
regular points), we construct a curvature continuous (G? continu-
ous) FPC-Curve that interpolates v; and satisfies the following two
requirements: (1) each curve segment interpolates one point v;,
and the interpolated point v; becomes a point on the curve with
a specified type; and (2) cusps and local loops occur only at the
given points and inflection points occur only at the given points
or at joints. This is based on the assumption that cusps, loops,
inflection points are salient feature points of a curve that should
be directly controlled by the user. To make our interpolation
more versatile in modeling shapes, we allow the curve segment to
interpolate a regular point without introducing any feature points
in that segment. We focus on cubic Bézier curves and assume to
construct a closed curve in the rest of this section. Construction
of open curves will be discussed in Section 4. We first recall how
to determine if a parametric cubic curve has any feature points.
In this paper, we use the term feature points to refer to the loops,
cusps, or inflection points. Then we study the geometric condi-
tions for a single Bézier segment to interpolate at a feature point
or a regular point. Finally, we study the conditions for piecing
together these curve segments to be curvature continuous.

3.1. Geometric characterization of parametric cubic curves

s literatures have investigated the con-
urves to have any feature points. In this
sults for parametric cubic curves. To ease

| ‘ use the general representation of a planar
The Trial Version Q(1):

a pdfelement

Q(t) = (x(t), y(t)) = Y _P;t,)

j=0

where P; € R?, x(t) and y(t) are cubic polynomials with deriva-
tives Q'(t) = (x/(t),y'(t)) and Q"(t) = (X"(t),y"(t)). The signed
curvature of the curve (1) is given by
X (t)y"(t) — x"(e)y'(t)

(K(02 + (1)
The numerator is actually a quadratic function, which can be
denoted by

k(t) =

X' () = X'(t)y'(t) = 2F(t) = 2(At> + Bt + C),

where A = 3det(P,, P3), B = 3det(P{,P3) and C = det(Pq, P,).
Note that, F(t) is proportional to the signed curvature of the
curve.

It has been shown that a non-degenerate (i.e., the control
points are not collinear or coincident) parametric cubic curve
can only have a cusp, a loop, or up to two inflection points,
and the presence of loops, cusps or inflection points is mutually
exclusive. In particular, whether a cubic curve has any cusps,
loops, or inflection points can be entirely determined from the
discriminant A = B?> — 4AC of F(t) as follows [16,17]. If A = 0,
there is exactly one inflection point. Otherwise,

e if A > 0, there are exactly two inflection points;
e if A < 0, there is a loop;
e if A =0, there is a cusp.

3.2. Interpolation of cubic Bézier curves at feature points

Like many interpolation methods, we adopt planar cubic
Bézier curves. A cubic Bézier is defined as a linear combination
of four control points and basis functions:

3

Q(t) =) di(t)Qi. tel0,1], 2)
i=0

where Q; are the control points and d; = ﬁt"(l —t)* are

the basis functions. We can always convert a cubic Bézier curve

to the general representation (1), where the control points can be

computed as

P, 1 0 0 0 Qo
P, | | -3 3 0 o0 Q
P, || 3 -6 3 0 Q.
P; -1 3 -3 1 Q;

In other words, the cubic Bézier curve is a segment (correspond-
ing to the parametric interval [0, 1]) of the general cubic curve (1)
with control points defined above. Note that, Py in the general
form coincides with the control point Qg in the Bézier form.
The cubic Bézier curve (1) interpolates v = (x, y) at a specified
parameter t* € (0, 1) satisfying

Q(t*) = P5t™3 + Pot*> + P1t* + Py = v. 3)

In the following, we will discuss the additional geometric
conditions for a cubic Bézier curve (2) interpolating v such that
v becomes either a cusp, a loop, an inflection point, or a regular
point without introducing any other feature points on the curve
segment. Note that in Section 3.1, the conditions for a cubic curve
presenting feature points are determined without restricting the
range of parameter t. Here, we adapt the results to the Bézier
representation by restricting t to [0, 1]. Let us first assume A # 0.
We defer discussing the case of A = 0 until Section 4.

Cusp. A general cubic curve (1) has a cusp if and only if

A = B? — 4AC = 0. (4)

158 Z. Chen, J. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163

If we assign a value t* € (0, 1) to the parameter of a cusp, then
t* should also be the root of F(t). We have

" —B

= SA° (5)
where A, B satisfy Eq. (4). Conditions (4) and (5) lead to (see
Appendix A.1 for a more detailed discussion):

3P5t*% + 2P,t* + P, = 0. (6)

Loop. Instead of enforcing the condition A < 0, we could
enforce a more direct and intuitive condition on the cubic Bézier
curve such that it takes a loop. A cubic Bézier curve with a loop
means that there are two coincident points on the curve with
different parameters, for example tj, t5 € (0, 1) with tf # &.
Let the cubic curve interpolate the given data v at the loop, then
we have

P3t® + Pyt + Pitf +Py=v (7)
and
P3t}® + Pyty® + Pyt + Py = v. (8)

Inflection point. If A > 0, the parabola described by F(t) has
two roots symmetric around t = —%, both of which correspond
to the parameters of the inflection points. We specify one root as

t* € (0, 1),

F(t*) =0, 9)
and introduce a parameter h such that
B
t"+h=——, 10
+ A (10)
where h is restricted to (—oo, —%)U(%, +00). Then the second

root of F(t) can be guaranteed to be outside the parametric
domain [0, 1]. Intuitively, |h| is half of the distance between the
pair of roots, which can be used to adjust the shapes of the
parabola and the final curve segment. Conditions (9) and (10)
lead to a linear equation (see Appendix A.2 for a more detailed
discussion):

3(t*2 + 2ht*)P5 + 2(t* + h)P, +P; = 0. (11)

Regular point. A general cubic parametric curve (1) has either
a cusp, a loop or up to two inflection points. Note that, a cubic
Bézier curve (2) is part of a general cubic curve (1) with the para-
metric domain restricted to [0, 1]. Hence, a cubic Bézier curve can
have zero, one, or two inflection points, depending on whether
the two distinct roots of F(t) fall within the interval [0, 1]. We
obtain a regular cubic Bézier curve by enforcing the general curve
to have two inflection points, both of which lie outside of [0, 1].
To achieve this goal, we enforce that the quadratic function F(t)
has one root at —1, i.e.,

F(-1)=A—B+C=0, (12)

and the symmetry axis t = —B/2A of the corresponding parabola
is in-between t = 0 and t = 1. We also enforce that the curve
interpolates the point v at the parameter corresponding to the

a pdfelement (13)

The Trial Version 2). Conditions (12) and (13) lead to the
(see Appendix A.3 for a more detailed

discussion):

3(1+ 2t*)P3 — 2t*P, — Py = 0. (14)

Fig. 3. Conditions for G' continuity.

3.3. Geometric conditions for curvature continuity

We have discussed a single cubic Bézier segment for inter-
polating a point where the interpolated point becomes a cusp,
a loop, an inflection point, or a regular point of the curve. In
this section, we aim to piece these segments together to form a
curvature continuous curve.

Assume there are N connected curve segments referred in
the interpolation. Hereinafter, if a symbol carries two subscripts
separated by a comma, then the first subscript represents the
index of a curve segment, and the second subscript indicates the
index of control points in that curve segment. For instance, we
denote N cubic Bézier curves by Q;(t) (i =1, ..., N) with control
points {Q;o, ..., Q;3}, where Q;; means the jth control point of
the ith curve segment. Moreover, the first subscript i is taken
modulo N, if i > N.

Two sequential curve segments Q;(t) and Q;,((t) meet with
G? continuity if and only if they have a common end point,
ie, Qiz = Qir1.0 = Pir10 (G° continuity, where P; 1 is the
joint), a common unit tangent vector (G' continuity), ie., Q;3
(= Qit1.0), Qi2 and Q;y41,1 are collinear, and coinciding curva-
tures, i.e., ki(1) = «i+1(0) [1]. The conditions for G' continuity
can be equivalently written as

A
Qix+ Qiv11,

Qi3 =Qit10= P P
where A; = M is the ratio between the lengths of
1Qi+1,0Qit1,1ll

control legs adjacent to the joint Q;3(= Qit1,0); see Fig. 3.

Let the general representation of Q;(t) to be Pi(t) = 21'3:0 P,;jtj,
then the conditions for G? continuity can be described in terms
of P;; and A;. More precisely, G° continuity requires
Pio+Pi1+Pis+Pi3=Pip, (15)
and G! continuity requires

3Pio+2P;1 +Pis — 3Pit10 = —Pit11). (16)

Substituting conditions (15) and (16) into «;(1) = «;11(0) yields
G? continuity condition:

B ’(Pi.] +2P;; + 3P;3) x (Pi,2+3Pi,3)‘

A= .
l |Pis12 x (3Pio + 2Pi 1 +Pi3 — 3Piy10)]

(17)

4. Optimization

While we have discussed geometric conditions for construct-
ing a single cubic Bézier segment that interpolates at a feature
point and piecing them together with G* continuity, we aim to
provide an optimization method that generates curves satisfying

Z. Chen,]. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163 159

all these conditions. Let us first recall from Section 3 that the
conditions for each curve segment to have desired properties are:
interpolation condition (3); conditions for controlling over the
type of the interpolated points, i.e., (6) for a cusp, (8) for a loop (in
this case, (3) is replaced by (7)), (11) for an inflection point, and
(14) for a regular point; and conditions for G° to G? continuity
(15)-(17). All these conditions form a non-linear system with re-
spect to the control points P; j, which are difficult to solve directly.
We can observe that the first four conditions are linear equations
with respect to unknown control points, if the parameter t;, h;
and ; are fixed. Instead of directly solving the non-linear system,
we therefore compute control points according to the first four
conditions to achieve G! continuity, and then update the ratio A;
according to condition (17) to pursue curvature continuity. These
two steps are alternatively applied until a terminate condition is
satisfied.

Let us consider a cubic Bézier segment Q;(t) that is G! con-
nected to the subsequent segment Q;1(t), and they interpolate at
cusps. Therefore, both segments should satisfy conditions (3) and
(6),and (15)-(17). For the ith segment, we assume the parameters
t* and A; are constant, then the first four conditions are linear
equations with respect to the five unknowns P; o, P; 1, P2, Pi3,
and P;.q . If we solve the first three equations (i.e., Eqs. (3), (6)

and (15)) for three unknowns P; 1, P; », and P; 3, we can represent
them as linear combinations of the joints P and P 1 0:
£#2 542 3t -2
Pi1= 7([?’71)2”#1,0 — 7 Pio - o Vi
2cF 204 +1 36521
Pi, =——'SP; L_P; v; 18
i,2 (ti*_l)z i+1,0 + [i*z i,0 +*tx*2([i* 12 is ()
—_1 p o 1p 2471 .
Pi3= ([i*,])zPhLl,O L_i*zPl,O 217 v;.

The middle control points of the (i 4+ 1)th segment can be deter-
mined in a similar fashion. In particular,

+2 3t 2
'H* Pii10— Lvi+1-
tl+1 H—l(i+1)

2
tztrl
(t;:— 1 -1)2

PH—],] = Pi+2,0

Simply substituting these solutions into Eq. (16), we obtain an
equation only related to the joints P; ¢, Pi+1,0, and Pij5 o:

(tF— 1) t*—3 t 42 52
P.,— ! + A ! P: + A ! P:
2 10 t—1 i £ i+1,0 I(ti* —1y 42,0
3t —1 I 3tF —2
= 5 Vit
2 1) e -

Conditions for two G! connected segments where each seg-
ment interpolates at a feature point or a regular point can be
derived in the same fashion. In other words, each G' connected
interpolating curve segment leads to a linear equation only with
respect to three joints of the form:

Ei1Pio + Ei3Piy10 + Ei3Piy20=C;, i=1,...,N, (19)

where E; 1, E; », Ei 3, and C; are determined by parameters t, A;,
hi, v;, and the type of v; (see Appendix B). These equations form a
trldlagonal system, leadmg to a solution for the joints. Although
A 2lly prove the uniqueness of the solution
pund a singular coefficient matrix of the
11 our experiments. Other control points
ed as linear combinations of joints can also
ting the solution into the curvature con-
ads to an estimation for A, and an update
. We then repeat these control point solving
and A; estimation processes until convergence. The pseudo code
of our FPC-Curve optimization method is shown in Algorithm 1.

B pdfelement

The Trial Version

Algorithm 1 Optimization for modeling FPC-Curves

Input: a sequence of points {v;|i = 1, ..., N} with specified types
(cusps, loops, inflection points, regular points, or end points)
and associated parameters h; for inflection points

Output: almost everywhere G> continuous pieced cubic Bézier
curves that interpolate the points {v;|i = 1, ..., N}

1 A<« 1,i=1,..,N
2: Compute the parameter t* for each point v; using Egs. (20)
and (21)
3: Solve the linear system (19) for {P;oli =1, ..., N}
4: Compute the other control points {P;;li = 1,..,N;j =
1, ..., 3}, which are linear combinations of P; and v; (a special
case is shown in Eq. (18))
: Update {};li = 1, ..., N} using Eq. (17)
 if max; |(|ii(1)|—kig1(0)])] > 1071 then
Go to Step 3
else
Terminate
10: end if

© R NDWw

Note that, to achieve G? continuity at a joint with opposite
curvature vectors, the curvature at that joint must be zero. Theo-
retically, if a cubic parametric curve has a cusp or a loop, it cannot
have any inflection points, i.e., points with vanished curvature. A
cubic parametric curve can only have up to two inflection points.
Hence, it is impossible to achieve G? continuity at a joint with
sign change curvature in the following two cases: (1) one of the
neighboring interpolated points is either a cusp or a loop; and
(2) there are three consecutive interpolated points specified to
be inflection points while both joints between them have sign
change curvature, as a result G continuity can only be achieved
at one of the joints. For simplicity, we require that the absolute
values of the curvature are the same if they have opposite signs.
That is to say, G! continuity is achieved at joints with sign change
curvature.

Fig. 4 shows the initial, intermediate and final states of the
curve evolution process. To intuitively verify the continuity of
the pieced curve, we plot the curvature vectors (toward the
centers of curvature and with lengths proportional to the radii
of curvature) along the curve. Our algorithm usually takes a
dozen or dozens of iterations to meet the terminating condi-
tion, max; |(|«i(1)] — |«i1(0)])] < 1071°. It converges fast, as
can be observed in Fig. 4 that the result in the 15th iteration
(max; |(|ki(1)] = |kix1(0)])] = 1078) is very close to the final
result; and max; |(|«i(1)] — |«i+1(0)])| converges to machine preci-
sion after 50 iterations. We can also observe that the constructed
interpolating curve has continuously varying curvature vectors,
except at the specified cusps (which are theoretically C? contin-
uous indeed) and possibly at joints where the sign of curvature
changes.

Parameter settings. As discussed previously, the coefficient
matrix of the linear system (19) is determined by the given points
v; (with specified types), parameters t;* (or 7 ; and t;; for a loop),
h; (for inflection points), and ;. Different parameter choices lead
to interpolatory curves with different shapes. In the following we
will discuss appropriate parameter selection for practical imple-
mentation. First, each given data point v; is associated with a
parameter t, computed as
ti* _ llvi—1vill € (0,1). (20)

lvi1vill + lviviell
If v; is specified to be a loop, then two parameters for this loop
are

th=t—o and) =1t"+p, (21)

160 Z. Chen, J. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163

2}, lg(max [((x (D)5, O)))

VWA

20 . 40 60
Iteration number

Fig. 4. Curvature vectors (toward the centers of curvature and with lengths proportional to the radii of curvature) during our optimization evolving process. From
left to right: our initial solution, intermediate result after 15 iterations, final result after 30 iterations, and the plot of maximum curvature error at joints vs. iteration

number.

4k

Fig. 5. Size control of loops. All the «; and S; are set to 0.3 in the left figure,
and 0.4 in the right figure.

—

Fig. 6. The sign and value of h determine the concavity of the curve and how
much the curve is bending at both sides of the inflection point (marked with
a blue star). Magenta triangles and orange squares denote cusps and regular
data points, respectively. From left to right, h is set to be 0.5, 3, and —0.5,
respectively.

where o; € (0, t) and B; € (0, 1 —) can be used to control the
size of the loop. Intuitively, the size of a loop increases with the
increase of o+ B;; see Fig. 5. We set o; = 8; = % min{t, 1—t} by
default. If v; is specified to be an igﬂection*point, the parameter
h; is chosen in the range (—oo, —%) U (I_Tt", +00). The sign and
absolute value of h; describe the concavity of the curve, and how
much the curve is bending at both sides of the inflection points;
see Fig. 6. If the value of h; is large, the curve will stretch greatly
around the inflection point. We set h; to be 0.5 by default in
our implementation. Users can adjust the value of h; to obtain
a desired shape of the curve.

Open curves. In the previous discussion, we assumed that the
d. For a curve with end-points v; and
bic Bézier segments and (N —3) joints;

.- pdfelement e get a linear equation of P;g, Pii 1.0,

The Trial Version .
i=1,...,N—3.

20 =0C;,
P and Py_; are specified by the end conditions:

Pip=v;, and Py_;o=vy.

Fig. 7. Left: a close curve with 6 cubic Bézier segments and 6 joints. Right:
an open curve with 4 cubic Bézier segments and 3 joints. They both have 6
interpolated points.

Thus we obtain a system consisting of (N — 3) linear equations,
which is a simple modification of the system (19). Then, the
unknown joints P, g, ..., Py_30 and A; can be iteratively updated
in the same fashion. Figs. 1 and 8 show examples of curves with
end-points.

Degenerate cases. Another assumption in previous discussion
is that A, which is determined by control points, does not vanish.
Actually when A = 0, the corresponding segment degenerates
into a straight line segment. For instance, if the segment interpo-
lates at a cusp, then we use the equivalent form of condition (5),
2At* = —B, in the implementation. Hence, A = 0 leads to B =10
and C = 0, which means that all control points are collinear. The
interpolation of other types of points is similar.

5. Experimental results

This section presents experimental results of our FPC-Curves
modeling framework. We perform all our interactive curve design
experiments on a PC with a 3.2 GHz Intel processor and 12 GB
memory. Our method provides interpolating results at interactive
speed, even for curves with a large number of input data points.
In all our examples, the four types of control points: cusps,
loops, inflection points and regular points are marked as purple
triangles, green circle, blue stars and yellow squares, respectively.
The end-points are marked as black squares.

Figs. 1 and 8 show various curves with almost everywhere G?
continuity constructed from the input data points in the second
row. We can observe that the curves are visually pleasant and
cusps and local loops only occur at the input data points, while
the inflection points only appear at the input data points or
joints.

As has been pointed out, we can generate curves with cusps,
loops and inflection points by using previous interpolation meth-
ods. However, these methods are usually hard to create these
feature points at specified positions, or rely on user manipula-
tion, or even introduce unexpected feature points. In addition,
more control points are usually needed to model these features,

Z. Chen,]. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163 161

e -\/$
%‘H

Fig. 9. Comparison with the x-Curves method [2]. To model a similar shape,
our FPC-Curves method uses 12 points (left) designating the exact positions of
the loops, while the x-Curves method uses 36 points (right).

introducing intense labor work for users. Fig. 9 compares our
FPC-Curves with the x-Curves method [2], where the «-Curves
method uses 36 control points, while we use only 12 control
points. Note that, in order to model a similar shape, we specify
a total of 24 parameters (t} ;and &3 for each control points) in
addition to 12 control points in our method. For the other results
in this paper, we just use the default values for ¢7; and t; ;.

While our algorithm generates a global solutlon the influ-
ence of relocating an interpolated point drops dramatically when
moving away from this point. Fig. 10 shows an example curve
where an interpolated point at the upper right corner is moved in
opposite directions, where the original curve and the new curves
are drawn in blue and black, respectively. From the results, we
observe that relocating a control point only has a very local effect
on the shape of the spline.

re work

bquence of given data points is a widely
be modeling. Feature points such as cusps,
nts, which are considered to be artifacts
ire fairness of curves, are actually desired
Nese points describe the salient shape fea-
tures Previous interpolation methods suffer from the limitation
of hard controlling over the location of feature points, sometimes

B pdfelement

The Trial Version

258

b

5

Fig. 10. The shape of interpolatory FPC-Curves changes locally by relocating
the associated interpolated points. The original curves are in blue, and the new
curves are in black. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

even introduce unexpected feature points. To achieve a good
control over the location and type of feature points, we use cubic
parametric polynomial curves, where loops, cusps, and inflection
points are mutually exclusive. FPC-Curves guarantee that cusps
and local loops only occur at the interpolated points and the
inflection points only occur at the interpolated points or joints.
The resulting curves are guaranteed to be G! continuous and can
achieve curvature continuous almost everywhere. Moreover, our
curves have very good locality, i.e., relocating a control point only
affects the local shape nearby the changed point. These properties
make our method very suitable for artistic design applications.

Currently, we only focus on controlling over cusps, loops, and
inflection points. The curvature extrema are also argued to be
feature points of a shape. The discussion of curvature extrema of
cubic curves have been discussed in [19]. Allowing control over
curvature extrema will provide more flexibility in controlling
over the curve shapes, which will be our future work.

Acknowledgments

The research of Zhonggui Chen and Juan Cao was supported by
the National Natural Science Foundation of China (Nos. 61872308,
61472332, 61572020), the Natural Science Foundation of Fujian
Province of China (No. 2018J01104), and the Fundamental Re-
search Funds for the Central Universities, China (Nos. 20720190063,
20720190011). The research of Yongjie Jessica Zhang was sup-
ported in part by the PECASE award N0O0014-16-1-2254, National

162 Z. Chen, J. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163

Science Foundation CAREER Award OCI-1149591, National Sci-
ence Foundation, USA CBET-1804929, CMU Manufacturing Fu-
tures Initiative and CMU-PITA.

Appendix A. Geometric conditions for interpolation

We give a more detailed discussion about geometric condi-
tions for a cubic Bézier curve (2) interpolating a point at the
parameter t* such that the interpolated point becomes either a
cusp, an inflection point, or a regular point. We prove that all the
conditions can be expressed as linear combinations of the control
points P;, i = 1,2, 3. We first introduce an identity that will be

employed by the following proofs, and we have
AP + 3CP5 = BP,. (A.1)

This identity can be easily proved by expanding the determinants.
Then we discuss each case, respectively.

A.1. Condition (6) for cusps

A general cubic Bézier curve has a cusp if and only if A = B> —
4AC = 0. If we specify the parameter of the cusp as t* € (0, 1),

then t* = —2 = —Z2C, where B # 0. Thus, we have
B
2= ——. (A2)
and
2C = —t*B. (A.3)

(A.2)xPq 4+ (A.3)x3P5 yields:
B
2AP; + 6CP3; = —3Bt*P3 — FP]

With Eq. (A.1), we have 2BP, = —3Bt*P; — [%Pl. Condition (6)
can be obtained straightforwardly from the above equation.

A.2. Condition (11) for inflection points

The conditions for an interpolated point to be an inflection
point are Eq. (10) and Eq. (9). Rewriting condition (10) as

B = —2A(t* + h), (A4)
and substituting it into condition (9), we have
C = (t** 4+ 2ht*)A. (A5)

Thus, (A.5)x3P3 — (A.4) x P, yields
3CP; — BP, = 3(t** + 2ht*)AP; + 2(t* + h)AP,.

Condition (11) becomes an immediate consequence of the above
equation using the identity (A.1).

A.3. Condition (14) for regular points

The conditions for an interpolated point to be a regular point
are Eq. (A.6) and Eq. (13). Eq. (A.6) can be rewritten as

B = —2t*A.

(A.6)

Eq. (13), we have

a pdfelement (A7)

The Trial Version

Following the identity (A.1), we obtain condition (14) from the
above equation.

Appendix B. Linear system of joints

We use an integer number k; € {0, 1, 2, 3} to indicate the
type of an interpolated point v;, where 0, 1, 2, and 3 represent
a loop, a cusp, an inflection point, or a regular point, respectively.
The coefficients of the linear system (19) are determined by
parameters ¢ (7, and t, for loops), A;, hi, v; and k; as

ki

Ei,l = Miy‘l!
— ki ki1
Bz = M+ AMi s
ki1
Eis = MMy
ki ki1
G = Mjsvi+ AiM gvita,
where
MO = W 1 (f,'**l)z
i1 G > Mi,1 ==,
1
MO, — il T2 20,3 . 3
i,2 -0, Mi,z = ~r
MO I AL PR AP ML — 42
L3 b ’ i3 T T
[y %2
MO — i,171,2 1 [17
L4 T (-1, -1) M, = 12
2 2
MO — G T T 28 2t 41 ML = 3tF -1
B ERCPIC R GRS ’ BT -1y
24px 2 —tF — 352
Mo = G g | g = 2
[e e L e (e 1)
M3
i1
204 ark3 — 1202 4 4rr 42
2 265746t —3tF —4h+1 e M e e/
My =1— o, 26F 4505 —Ark e 3¢
’ (¢ “+4htf —2h—t]") i i i i
3
2 2042 2% +6ht* —4h M7,
Mi, = T ane -1 26444623 12072 6t
L2 7 (X —1)(t*2 +4htF —2h—tF) P s Mt Sy
l l l l T artgseoar?os
#2_ ok opik ; #3_apk?_3p
M2, _ 2472 +Bh -2 5
B3 7 (2 +ahtr —2h—t) ’ M7, e
) 3 4 qpex? 24643 8t -3
M2, = it SR e myre eyt
LA T (1)t 4aheF —2h—tF)’ 26T AT 3G
1 1 1 1
x4 %3 *2
M2 36°246ht —4t* —4h+1 M3, = o P
fe= N * %3 _ g2 _qpx
LS T pR (e 1) pahtt —2h—t*)” e
1 1 1 1 1 2+]0t*
%2 * * 3 Y
2 3tX%46her—2tF—2h Ms = 7>
Mis = v sam—any’ i
i i i i M3 _ 3+8ti*
b6 7 a5 qex? 3ex
References

[1] Farin G. Curves and surfaces for CAGD: A practical guide. Morgan
Kaufmann; 2002.

[2] Yan Z, Schiller S, Wilensky G, Carr N, Schaefer S. «-Curves: Interpolation

at local maximum curvature. ACM Trans Graph 2017;36(4):129:1-7.

Levien RL. From spiral to spline: Optimal techniques in interactive curve

design. [Ph.D. Thesis], Berkeley, USA: University of California; 2009.

Brunnett G, Kiefer J. Interpolation with minimal-energy splines. Comput

Aided Des 1994;26(2):137-44.

Levien R, Séquin CH. Interpolating splines: Which is the fairest of them

all? Comput Aided Des Appl 2009;6(1):91-102.

Peters J. Geometric continuity. In: Farin G, Hoschek], Kim MS, ed-

itors. Handbook of computer aided geometric design. North-Holland,

Amsterdam; 2002, p. 193-227, [Chapter 8].

Feng YY, Kozak J. On G continuous interpolatory composite quadratic

Bézier curves.] Comput Appl Math 1996;72(1):141-60.

Catmull E, Rom R. A class of local interpolating splines. Comput Aided

Geom Design 1974;317-26.

[9] Deslauriers G, Dubuc S. Symmetric iterative interpolation processes. Constr
Approx 1989;5(1):49-68.

[10] Moreton HP. Minimum curvature variation curves, networks, and sur-
faces for fair free-form shape design. [Ph.D. Thesis], Berkeley, CA, USA:
University of California at Berkeley; 1992.

[11] Farin G. Degree reduction fairing of cubic B-spline curves. In: Geometry
processing for design, and manufacturing. 1992, p. 87-99.

[3

[4

5

6

(7

8

http://refhub.elsevier.com/S0010-4485(19)30171-X/sb1
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb1
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb1
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb2
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb2
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb2
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb3
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb3
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb3
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb4
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb4
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb4
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb5
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb5
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb5
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb6
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb6
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb6
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb6
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb6
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb7
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb7
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb7
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb8
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb8
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb8
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb9
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb9
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb9
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb10
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb10
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb10
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb10
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb10
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb11
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb11
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb11

Z. Chen,]. Huang, J. Cao et al. / Computer-Aided Design 114 (2019) 155-163

163

[12] Harary G, Tal A. The natural 3D spiral. Comput Graph Forum [16] Wang CY. Shape classification of the parametric cubic curve and parametric
2011;30(2):237-46. B-spline cubic curve. Comput Aided Des 1981;13(4):199-206.

[13] Walton D, Meek D. A planar cubic Bézier spiral.] Comput Appl Math [17] Su B-Q, Liu D-Y. An affine invariant and its application in computational
1996;72(1):85-100. geometry. Sci Sin A 1983;24(3):259-67.

[14] Farin G. Class A Bézier curves. Comput Aided Geom Design [18] Stone MC, DeRose TD. A geometric characterization of parametric cubic
2006;23(7):573-81. curves. ACM Trans Graph 1989;8(3):147-63.

[15] Cao], Wang G. A note on class A Bézier curves. Comput Aided Geom Design [19] Walton D, Meek D. Curvature extrema of planar parametric polynomial

2008;25(7):523-8.

cubic curves.] Comput Appl Math 2001;134(1):69-83.

a pdfelement

The Trial Version

http://refhub.elsevier.com/S0010-4485(19)30171-X/sb12
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb12
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb12
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb13
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb13
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb13
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb14
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb14
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb14
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb15
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb15
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb15
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb16
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb16
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb16
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb17
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb17
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb17
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb18
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb18
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb18
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb19
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb19
http://refhub.elsevier.com/S0010-4485(19)30171-X/sb19

	Interpolatory Curve Modeling with Feature Points Control
	Introduction
	Related work
	Geometric constraints
	Geometric characterization of parametric cubic curves
	Interpolation of cubic Bezier curves at feature points
	Geometric conditions for curvature continuity

	Optimization
	Experimental results
	Conclusion and future work
	Acknowledgments
	Appendix A Geometric conditions for interpolation
	Condition eq:cusplinearequation1 for cusps
	Condition eq:inflectioncondi for inflection points
	Condition eq:regularcond for regular points

	Appendix B Linear system of joints
	References

