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In the process of surface modeling from scanned point data, a segmentation that partitions 
a point cloud into meaningful regions or extracts important features from the 3D point 
data plays an important role in compressing the scanned data and fitting surface patches. 
In this paper, a new spectral point cloud surface segmentation method is proposed based 
on volumetric eigenfunctions of the Laplace-Beltrami operator. The proposed algorithm 
consists of two main steps. Firstly, the point cloud surface is modeled as the union of 
a bunch of level set surfaces, on which the eigenfunctions are computed from the level 
set form of the Laplace-Beltrami operator using the finite element method. Secondly, a 
new vectorial volumetric eigenfunction segmentation model is developed based on the 
classical Mumford-Shah model, in which we approximate volumetric eigenfunctions by 
piecewise-constant functions, and the point cloud surface is segmented via segmenting 
the volumetric eigenfunctions. Instead of solving the Euler-Lagrange equation by evolution 
implementation, the split Bregman iteration, which is shown to be a fast algorithm, 
is utilized. Experimental results demonstrate that our volumetric eigenfunction based 
technique yields superior segmentation results in terms of accuracy and robustness, 
compared with the surface eigenfunction based method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Reverse engineering is a technology that enables us to generate a computerized representation of an existing object based 
on point data acquired from the surface. The existence of a computer model provides enormous gains in improving the 
quality and efficiency of design, manufacture and analysis (Várady et al., 1997). The typical process of reverse engineering 
begins with collecting point data from the surfaces of a physical object. The initial point data acquired by a measuring 
device generally require pre-processing such as noise filtering, smoothing, merging and data ordering in order to be useable 
in subsequent operations. Then the preprocessed point data should be divided into several smooth regions for surface 
modeling purposes, which is called the segmentation process. After that, a surface model can be generated either by a 
curve-net-based method or by a polygon-based modeling method. The curve-net-based method is more commonly used 
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when generating a surface model from the scanned data. The polygon-based modeling method is fast and efficient in fitting 
surfaces; however, it generates less accurate surface models than the curve-net-based method and it is also difficult to 
modify the final model (Várady and Benkö, 2000). Each method has its advantages and disadvantages and either method 
can be used based on the geometric shape of an object.

To facilitate surface modeling tasks, the point cloud should be arranged well and segmented. However, it is not easy for 
a computer to perform segmentation even for a simple object with quadric surfaces. Segmenting an object with free-form 
surface is even more difficult and usually leads to ambiguous solutions. In reverse engineering, segmentation has the greatest 
effects on product development duration and quality of the final surface model. The segmentation task is not only difficult 
but also time-consuming, and, in practice, has usually been performed with a lot of user interactions.

Many researchers have tried to develop segmentation methods to extract geometric information, such as edges and 
smooth regions, from the scanned data. These point data segmentation methods can be classified into three categories: 
edge-detection methods (Fan et al., 1987; Chen and Liu, 1997; Milroy et al., 1997; Yang and Lee, 1999), region-growing 
methods (Hoffman and Jain, 1987; Besl and Jain, 1988) and hybrid methods (Yokoya and Levine, 1989; Checchin et al., 1997;
Zhao and Zhang, 1997). The edge-detection methods attempt to detect discontinuities in the surfaces that form the closed 
boundaries of components in the point data. The region-growing methods, on the other hand, proceed with segmentation 
by detecting continuous surfaces that have homogeneity or similar geometrical properties. Most segmentation methods 
based on discontinuity can run short when edges have small variation or when regions are homogeneous. The region-based 
segmentation methods allow for reliable homogeneity in a region but these methods often fail to localize regional outlines 
accurately. To resolve limitations of the above two approaches, hybrid segmentation approaches have been developed, where 
the edge- and region-based methods are combined. In addition, Rabbani et al. (2006) used local surface normals and point 
connectivity which can be enforced using either k-nearest or fixed distance neighbors to divide a given unstructured 3D 
point cloud into a set of smooth surface patches. Bizjak (2016) developed a segmentation method based on locally fitted 
surfaces. The topological structure of the input point cloud was realised by a nearest-neighbor graph, while locally fitted 
surfaces were used to quantify the object shapes. Noise was filtered by a graph-cut and segmentation was performed by 
linking nodes to faces which they fit the best.

Most of the above methods employ curve or surface fitting to find edge points or curves. However, the surface- or 
curve-fitting tasks are time-consuming and it is also difficult to extract the exact edge points because the scanned data 
consist of discrete points and the edge points are not always included in these data. The method proposed by Woo et 
al. (2002) can extract edge-neighborhood points using 3D grids and segment the point cloud of an object with quadric 
surfaces without fitting any curve or surface. Vo et al. (2015) presented an octree-based region growing algorithm for fast 
and accurate segmentation of terrestrial and aerial LiDAR point clouds. This approach employs a voxel model to simplify the 
initial data, index the data, and define neighborhood groups for computing local surface properties.

In addition to shape segmentation methods focusing on geometric features, many techniques were proposed based on 
the spectrum of the Laplace-Beltrami operator (LBO), machine learning and convolutional networks. Reuter (2009) employed 
eigenfunctions of the LBO to construct consistent shape segmentations. With topological persistence it is possible to con-
struct hierarchical segmentations that remain stable across near-isometric populations of shapes and with respect to noise 
or mesh quality. Kalogerakis et al. (2010) introduced a data-driven approach to simultaneous segmentation and labeling of 
components in 3D meshes. Labeling of mesh components is expressed as an optimization of a Conditional Random Field 
(CRF), with terms assessing the consistency of faces with labels. The objective function is learned from a collection of labeled 
training meshes. Recently, a deep architecture combining image-based Fully Convolutional Networks and surface-based CRFs 
was proposed to yield coherent segmentations of 3D shapes (Kalogerakis et al., 2017). The entire architecture is trained 
end-to-end.

Note that the inputs of the above-mentioned spectral methods are 3D polygon meshes, while we start from point cloud. 
In this paper, we develop a novel spectral surface segmentation method based on volumetric eigenfunctions of the LBO, 
partitioning the point cloud of an object with free-form surfaces into meaningful regions. The main contribution of this 
paper is to introduce an efficiently computable set of volumetric eigenfunctions for segmentation. Different from Rustamov
(2011), where Rustamov interpolated the LBO eigenfunctions of the boundary surface into the interior volume via barycen-
tric coordinates, we compute volumetric eigenfunctions from the level set form of the LBO using the finite element method. 
To begin with, 3D Voronoi tessellation of the point cloud data is computed to approximate the radius of the point, thereby 
the 3D shape can be generated from the point cloud data using the Gaussian density map.

Furthermore, we adapt the classical Mumford-Shah model and the split Bregman method to the volumetric setting. 
A vectorial piecewise-constant variational model for 3D shape segmentation is developed, and the split Bregman iteration 
for minimizing the energy functional is established. We explore a new way to solve the partial differential equation (PDE) 
with boundary condition, that is, making use of the boundary condition to extend the domain of the unknowns onto the one 
ring neighborhood, and then updating the unknowns in the original domain. For the domain extension which is formulated 
as a system of linear equations, we utilize the L2-gradient flow method to resolve its corresponding least square problem.

The remainder of this paper is organized as follows. Section 2 briefly reviews the differential geometry on implicit 
surfaces. Section 3 is devoted to the generation of the 3D shape from the point cloud data and the computation of LB 
volumetric eigenfunctions. The proposed vectorial piecewise-constant based variational model for 3D shape segmentation 
and the corresponding split Bregman iteration are described in Section 4. Section 5 presents several experimental results. 
Finally, we conclude the paper with a summary and point out future directions in Section 6.

he Trial Version



X. Li et al. / Computer Aided Geometric Design 71 (2019) 157–175 159
2. Differential geometry of implicit surfaces

In this section, we introduce some background of differential geometry and interested readers are referred to Xu and 
Zhang (2012) for details. For simplicity, we assume that ‖∇φ‖ �= 0 in an open neighborhood �c of the level-set surface 
Sc = {x : φ(x) = c}. Let ∇ , div and � denote the classical gradient, divergence and Laplace operators, respectively. From the 
implicit function theorem, we know that Sc is a smooth surface and for each point x on Sc , we have

n = ∇φ

‖∇φ‖ .

The gradient of a vector-valued function v = [v1, v2, v3]T ∈ R3 is written as ∇v = [∇v1,∇v2,∇v3] ∈ R3×3. Then we can 
define the following differential operators.

Tangential gradient operator. Let f ∈ C1(�c), then the tangential gradient of f on the level-set surface Sc is defined by

∇φ f = P∇ f , (1)

where P = I − nnT is a projection operator onto the tangent plane of surface Sc , and I is the identity projection. Hence, 
P = PT = P2 holds.

Tangential divergence operator. Assume v is a smooth vector field defined on �c , then the action of the tangential diver-
gence operator divφ onto v is defined by

divφ(v) = 〈2Hn,v〉 + div(v) − nT(∇v)n. (2)

In particular, if v is a tangential vector field on the level-set surface Sc , we have

divφ(v) = div(v) − nT(∇v)n. (3)

Laplace-Beltrami operator. Let f ∈ C2(�c), then the LBO �φ applying to f is defined as

�φ f = divφ

(∇φ f
)
. (4)

Theorem 1. Given an ε > 0, suppose Sc = {
x ∈R3 : φ(x) = c

}
is an orientable closed surface for each c ∈ [−ε, ε], and ‖∇φ(x)‖ > 0

for all x ∈ �ε :=⋃
c∈[−ε,ε] Sc . We further assume that v is a smooth vector field on �ε satisfying 〈v, ∇φ〉 = 0. Let f ∈ C1(�ε), then 

we have∫
�ε

〈v,∇φ f 〉‖∇φ‖dx = −
∫
�ε

f divφ(v)‖∇φ‖dx. (5)

Note that the Green’s formula (5) for the LBO �φ is a corollary of the Riemannian divergence Theorem (Xu and Zhang, 
2012).

3. Shape generation and volumetric eigenfunction computation

In this section, we first generate the 3D shape from the point cloud data, and then compute volumetric eigenfunctions 
of the LBO using the finite element method.

3.1. 3D shape generation from the point cloud surface

Gaussian density map has been widely used in biomolecular geometry calculation, visualization, and biophysics. 
Biomolecular structures consist of the center location and radius information of each atom. Here we use the Gaussian 
density map to construct 3D shapes.

For a given point cloud surface {xi ∈ R3}N
i=1, we move its barycenter c = 1

N

∑N
i=1 xi to the origin of coordinates, that 

is xi := xi − c, and then compute its 3D Voronoi tessellation using the software library Voro++ (2008). The custom output 
routines contain complete information about the structure of Voronoi cells, and we extract the list of neighbors for each 
particle and average the distances from this particle to all its neighbors. Then we obtain the data structure {(xi , ri)}N

i=1, 
where N is the number of the particles on the point cloud surface, and (xi, ri) are the position and radius of the ith particle.
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We compute its Gaussian density map φ in a rectilinear grid with

φ(x) =
N∑

i=1

e−b
(‖x−xi‖2−r2

i

)
, (6)

where b > 0 is called the blobbyness parameter, which controls the rate of decay in each particle’s Gaussian kernel. In Liu et 
al. (2015), the suggested b0 = 0.3875 provides quite a good geometric description of the biomolecule. However, the particles 
on the point cloud surface are denser than the atoms in the biomolecule, and the shape boundary becomes smoother and 
more inflated if we choose b = b0. To generate ideal shape with b0 from the point cloud surface, we expand the point cloud 
data such that the distances between particles (dparticles) are similar to the distances between atoms (datoms). In fact, we 
do not need to move particles, we can just integrate the scaling factor κ = datoms

dparticles
into b, that is, b = κ2b0. Here, datoms is 

computed as the average of the mean distance between the atoms in 1BPB, 1BPD, 1BPE, 2BPC, 2BPF and 2BPG, which are 
all selected from the Protein Data Bank (http://www.rcsb .org/). Therefore, we choose a large b when the particles are dense 
and a small b for the sparse case.

It is well known that φ ∈ C∞(R3). The 3D shape, denoted as �, is represented by the set of points where the density 
is greater than 1.0, that is � = {x ∈R3 : φ(x) ≥ 1}. It is a collection of a series of implicit surfaces Sc = {x : φ(x) = c} with 
c ≥ 1. Here, φ is called a level-set function and c is its corresponding level-set value or isovalue. Eigenfunctions are computed 
from the LBO defined on implicit surfaces, and the shape can be segmented using the distribution of its eigenfunctions.

3.2. Computation of LBO volumetric eigenfunctions

Suppose Sc is an orientable closed surface, and ‖∇φ(x)‖ ≥ 0 for all x ∈ �. Letting f ∈ C2(�), the eigenfunction of LBO 
should satisfy

�φ f = −λ f , (7)

where λ is the corresponding eigenvalue. According to Theorem 1, ∀ f ∈ C2(�) and ∀h ∈ C1(�), we have∫
�

h�φ f ‖∇φ‖dx = −
∫
�

〈∇φ f ,∇φh〉‖∇φ‖dx. (8)

Therefore, we plug Eq. (7) into Eq. (8) and obtain∫
�

〈∇φ f ,∇φh〉‖∇φ‖dx = λ

∫
�

f h‖∇φ‖dx. (9)

Letting {ϕα}K
α=1 be a set of basis functions defined on �, K be the node number and ϕα ∈ C2(�), f can be approximately 

represented as f =∑K
α=1 fαϕα . Taking h = ϕβ (β = 1, 2, · · · , K ), we have

K∑
α=1

fα

∫
�

〈∇φϕα,∇φϕβ〉‖∇φ‖dx = λ

K∑
α=1

fα

∫
�

ϕαϕβ‖∇φ‖dx. (10)

Letting mαβ = ∫
�
〈∇φϕα, ∇φϕβ 〉‖∇φ‖dx and cαβ = ∫

�
ϕαϕβ‖∇φ‖dx, the eigenfunctions of LBO can be obtained by solving 

the eigenproblem

Mf = λCf, (11)

where M = [
mαβ

]
, C = [

cαβ

]
and f = [ f1, f2, · · · , f K ]T. Note that M and C are large sparse symmetric matrices, M is positive 

semi-definite, and C is positive definite.
For the above generalized eigenvalue problem (11), the non-negative eigenvalues λα and the corresponding eigenvectors 

fα should satisfy

FTMF = � and FTCF = I, (12)

where � = diag [λα], F = [f1, f2, · · · , fK ], fα = [ fα1, fα2, · · · , fαK ]T , α = 1, 2, · · · , K , I is the identity matrix (Parlett, 1998). 
Therefore the eigenvectors fα are orthonormal with respect to the inner product (f,g) = 〈f,Cg〉 , ∀f, g ∈RK . The αth eigen-
function of the LBO on � can thereby be represented as

fα(x) =
K∑

fαβϕβ(x). (13)
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We will then give a detailed description of the basis functions {ϕα}K
α=1. Let xi jk = [

xi, y j, zk
]T

(i = 0, 1, · · · , W , j =
0, 1, · · · , H, k = 0, 1, · · · , L) be the rectilinear grid points of the minimal cube which contains �, where (W + 1) × (H + 1) ×
(L + 1) is the mesh size. We can construct the basis function ϕi jk for each point in � as the tensor product of three cubic 
B-spline basis functions, that is

ϕi jk(x) = Ni(x)N j(y)Nk(z), ∀xi jk ∈ �, (14)

where Ni(x), N j(y) and Nk(z) are cubic B-spline basis functions defined on [xi−2, xi+2], [y j−2, y j+2] and [zk−2, zk+2], re-
spectively.

In this study, only a few eigenvalues and eigenfunctions are needed. As we deal with a large but sparse problem, an iter-
ative Krylov methods (such as the Lanczos method) can be used efficiently. We use the shift-invert method as implemented 
in ARPACK (2009) and SuperLU (Li et al., 2011, 2005) to obtain the lowest several eigenvalues and their corresponding 
eigenfunctions.

4. Shape segmentation

In this section, we first propose a vectorial piecewise-constant based variational model for the 3D shape segmentation, 
and then minimize the proposed energy functional with split Bregman iteration.

4.1. The vectorial piecewise-constant based variational model

Let

F(x) = [ f1(x), f2(x), · · · , f�(x)]T ,

where fα(x) (α = 1, 2, · · · , �) are the first � eigenfunctions of the LBO on �. To segment the shape �, we propose the 
vectorial piecewise-constant Mumford-Shah (VPCMS) model. Let C = {x ∈ � : ψ(x) = 0}, where ψ : � → R is a Lipschitz 
function, the closed contour C separates � into two disjoint regions �1 = {x ∈ � : ψ(x) > 0} and �2 = {x ∈ � : ψ(x) < 0}.

Let

G(x) =

⎧⎪⎨⎪⎩
c1, x ∈ �1,

c2, x ∈ �2,

0, x ∈ � \ (
⋃2

l=1 �l),

where c1 = [c11, c12, · · · , c1�]T ∈ R� , c2 = [c21, c22, · · · , c2�]T ∈ R� , then the error between the original intensities F and 
the approximate intensities G is∫

�

‖F(x) − G(x)‖2dx =
∫
�1

‖F(x) − c1‖2dx +
∫
�2

‖F(x) − c2‖2dx.

We define the Heaviside function

H(x) =
{

1, x ≥ 0,

0, x < 0,

and let H1(x) = H(x), H2(x) = 1 − H(x). Now we consider the following energy functional

EVPCMS(c1, c2, C) :=EVPCMS(c1, c2,ψ)

=λ1

∫
�1

‖F(x) − c1‖2dx + λ2

∫
�2

‖F(x) − c2‖2dx +
∫
C

dA

=λ1

∫
�

‖F(x) − c1‖2 H1(ψ)dx + λ2

∫
�

‖F(x) − c2‖2 H2(ψ)dx

+
∫
�

‖∇H(ψ)‖dx,

(15)

where dA denotes the surface element. In our vectorial piecewise-constant based variational model, we aim to find 
(c∗

1, c
∗
2, ψ

∗) such that

(c∗
1, c∗

2,ψ
∗) = arg min EVPCMS(c1, c2,ψ). (16)
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The first two terms of the energy functional (15) are referred as the fidelity term

E0(c1, c2,ψ) = λ1

∫
�

‖F(x) − c1‖2 H1(ψ)dx + λ2

∫
�

‖F(x) − c2‖2 H2(ψ)dx, (17)

which is used to minimize the error between F and G. In order to get a smooth segmentation contour, we impose the 
area regularization term

∫
�

‖∇H(ψ)‖dx, namely, the area of the segmentation contour, onto the above fidelity term. Positive 
parameters λ1 and λ2 are the weights of the errors on the regions �1 and �2. The greater the weight coefficient λi is, the 
greater the error penalty of the region �i we can obtain.

Assume that the to-be-segmented intensities F is distributed by two regions of vectorial piecewise-constant intensities 
c0

1 and c0
2, C0 = {x ∈ � : ψ0(x) = 0} is the intersecting contour of these two regions, F = c0

1 inside C0, and F = c0
2 outside C0. 

It is easy to find that if C = C0, then

E0(c0
1, c0

2,ψ0) = minE0(c1, c2,ψ) = 0.

Otherwise C �= C0, we immediately have E0(c1, c2, ψ) > 0. Therefore, as the contour C is right on the intersecting contour 
of the two regions, the fidelity term is minimized to the desired result.

4.2. Split Bregman iteration for the proposed model

To achieve the target of segmentation, we need to solve the energy model (15). Here,

EVPCMS(c1, c2,ψ) =λ1

�∑
α=1

∫
�

| fα(x) − c1α|2 H1(ψ)dx

+ λ2

�∑
α=1

∫
�

| fα(x) − c2α |2 H2(ψ)dx +
∫
�

‖∇H(ψ)‖dx.

(18)

Alternating iterative method is applied to compute the minimum solution of the energy functional (18). In each iteration 
step, we minimize EVPCMS(c1, c2, ψ) with respect to c1, c2 and ψ , respectively. So we first fix ψ , and the minimal solution 
of EVPCMS(c1, c2, ψ) with respect to c1 and c2 are obtained:

clα =
∫
�

fα(x)Hl(ψ)dx∫
�

Hl(ψ)dx
=

∫
�

fα(x)Hl(ψ)dx

|�l| , l = 1,2, α = 1, · · · ,�. (19)

Then, we minimize (15) in terms of ψ by fixing c1 and c2. Let

ψ(x, ε) = ψ(x) + ε�(x), � ∈ C1(�;R),

we have the first-order variation of the energy functional (15)

d

dε
EVPCMS(c1, c2,ψ(·, ε))

∣∣∣∣
ε=0

=λ1

∫
�

‖F(x) − c1‖2δ(ψ)�dx − λ2

∫
�

‖F(x) − c2‖2δ(ψ)�dx

−
∫
�

div
( ∇ψ

‖∇ψ‖
)
δ(ψ)�dx +

∫
∂�

〈 ∇ψ

|∇ψ | ,
∇φ

‖∇φ‖
〉
δ(ψ)�dA.

Introducing an artificial time variable t ≥ 0, we derive the L2-gradient flow:{
∂ψ
∂t = δ(ψ)

[
−λ1‖F(x) − c1‖2 + λ2‖F(x) − c2‖2 + div

( ∇ψ
‖∇ψ‖

)]
, in �,

〈∇ψ,∇φ〉 = 0, on ∂�,
(20)

where

δ(x) = H ′(x) =
{

+∞, x = 0,

0, x �= 0,

is the impulse function. In the numerical calculation, we usually approximate the Heaviside function H(x) and impulse 
function δ(x) by continuous functions (Chan and Vese, 2001; Zhao et al., 1996).
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It is obvious that updating ψ by solving the L2-gradient flow (20) is time consuming, and the obtained solution is just a 
local minimizer. Since for any given function ψ , the function H(ψ) is binary. Then the minimization of EVPCMS(c1, c2, ·) is to 
find a minimizer over all binary functions. This minimization is non-convex, and it is easy to get into the undesirable local 
minimizer for an inappropriately given initialization. To improve the efficiency of our segmentation algorithm and overcome 
the deficiency of non-convexity, we adopt the split Bregman iteration (Goldstein and Osher, 2009; Goldstein et al., 2010;
Jia et al., 2009; Yang et al., 2010) to update ψ . We first give the following theorem, which is well-known and was used 
already in Chan and Nikolova (2006) in the 2D form.

Theorem 2. For any given fixed c1, c2 ∈R� , a global minimizer for EVPCMS(c1, c2, ·) can be obtained by solving the following convex 
optimization problem

min
0≤ψ≤1

⎧⎨⎩
∫
�

(
λ1‖F(x) − c1‖2 − λ2‖F(x) − c2‖2

)
ψ(x)dx +

∫
�

‖∇ψ(x)‖dx

⎫⎬⎭︸ ︷︷ ︸
FVPCMS(c1,c2,ψ)

, (21)

as long as C(γ ) = {x ∈ � : ψ(x) = γ }, �1(γ ) = {x ∈ � : ψ(x) > γ } and �2(γ ) = {x ∈ � : ψ(x) < γ }, where γ ∈ (0, 1).

Proof. It is obvious that∫
�

‖F(x) − c1‖2ψ(x)dx =
∫
�

‖F(x) − c1‖2

1∫
0

χ[0,ψ(x)](γ )dγ dx

=
1∫

0

∫
�

‖F(x) − c1‖2χ[0,ψ(x)](γ )dxdγ

=
1∫

0

∫
{x∈�:ψ(x)>γ }

‖F(x) − c1‖2dxdγ ,

where χ[0,ψ(x)](γ ) is the characteristic function. Similarly,

∫
�

‖F(x) − c2‖2ψ(x)dx =
∫
�

‖F(x) − c2‖2

1∫
0

χ[0,ψ(x)](γ )dγ dx

=
1∫

0

∫
�

‖F(x) − c2‖2χ[0,ψ(x)](γ )dxdγ

=I −
1∫

0

∫
�\{x∈�:ψ(x)>γ }

‖F(x) − c2‖2dxdγ ,

where I = ∫
�

‖F(x) − c2‖2dx is independent of ψ . Using the coarea formula and the constraint 0 ≤ ψ ≤ 1, we have

∫
�

‖∇ψ(x)‖dx =
1∫

0

Area({x ∈ � : ψ(x) > γ })dγ ,

where Area({x ∈ � : ψ(x) > γ }) denotes the surface area of {x ∈ � : ψ(x) > γ }.
Let �1(γ ) = {x ∈ � : ψ(x) > γ }, �2(γ ) == {x ∈ � : ψ(x) < γ } and C(γ ) = {x ∈ � : ψ(x) = γ }, the energy functional 

FVPCMS(c1, c2, ψ) can be rewritten as

1∫
0

{
λ1

∫
�1(γ )

‖F(x) − c1‖2dx + λ2

∫
�2(γ )

‖F(x) − c2‖2dx +
∫

C(γ )

dA
}

dγ ,

namely,
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min
0≤ψ≤1

FVPCMS(c1, c2,ψ) = min
0≤ψ≤1

1∫
0

EVPCMS(c1, c2, C(γ ))dγ .

Hence, if ψ is a minimizer of the convex optimization problem (21), then for γ ∈ (0, 1), C(γ ) is a minimizer of 
EVPCMS(c1, c2, ·). � �

It is clear that the gradient descent equation of the energy functional FVPCMS(c1, c2, ψ) is{
∂ψ
∂t = −λ1‖F(x) − c1‖2 + λ2‖F(x) − c2‖2 + div

( ∇ψ
‖∇ψ‖

)
, in �,

〈∇ψ,∇φ〉 = 0, on ∂�,

and it has the same stationary solution with the gradient flow (20).
According to Theorem 2, we can replace the minimization of EVPCMS(c1, c2, ·) by the �1-based convex optimization prob-

lem (21), where the value of γ can be selected as 0.5 in the real computation. The split Bregman iteration algorithm can 
be thus applied. For completeness, we introduce this method as follows.

For ease of description, let

g = λ1‖F(x) − c1‖2 − λ2‖F(x) − c2‖2.

Then the minimization problem (21) can be rewritten as

min
0≤ψ≤1

⎧⎨⎩
∫
�

gψdx +
∫
�

‖∇ψ‖dx

⎫⎬⎭ . (22)

Rather than considering the minimization problem (22), we shall treat another optimization problem as follows:

min
0≤ψ≤1,d

⎧⎨⎩
∫
�

gψdx + ‖d‖1

⎫⎬⎭ , s.t. d = ∇ψ, (23)

where d = [dx, dy, dz]T is an introduced auxiliary variable, ‖d‖1 = ∫
�

‖d‖dx. The following Bregman iteration method can 
be efficiently used to solve the above optimization problem:

(ψn+1,dn+1) = arg min
0≤ψ≤1,d

⎧⎨⎩
∫
�

gψdx + ‖d‖1 + μ

2

∫
�

‖d − ∇ψ − bn‖2dx

⎫⎬⎭ , (24)

bn+1 = bn + ∇ψn+1 − dn+1, (25)

where the initial conditions d0 = 0, b0 = 0. In order to resolve (24), we adopt the alternating iteration technique to solve 
the minimization problems with respect to ψ and d separately, and obtain the split Bregman iteration scheme:

ψn+1 = arg min
0≤ψ≤1

⎧⎨⎩
∫
�

gψdx + μ

2

∫
�

‖dn − ∇ψ − bn‖2dx

⎫⎬⎭ , (26)

dn+1 = arg min
d

⎧⎨⎩‖d‖1 + μ

2

∫
�

‖d − ∇ψn+1 − bn‖2dx

⎫⎬⎭ , (27)

bn+1 = bn + ∇ψn+1 − dn+1. (28)

For the optimization problem (26), the first-order optimality condition with respect to ψ is⎧⎪⎨⎪⎩
�ψ = g

μ + div(dn − bn), in �,

〈dn − ∇ψ − bn,∇φ〉 = 0, on ∂�,

0 ≤ ψ ≤ 1, on �

(29)

We use central difference to discretize the Laplace operator � and the gradient operator ∇ respectively, and use forward 
or backward difference to discretize the divergence operator div. In order to solve the above PDE with boundary condition 
(29), we first make use of the boundary condition to extend the domain of ψn onto the one ring neighbor R of �, where 
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R denotes the union of the one ring neighbor of the points on ∂�. We discretize the boundary condition and obtain the 
following linear system of equations

Wp = q,

where W ∈ Rm1×m2 , p = [ψn
i, j,k] ∈ Rm2 , xi jk ∈ R , and q ∈ Rm1 , m1, m2 ∈ Z+ . In general case, m1 < m2. Hence, we turn to 

resolve the following least square problem

min
p

1

2
‖Wp − q‖2,

whose L2-gradient flow is as follows:

dp(t)

dt
= −WT(Wp − q).

We discretize the time variable by forward difference and obtain

p(s+1) = p(s) − τsWT(Wp(s) − q), s = 0,1, · · · , (30)

with the initial value p(0) = [ψn,0
i, j,k], xi jk ∈ R , ψn,0

i, j,k is the mean value of the nearest neighbor on � of ψn
i, j,k , s is the iteration 

number, and τs is the time step. To achieve high computational efficiency, we seek the best temporal step size τs . We define 
τs such that

E(τ ) = 1

2

∥∥∥W
(

p(s) − τWT(Wp(s) − q)
)

− q
∥∥∥2

is minimized. From E ′(τ ) = E ′(0) + τ E ′′(0) + o(τ 2) = 0, we obtain an approximation of τs as

τs = − E ′(0)

E′′(0)
= 〈e1,e2〉

〈e2,e2〉 , e1 = Wp(s) − q, e2 = WWTe1.

Then we update ψn+1 in component form with the following scheme:

ψn+1
i, j,k = min{max{0,ωn+1

i, j,k},1}, xi jk ∈ �, (31)

where

ωn+1
i, j,k =1

6

(
ψn

i−1, j,k + ψn
i+1, j,k + ψn

i, j−1,k + ψn
i, j+1,k + ψn

i, j,k−1 + ψn
i, j,k+1 − gn

i, j,k

μ
− ρn

i, j,k

)
,

gn
i, j,k =

(
λ1‖F − cn

1‖2 − λ2‖F − cn
2‖2

)
i, j,k

,

ρn
i, j,k = (

div(dn − bn)
)

i, j,k .

In order to solve the optimization problem (27), we first investigate the following minimization problem

min
d∈RM

{
‖d‖ + μ

2
‖d − b‖2

}
, (32)

where d = [d1, · · · , dM ]T and b = [b1, · · · , bM ]T, that is,

min
d1,··· ,dM∈R

⎧⎪⎨⎪⎩
(

M∑
m=1

d2
m

) 1
2

+ μ

2

M∑
m=1

|dm − bm|2
⎫⎪⎬⎪⎭ .

Let G(d) :=
(∑M

m=1 d2
m

) 1
2

, F (d) := μ
2

∑M
m=1 |dm − bm|2, and E(d) := G(d) + F (d). It is obvious that the subdifferentials of F

and G at 0 ∈RM are

∂ F (0) = {−μb}
and

∂G(0) = {g ∈RM : ‖g‖ ≤ 1}.
Consequently, 0 ∈ ∂ E(0) if and only if ‖b‖ ≤ 1

μ . Suppose that E(d) achieves the minimum. If ‖b‖ ≤ 1
μ , then d = 0. Otherwise, 

we have ‖d‖ > 0. Moreover,
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dm

‖d‖ + μ(dm − bm) = 0, m = 1, · · · , M.

It follows that⎧⎪⎪⎪⎨⎪⎪⎪⎩
d2b1 = d1b2, d3b1 = d1b3, · · · , dMb1 = d1bM ,

d3b2 = d2b3, · · · , dMb2 = d2bM ,

. . .
...

dMbM−1 = dM−1bM .

There exists a real number r such that dm = rbm (m = 1, · · · , M). Consequently,

E(d) := E(r) = |r|‖b‖ + μ

2
|r − 1|2‖b‖2.

It is obvious that r = shrink(1, 1
μ‖b‖ ) is the unique point such that E(r) achieves its minimum. Here,

shrink (x, λ) = x

|x| max{|x| − λ,0}, x ∈R.

Let r′ := ‖b‖r = max{‖b‖ − 1
μ, 0}, we conclude that

dm = r′bm

‖b‖ = bm

‖b‖ max{‖b‖ − 1

μ
,0}, m = 1, · · · , M.

The above formula is also valid when ‖b‖ ≤ 1
μ , provided we interpret dm, m = 1, · · · , M , as 0 when r′ = 0. Therefore, E(d)

achieves the minimum if and only if

d = b

‖b‖ max{‖b‖ − 1

μ
,0} := shrink(b,

1

μ
). (33)

Let M = 3 and b = ∇ψn+1 + bn , we update dn+1 in (27) by the formula as follows:

dn+1 = shrink(∇ψn+1 + bn,
1

μ
). (34)

In summary, we show the split Bregman iteration algorithm for the proposed model (15) as follows.

Algorithm 1 (Split Bregman Iteration for Minimizing the Energy Model (15)).
(1) Given the initial segmentation �1 and �2, the threshold 0 < ε0 � 1, the iteration number N0 > 0. Let

ψ0(x) =

⎧⎪⎨⎪⎩
1, x ∈ �1,

0, x ∈ �2,

0.5, others,

d0 = 0, b0 = 0. Set n := 0.
(2) Update cn

1 and cn
2:

cn
lα =

∫
�

fα(x)Hl(ψ
n − 0.5)dx∫

�
Hl(ψ

n − 0.5)dx
, l = 1,2, α = 1, · · · ,�.

(3) Extend the domain of ψn onto the one ring neighbor R of � by (30), then update ψn+1 by (31), and compute εn = ‖ψn+1 − ψn‖2. If εn ≤ ε0 or 
n + 1 ≥ N0, stop the iteration, set �1 = {x ∈ � : ψ(x) > 0.5}, �2 = {x ∈ � : ψ(x) < 0.5}; otherwise, go to the next step.

(4) Update dn+1 and bn+1 by (34) and (28) respectively. Set n := n + 1, return to (2).

4.3. Multi-phase segmentation algorithm

When the original shape is segmented into more than two regions, two or more level set functions are needed to 
represent the segmentation regions, and the corresponding energy functional can be minimized with the similar method as 
described above. In the following, we introduce the two-phase segmentation algorithm briefly.

Assume that ψ1(x) and ψ2(x) are two level set functions defined on �, let⎧⎪⎪⎨⎪⎪⎩
�1 = {x ∈ � : ψ1(x) > 0, ψ2(x) > 0},
�2 = {x ∈ � : ψ1(x) > 0, ψ2(x) < 0},
�3 = {x ∈ � : ψ1(x) < 0, ψ2(x) > 0},
� = {x ∈ � : ψ (x) < 0, ψ (x) < 0},

(35)
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then ψ1 and ψ2 segment � into four regions {�l}4
l=1, and the segmentation contour is C = {x ∈ � : ψ1(x) = 0 or ψ2(x) = 0}. 

The corresponding variational model is as follows:

ẼVPCMS(C ,ψ) =λ1

∫
�

‖F(x) − c1‖2 M1(ψ)dx + λ2

∫
�

‖F(x) − c2‖2 M2(ψ)dx

+ λ3

∫
�

‖F(x) − c3‖2 M3(ψ)dx + λ4

∫
�

‖F(x) − c4‖2 M4(ψ)dx

+
∫
�

‖∇H(ψ1)‖dx +
∫
�

‖∇H(ψ2)‖dx

=λ1

�∑
α=1

∫
�

| fα(x) − c1α |2 M1(ψ)dx + λ2

�∑
α=1

∫
�

| fα(x) − c2α |2 M2(ψ)dx

+ λ3

�∑
α=1

∫
�

| fα(x) − c3α |2M3(ψ)dx + λ4

�∑
α=1

∫
�

| fα(x) − c4α |2 M4(ψ)dx

+
∫
�

‖∇H(ψ1)‖dx +
∫
�

‖∇H(ψ2)‖dx,

(36)

where C = [c1, c2, c3, c4], ψ = [ψ1, ψ2], and

M1(ψ) = H(ψ1)H(ψ2), M2(ψ) = H(ψ1)(1 − H(ψ2)),

M3(ψ) = (1 − H(ψ1))H(ψ2), M4(ψ) = (1 − H(ψ1))(1 − H(ψ2)).

We adopt the alternating iterative method to compute the minimum solution of the energy functional (36). In each 
iteration step, we minimize ẼVPCMS(C , ψ) with respect to C and ψ , respectively. We first fix ψ , minimize ẼVPCMS(·, ψ) and 
obtain

clα =
∫
�

fα(x)Ml(ψ)dx∫
�

Ml(ψ)dx
=

∫
�

fα(x)Ml(ψ)dx

|�l| , l = 1,2,3,4, α = 1, · · · ,�. (37)

Then we minimize (36) in terms of ψ by fixed C . According to Theorem 2, a global minimizer for ẼVPCMS(C , ·) can be 
obtained by solving the following convex optimization problems

min
0≤ψ1≤1

⎧⎨⎩
∫
�

g1ψ1dx +
∫
�

‖∇ψ1‖dx

⎫⎬⎭ , (38)

min
0≤ψ2≤1

⎧⎨⎩
∫
�

g2ψ2dx +
∫
�

‖∇ψ2‖dx

⎫⎬⎭ , (39)

where

g1 =
(
λ1‖F − c1‖2 − λ3‖F − c3‖2

)
ψ2 +

(
λ2‖F − c2‖2 − λ4‖F − c4‖2

)
(1 − ψ2), (40)

g2 =
(
λ1‖F − c1‖2 − λ2‖F − c2‖2

)
ψ1 +

(
λ3‖F − c3‖2 − λ4‖F − c4‖2

)
(1 − ψ1). (41)

In order to resolve (38) and (39) with the split Bregman Iteration, we assume that g1 and g2 are known, and they can be 
calculated with ψn

1 and ψn
2 which have been computed in the previous step. Then we consider the following optimization 

problem:

min
0≤ψp≤1,dp

⎧⎨⎩
∫
�

gpψpdx +
∫
�

‖dp‖dx

⎫⎬⎭ , s.t. dp = ∇ψp, p = 1,2, (42)

where dp, p = 1, 2, are introduced auxiliary variables. For p = 1, 2, the following split Bregman iteration method can be 
used to solve the above minimization problem:
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ψn+1
p = arg min

0≤ψp≤1

⎧⎨⎩
∫
�

gpψpdx + μ

2

∫
�

‖dn
p − ∇ψp − bn

p‖2dx

⎫⎬⎭ , (43)

dn+1
p = arg min

dp

⎧⎨⎩
∫
�

‖dp‖dx + μ

2

∫
�

‖dp − ∇ψn+1
p − bn

p‖2dx

⎫⎬⎭ , (44)

bn+1
p = bn

p + ∇ψn+1
p − dn+1

p , (45)

with the initial values d0
p = 0, b0

p = 0, p = 1, 2. We can solve (43) and (44) in the similar way as we solve (26) and (27). In 
the following, we summarise the split Bregman iteration method for minimizing the energy functional (36).

Algorithm 2 (Split Bregman Iteration for Minimizing the Energy Functional (36)).

(1) Given the initial segmentation {�l}4
l=1, the iteration number N0 > 0. Let

ψ0
1 (x) =

⎧⎪⎨⎪⎩
1, x ∈ �1 ∪ �2,

0, x ∈ �3 ∪ �4,

0.5, others,

ψ0
2 (x) =

⎧⎪⎨⎪⎩
1, x ∈ �1 ∪ �3,

0, x ∈ �2 ∪ �2,

0.5, others,

d0
p = 0, b0

p = 0, p = 1, 2. Set n := 0.
(2) Update Cn:

cn
lα =

∫
�

fα(x)Ml(ψ
n
1 − 0.5,ψn

2 − 0.5)dx∫
�

Ml(ψ
n
1 − 0.5,ψn

2 − 0.5)dx
, l = 1,2,3,4, α = 1, · · · ,�.

(3) Compute g1, g2 by (40) and (41) with ψn
1 , ψn

2 . For p = 1, 2, update ψn+1
p , dn+1

p and bn+1
p by solving (43)–(45).

(4) Set n := n + 1. If n < N0, return to (2); otherwise, stop the iteration, set

�1 = {x ∈ � : ψ1(x) > 0.5, ψ2(x) > 0.5}, �2 = {x ∈ � : ψ1(x) > 0.5, ψ2(x) < 0.5},
�3 = {x ∈ � : ψ1(x) < 0.5, ψ2(x) > 0.5}, �4 = {x ∈ � : ψ1(x) < 0.5, ψ2(x) < 0.5}.

5. Results and discussion

In this section, several numerical experiments are tested using our point cloud surface segmentation method. We aim to 
segment the shape into components that are intuitively meaningful and free of noise. All the results were generated using 
a computer with Intel core 2.83 GHz CPU, 4 threads, and 8 GB of memory. Table 1 shows a summary of the computation of 
the first ten eigenfunctions for LBO in both volumetric and surface forms. In the shape segmentation stage, we choose the 
uniform parameters λ1 = λ2 = λ3 = λ4 = 1.0. The iteration terminates when the segmentation result becomes stable, and 
the runtime are shown in Table 2. Note that our volumetric eigenfunctions and VPCMS segmentation results are originally 
restored in volume data format. In order to show the difference of segmentation performance between the volumetric and 
surface LBO, we map the VPCMS segmentation result onto surface via voxel-to-vertex correspondence.

Firstly, we segment the point cloud surface Bunny, Horse and Octopus using only one level set function. We adapt 
Algorithm 1 to segment each eigenfunction illustrated in Figs. 1(a), 2(a) and 3(a), that is to say, � = 1 in the VPCMS model. 
The segmentation results are shown in Figs. 1(c), 2(c) and 3(c), and the two subregions are shown in different colors. 

Table 1
A summary of the computation time of the first ten eigenfunctions for LBO in both volumet-
ric and surface forms. (Time unit: Second).

Model Point cloud surface 
(N P , NG )

Triangle mesh surface 
(NV , NT )

T E (Volumetric / Surface)

Bunny (14,076, 38,888) (14,076, 28,148) 1,919.56 / 131.97
Horse (15,698, 37,383) (15,698, 31,392) 2,432.90 / 416.81
Octopus (14,870, 24,464) (14,870, 29,736) 3,694.72 / 284.68
Ant (6,372, 17,099) (6,372, 12,740) 2,035.33 / 26.49
Armadillo (25,220, 67,106) (25,220, 50,436) 8,480.80 / 1,222.88
Human (10,041, 26,255) (10,041, 20,078) 3,327.55 / 40.83
Bust (25,227, 67,185) (25,227, 50,450) 8,296.82 / 199.51
Bird (6,470, 16,623) (6,470, 12,936) 2,661.73 / 21.89
Teddy (13,822, 37,579) (13,822, 27,640) 4,237.49 / 74.08

Note: N P – particle number; NG – grid number; NV – vertex number; NT – triangular 
element number; T E – time for eigenfunction computation.
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Table 2
Statistics of the computation of segmentation results in Figs. 1–3. (Time unit: Second).

Segmentation Type Two-region Four-region

Modes 1 2 3 4 5 6 7 8 2–3 2–3 3–4 5–6 6–7 7–8 4–6 5–7 6–8

Bunny
VPCMS 2.39 2.39 2.41 2.39 – – – – – – – – – – – – –
HBECVT 0.26 0.28 0.27 0.27 – – – – – – – – – – – – –

Horse
VPCMS 3.15 3.08 3.08 3.12 3.08 3.05 – – – – 6.35 6.42 – – – – –
HBECVT 0.29 0.30 0.30 0.30 0.30 0.29 – – – – 0.29 0.30 – – – – –

Octopus
VPCMS 2.28 2.28 2.39 2.25 2.31 2.38 2.28 2.25 2.23 4.72 – 4.64 4.62 4.63 4.74 4.71 4.72
HBECVT 0.29 0.28 0.30 0.28 0.28 0.28 0.28 0.29 0.25 0.25 – 0.28 0.28 0.29 0.28 0.29 0.28

Fig. 1. Bunny model. (a, b) The first four non-constant volumetric and surface eigenfunctions of LBO; (c, d) two-region segmentation results from Modes 1–4 
in (a) and (b), respectively.

Fig. 2. Horse model. (a, b) The first six non-constant volumetric and surface eigenfunctions of LBO; (c, d) two-region segmentation results from Modes 1–6 
in (a) and (b), respectively; (e, f) four-region segmentation results from Modes 3–4 and 5–6 in (a) and (b), respectively.
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T

Fig. 3. Octopus model. (a, b) The first eight non-constant volumetric and surface eigenfunctions of LBO; (c, d) two-region segmentation results from 
Modes 1–8 in (a) and (b), respectively; (e, g) two-region and four-region segmentation results from Modes 2–3 in (a) and (b), respectively; (f, h) four-region 
segmentation results from Modes 5–6, 6–7 and 7–8 in (a) and (b), respectively; and (i, j) four-region segmentation results from Modes 4–6, 5–7 and 6–8 
in (a) and (b), respectively.

It is easy to see that the segmentation results are consistent with the distribution of the corresponding eigenfunctions. 
Therefore, according to different segmentation purposes, we can choose different eigenfunctions, so as to achieve the goal 
of segmenting point cloud surface.

Then, we consider segmenting the point cloud surface Horse and Octopus with two level set functions. The point cloud 
surface can be divided into four subregions by the zero level set of these two level set functions. Since the nodal lines (zero 
sets of the function) of the αth eigenfunction subdivide the domain into α subdomains at the most Courant and Hilbert
(1953), we need to combine multiple eigenfunctions for lower modes to get the ideal segmentation results. As illustrated 
in Fig. 2(e), we use Modes 3–4 and 5–6 to separate the Horse model into four regions. For the Octopus model, we choose 
to combine two or three eigenfunctions to divide, and the segmentation results show that our VPCMS model can get closed 
areas. The segmented subregions using different combinations of eigenfunctions are not the same, but all of them can split 
the surface into four meaningful regions, as shown in Fig. 3(f) and (i).

In Fig. 3(e), we combine two different eigenfunctions, namely, let F = [ f2, f3]T in the VPCMS model, and segment the 
point cloud surface with one and two level set functions respectively. The segmentation result of the former (see Fig. 3(e) 
left) is different from the segmentation results with any one eigenfunction used individually, and the segmentation effect in 
the joint of tentacles and body is better; the latter derives four segmented regions displayed by different color (see Fig. 3(e) 
right). Both methods can separate some antennas completely from the whole model, which can be used for subsequent 
processing.

he Trial Version



X. Li et al. / Computer Aided Geometric Design 71 (2019) 157–175 171
Fig. 4. The segmentation results from applying our algorithm to noisy Horse and Octopus models. The first five are for two-region segmentation, and the 
last for four-region segmentation.

Various eigenfunction-based surface segmentation schemes have been developed. To reveal the differences of the LBO 
between the volumetric form and the surface form, we adopt the centroidal Voronoi tessellation based surface segmentation 
method (HBECVT) Hu et al. (2016) to compute the segmentation results from the eigenfunctions of LBO in the surface form. 
Triangle meshes are generated for the surface eigenfunction computation which utilizes Loop subdivision basis functions. 
Figs. 1–3 (right column) show surface eigenfunctions of the LBO and the corresponding segmentation results. It is easy to see 
that our volumetric eigenfunction based technique yields more accurate segmentation results than the surface eigenfunction 
based method. This is because in addition to surface information of the shape, volumetric eigenfunctions also reveal the 
interior information, which can be useful for shape segmentation. In Fig. 1(d), the first two segmentation results are similar 
to those in Fig. 1(c), while the last two miss the connection regions of ears and body which are detected in Fig. 1(c). 
In Fig. 2(f), the legs of the horse are subdivided into two smaller patches, which are inconsistent with the divisions in 
Fig. 2(e). For the Octopus model, concave creases at the junctions of antennas and body are completely ignored by the 
surface eigenfunctions of LBO, and the antennas surrounded by them can not be segmented as a patch, see Fig. 3 (d), (g), 
(h) and (j).

In addition, we also tested our method on some noisy input, for example, Horse and Octopus. The distributions of the 
volumetric eigenfunctions are similar to those of clean data, which is not shown to make this section concise. As shown in 
Fig. 4, the segmentation results match the previous results in Fig. 2 and Fig. 3 well.

It is worth mentioning that both of the above methods use eigenfunctions of the LBO as basis for segmentation. Dif-
ferently, our algorithm applies the Mumford-Shah model to the �-dimensional vector valued function. In other words, our 
segmentation part is equivalent to the vectorial 3D image segmentation, while HBECVT directly clusters elements in the 
�-dimensional eigenspace. In addition, HBECVT needs the cluster number and seed elements as input, while our method 
does not.

To show more general results, we tested our method on models sampled from triangular surfaces in the Princeton Seg-
mentation Benchmark (Chen et al., 2009). The segmentation results can be evaluated quantitatively using the Princeton 
benchmark and software (Chen et al., 2009), by comparing them with the ground truth and results from the baseline meth-
ods respectively. These seven automatic segmentation algorithms include the Core Extraction, Fitting Primitives, K-Means, 
Normalized Cuts, Randomized Cuts, Random Walks and Shape Diameter Function, please refer to the cited papers in Chen 
et al. (2009) for details. There are four metrics (Chen et al., 2009) to measure the quality of segmentation results:

1. The Cut Discrepancy is the sum of distance between points along the cuts in the computed segmentation to the closest 
cuts in the ground truth segmentation, and vice-versa;

2. The Hamming Distance measures the overall difference between the patches in different segmentation results;
3. The Rand Index measures the likelihood that a random pair of elements are in the same patch or not in different 

segmentation results; and
4. The Consistency Error measures the hierarchical similarities and differences of segmentation results.

Table 3 shows evaluations of our segmentation results compared to the ground truth and seven other algorithms in the 
benchmark. Each row shows a different evaluation metric computed with respect to all eight baseline results and averaged 
across the randomly picked 26 shapes from the benchmark. In all cases, smaller metrics represent closer performance to 
the corresponding baseline. From Table 3, we can observe that all these four evaluation metrics are remarkably consistent 
with one another.

To make it brief, LBO eigenfunctions of these models are not displayed here. Instead, we show the two-region and four-
region segmentation results against the HBECVT results for the first six models in Figs. 5, 6 respectively. For completeness, 
the segmentation results of the remaining 20 models are presented in Fig. 7. From these results, we can observe that if 
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Table 3
Analysis of segmentation quality according to the baseline results in the Princeton Segmentation Benchmark (Chen et al., 2009).

Metric
Baseline

HumanGen CoreExtra FitPrim Kmeans NormCuts RandCuts RandWalks ShapeDiam

Cut Discrepancy 0.330865584 0.421842289 0.438121632 0.308286684 0.345570105 0.418750294 0.465868474 0.471960053
Hamming Distance 0.144822068 0.208973684 0.261503616 0.208584242 0.179833526 0.164623905 0.248335737 0.208679058
Rand Index 0.194581089 0.305990632 0.276338337 0.251625811 0.228947658 0.228567489 0.319435295 0.261956337
Consistency Error 0.095641805 0.142385821 0.198597905 0.180318232 0.162910102 0.122551984 0.198289799 0.134400669

Fig. 5. Two-region segmentation results of models in the Princeton Segmentation Benchmark (Chen et al., 2009). (a, c, e) Segmentation results from our 
volumetric eigenfunctions; and (b, d, f) segmentation results from the corresponding surface eigenfunctions. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

the eigenfunctions are well distributed or if the eigenfunctions can capture geometric features of the shape, then the shape 
will be segmented into intuitively meaningful components. As shown in Figs. 5, 6, our method always yields satisfactory 
segmentation results and is comparable with HBECVT. Note that the difference between results of volumetric and surface 
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Fig. 6. Four-region segmentation results of models in the Princeton Segmentation Benchmark (Chen et al., 2009). (a) Segmentation results from our volu-
metric eigenfunctions; and (b) segmentation results from the corresponding surface eigenfunctions.

eigenfunctions seems to be less clear compared to Figs. 2 and 3, especially for the four-region results in Fig. 6. This is 
because the distributions of two types of eigenfunctions are almost identical except for the sign flipping, and our method 
uses only the point location information, while HBECVT also uses the connection between points. From these results, we 
can observe that none of these algorithms performs the best for all the models, and one should select the most appropriate 
algorithm for a specific type of objects.

Discussion. Generally, lower modes of the LBO are simple and consist of low frequency information. As the eigenvalue 
increases, its corresponding eigenfunction has more nodal lines, and the high frequency information sticks out. If we use 
these high modes as basis of segmentation, the shape will be subdivided into multiple fragments, which is not our goal. 
On the other hand, higher modes of the LBO can not always be computed accurately, that is why we compute the first 
ten eigenfunctions for each model, but only four, six or eight of them are utilized. Note that “�” is kept very low in our 
numerical tests, and up to three eigenfunctions are used for each segmentation. This is because we aim to segment the 
shape into four regions at the most which are represented by two level set functions, and including more eigenfunctions in 
the VPCMS model makes no difference.

Limitations. Volumetric LBO eigenfunctions are more complicated in computation compared with surface LBO eigenfunc-
tions. The former is in 3-dimensional form, while the latter is actually a 2-dimensional problem. For denser grid resolution, 
the eigenfunction computation becomes more accurate and the segmentation is more meaningful, but it is very expensive. 
If we employ p level set functions to represent the segmentation regions, the shape can be segmented into no more than 
2p components. The number of segmented regions is not as flexible as the clustering methods, which limits the applications 
of our method.

6. Conclusions and future work

In this paper, a spectral method for point cloud surface segmentation has been proposed. The point cloud surface is 
modeled as the union of a bunch of level set surfaces, on which volumetric eigenfunctions are computed from the LBO, 
and then a vector-valued piecewise-constant three-dimensional shape segmentation model is developed based on the clas-
sical Mumford-Shah model. For the solution of the model, the proposed variational model is transformed into a convex 
optimization problem of the level set function, which is solved by the Split Bregman iterative algorithm. To validate the 
effectiveness of our volumetric eigenfunction based technique, segmentation tests on the Bunny, Horse and Octopus mod-
els are conducted and compared with the surface eigenfunction based method. Experimental results demonstrate that our 
method achieves superior segmentation effect in terms of accuracy and robustness.

In this paper, the point cloud surface segmentation model is introduced by approximating the eigenfunctions as 
piecewise-constant functions. In the future, we plan to develop more general segmentation models based on piecewise-
polynomial functions. Obviously, using vectorial piecewise-polynomial functions to approximate the segmented regions of F
is more accurate than just using piecewise-constant case. However, if the degree of the selected polynomial functions is high 
enough, they can approximate arbitrary segmented regions of F regardless of the choice of ψ . According to the distribution 
of the eigenfunction, we need to choose polynomial functions with appropriate degrees in different subregions, rather than 
blindly pursue the high precision approximation. In addition, our method can also be used to segment biomolecular shapes, 
without the need of molecular surface meshing (see Fig. 8). We may also explore the application of spectral segmentation 
algorithm in molecular biology research.
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Fig. 7. Segmentation results of models in the Princeton Segmentation Benchmark (Chen et al., 2009).

Fig. 8. 2BPF model. (a) The first four non-constant volumetric eigenfunctions of LBO; and (b) two-region segmentation result from Modes 1–4, respectively.
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