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Highlights

• Isogeometric collocation at Gauss points leads to an optimally convergent scheme.
• A hybrid Galerkin-collocation method is used for the patch and Neumann boundaries.
• Adaptive refinement with PHT splines is driven by a recovery-based error estimator.

Abstract

In this paper, we propose an enhanced isogeometric analysis (IGA) collocation method. It is well known that the location of
the collocation points plays an important role in the accuracy and stability of IGA collocation methods. This is particularly true
for non-uniform meshes and domains generated from multi-patch geometries. We present an enhanced collocation method based
on Gauss points, which has improved accuracy as compared to using C1 splines and a recovery-based error estimator that can be
derived by sampling the solution at particular points in the domain. Adaptivity is implemented using a hierarchical spline basis,
which satisfies the C1 continuity requirement. The proposed approach has been tested by several benchmark problems, including
multipatch domains and geometries with re-entrant corners.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis (IGA) is a numerical method introduced by Hughes et al. [1,2] in 2005 aiming to bridge
the computer aided design (CAD) and the finite element analysis (FEA). It applies the same spline basis for the
geometry design and the numerical analysis without re-meshing the CAD model. IGA has been shown to possess
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several advantages for solving engineering problems. Since the classical basis of IGA are Non-uniform rational
B-splines (NURBS), it can provide higher order continuity required, such as for Kirchhoff–Love shell models [3,4]. In
recent work, commercial software packages such as ABAQUS [5], FEAP [6] and LS-DYNA [7] have been extended
to use IGA solvers for advanced industrial computing applications.

The traditional IGA is based on NURBS, for which adaptive refinement cannot be localized due to the tensor-
product structure of the basis. In 2003, Sederberg [8] proposed T-splines which allow T-junctions in the refined
mesh. The T-splines are useful for constructing un-structured meshes for geometrical design. In recent years, analysis
suitable T-splines have been developed and used in IGA solvers [9,10]. Moreover, IGA has also been successfully
used with several other spline spaces which have local adaptivity properties, such as the PHT-splines [11], THB-
splines [12], LR-B splines [13] and truncated T-splines [14]. Many of these spline spaces have been subject to
theoretical research for CAD-oriented applications as well.

Most of the commonly used partial differential equation (PDE) solvers are based on the so-called weak (or
variational) form. The Gauss quadrature is commonly used in IGA integral calculations. However, as the order of the
polynomial degree increases, more quadrature points are needed to accurately evaluate the resulting integrals, which
affects the computational efficiency significantly [15]. For the IGA method in particular, several reduced-quadrature
methods [16] and other customized quadrature rules [17–19] have been developed over the years. The IGA collocation
is another approach, which eliminates the integration and discretizes the strong form of the PDEs directly. The IGA
collocation has been developed since 2010 [20–24] and, to a large extent, it combines the advantages of the accuracy
and smoothness from the IGA method with the computational efficiency of the collocation method. In IGA collocation,
Greville abscissae [25] are usually chosen as the collocation points, which has some advantages, such as the one-to-one
correspondence between the collocation points and basis functions. However, finding the optimal collocation points
is still an open and challenging research problem. For example, in order to improve the convergence rates, the IGA
collocation based on superconvergent points has been introduced in [26] and further studied in [27,28]. But collocating
at the superconvergent points can result in an over-determined system which has to be solved in a least square sense.
Furthermore, imposing boundary conditions for IGA collocation is another concern, as properly imposing boundary
collocation points and defining the boundary discretization equations influence the accuracy and stability of the results.
In [29], it has been shown that oscillations in the numerical results may arise from the boundary value calculations and
more constrains need to be applied on the boundary system portion. To reduce the effects from the collocation bound-
ary points, a hybrid Galerkin-collocation technique was proposed [30]. It replaces the collocation boundary entries by
the corresponding Galerkin ones. This method was described to some extent in the research of the isogeometric collo-
cation for phase-field fracture models [30]. But to the best of our knowledge, the method was not studied in great detail.

The adaptivity must be driven by a certain method, which is commonly defined by error estimators or error
indicators. While error estimators attempt to quantify the error in the approximation over each element, error
indicators can be used to determine areas with large errors. Since 1970s, the error estimators have been studied
for the FEM discretizations [31,32]. Currently, there are two main types of error estimators: the residual based and
the recovery based. Our research is mainly focused on the latter case. The main idea is to compute a recovered
solution which is obtained by sampling the computed solution at chosen points. The sampling is performed at points
(such as superconvergent points) which are known to have higher accuracy. By fitting these values with a higher
order polynomial functions, it is possible to obtain a recovered solution which will be better (closer to the unknown
exact solution) than the computed solution. Then the estimated error can be used as an approximation of the actual
error, which is the difference between the exact solution and the computed solution. From a theoretical point of view,
the superconvergence only holds for the quasi-uniform discretizations with smooth solutions. However, in practice,
the error estimator can be used on non-uniform meshes with singular solutions as an error indicator [33]. For most
engineering problems, it is impossible to find analytical solutions, but we can still calculate the recovered solution
and carry out error estimation. The early FEM related research on patch-recovery has been developed in [34,35].
There also exist several error estimation methods for IGA solvers. For example in [36], a multi-level estimation
technique was proposed by applying bubble functions in T-splines analysis. In [37], a residual based error estimation
was applied in RHT-spline based IGA. However, compared to FEM, the application of the error estimation in IGA is
still underdeveloped.

In this paper, we propose an adaptive IGA collocation method based on the PHT-spline basis. Considering the C1

continuity of PHT-spline-elements, we choose Gauss points as our collocation points, which will lead to an optimal
scheme as shown in [38]. A hybrid collocation approach is presented, combining the interior collocation elements
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with the outer Galerkin boundary. Elimination and relocation techniques for the Gaussian collocation points around
the T-junction regions can guarantee a fully determined system and compatible numerical results. The adaptivity is
driven by a particular recovery error estimator, which is based on the computed solution. In our research, we have
applied the proposed method to 2D and 3D elasticity problems containing multiple patches and the re-entrant corners.
We also obtain the same convergence rates for both uniform and adaptive solving procedures as compared with
Galerkin methods.

The paper is organized as follows: in Section 2, we briefly review the PHT-spline basis, and moreover, we introduce
the hybrid Gaussian collocation method. The recovery error estimator is illustrated in Section 3. The numerical
experiments to validate the method are presented in Section 4. The paper ends with a brief summary in Section 5.

2. IGA collocation methods

2.1. Overview of point collocation for spline approximation spaces

In a general setting, we consider a boundary value problem of the form:

L (u(x)) = f(x) for x ∈ Ω ,

G (u(x)) = g(x) for x ∈ ∂Ω ,
(1)

where L and G are differential operators, Ω ⊂ Rd is the computational (physical) domain with boundary ∂Ω and
f : Ω → Rn, g : ∂Ω → Rn are given functions.

As usual in IGA, we consider a parameter space Ωpar := [0, 1]d which is mapped to the physical domain Ω by a
mapping F : Ωpar → Ω . The mapping can be described by a set of spline (e.g. B-Spline or NURBS) basis functions
and the associated control points, i.e.

F(ξ ) :=

N∑
i=1

Ciφi (ξ ) for ξ ∈ Ωpar, (2)

where Ci are the d-dimensional control points, and φi are the spline basis functions.
The main idea of the collocation method is to select a set of points x∗

i ∈ Ω ∪ ∂Ω for which the differential equation
(1) holds with the approximate solution uC

h , i.e.

uC
h (x) =

n∑
i=1

Diφi ◦ F−1(x), (3)

where Di are n-dimensional solution coefficients chosen to satisfy:

L (u(xi )) = f(xi ) for xi ∈ Ω ,

G (u(xi )) = g(xi ) for xi ∈ ∂Ω .
(4)

Different choices of the points xi and basis functions φi give rise to different collocation schemes. Note that for a mth
order differential operator L , it is desirable for the approximation space spanned by φi ◦F−1 to have Cm−1 continuity.
While spline basis functions of quadratic and higher degree can easily fulfill this requirement, special treatment is
needed in the case where the continuity is reduced, such as in the case of repeated knots or at the patch interfaces. We
will detail some methods of dealing with this in Section 2.3.

In the following, we give a brief overview of the choices of collocation points that can be considered.

2.1.1. Greville abscissae collocation
The traditional collocation points are chosen to be Greville abscissae [20]. For a given knot vector Ξ =

{ξ1, ξ2, . . . , ξn+p+1}, the associated Greville abscissae points ξ̄i (i = 1, . . . , n) are defined by

ξ̄i =
ξi+1 + ξi+2 + · · · + ξi+p

p
. (5)

As shown in Eq. (5), the Greville abscissae points are computed directly from knot vector and the number of points
equals the number of total basis functions in the approximation space, which results in a fully determined linear
system. However, it has been shown that the collocation method based on the Greville abscissae is less accurate;
in addition, it exhibits sub-optimal convergence in energy (H 1) norm for odd polynomial degrees. Moreover, local
adaptive refinement requires the use of T-Splines [39] or a weighting procedure [23].
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2.1.2. Collocation at superconvergent points
A different strategy for selecting collocation at superconvergent points was developed in [26] based on numerical

results, which provides optimal convergence rates in the first derivative (energy) norms for all polynomial degrees. The
idea is to use the superconvergent points of the second derivative of the Galerkin solution as the collocation points.
These points are calculated based on the mesh discretization only, whereas they can be computed on a reference
element and the obtained coordinates can then be mapped onto any quasi-uniform mesh.

2.1.3. Gaussian collocation
It has been observed that when cubic spline spaces are considered, the superconvergent points for the second

derivative are the Gauss points. In [38], it has been proven in 1D that collocating at Gauss points leads to optimal
convergence rates for B-splines of any degree but with reduced (C1) continuity. Moreover, even higher convergence
rates can be obtained at particular points such as at the knots (element vertices). In this paper, we investigate the use of
Gaussian collocation with C1 cubic splines where PHT-splines are adopted to obtain hierarchical and local refinement.
As shown in the next section, the PHT-splines are constructed with C1 continuity, therefore they are a particularly well
suited basis for Gaussian collocation. The higher approximation rate can be used to construct a recovery-based error
estimator, as shown in Section 3.

2.2. Cubic splines over hierarchical T-meshes

PHT-splines are defined on hierarchical T-meshes, which have different refinement levels. Elements at a finer
refinement level are generated by a cross insertion procedure. At each cross insertion, a refined element is subdivided
into 4 elements in 2D and 8 elements in 3D. Fig. 1 illustrates the process of generating a hierarchical T-mesh with
three levels. The refined meshes contain three types of vertices, which are either boundary vertices, crossing vertices
or T-junctions. The first two are denoted as basis vertices, since they are associated with particular basis functions in
the mesh. In Fig. 1, we show these three types of vertices generated by the cross insertion. For cubic polynomials,
each basis vertex is associated with 4 basis functions for 2D problems and with 16 basis functions for 3D problems.
There are no basis functions associated with the T-junctions.

The PHT-splines are constructed level by level. In the following, we will briefly review the construction of the basis
functions. In the 2D case, each cubic basis function φ on an element E can be represented as a linear combination
of 16 Bernstein basis functions. Their coefficients are called Bézier ordinates. This process is also called Bézier
extraction [40]. We define a linear mapping FR from a reference element [−1, 1] × [−1, 1] to the current element EK
in the parameter space [0, 1] × [0, 1]. Then the basis function φ in the parameter space is represented by

φ(ξ, η) =

4∑
i=1

4∑
j=1

Ci j Bi j ◦ F−1(ξ, η), (6)

where Bi j (ξ̂ , η̂) = Bi (ξ̂ )B j (η̂) is a tensor product of Bernstein polynomials defined on the reference interval [−1, 1].
We have

Bi (ξ ) =
1

2p

(
p

i − 1

)
(1 − ξ )p−i+1(1 + ξ )i−1, i = 1, 2, 3, 4 (7)

where Ci j are the Bézier coefficients and they can be calculated through the De Casteljau’s algorithm [25]. For the
details of computing the Bézier coefficients we refer to [40].

To keep the linear independence of the basis and better sparsity in the resulting matrix solving system, a truncation
procedure is employed after the cross insertion. A detailed discussion is given in [33]. Fig. 2(a) shows the node indices
in a cubic mesh. After the cross insertion, there are three new basis vertices, including one crossing vertex and two
boundary vertices, which yield new basis functions as shown in Fig. 2(b). The two T-junctions do not create new basis
functions. We use level k + 1 representing the current refined mesh. Thus, the previous step mesh is at level k. In
order to keep the linear independence of the new basis at level k + 1, some basis functions from the level k need to
be modified. For example, Fig. 3 shows a cubic basis function before (Fig. 3(a)) and after (Fig. 3(b)) the truncation
procedure. The basis function is represented by 16 Bézier ordinates in each element. The initial Bézier coordinates are
given in Fig. 3(c). After refinement, we apply the De Casteljau’s algorithm to define the Bézier coordinates associated
to the four new elements as shown in Fig. 3(d). Then we zero out all the Bézier entries surrounding the basis vertex,
and finally obtain the basis in Fig. 3(e).
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Fig. 1. Illustration of the boundary vertices, crossing vertices and T-junctions: (a) the initial mesh; and (b)–(c) after cross insertion refinements.
The black dots denote the boundary vertices, the green dots represent the crossing vertices and the red triangles are T-junctions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Global basis indices on each element for p = 3.

2.3. Hybrid IGA Gaussian collocation method

In the following, we give an overview of the hybrid Gaussian collocation method, which can be used to improve
the approximation at the Neumann boundary and in regions of the domain for which the regularity requirements for
collocation are not satisfied. These include the patch boundaries in multi-patch geometries for which normally only
C0 continuity is achieved, as well as points of singularity in the exact solution such as re-entrant corners. The main
observation is that two types of test functions can be considered: the Dirac-delta functions δ(x − x∗), where x∗ is
a collocation point for the collocation part, and the standard spline functions for the Galerkin part. The Dirac-delta
functions have the following property:∫

Ω

f (x)δ(x − x∗) = f (x∗) (8)

for any function f (x) which is continuous at x∗
∈ Ω .

Suppose the weak form of the differential equation (1) can be written as a bilinear form of the type:

Find u ∈ V such that a(u, v) = f (v) for all v ∈ W, (9)

where V and W are suitable spaces containing the test and trial functions respectively and f is the right-hand side
functional which incorporates the body forces and Neumann boundary conditions. In the standard Galerkin method,
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Fig. 3. Modification of a cubic (p = 3) basis function: (a) before truncation; (b) after truncation; (c) initial Bézier ordinates on the unrefined
element; (d) subdivision of one element into four subcells. The squared shaded ordinates correspond to the new basis vertex; and (e) the Bézier
ordinates around the new basis vertex are set to zero.

the test and trial spaces are identical, containing spline approximation functions, while in the pure collocation method
the W space consists of Dirac delta functions. In hybrid Gaussian collocation, we consider a test space W which
consists of both types of functions. Then the linear system is assembled in the standard way:

K j i = a(φi , ψ j ), (10)

where φi are PHT spline basis functions and ψ j are either the Dirac-deltas or the PHT splines. Each row of the
resulting system matrix corresponds to a test function and each column to a trial function. The bilinear form is an
integral over the whole domain, however the entries are evaluated in an element-wise assembly subroutine only on the
elements where the Galerkin basis functions have support.

2.4. Obtaining a fully determined linear system

Fig. 4 illustrates the solving procedure and the construction of the linear system in two dimensions. The problem
domain is discretized into two patches. There are 66 basis functions in total. The green dots represent 32 collocation
points. The red numbers identify the 30 boundary basis functions. The numbers enclosed in yellow squares stand for
the interior patch boundary basis functions. Thus we have found 66 constrains for the problem, which result in a fully
determined matrix system. Note that for the multi-patch modeling, the rows from the Galerkin system corresponding
to the inner patch boundary basis have to be added to the collocation system to ensure the number of the rows is the
same as the number of columns. To have a fully determined system, the total number of collocation points needs to be
equal to the total number of basis functions. For the uniform refinement strategy, since there are 4 collocation points
per element, this condition is automatically satisfied. However for adaptive refinement, keeping 4 collocation points
in the elements around T-junctions will result in more collocation points than basis functions. This is because each
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Fig. 4. Collocation points and basis functions distribution on two patches with cubic polynomial degree. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

basis vertex is associated with 4 collocation points. Since T-junctions are not basis vertices, they do not generate new
basis functions. Thus, we do not need to consider any collocation points associated with T-junctions.

Another issue is the position of the collocation points which needs to be adjusted according to the distance from
the nearest basis vertex. In the case of uniform mesh, there will be one Gauss point in each of the four elements
adjacent to the basis vertex, resulting in a one-to-one correspondence between the basis functions and the collocation
points. The same principle is used in the case of adaptive meshes with T-junctions. For example in Fig. 5, we show
a mesh where some elements have 2 or 3 collocation points (red dots). Fig. 5(e) shows how the relocation technique
works, where the green dot is a given basis vertex. Its support is marked by four edges (the left-edge in orange, the
right-edge in red, the down-edge in brown and the up-edge in yellow). There are four collocation points associated
to this basis vertex. The collocation point-1 is defined by the left-edge and the up-edge. The collocation point-2 is
defined by the right-edge and the up-edge. The point-3 is defined by the left-edge and the down-edge. The point-4 is
defined by the right-edge and the down-edge. In this example, since the left-edge is equal to the right-edge, the four
collocation points have equal distances to the basis vertex in the horizontal direction. Since the up-edge is shorter than
the down-edge, the point-1 and point-2 are closer to the basis vertex than the collocation point-3 and point-4 in the
vertical direction. This relocation rule is used for all the collocation points in the mesh and is implemented in a similar
way for three-dimensional domains.

3. Recovery-based error estimation

The recovery estimator is obtained from a recovered solution which involves sampling the computed solution at
several chosen points. To ensure a reliable estimator, the sample points should be chosen at carefully selected points
where the solution is known to be accurate. In the finite element method, a common choice is to use Gauss quadrature
points, which have been shown to be superconvergent for the approximation spaces of Lagrange polynomials [41,42].
However, for the case of spline-based approximation spaces, superconvergence is obtained at different points which
can be calculated as the roots of a polynomial function [26,33]. For the Galerkin’s method, this function can be written
in terms of the difference between a monomial of degree p + 1 and its interpolant in the spline approximation space.
In the following, we show how the superconvergent points can be computed for collocation methods, in particular for
collocation at Gauss points.

As in the Galerkin case, for the 1-dimensional setting, we consider Q(x) = x p+1 to be a monomial of degree p+1.
We let Sh be the space of C1 splines of degree p with knots at x0, . . . , xn . We then define I h[Q](x) ∈ Sh to be the
interpolant of Q(x) and its derivative at the mesh vertices (knots), i.e.

dα I h[Q]
dxα

(xi ) =
dαQ
dxα

(xi ), α = 0, 1, and i = 0, . . . , n. (11)

Note that for p = 3, there are exactly two shape functions with non-zero value and derivative at each mesh vertex.
Therefore, the interpolant can be determined by solving a 2 × 2 linear system corresponding to each vertex, and we
can write

I h[Q](x) =

2n∑
k=1

ckφk(x), (12)
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Fig. 5. The refined meshes and distribution of collocation points. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

where φk(x) are the C1 spline basis functions and ck are the interpolation coefficients. For the interior vertices,
i = 2, . . . , n − 1, they can be determined by solving a linear system of the form[

φ2i−1(xi ) φ2i (xi )
φ′

2i−1(xi ) φ′

2i (xi )

] [
c2i−1
c2i

]
=

[
Q(xi )
Q′(xi )

]
, i = 1, . . . , n. (13)

Furthermore, the elements of the left-hand side of the matrix in (13) depend only on the knot distances between xi

and its immediate neighbors [11].
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Fig. 6. Interpolation error for the function Q(x) = x4 with cubic C1 splines.

We now let x∗

k for k = 1, . . . , 2n − 2, denote the Gaussian collocation points defined by the 2-point Gauss rule on
each of the elements (xi , xi+1), and obtain xmid

i = (xi + xi+1)/2 for i = 1, . . . , n − 1. It is easy to check that

I h[Q]′(xmid
i ) = Q′(xmid

i ) (14)

and

I h[Q]′′(x∗

k ) = Q′′(x∗

k ). (15)

Eq. (15) immediately implies that I h[Q] = QC
h , where QC

h is the Gaussian collocation solution to the boundary value
problem:

−Q′′(x) = 12x2, for x ∈ (x0, xn)

Q(x0) = x4
0 , Q(xn) = x4

n ,
(16)

which has the exact solution Q(x) = x4. Then from (14) and by the arguments presented in [38], the collocation
solution uC

h is superconvergent in the first derivative at the element vertices as well as at the element midpoints. In
Fig. 6, we show the basis functions and approximation error on a non-uniform mesh where the elements size of the
refined mesh is reduced by a factor of 2.

Note that the superconvergent points for the first derivative are the same as in the case of the Galerkin method
with C1 hierarchical cubic splines, as shown in [33]. Then we can define the recovery patches consisting of two
neighboring elements, which result in 5 superconvergent points that can be fitted by 5 cubic splines with C2 inter-
element continuity. Since the derivatives of the computed solution (which are piecewise quadratics) are fitted by cubic
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Fig. 7. Problem description for the annulus example.

functions, the resulting recovered gradient solution is of higher order. The recovery procedure can be easily extended
to higher-dimensional domains by taking advantage of the local tensor-product structure inherent to the hierarchical
meshes.

After computing the estimated error, it is important to use an appropriate marking scheme to select the to-be-
refined elements. Our approach is based on the Döerfler method [43], which marks the elements contributing up to ρ
percentage of the total estimated error. In [33], it was determined that the Döerfler marking gives better results (at the
cost of possibly more refinement steps), than marking all the elements exceeding a prescribed threshold. In general,
the parameter ρ ∈ (0, 1]. Note that ρ = 1 results in uniform refinement, while ρ ≪ 1 results in smaller refinement
steps. There is always a trade-off between the number of refinement steps and the “optimality” of the refinement. In
practice, we choose ρ = 0.75 for problems with smooth solutions, and ρ = 0.5 for problems containing singularities.

The theoretical justification for higher dimensions and for geometry mappings to the physical space which are not
fully regular has not been fully developed. Nevertheless, in Section 4 we provide evidence that the recovery-based
error estimator is sufficiently robust to drive the adaptive algorithm.

4. Numerical examples

In this section, we present five examples, ranging from 2D to 3D elasticity problems for which an analytical solution
is available. We show that optimal convergence rates can be achieved by the proposed Gaussian collocation method,
compared with the traditional Greville collocation and the Galerkin approaches.

4.1. Pressurized cylinder modeled by a quarter-annulus domain

We first consider a benchmark problem of a quarter-annulus subjected to a pressure at the inner circular edge. The
model is described in Fig. 7. A plane stress state is assumed. The exact solution for the stress components [44] in
polar coordinates is

σrr =
R2

i P
R2

a − R2
b

(
1 −

R2
a

r2

)
, (17)

σθθ =
R2

i P
R2

a − R2
i

(
1 +

R2
a

r2

)
, (18)

σrθ = 0, (19)

where Ri and Ra stand for the inner and outer radius, respectively. P is the pressure exerting along the inner circular
edge. The adaptivity is driven by the recovery error estimator. The collocation points around the T-junctions need to be
eliminated and relocated as shown in Fig. 8. Since the number of refined elements is driven by the parameter ρ, it may
happen that not all the elements with the same estimated error are marked for refinement. The refining procedure stops
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Fig. 8. The refined meshes and the distribution of collocation points in the annulus example.

Fig. 9. Relative error (exact and estimated) in energy norm, using adaptive and uniform refinements for the annulus example.

at each step whenever the estimated error of the marked elements reaches the target percentage of the total estimated
error, as shown in Fig. 8(c). With the point elimination and relocation techniques, the Gaussian collocation yields the
optimal convergence rates, with similar performance to the IGA Galerkin approximation as shown in Fig. 9, whereas
the Greville collocation converges only at a sub-optimal rate.
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Fig. 10. The global effectivity index plot for the annulus model.

The error estimators are evaluated both locally and globally. This evaluation is based on the effectivity of the error
in the energy norm. The global effectivity index is defined as

θ =
∥ees∥

∥e∥
, (20)

where ees represents the estimated error and e stands for the actual error. In our research, we choose the superconver-
gent points and then fit these values with higher order spline functions. The assumption is that the recovered solution
will be closer to the unknown exact solution. If this is true, then θ should approach to 1 asymptotically. In theory,
superconvergence only holds for uniform meshes and smooth solutions, but in practice, it holds even on non-uniform
meshes and singular solutions, where areas with larger errors are refined first. Fig. 10 is the global index plot of the
annulus model solved by the proposed Gaussian collocation method. The global effectivity indices for both uniform
and adaptive refinement are approaching 1 with mesh refinement. The quality of the estimator can also be studied
at a local level by computing the local effectivity index named D, which is based on the robustness index described
in [45,46]. D represents the variation of the effectivity index in each element with the following expression

D =

{
θ e

− 1 if θ e
≥ 1

1 −
1
θ e

otherwise
with θ e

=
∥ee

es∥

∥ee∥
, (21)

where e represents the element level. A good error estimator yields values of D close to zero. For more detailed
discussion about the local effectivity index, we refer to [46]. In Fig. 11, we plot the local effectivity index for the
annulus model. As we can observe, more negative local effectivity index values appear around the blending elements
between two levels. There are two possible reasons for this phenomenon. One is the truncation of the PHT basis
can result in the decay phenomenon, as discussed in [47]. The other reason is the PHT basis is not a tensor product
function, and the support of several basis functions around T-junctions is cut by the truncation technique [11,47].
However, in practice, the recovery error estimator is still a good indicator for local refinement, with improved
approximation and optimal convergence rates as shown in the following numerical examples.

4.2. Plate with a circular hole

The second example is a standard benchmark problem of an infinite plate with a hole in plane stress shown in
Fig. 12. To solve the problem numerically, we only consider a finite domain. The exact solution [48] is given in terms
of polar coordinates by:

σrr (r, θ) =
Tx

2

(
1 −

R2

r2

)
+

Tx

2

(
1 + 3

R4

r4 − 4
R2

r2

)
cos 2θ, (22)
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Fig. 11. Local effectivity index D (ideal value D = 0). (a), (b) and (c) are the structured mesh. (d), (e) and (f) are the corresponding local effectivity
index plots.

Fig. 12. Problem description for the plate with a circular hole example.

σθθ (r, θ) =
Tx

2

(
1 +

R2

r2

)
−

Tx

2

(
1 + 3

R4

r4

)
cos 2θ, (23)

σrθ (r, θ) = −
Tx

2

(
1 + 2

R2

r2 − 3
R4

r4

)
sin 2θ, (24)

where r and θ are the radius and angle with respect to the origin which is located in the center of the hole. The stresses

in the Cartesian coordinates system are given by⎛⎝σxx (x, y)
σyy(x, y)
σxy(x, y)

⎞⎠ = A−1

⎛⎝σrr (r, θ)
σθθ (r, θ)
σrθ (r, θ)

⎞⎠ , (25)
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where the transformation matrix A is

A =

⎛⎝ cos2(θ ) sin2(θ ) 2 sin(θ ) cos(θ )
sin2(θ ) cos2(θ ) −2 sin(θ ) cos(θ )

− sin(θ ) cos(θ ) sin(θ ) cos(θ ) cos2(θ ) − sin2(θ )

⎞⎠ . (26)

The discretization on the coarse mesh has two PHT patches, which contain a C0 line at the patch boundary. The
refined elements and the relative errors obtained in x-direction stress (σxx ) are shown in Fig. 13. It can be observed that
the region with a large error contribution is captured by the adaptivity and the error is decreasing. We also compare the
convergence rates of the relative error in energy norm for the uniform and adaptive refinement by the three methods,
and the results are shown in Fig. 14. From Fig. 14(c), we observe both the uniform and adaptive collocation methods
can yield the optimal convergence rate, and adaptive collocation shows better accuracy due to the efficient refinement
strategy. At the last refinement step, adaptive Greville abscissae collocation with 35,388 DOFs results in an error of
1.49 · 10−4, while the Galerkin method with 34,908 DOFs results in an error of 8.33 · 10−6 and Gaussian collocation
with 35,020 DOFs has an error of 9.04 · 10−6. A similar pattern but with significantly higher error per degree of
freedom can be noticed for uniform refinement.

4.3. L-shaped wedge

Next we consider a benchmark problem of the L-shaped wedge, which contains a singularity at a re-entrant corner
in the domain. A plane strain state is assumed. The analytical solution of the problem is given in [49]. The boundary
conditions are shown in Fig. 15, and the inner and outer corners are fixed. The L-shaped wedge is discretized into two
PHT patches, where each one is a trapezoid. There is a singularity at the inner re-entrant corner. In order to reduce the
error from the singularity, we apply the Galerkin method in the 1/4 region for both patches as shown in Fig. 16(a–c).
We have removed all the collocation points on the elements where we are using the Galerkin method. To obtain a fully
determined linear system, we also remove some of the collocation points on the collocation elements which are next
to the Galerkin elements. As can be seen in Fig. 16(d–f), the relative error for the von Mises stress surrounding the
singularity is reduced. Fig. 17 shows the convergence rates for both the uniform and adaptive refinement approaches.
It is obvious that adaptive refinement improves the accuracy significantly for the three approaches.

4.4. Hollow sphere under internal pressure

Next we solve two 3D examples. First we solve a hollow problem, where the model and the domain geometry are
shown in Fig. 18 and Fig. 19 respectively. Note that owing to the symmetrical structure, we consider only one eighth
of the original problem. The exact solution [50] is given in terms of spherical coordinates {r, φ, θ} by

ur =
P R3

i r
E

(
R3

a − R3
i

) (
(1 − 2ν)+

(1 + ν) R3
a

2r3

)
, (27)

σr =
P R3

i

(
R3

a − r3
)

r3
(
R3

a − R3
i

) , (28)

σφ = σθ =
P R3

i

(
R3

a + 2r3
)

2r3
(
R3

a − R3
i

) , (29)

where r and θ are the radius and angle with respect to the origin which is located in the center of the hole. φ represents
the azimuthal angular in the x-y plane from the x-axis. We let Ra and Ri designate the outer radius and the inner radius,
which are given by Ra = 4 and Ri = 1, respectively. We choose Young’s modulus E = 1000, Poisson’s ratio ν = 0.3
and a pressure P = 1.

We apply the proposed adaptive collocation method to solve the hollow problem, comparing with the uniform
refinement. The relative error in the energy norm using adaptive and uniform refinements are shown in Fig. 21, and
both convergence rates are optimal for the Gaussian collocation and the IGA Galerkin methods. However, Greville
collocation converges in a sub-optimal approximation. In addition, Fig. 20 shows results of the refined meshes, the
corresponding von Mises stress and the errors in the stress. As can be observed, the adaptive refinement improves
the solution in the region close to the inclusion with significantly fewer degrees-of-freedom compared to uniform
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Fig. 13. The refined meshes and the error for the stress σxx in the plate with circular hole example.

refinement. However, there are some localized error hot spots along the patch boundaries and the corner regions.
This is because the boundary approximation is somewhat less accurate than the interior region, even with the hybrid
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Fig. 14. Relative error (exact and estimated) in energy norm, using adaptive and uniform refinements for the plate with hole example.

Fig. 15. Problem description for the L-shaped wedge example.

Galerkin technique. Accurate treatment of the Neumann boundary conditions is a challenging research topic for the
IGA collocation.

4.5. Spherical hole in an infinite solid subject to uniform tension

Here we consider a cube with an internal spherical hole in an infinite domain in R3, as shown in Fig. 22. The exact
stresses, given using the spherical coordinate {r, φ, θ} by [51,52] are

σrr = Scos2θ +
S

7 − 5ν

(
a3

r3

(
6 − 5 (5 − ν) cos2θ

)
+

6a5

r5

(
3cos2θ − 1

))
, (30)

σφφ =
3S

2 (7 − 5ν)

(
a3

r3

(
5ν − 2 + 5 (1 − 2ν) cos2θ

)
+

a5

r5

(
1 − 5cos2θ

))
, (31)

σθθ = Ssin2θ +
S

2 (7 − 5ν)

(
a3

r3

(
4 − 5ν + 5 (1 − 2ν) cos2θ

)
+

3a5

r5

(
3 − 7cos2θ

))
, (32)

σrθ = S
(

−1 +
1

7 − 5ν

(
−

5a3 (1 + ν)

r3 +
12a5

r5

))
sin θ cos θ, (33)
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Fig. 16. Relative error for the von Mises stress after several refinement steps. The relative error is plotted in the log scale (base 10).

Fig. 17. Relative error (exact and estimated) in energy norm, using adaptive and uniform refinements for the L-shaped wedge example.
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Fig. 18. Problem description for the hemisphere example.

Fig. 19. Three geometric patches for the hollow sphere example.

where a denotes the radius of the sphere. S is the uniaxial tension applied at infinity and µ and ν are the shear
modulus and Poisson’s ratio respectively.

Because of the symmetry, 1/8 of the problem domain is considered and discretized into three geometric patches
as shown in Fig. 23. The stress field in the z-direction and the corresponding errors obtained for fine meshes are
plotted in Fig. 24. The convergence plot is shown in Fig. 25. We observe that the optimal convergence rate in terms
of degree-of-freedom is obtained for both the uniform and adaptive refinements for the Gaussian collocation and IGA
Galerkin approaches, whereas the results of the Greville abscissae are sub-optimal.

5. Conclusion

We have proposed an adaptive IGA collocation method with a recovery-based error estimator. We have chosen
Gauss points as our collocation sites, which are suitable for C1 bases such as the PHT-splines. However, when adaptive
refinement is used, the presence of T-junctions results in more Gauss points than basis functions. Thus, we remove
the collocation points in the elements surrounding T-junctions in order to have a fully determined matrix system.
Meanwhile, we adjust the positions of the collocation points to ensure they are located at the proper distance from
the associated basis vertex. Furthermore, we deal with the boundary conditions in a simple and stable way, by using a
hybrid Galerkin approach for the Neumann and inter-patch boundaries. Finally, we obtain optimal convergence rates
(same as with the Galerkin method) for both the uniform and adaptive refinement procedures when solving several
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Fig. 20. The von Mises stresses and the refined meshes corresponding to uniform refinement and adaptive refinement for the hemisphere example
obtained from the Gaussian collocation method. The number of the DOFs for uniform refinement is 343,434, and the number of the DOFs for
adaptive refinement is 143,706.

elasticity 2D and 3D benchmark problems, including multi-patch domains and re-entrant corners. We also compare
the Gaussian collocation with the traditional Greville collocation and the IGA Galerkin methods.

As part of our future work, we plan to extend our algorithm to more general higher polynomial degree splines.
Meanwhile, we are planning to enrich our method by combining other techniques, such as XFEM, to model material
failure or material interface problems. More complex geometry models and more practical contact problems could be
considered in further research work as well.
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Fig. 21. Relative error (exact and estimated) in energy norm, using adaptive and uniform refinements for the hemisphere example.

Fig. 22. Problem description for 1/8 of the cube with a spherical hole.

Fig. 23. Three geometric patches for the cube with a spherical hole example.The Trial Version



72 Y. Jia, C. Anitescu, Y.J. Zhang et al. / Computer Methods in Applied Mechanics and Engineering 345 (2019) 52–74

Fig. 24. The stresses in the z-direction and the refined meshes corresponding to the uniform and adaptive refinements for the cube with a spherical
hole example obtained from the Gaussian collocation method. The number of the DOFs for uniform refinement is 343,434, and the number of the
DOFs for adaptive refinement is 212,394.
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