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Immersed boundary (IB) methods deal with incompressible visco-elastic solids interacting 
with incompressible viscous fluids. A long-standing issue of IB methods is the challenge 
of accurately imposing the incompressibility constraint at the discrete level. We present 
the divergence-conforming immersed boundary (DCIB) method to tackle this issue. The 
DCIB method leads to completely negligible incompressibility errors at the Eulerian level 
and various orders of magnitude of increased accuracy at the Lagrangian level compared 
to other IB methods. Furthermore, second-order convergence of the incompressibility 
error at the Lagrangian level is obtained as the discretization is refined. In the DCIB 
method, the Eulerian velocity–pressure pair is discretized using divergence-conforming 
B-splines, leading to inf–sup stable and pointwise divergence-free Eulerian solutions. The 
Lagrangian displacement is discretized using non-uniform rational B-splines, which enables 
to robustly handle large mesh distortions. The data transfer needed between the Eulerian 
and Lagrangian descriptions is performed at the quadrature level using the same spline 
basis functions that define the computational meshes. This conduces to a fully variational 
formulation, sharp treatment of the fluid–solid interface, and a 0.5 increase in the 
convergence rate of the Eulerian velocity and the Lagrangian displacement measured in 
L2 norm in comparison with using discretized Dirac delta functions for the data transfer. 
By combining the generalized-α method and a block-iterative solution strategy, the DCIB 
method results in a fully-implicit discretization, which enables to take larger time steps. 
Various two- and three-dimensional problems are solved to show all the aforementioned 
properties of the DCIB method along with mesh-independence studies, verification of the 
numerical method by comparison with the literature, and measurement of convergence 
rates.
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1. Introduction

In 1972, Peskin proposed the immersed boundary (IB) method to tackle fluid–structure interaction (FSI) problems [1–3]. 
This contribution was a significant breakthrough in the field of FSI since it opened the way for simulating problems that 
involve large translational and rotational motions of several deformable solids in an automatic way. The original IB method 
may be seen as both a mathematical model and a numerical method, in which incompressible visco-elastic solids defined 
on co-dimension one manifolds interact with an incompressible viscous fluid. The mathematical model manages to link 
Eulerian descriptions of the velocity and the pressure defined in the fluid and solid domains with a Lagrangian description 
of the displacement defined in the solid domain, that is, it enables to treat the viscous and elastic parts of the Cauchy stress 
tensor in their natural descriptions. In the original IB numerical method, finite differences were used to approximate the 
Navier–Stokes equations, the solids were represented by a fiber network, and the data transfer needed between the Eulerian 
and Lagrangian descriptions was performed using discretized Dirac delta functions. Regarding the time discretization, the 
position of the solids was updated in an explicit manner. In [4], the mathematical model of the IB method was generalized 
to deal with co-dimension zero viscous hyperelastic solids. In [5,4,6,7], finite elements were used to discretize both the 
Navier–Stokes equations and the solid. Regarding the data transfer between descriptions, discretized Dirac delta functions 
were still used in [6,7] while the basis functions of the finite element meshes were used instead in [5,4], thus leading to 
a fully-variational formulation. The generalization of the IB method to work with rigid solids was done in [8,9], to work 
with variable densities and viscosities in [10,11], and to work with two-fluid flows in [12,13]. In the last decades, diverse 
numerical methods have been developed to discretize the mathematical model proposed by the IB method, such as a hybrid 
finite difference/finite element discretization [14], a NURBS-based discretization [15], a discretization based on T-splines [16], 
finite volume discretization for the Navier–Stokes equations [17], and lattice Boltzmann discretization for the Navier–Stokes 
equations [18,19]. These numerical methods have been applied to a variety of problems, such as heart valve analysis and 
design [20–23], cell-scale blood flow [24–26], aquatic animal locomotion [27,28], tissue cryofreezing [29], capsule dynamics 
[30], vesicle dynamics [31], particle laden flows [32], and floating structures [33].

In [34], theory and numerical examples show how weakly divergence-free discretizations lead to extremely poor mass 
conservation in incompressible flow problems with large forcings verifying that the irrotational part of the forcing is large 
relative to the divergence-free part. Moreover, the exact solution of the Eulerian pressure is usually discontinuous at the 
fluid–solid interface, which leads to poor approximation properties of the discrete pressure spaces used in immersed FSI 
methods. As a result, immersed FSI methods, whether they follow Peskin’s idea or not (see [35–39]), often have profound 
difficulties to accurately impose the incompressibility constraint at both Eulerian and Lagrangian levels [40,41,6,34,38,25,42]. 
This issue is extremely important since large errors in the incompressibility constraint are able to even alter the qualitative 
behavior of numerical solutions in challenging FSI applications, such as heart valves [40,38] and cell-scale blood flow [25]. 
A number of work-arounds have been proposed in the literature to try to deal with this issue. In [38], following what was 
proposed for incompressible flow problems in [34], stabilized formulations for the Navier–Stokes equations are locally mod-
ified near the fluid–solid interface to add heavy grad–div stabilization. This heavy grad–div stabilization near the fluid–solid 
interface is able to impose the incompressibility constraint accurately at the Eulerian level. However, as the authors men-
tioned in [34,38], the modified stabilization will lead to locking and other instabilities if the scaling parameters are large 
enough and there is no rule to know a priori when this will happen. In addition, the modified stabilization increases the 
condition number of the final system of equations and it becomes a challenge to find a scalable solver in order to work 
with highly-refined three-dimensional meshes [38,42,25]. In [43], an ad hoc volume correction strategy at the Lagrangian 
level, to be carried out every ten time steps, was proposed to reduce the spurious volume change of co-dimension zero 
solids in immersed FSI methods. Although the authors acknowledge that the introduction of this correction strategy, which 
is not derived from physical laws, may negatively impact the accuracy of numerical solutions. Interesting options to capture 
the pressure discontinuity at the interface are to combine the fictitious domain method with adaptive meshing following 
the interface as done in [37] and to use an extended finite element discretization as done in [44,42]. However, the auto-
matic application of these two methods to complex three-dimensional problems remains an open problem. Recently in [45], 
a novel IB method, based on finite differences and discretized Dirac delta functions, was proposed. This method defines 
velocity-interpolation and force-spreading schemes in such a way that the interpolated velocity field in which the structure 
moves is at least C1-continuous and satisfies a continuous divergence-free condition. In [45], various benchmark problems 
involving co-dimension one solids are solved and the new IB method leads to various orders of magnitude of increased 
accuracy in volume conservation at the Lagrangian level in comparison with other IB methods [40,41]. However, as the 
authors explained in [45], their method is restricted to periodic domains up to now, which limits its potential application 
to real-word FSI problems.

In [34], incompressible flow benchmark problems involving large irrotational forcings were solved using several mixed 
finite elements that are inf–sup stable. Scott–Vogelius elements, which lead to pointwise divergence-free velocity solutions, 
completely outperformed Taylor–Hood elements, P2P0 elements, and P1Bubble-P1 elements regarding mass conservation, 
thus showing the great advantages of pointwise divergence-free discretizations for this kind of problems. To the best of our 
knowledge, the only work that has tried pointwise divergence-free Eulerian discretization in the context of immersed FSI 
methods is the recent paper [46]. In [46], divergence-conforming B-splines [47–50] were applied to the non-boundary-fitted 
FSI method developed in [38,39]. The method used in [38,46] defines a fluid subproblem and a Kirchhoff–Love shell sub-
problem with no-tailored discretizations. The no-penetration and no-slip conditions at the interface are imposed through 
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a generalization of Nitsche’s method, which involves adding penalty terms and Lagrangian multipliers to the formulation. 
Divergence-conforming B-splines take advantage of the higher inter-element continuity of B-splines [51,52] to construct 
velocity–pressure pairs that are inf–sup stable, pointwise divergence-free, and H1 conforming. The pointwise divergence-
free velocity solutions are obtained by posing the variational form on spaces forming a discrete de Rahm complex [53,47]
in which the divergence operator maps velocity solutions into the pressure space. In the last decade, the use of spline 
functions, such as B-splines, non-uniform rational B-splines (NURBS), analysis-suitable T-splines (ASTS), and hierarchical 
B-splines, has become widespread in computational mechanics thanks to isogeometric analysis (IGA) [51,54]. In the field 
of immersed methods for FSI, IGA has already been used to perform NURBS-based and ASTS-based generalizations of the 
IB method [15,16], develop the immersogeometric method [38,55,39], couple shells with Stokes flows using the boundary 
integral method [56,57], solve air-blast problems [58], develop a fictitious domain approach [59], and a stabilized cut-cell 
immersed framework [60].

In this paper, we propose an IB numerical method that uses divergence-conforming B-splines for the discretization of 
the Eulerian velocity and the Eulerian pressure together with NURBS for the discretization of the Lagrangian displacement. 
Our method benefits from the higher inter-element continuity of splines, which leads to higher accuracy per degree of 
freedom in fluid mechanics [61] and increased robustness when it comes to handle large deformations in solid mechanics 
[62]. The data transfer between the Eulerian and Lagrangian descriptions is performed using the spline basis functions that 
define the meshes, which leads to a fully variational formulation. With respect to the time discretization, the generalized-α
method along with a block iterative solution strategy leads to a fully-implicit method that enables to take larger time steps 
than semi-implicit algorithms [63,64]. We also develop a scalable parallel implementation of the proposed method. Here, we 
focus on co-dimension zero solids since this is the case where imposing the incompressibility constraint is more challenging. 
This is due to the fact that even with negligible errors in the Eulerian velocity, the volume of the solids may still vary along 
the simulation due to the discretization error introduced when the Lagrangian displacement is computed from the Eulerian 
velocity. Nevertheless, this framework can be used to deal with co-dimension one solids, which is an appealing direction 
of future research to the authors. Since the main aim of this method is to significantly improve the accuracy with which 
the incompressibility constraint is satisfied in the context of immersed boundary methods, the method presented in this 
manuscript will be called from now on the divergence-conforming immersed boundary (DCIB) method.

The outline of this paper is as follows. In Section 2 we define basic notation that will be used throughout the paper. 
Section 3 presents the mathematical model of the IB method, expressed in both strong form and weak form. Section 4
describes the discretization process proposed by the authors. Section 4.1 starts explaining how to construct B-splines and 
NURBS in different dimensions. After that, the spatial discretization is performed. Section 4.2 sorts out the time discretiza-
tion to reach a fully-discrete formulation and Section 4.3 explains the steps followed to solve the discrete system. Section 5
displays several numerical examples in two- and three-dimensional layouts. The first example is a two-dimensional prob-
lem consisting of a soft disk in a lid-driven cavity flow. This example is a widespread benchmark problem to evaluate 
how accurately immersed FSI methods are able to impose the incompressibility constraint at the discrete level, the DCIB 
method vastly outperforms the immersed FSI methods that have solved this benchmark before. Additionally, we use this 
example to verify the DCIB method by comparing our results with those obtained with a fully Eulerian finite difference 
method for FSI problems [65]. The second example is a two-dimensional benchmark problem to study the accuracy with 
which immersed FSI methods satisfy energy conservation at the discrete level. It consists of an oscillating disk surrounded 
by fluid. The third example is a hollow disk in a shear flow in a two-dimensional layout. We use this example to compute 
the convergence rates of our numerical method. In the fourth example, we consider a three-dimensional problem consisting 
of eight hollow spheres in a gravity-driven flow. Taking advantage of our scalable parallel implementation, we perform a 
mesh-independence study for this problem. The last example tests the robustness of our numerical method and it consists 
of a red blood cell passing through a constriction, which mimics what happens in the human spleen. Finally, in Sections 6
and 7, some concluding remarks and directions of future research are drawn, respectively.

2. Notation and kinematics

Let d = {2, 3} and (0, T ) be the number of spatial dimensions and the time interval of interest, respectively. Let �t
1 ⊂Rd

and �t
2 ⊂ Rd be two open sets that represent the time-dependent domains occupied by a viscous incompressible fluid and 

a viscous hyperelastic incompressible solid, respectively. n1 and n2 are the outward unit normal vectors to �t
1 and �t

2, 
respectively. �t

1 and �t
2 are the boundaries of �t

1 and �t
2, respectively. These two regions meet at the fluid–solid interface 

�t
I = �t

1 ∩ �t
2. For simplicity, we assume that the solid is completely embedded in the fluid as this holds true for all the 

examples presented in this paper. Therefore, the fluid–solid interface coincides with the boundary of the solid, that is, 
�t

2 = �t
I . Let � ⊂ Rd be an open set that represents the domain occupied by both the fluid and the solid (� = �t

1 ∪ �t
2). 

Note that � is considered to be time independent in this exposition since that is always the case in the simulations of 
Section 5. The boundary of � is denoted by �, which coincides with �t

1 = �0
1 since the solid is fully embedded in the fluid.

The three main variables of our mathematical model are the Eulerian velocity v : � × (0, T ) �→ Rd , the Eulerian pressure 
p : � × (0, T ) �→ R, and the Lagrangian displacement u : �0

2 × (0, T ) �→ Rd , where �0
2 is the material domain of �t

2. Let 
X ∈ �0

2, x ∈ �, and ϕ : �0
2 ×(0, T ) �→ �t

2 be a material particle, a spatial position, and the deformation mapping, respectively. 
The deformation mapping verifies that ϕ(X, t) = X + u(X, t).
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3. Immersed formulation of the governing equations

In this section, the immersed FSI formulation is presented. At the continuous level, this formulation is equivalent to 
considering the Navier–Stokes equations in the region �t

1, the incompressible visco-elasticity equations in the region �t
2, 

and coupling them by imposing the continuity of velocity and traction at the fluid–solid interface [4].

3.1. Strong form

The strong form of the immersed formulation may be stated as: Given ρ1 ∈ R+ , ρ2 ∈ R+ , μ1 ∈ R+ , μ2 ∈ R+ ∪ {0}, 
G ∈ R+ , gM ∈ � × (0, T ) �→ Rd , g V ∈ � × (0, T ) �→ Rd , v0 : � �→ Rd , u0 : �0

2 �→ Rd , and v B : � × (0, T ) �→ Rd , find v :
� × (0, T ) �→Rd , p : � × (0, T ) �→ R, and u : �0

2 × (0, T ) �→Rd , such that,

ρ1

(
∂ v

∂t

∣∣∣∣
x
+ v · ∇x v

)
= ∇x · σ 1 + ρ1 gM + g V +F in � × (0, T ), (1)

∇x · v = 0 in � × (0, T ), (2)

∂u

∂t

∣∣∣∣
X

= v in �t
2 × (0, T ), (3)

σ 1n1 = −σ 2n2 on �t
I × (0, T ), (4)

v = v0 on � × {0}, (5)

u = u0 on �0
2 × {0}, (6)

v = v B on � × (0, T ), (7)

with

F =
⎧⎨⎩

0, x ∈ �t
1,

(ρ1 − ρ2)

(
∂ v

∂t

∣∣∣∣
x
+ v · ∇x v − gM

)
+ ∇x · (σ 2 − σ 1) , x ∈ �t

2,
(8)

and constitutive laws

σ 1 = −p I + σ v
1 , (9)

σ 2 = −p I + σ e
2 + σ v

2 . (10)

Here, ρ1 and ρ2 are the fluid and solid densities, respectively, μ1 and μ2 are the fluid and solid dynamic viscosities, 
respectively, G is the shear modulus of the solid, g M is an external force per unit of mass acting on the system, g V is an 
external force per unit of volume acting on the system, v0 is the velocity initial data, u0 is the displacement initial data, v B

is the velocity boundary data, and I denotes the identity tensor in Rd×d . σ 1 and σ 2 are the fluid and solid Cauchy stress 
tensors, respectively, σ v

1 = 2μ1∇sym
x v is the viscous part of the fluid Cauchy stress tensor, σ v

2 = 2μ2∇sym
x v is the viscous 

part of the solid Cauchy stress tensor, ∇sym
x (·) is the symmetric gradient operator given by ∇sym

x v = (∇x v + ∇x v T )/2, σ e
2 =

F S F T / J is the elastic part of the solid Cauchy stress tensor, F : �0
2 × (0, T ) �→ Rd×d is the deformation gradient given by 

F = ∇Xϕ = I +∇X u, S = 2∂ψ/∂C denotes the second Piola–Kirchhoff stress tensor of a hyperelastic incompressible material, 
ψ is the strain-energy density function, C = F T F denotes the right Cauchy–Green deformation tensor, and J = det(F ) is 
the Jacobian determinant, which is equal to 1 as the solid is incompressible. Note that μ2 ≥ 0, that is, we assume that μ2

might be equal to zero, in which case the solid is purely elastic. Unless mentioned otherwise, the following incompressible 
Neo-Hookean material will be our choice to construct the elastic part of the solid Cauchy stress tensor

ψ = G

2
(I1 − d) , (11)

S = G I , (12)

where I1 is the first invariant of the right Cauchy–Green deformation tensor.
Eqs. (1)–(3) represent the linear momentum balance equation, the mass conservation equation, and the kinematic 

equation that relates the Lagrangian displacement with the Eulerian velocity, respectively. Note that Eq. (2) imposes the 
incompressibility constraint in the whole domain �. Eq. (4) imposes the continuity of traction at the fluid–solid interface. 
Continuity of velocity at the fluid–solid interface is imposed through Eq. (3). Eqs. (5)–(6) define the initial condition for the 
velocity and the displacement, respectively. Eq. (7) represents the boundary condition for the fluid. For shortness, Dirichlet 
boundary conditions are assumed to be applied on the whole boundary of the fluid in Sections 3 and 4, but Neumann and 
periodic boundary conditions can be applied in the DCIB method following standard procedures as done in Section 5.
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3.2. Weak form

Let Sv , Sp , and Su denote trial solution spaces for velocity, pressure, and displacement, respectively, defined as follows

Sv =
{

v | v(·, t) ∈ (H1 (�)
)d

, v = v B on � × (0, T )
}

, (13)

Sp =
⎧⎨⎩p | p(·, t) ∈ L2 (�),

∫
�

p d� = 0

⎫⎬⎭ , (14)

Su =
{

u | u(·, t) ∈
(

H1
(
�0

2

))d
}

. (15)

Here, L2 (�) denotes the space of scalar-valued functions that are square-integrable on �, while 
(

H1 (�)
)d

denotes the 
space of square-integrable Rd-valued functions with square-integrable derivatives on �. Analogously, we define weighting 
function spaces Vv , Vp , and Vu for the momentum, continuity, and kinematic equations as follows

Vv =
{

w | w(·) ∈ (H1 (�)
)d

, w = 0 on � × (0, T )
}

, (16)

Vp =
{

q | q(·) ∈ L2 (�)
}

, (17)

Vu =
{

s | s(·) ∈
(

H1
(
�0

2

))d
}

. (18)

The weak form of the immersed formulation may be stated as: Find v ∈ Sv , p ∈ Sp , and u ∈ Su , such that,

B ((w,q, s), (v, p, u)) − L (w) = 0 ∀(w,q, s) ∈ Vv × Vp × Vu , (19)

with

B ((w,q, s), (v, p, u)) =
(

w,ρ1
∂ v

∂t

∣∣∣∣
x

)
�

− (∇x w,ρ1 v ⊗ v)�

− (∇x · w, p)� + (∇sym
x w,2μ1∇sym

x v
)
�

+ (q,∇x · v)� −
(

w, (ρ1 − ρ2)
∂ v

∂t

∣∣∣∣
x

)
�0

2

+ (∇x w, (ρ1 − ρ2) v ⊗ v)�0
2
+
(
∇sym

x w, F S F T
)

�0
2

+ (∇sym
x w,2μ2∇sym

x v
)
�0

2
− (∇sym

x w,2μ1∇sym
x v

)
�0

2

+
(

s,
∂u

∂t

∣∣∣∣
X

− v

)
�0

2

, (20)

L (w) = (w,ρ1 gM

)
�

− (w, (ρ1 − ρ2) gM

)
�0

2
+ (w, g V

)
�

, (21)

where (·, ·)� and (·, ·)�0
2

denote the L2 inner product over the domain � and �0
2, respectively. In Eq. (20), note that the 

convection term has been brought into the conservative form and that the continuity of traction at the fluid–solid interface 
is naturally enforced.

4. Discretization

In this section, we describe the DCIB method, which discretizes the variational form defined in Eqs. (19)–(21). We first 
discretize in space, leading to a semi-discrete formulation, and then perform time discretization.

4.1. Spatial discretization

The spatial discretization of the Eulerian velocity, the Eulerian pressure, and their weighting functions is performed using 
divergence-conforming B-splines while the spatial discretization of the Lagrangian displacement and its associated weighting 
function is performed using NURBS.
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4.1.1. Univariate B-splines
A knot vector is a finite non-decreasing sequence of real numbers �1 = {ξ1,1, ξ2,1, ..., ξn1+p1+1,1}, where ξi,1 is the ith 

knot, p1 is the polynomial degree, and n1 is the number of univariate B-spline basis functions defined by the knot vector. 
Given �1, univariate B-spline basis functions are constructed recursively starting with piecewise constants (p1 = 0)

B̂0
i (ξ1) =

{
1 if ξi,1 ≤ ξ1 < ξi+1,1,

0 otherwise.
(22)

For p1 > 0, univariate B-spline basis functions are defined by

B̂ p1
i (ξ1) = ξ1 − ξi,1

ξi+p1,1 − ξi,1
B̂ p1−1

i (ξ1) + ξi+p1+1,1 − ξ1

ξi+p1+1,1 − ξi+1,1
B̂ p1−1

i+1 (ξ1), (23)

which is the Cox–de Boor recursion formula (see [52]). Note that when ξi+p1,1 − ξi,1 is zero, ξ1−ξi,1
ξi+p1,1−ξi,1

is set to be zero, 

and analogously, when ξi+p1+1,1 − ξi+1,1 is zero, ξi+p1+1,1−ξ1

ξi+p1+1,1−ξi+1,1
is set to be zero. The support of a univariate B-spline basis 

function of order p1 is always p1 + 1 knot spans.
Since the knots can be repeated, we define a sequence of knots without repetitions (henceforth known as breakpoints) 

η1 = {η1,1, η2,1, ..., ηm,1} and another sequence with their multiplicities r1 = {r1,1, r2,1, ..., rm,1}. The univariate B-spline 
basis functions are p1-degree piecewise polynomials on η1 and the subintervals 

[
η j,1, η j+1,1

]
constitute a set of non-empty 

knot spans, analogous to one-dimensional elements in the finite element method (FEM). Knot multiplicity enables to control 
the continuity of splines, namely, if a breakpoint η j,1 has multiplicity r j,1, the basis functions will have at least α j,1 =
p1 − r j,1 continuous derivatives at η j,1. Let us denote the sequence collecting the regularities as α1 = {α1,1, α2,1, ..., αm,1}. 
In this exposition, we restrict ourselves to the case of open knot vectors (i.e., r1,1 = rm,1 = p1 + 1 and 1 ≤ r j,1 ≤ p1 for 
j = 2, ..., m − 1). This leads to n1 ≥ p1 + 1, α j,1 ≥ 0 for j = 2, ..., m − 1, and α1,1 = αm,1 = −1. Let us also define α1 + 1 =
{−1, α2,1 + 1, α3,1 + 1, ..., αm−1,1 + 1, −1} and |α1| = min{α2,1, α3,1, ..., αm−1,1}. For convenience, we consider η1,1 = 0 and 
ηm,1 = 1, that is, the parametric domain is (0, 1).

The basis functions {B̂ p1
i (ξ1)}n1

i=1 form a partition of unity, have local support, and are non-negative [54]. The univariate 
B-spline space spanned by these basis functions is denoted by

S p1
α1 = span{B̂ p1

i (ξ1)}n1
i=1. (24)

For p1 > 1 and α j,1 ≥ 0 with j = 2, ..., m − 1, the derivative of a spline is another spline. Furthermore, the derivative is a 
surjective operator, that is,

S p1−1
α1−1 ≡

{
df

dξ
| f ∈ S p1

α1

}
. (25)

B-spline spaces support two types of refinement, namely, knot insertion and degree elevation, which are akin to 
h-refinement and p-refinement in FEM. These two types of refinement do not commute, and the application of degree 
elevation followed by knot insertion yields a refinement procedure with no analogue in FEM, the so-called k-refinement. 
Moreover, knot insertion and degree elevation always lead to a sequence of nested B-spline spaces. For additional details 
and examples, see [54,51].

4.1.2. Multivariate B-splines
Given the polynomial degrees pl in each direction, the number of univariate B-spline basis functions in each direction 

nl , the knot vectors �l = {ξ1,l, ξ2,l, ..., ξnl+pl+1,l}, and the associated vectors ηl = {η1,l, η2,l, ..., ηml,l}, rl = {r1,l, r2,l, ..., rml,l}, 
αl = {α1,l, α2,l, ..., αml,l} with l = 1, ..., d, multivariate B-spline basis functions in the parametric domain (0, 1)d are defined 
by tensor products of the univariate ones as

B̂ p1,...,pd
i1,...,id

(ξ1, ..., ξd) =
d∏

l=1

B̂ pl
il

(ξl), (26)

with i1 = 1, ..., n1, ..., id = 1, ..., nd . As their univariate counterparts, multivariate B-spline basis functions are piecewise poly-
nomial, form a partition of unity, have local support, and are non-negative. The multivariate B-spline space spanned by 
these basis functions is denoted by

S p1,...,pd
α1,...,αd

= span{B̂ p1,...,pd
i1,...,id

(ξ1, ..., ξd)}n1,...,nd
i1=1,...,id=1. (27)

This space is fully characterized by the polynomial degree in each direction, the number of univariate B-spline ba-
sis functions in each direction, and the knot vector in each direction. The global continuity of the space is defined as 
α = min{|α1| , ..., |αd|}, that is, the B-spline functions that belong to the space are at least Cα -continuous throughout the 
parametric domain.
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The sets of breakpoints ηl = {η1,l, η2,l, ..., ηml,l} with l = 1, ..., d define a structured mesh

Mh = {Q = (ηi1,1, ηi1+1,l) × ... × (ηid,d, ηid+1,d),1 ≤ il ≤ ml − 1, l = 1, ...,d
}

(28)

on the parametric domain, known as parametric mesh, where h = maxQ ∈Mh hQ is the global mesh size and hQ is a charac-

teristic size of element Q . For future reference, we also denote the total number of elements in a mesh as nel =∏d
l=1(ml −1).

4.1.3. NURBS
In certain situations, it is useful to employ rational basis functions, typically to reproduce exactly a particular geometry. 

Given a set of positive real numbers called weights {wi1,...,id }n1,...,nd
i1=1,...,id=1, the NURBS basis functions are obtained from the 

B-spline basis functions as follows

N̂ p1,...,pd
i1,...,id

(ξ1, ..., ξd) = wi1,...,id B̂ p1,...,pd
i1,...,id

(ξ1, ..., ξd)∑n1,...,nd

î1=1,...,îd=1
wî1,...,îd

B̂ p1,...,pd

î1,...,îd
(ξ1, ..., ξd)

. (29)

As their polynomial counterparts, these rational basis functions form a partition of unity, have local support, and 
are non-negative. Note that if all the weights equal 1, we recover the B-spline basis functions. The NURBS space 
span{N̂ p1,...,pd

i1,...,id
(ξ1, ..., ξd)}n1,...,nd

i1=1,...,id=1 is fully characterized by the polynomial degree in each direction, the number of uni-
variate B-spline basis functions in each direction, the knot vector in each direction, and the weights.

In the next sections, for the sake of shortness, we will use a global numbering for the basis functions that goes from 1
to n =∏d

l=1 nl and vector notation for the parametric coordinates ξ = (ξ1, ..., ξd).

4.1.4. Eulerian discretization
In a divergence-conforming B-spline discretization, the velocity and pressure spaces are defined on the parametric do-

main �̂ as follows

ŜhE

v =
{

v̂hE | v̂hE
(·, t) ∈ V̂ E L

hE

, v̂hE · n̂ = v̂ B · n̂ on �̂ × (0, T )

}
, (30)

ŜhE

p =

⎧⎪⎨⎪⎩p̂ hE | p̂ hE
(·, t) ∈ P̂ R E

hE

,

∫
�̂

p̂ hE
d�̂ = 0

⎫⎪⎬⎪⎭ , (31)

with

V̂ E L
hE

=
{
S p1+1,p2

α1+1,α2
× S p1,p2+1

α1,α2+1 if d = 2,

S p1+1,p2,p3
α1+1,α2,α3

× S p1,p2+1,p3
α1,α2+1,α3

× S p1,p2,p3+1
α1,α2,α3+1 if d = 3,

(32)

P̂ R E
hE

=
{
S p1,p2

α1,α2 × S p1,p2
α1,α2 if d = 2,

S p1,p2,p3
α1,α2,α3 × S p1,p2,p3

α1,α2,α3 × S p1,p2,p3
α1,α2,α3 if d = 3,

(33)

where the superscript E stands for “Eulerian”. When α ≥ 0, the velocity and pressure discrete spaces belong to H1. Note 
that only the normal Dirichlet boundary condition has been imposed on the velocity discrete space, the tangential Dirichlet 
boundary conditions will be imposed weakly using Nitsche’s method in the semi-discrete form.

Regarding the weighting functions w and q, we use the Bubnov–Galerkin method, which leads to

V̂hE

v =
{

ŵhE | ŵhE
(·) ∈ V̂ E L

hE

, ŵhE · n̂ = 0 on �̂ × (0, T )

}
, (34)

V̂hE

p =
{̂

q hE | q̂ hE
(·) ∈ P̂ R E

hE
}

. (35)

For future reference, we define the basis functions N̂ E
vl ,Al

such that span{N̂ E
v1,A1

(ξ E )}nv1
A1=1 × ... × span{N̂ E

vd,Ad
(ξ E )}nvd

Ad=1 = V̂hE

v

and N̂ E
p,B such that span{N̂ E

p,B(ξ E )}np

B=1 = V̂hE

p , where nvl is the total number of degrees of freedom that the lth component 
of the velocity has and np is the number of degrees of freedom that the pressure has.

The above choices of spaces lead to discrete solutions that are both inf–sup stable and pointwise divergence-free. The 
latter property follows from the surjectivity of the divergence operator at the discrete level, namely, ∇̂ · ŜhE

v = ŜhE

p . As we 

impose the condition 
(̂

q hE
, ∇̂ · v̂hE

)
�̂

= 0 ∀ ̂q hE ∈ V̂hE

p , we can take q̂ hE = ∇̂ · v̂hE
, obtaining ‖∇̂ · v̂hE ‖L2(�̂) = 0. Then, 

we have ∇̂ · v̂hE = 0 pointwise (see [48,50] for additional details). Note that obtaining an exact pointwise divergence-free 
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discrete velocity field would imply to exactly solve the final system of algebraic equations, which is impractical, but approx-
imately solving the final systems of algebraic equations with strict tolerances leads to a highly accurate satisfaction of the 
incompressibility constraint as we will show in the numerical examples of this paper.

In order to define the discrete trial and weighting function spaces on the physical domain �hE
, let us start defining the 

geometrical mapping F E : �̂ �→ �hE
as

F E
(
ξ E
)

=
nE∑

D=1

P E
D N̂ E

D

(
ξ E
)

ξ E ∈ �̂ , (36)

where P E are the control points that define the geometry of the physical domain and N̂ E
D are a set of NURBS basis functions 

used to define the geometry of the physical domain. The parametric mesh defined in �̂, called the Eulerian mesh, can be 
pushed forward to the physical domain �hE

using the geometric mapping F E . This computational mesh will be used to 
compute all the integrals that are posed in the domain �hE

.
The discrete trial and weighting function spaces on the physical domain �hE

are defined using the following transforma-
tions

ShE

v =
{

vhE | vhE ◦ F E = 1

det(D F E)
D F E v̂hE

, v̂hE ∈ ŜhE

v

}
, (37)

ShE

p =
{

p hE | p hE ◦ F E = 1

det(D F E)
p̂ hE

, p̂ hE ∈ ŜhE

p

}
, (38)

VhE

v =
{

whE | whE ◦ F E = 1

det(D F E)
D F E ŵhE

, ŵhE ∈ V̂hE

v

}
, (39)

VhE

p =
{

qhE | q hE ◦ F E = 1

det(D F E)
q̂ hE

, q̂ hE ∈ V̂hE

p

}
, (40)

where D F E is the gradient of the geometrical mapping F E . For the velocity, we are using the Piola transform, which 
is a standard choice to construct discrete spaces in H(div; �) within the context of mixed finite elements [66]. The Pi-
ola transform preserves divergence and the normal component of the transformed vector field, which leads to pointwise 
divergence-free discrete velocities on the physical domain �hE

that satisfy the normal Dirichlet boundary condition. For 
the pressure, we are using an integral-preserving transformation, which guarantees satisfaction of the zero-mean pres-
sure constraint on the physical domain �hE

. Note that the total number of Eulerian degrees of freedom (E D O F ) is 
E D O F = dimShE

v + dimShE

p = nv1 + ... +nvd +np . In the simulations of this paper, we always work with uniform parametric 
Eulerian meshes with p1 = ... = pd = k and α1 = ... = αd equal to constant sequences with constant component α = k − 1.1

The weak form of our immersed formulation involves the first spatial derivatives of the velocity field, these are obtained 
applying the chain rule to the Piola transform resulting in

∂vhE

i

∂x j
=

(D F E
iî

∂ v̂hE

î

∂ξ E
l̂

− (D F E)−1
ĵl

∂ D F E
l ĵ

∂ξ E
l̂

D F E
iî

v̂hE

î
+ ∂ D F E

iî

∂ξ E
l̂

v̂hE

î
)(D F E)−1

l̂ j

det(D F E)
, (41)

where i, j, l are spatial coordinate indexes and î, ̂j, ̂l are parametric coordinate indexes, all of them go from 1 to d.

4.1.5. Lagrangian discretization
Let us consider a set of NURBS basis functions {N̂ L

C (ξ L)}nL

C=1 defined over the parametric domain �̂0
2, where the super-

script L stands for “Lagrangian”. The displacement field is defined on this parametric domain as follows

ûhL
(ξ L, t) =

nL∑
C=1

uC (t)N̂ L
C (ξ L) ξ L ∈ �̂0

2 , (42)

where uC (t) are the degrees of freedom, known as control variables in IGA parlance, of the displacement field. Invoking the 
isoparametric concept, the basis functions {N̂ L

C (ξ L)}nL

C=1 are also used to define a mapping F L : �̂0
2 �→ �

0,hL

2 as

F L
(
ξ L
)

=
nL∑

C=1

P L
C N̂ L

C

(
ξ L
)

ξ L ∈ �̂0
2 , (43)

1 Note that α = −1 gives rise to the standard Raviart–Thomas mixed finite elements, which are not H1 conforming.
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where P L are the control points that define the material domain of the solid. The parametric mesh defined in �̂0
2, called 

the Lagrangian mesh, can be pushed forward to the material domain �0,hL

2 using the mapping F L . This computational mesh 
will be used to compute all the integrals that are posed in the domain �0,hL

2 .

Using the mapping F L , the displacement field defined on the material domain (uhL ∈ ShL

u = span{N L
C (X)}nL

C=1 ⊂ Su) can 
be obtained with the following pushforward operation

uhL
(X, t) = ûhL ◦ (F L)−1 =

nL∑
C=1

uC (t)N L
C (X) , (44)

where (F L)−1 is the inverse mapping of F L and N L
C (X) is the C th basis function defined on the material domain as N L

C (X) =
N̂ L

C ◦ (F L)−1. When needed, the Lagrangian mesh can be pushed forward to the physical space using the discrete mapping 
ϕhL

(X, t). The total number of Lagrangian degrees of freedom (LD O F ) is LD O F = dimShL

u = dnL . In the simulations of this 
paper, we always work with uniform parametric Lagrangian meshes with the same degree p in all directions.

Regarding the weighting function s, we use the Bubnov–Galerkin method. This leads to the same underlying space to 
discretize the trial and weighting functions (VhL

u = ShL

u ⊂ Vu). Therefore, we have

shL
(X) =

nL∑
C=1

sC N L
C (X) . (45)

4.1.6. Semi-discrete form
The semi-discrete form of the immersed formulation may be stated as: Find vhE ∈ ShE

v , phE ∈ ShE

p , and uhL ∈ ShL

u , such 
that for all whE ∈ VhE

v , qhE ∈ VhE

p , and shL ∈ VhL

u

B
(
(whE

,qhE
, shL

), (vhE
, phE

, uhL
)
)

− b
(

whE
, vhE

)
− L

(
whE

)
+ l
(

whE
)

= 0, (46)

with

b
(

whE
, vhE

)
=
∑

F∈�hE

∫
F

2μ1(∇sym
x whE

nhE
) · (vhE

)||d� +
∑

F∈�hE

∫
F

2μ1(∇sym
x vhE

nhE
) · (whE

)||d�

−
∑

F∈�hE

∫
F

2μ1
C pen

hF
(vhE

)|| · (whE
)||d�, (47)

l
(

whE
)

=
∑

F∈�hE

∫
F

2μ1(∇sym
x whE

nhE
) · (v B)||d� −

∑
F∈�hE

∫
F

2μ1
C pen

hF
(v B)|| · (whE

)||d�, (48)

where the terms b 
(

whE
, vhE

)
and l 

(
whE

)
have been added to the semi-discrete form to weakly impose the tangential 

Dirichlet boundary conditions using Nitsche’s method, nhE
is the outward unit normal vector to �hE

, (·)|| = (·) −((·) ·nhE
)nhE

is the vector tangential component, hF is the mesh size in the direction normal to the face F , and C pen is the Nitsche’s 
penalization parameter. All the numerical results of this paper use the value C pen = 5(k + 1) as proposed in [48].

The discretization of the integrals that are posed on �0
2 is not standard. Gaussian quadrature rules defined on the 

elements of the Lagrangian mesh are used to compute these integrals. However, their integrands contain functions defined 
in Eulerian coordinates, namely, the weighting functions whE

, the velocity vhE
, and their first derivatives. The procedure that 

we use is as follows. For each Gauss point of the Lagrangian mesh with parametric coordinates ξ L
G , we first need to compute 

its physical location xG through the use of ϕhL
. Then, we have to invert the geometrical mapping of the Eulerian mesh to 

obtain the parametric coordinates ξ E
G associated with the physical point xG in the Eulerian mesh. In many cases of practical 

interest, NURBS geometrical mappings can be inverted analytically and when that is not the case, we invert the mapping 
by solving a d × d nonlinear system using the Newton–Raphson algorithm. Once we know ξ E

G , we can evaluate functions 
defined in Eulerian coordinates through standard procedures of finite elements. This procedure, as any other procedure that 
the authors are aware of to compute these integrals, is suboptimal because the functions defined in Eulerian coordinates are 
not being integrated in a fully conforming manner. Note that the functions defined in Eulerian coordinates will generally 
have lines of reduced continuity in the interior of the Lagrangian elements. Nevertheless, the higher inter-element continuity 
of spline functions enables to alleviate this issue in comparison with using classical C0 finite elements, namely, using k ≥ 2
leads to continuous viscous stresses in the whole computational domain �. Assuming that Gauss quadrature with (p + 1)d
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and (k + 1)d quadrature points2 are used per Lagrangian and Eulerian element, respectively, the Lagrangian elements should 
be at least as small as the Eulerian elements underneath to have accurate results since this would be the configuration 
needed to obtain conforming quadrature rules in case the elements of the two meshes were aligned with each other. In 
all the simulations of this paper, we have used Lagrangian elements slightly smaller than the Eulerian elements together 
with (p + 1)d quadrature points per Lagrangian element. Moreover, we show in Section 5.2 how increasing the number of 
quadrature points per Lagrangian element leads to negligible variations in both the physical quantities of interest and the 
accuracy with which the incompressibility constraint is satisfied. In [67], a process was developed to compute integrals as 
the ones posed on �2

0 in a conforming manner for one-dimensional problems, but as the authors mention, its extension to 
two- and three-dimensional settings together with an efficient implementation remains an open problem.

4.2. Time discretization

In this section, we set forth our fully-implicit time discretization based on the generalized-α method. The generalized-α
algorithm was first proposed by Chung and Hulbert [68] for the second-order structural mechanics equations, and later 
extended by Jansen et al. [69] to the first-order fluid mechanics equations. Note that the mathematical model of the IB 
method is first-order in time. To illustrate our method, let us divide [0, T ] into a sequence of subintervals (tn, tn+1) with 
fixed time-step size 
t = tn+1 − tn and define the following residual vectors

R M =
{

R M
l

}
, R M

l =
{

R M
l,Al

}
, R I =

{
R I

B

}
, R K =

{
R K

l

}
, R K

l =
{

R K
l,C

}
, (49)

where Al ∈ {1, . . . , nvl }, B ∈ {1, . . . , np}, C ∈ {1, . . . , nL}, and l is a dimension index which runs from 1 to d. The components 
of the residual vectors are given by

R M
l,Al

= B
(
(wl,Al ,0,0), (vhE

, phE
, uhL

)
)

− b
(

wl,Al , vhE
)

− L
(

wl,Al

)+ l
(

wl,Al

)
, (50)

R I
B = B

(
(0,qB ,0), (vhE

, phE
, uhL

)
)

− b
(

0, vhE
)

− L (0) + l (0) , (51)

R K
l,C = B

(
(0,0, sl,C ), (vhE

, phE
, uhL

)
)

− b
(

0, vhE
)

− L (0) + l (0) , (52)

where wl,Al ◦ F E = D F E N̂ E
vl,Al

êE
l /det(D F E), qB ◦ F E = N̂ E

p,B/det(D F E), and sl,C ◦ F L = N̂ L
C êL

l . The vectors ̂eE
l and ̂eL

l represent 
the standard basis in the Eulerian and Lagrangian parametric domains, respectively.

Let us now define V n , Pn , An , U n , and V n as the global vectors of control variables of vhE
(·, tn), phE

(·, tn), ∂ vhE

∂t (·, tn), 

uhL
(·, tn), and ∂uhL

∂t (·, tn) respectively. Using this notation, our time-integration algorithm is defined as follows: given V n , 
An , U n , and V n , find V n+1, An+1, V n+α f , An+αm , P n+1, U n+1, V n+1, U n+α f , and V n+αm such that

R M(V n+α f , An+αm , P n+1, U n+α f ) = 0, (53)

R I (V n+α f ) = 0, (54)

R K (V n+αm , V n+α f ) = 0, (55)

V n+α f = V n + α f (V n+1 − V n), (56)

An+αm = An + αm(An+1 − An), (57)

U n+α f = U n + α f (U n+1 − U n), (58)

V n+αm = V n + αm(V n+1 − V n), (59)

V n+1 = V n + 
t((1 − γ )An + γ An+1), (60)

U n+1 = U n + 
t((1 − γ )V n + γ V n+1), (61)

where αm , α f and γ are real-valued parameters that control the accuracy, stability, and dissipation of the algorithm. Jansen 
et al. [69] showed that second-order accuracy can be attained by taking

γ = 1

2
+ αm − α f , (62)

while unconditional stability (for a linear problem) requires

2 In divergence conforming B-splines, (k + 2)d quadrature points should be used to guarantee optimal convergence rates in problems with enough 
regularity. However, as it will be explained in Section 5, the exact solution of the FSI problem will generally have low regularity at the fluid–solid interface 
and we find that using (k + 2)d or (k + 1)d quadrature points leads to essentially the same results.
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αm ≥ α f ≥ 1

2
. (63)

The real-valued parameters of the generalized-α method can be expressed in terms of �∞ (the spectral radius of the 
amplification matrix as 
t → ∞) in such a way that conditions (62)–(63) are automatically satisfied. This is achieved by 
taking

αm = 1

2

(
3 − �∞
1 + �∞

)
, (64)

α f = γ = 1

1 + �∞
, (65)

with �∞ ∈ [0, 1]. By using Eqs. (64)–(65), all the eigenvalues of the amplification matrix take on the value −�∞ when 

t → ∞, which leads to optimal high frequency damping. Therefore, �∞ can be used to control high-frequency dissipation 
with the guarantee that second-order accuracy and unconditional stability for a linear problem are satisfied. In this paper, 
we choose �∞ = 1/2, which represents an adequate balance between accuracy and robustness in solving our nonlinear 
system of algebraic equations.

4.3. Block-iterative solution strategy

In order to compute the unknown control variables at time tn+1 in our fully-discrete form given by Eqs. (53)–(61), we 
use a block-iterative approach [70], namely, we derive two separate tangent matrices: one tangent matrix for the linear 
momentum and mass conservation residuals (R M and R I ) where the Lagrangian control variables U n+α f are considered 
to be constant and the other tangent matrix for the kinematic equation residual (R K ) where the Eulerian control variables 
V n+α f are considered to be constant. This fully-implicit approach follows two stages:

Predictor stage:

1. Set

V n+1,(0) = V n, (66)

An+1,(0) = (γ − 1)

γ
An, (67)

Pn+1,(0) = P n, (68)

U n+1,(0) = U n, (69)

V n+1,(0) = (γ − 1)

γ
V n, (70)

where the subscript 0 on the left-hand side is the nonlinear iteration index. Note that the predictions are based on 
Eqs. (66), (68) and (69), while Eqs. (67) and (70) are only a consequence of Eqs. (60) and (61).

2. Evaluate the control variables at intermediate time levels

V n+α f ,(0) = V n + α f (V n+1,(0) − V n), (71)

An+αm,(0) = An + αm(An+1,(0) − An), (72)

Pn+1,(0) = P n+1,(0), (73)

U n+α f ,(0) = U n + α f (U n+1,(0) − U n), (74)

V n+αm,(0) = V n + αm(V n+1,(0) − V n). (75)

Multicorrector stage. Repeat the following steps for i = 0, 1, 2, ... until convergence is achieved:

1. Use the intermediate time levels to assemble the residual vector R K (V n+αm,(i), V n+α f ,(i)), assemble the tangent matrix 
T K (V n+αm,(i)), and solve the linear algebraic system

T K 
V n+1,(i) = −R K . (76)
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2. Update the Lagrangian control variables as follows

U n+1,(i+1) = U n+1,(i) + γ 
t
V n+1,(i), (77)

V n+1,(i+1) = V n+1,(i) + 
V n+1,(i). (78)

Note that the updates of V n+1 are straightforward while U n+1 is updated consistently with Eq. (61) of the generalized-α
method.

3. Evaluate the Lagrangian control variables at intermediate time levels

U n+α f ,(i+1) = U n + α f (U n+1,(i+1) − U n), (79)

V n+αm,(i+1) = V n + αm(V n+1,(i+1) − V n). (80)

4. Use the intermediate time levels to assemble the residual vectors R M(V n+α f ,(i), An+αm,(i), Pn+1,(i), U n+α f ,(i+1)) and 
R I (V n+α f ,(i)), assemble the tangent submatrices T M I

11 (V n+α f ,(i), An+αm,(i)), T M I
12 (P n+1,(i)), T M I

21 (V n+α f ,(i)), T M I
22 = 0, and 

solve the linear algebraic system(
T M I

11 T M I
12

T M I
21 T M I

22

){

An+1,(i)

P n+1,(i)

}
= −

{
R M

R I

}
. (81)

5. Update the Eulerian control variables as follows

V n+1,(i+1) = V n+1,(i) + γ 
t
An+1,(i), (82)

An+1,(i+1) = An+1,(i) + 
An+1,(i), (83)

P n+1,(i+1) = P n+1,(i) + 
Pn+1,(i). (84)

Note that the updates of An+1 and P n+1 are straightforward while V n+1 is updated consistently with Eq. (60) of the 
generalized-α method.

6. Evaluate the Eulerian control variables at intermediate time levels

V n+α f ,(i+1) = V n + α f (V n+1,(i+1) − V n), (85)

An+αm,(i+1) = An + αm(An+1,(i+1) − An), (86)

P n+1,(i+1) = P n+1,(i+1). (87)

Our parallel implementation is built on top of PetIGA [71] and PetIGA-MF [72–74], which gives us access to the precon-
ditioners of the scientific library PETSc [75] and the ones in other libraries as the BoomerAMG package of hypre [76] and 
the ML library [77]. To linearize the residual R K , we use a Newton–Raphson method. To linearize the residuals R M and R I , 
we use a Newton–Raphson method with a critical point line search [78]. In all the simulations performed in this paper, 
we stop the multicorrector stage when the L2-norm of the residuals has decreased more than four orders of magnitude. As 
linear solver for the kinematic equation, we use the GMRES method [79] with an incomplete LU preconditioner. As linear 
solver for the momentum and mass conservation equations, we use the scalable block-preconditioning strategy defined in 
[73] for divergence-conforming B-splines.

5. Numerical examples

The simulations included in this section were computed using either the Bridges supercomputer, part of the Extreme 
Science and Engineering Discovery Environment (XSEDE) [80], or the MareNostrum supercomputer, part of the Barcelona 
Supercomputing Center.

In all the examples, the accuracy with which the incompressibility constraint is verified at the discrete level will be 
measured in both an Eulerian manner and a Lagrangian manner. The Eulerian manner consists of measuring the L2-norm 
error of Eq. (2) (eD I V ), that is,

eD I V (t) =
⎛⎜⎝ ∫

�hE

(∇x · vhE
)2 d�

⎞⎟⎠
1/2

. (88)

The Lagrangian manner consists of measuring the volume change of the solid (eV C ) as
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eV C (t) =

∣∣∣∣∣∣∣∣
∫

�
t,hL
2

d�2
t −

∫
�

0,hL
2

d�2
0

∣∣∣∣∣∣∣∣∫
�

0,hL
2

d�2
0

. (89)

Since we are using divergence-conforming B-splines, eD I V is controlled by the accuracy with which the linear system of 
Eq. (81) is solved. As in [73], the iterative method used to solve the linear system is stopped when the L2 norm of the un-
preconditioned residual is less than a certain value atol , which is set to 10−10 in all our simulations unless when mentioned 
otherwise. eV C inherits the error coming from eD I V (which in our method is negligible) and adds the discretization error of 
solving Eq. (3). Therefore, we expect eV C to be larger than eD I V .

5.1. Soft disk in a lid-driven cavity flow

We first present a common benchmark problem [81,43,65,82,14] to evaluate the performance of immersed FSI methods 
when it comes to impose the incompressibility constraint at the discrete level. It consists of a highly deformable bulky disk 
entrained in a lid-driven cavity flow. As tested in [43], the softer the disk is, the more challenging it becomes to accurately 
impose the incompressibility constraint in an immersed method.

The physical domain � is a square with side L = 1 cm. The solid is a circle with diameter b = 0.4 cm whose center 
is initially located at (0.6 cm, 0.5 cm). At the top side of the square, the lid moves with a constant horizontal velocity 
v f = 1 cm/s and its vertical velocity is zero. No-penetration and no-slip boundary conditions are imposed in the other 
three sides of the square. Both the fluid and the solid are initially at rest. The physical parameters that define this problem 
are the following: ρ1 = ρ2 = 1.0 g/cm3, μ1 = μ2 = 0.01 g/(cm · s), G = 0.1 g/(cm · s2), gM = (0.0 cm/s2, 0.0 cm/s2), and 
g V = (0.0 g/(cm2 · s2), 0.0 g/(cm2 · s2)). The channel Reynolds number, which describes the unperturbed channel flow, is 
Rc

e = (ρ1 v f L)/μ1 = 100 and the particle Reynolds number is R p
e = (Rc

e)b
2/L2 = 16. The shear modulus considered in this 

work is the lowest for which we have found volume-conservation studies in the literature [43,82].
The test established in the literature consists in measuring the volume-conservation error (eV C ) for the time interval 

t ∈ [0.0 s, 10.0 s]. During this time, the solid initially moves towards the top left corner of the square as shown in Fig. 1a). 
Then, it moves just underneath the lid experiencing large shear strains due to the flow boundary conditions, see Figs. 1b) 
and c). Finally, it moves downwards as shown in Fig. 1d). In [43], the IFEM method led to a 25% volume-conservation error 
before the algorithm failed to converged around t = 5.5 s with a relatively fine discretization (the precise mesh resolutions 
are not specified in the manuscript). The authors proposed in [43] a volume correction strategy to be carried out every ten 
time steps which reduces the volume-conservation error to 2.5%. In [82], the coarsest discretization used by the authors has 
11,392 EDOF and 1,313 LDOF for which an 8.7% volume-conservation error is obtained. The finest discretization used in [82]
has 182,280 EDOF and 5,252 LDOF for which a 1.9% volume-conservation error is obtained. Regarding the time step used in 
[82], it is chosen such that 
t = 0.64hE . In [14], this problem is solved using 0.02 g/(cm · s) as shear modulus instead of 
0.01 g/(cm · s) as in [81,43,65,82]. The coarsest and finest discretizations used in [14] have 64 × 64 and 256 × 256 Eulerian 
elements leading to 0.15% and 0.029% volume-conservation errors, respectively. Regarding the time step used in [14], it is 
chosen such that 
t = 0.125hE . In this work, we start with a very coarse discretization, namely, 16 × 16 Eulerian elements 
(1,008 EDOF) with k = 2, 4 ×24 Lagrangian elements (336 LDOF) with p = 2, and time step 
t = 0.08 s. After that, we refine 
our discretization by performing uniform h-refinement six times in each mesh and dividing the time step by two each time 
a new level of refinement is introduced (see Table 1 for details). The following relation holds in our simulations 
t = 1.28hE . 
Therefore, we are using larger time steps than in [14,82]. Note that the use of quadratic NURBS for the Lagrangian mesh 
enables us to represent the initial geometry of the solid exactly in all discretizations considered. The value of eV C for each 
discretization is included in Table 1 and plotted in Fig. 2a) together with data from the literature. For a given resolution and 
the same shear modulus, the use of divergence-conforming B-splines leads to an increased accuracy in volume conservation 
of various orders of magnitude in comparison with the aforementioned results from the literature. Regarding eD I V , its value 
is lower than 5.0e−8 for all the discretizations considered. This value can be further decreased several orders of magnitude 

Table 1
Discretizations considered for the soft disk in a lid-driven cavity flow along with the volume-conservation error for each discretization.

nE
el EDOF k nL

el LDOF p 
t (s) eV C

16 × 16 1,008 2 4 × 24 336 2 8.0e−2 2.2375e−3
32 × 32 3,536 2 8 × 48 520 2 4.0e−2 4.4891e−4
64 × 64 13,200 2 16 × 96 1,800 2 2.0e−2 1.3649e−4
128 × 128 50,960 2 32 × 192 6,664 2 1.0e−2 4.5708e−5
256 × 256 200,208 2 64 × 384 25,608 2 5.0e−3 1.0058e−5
512 × 512 793,616 2 128 × 768 100,360 2 2.5e−3 2.8072e−6
1024 × 1024 3,160,080 2 256 × 1536 397,320 2 1.25e−3 6.7843e−7
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Fig. 1. Soft disk in a lid-driven cavity flow. The velocity magnitude and the deformed geometry of the solid are plotted at different times. Some Lagrangian 
elements are highlighted in white color so that the rotation motion undergone by the solid can be observed. In all pictures, the velocity magnitude varies 
linearly from 0.0 cm/s (blue color) to 1.0 cm/s (red color). (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

by decreasing the absolute tolerance (atol = 10−10) with which the linear system of Eq. (81) is solved. However, doing so 
does not further decrease the value of eV C since the discretization error of solving Eq. (3) is already the dominant error.

To show that the use of divergence-conforming B-splines is actually behind the very low values of eV C and eD I V re-
ported in the aforegoing paragraph, we have solved this benchmark using other well-established IGA discretizations instead 
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Fig. 2. Convergence studies for the soft disk in a lid-driven cavity flow. (a) Incompressibility error at the Lagrangian level for the different discretizations 
detailed in Table 1 along with the data from [82,14]. Instead of having first-order convergence as in [82,14], our method leads to second-order convergence 
of the incompressibility error at the Lagrangian level. (b)–(c) Incompressibility error at the Lagrangian and Eulerian levels using different IGA discretizations. 
The use of divergence-conforming B-splines leads to extreme increases in accuracy. (d) Time evolution of the elastic energy stored by the disk. (e) Evolution 
of the center of gravity (xG , yG ). In d) and e), the curves using 256 × 256 or more Eulerian elements are indistinguishable at the scale of the plot. (f) Our 
convergence results of (xG , yG ) are compared with those in [65]. The simulations are stopped at time t = 20 s in [65] while we stopped our simulations 
at time t = 50 s, once the center of gravity has already reached a steady value. The curves of [65] seem to converge towards our fully-converged curve. 
Note that our mesh with 64 × 64 elements leads to the same level of accuracy than the mesh with 1024 × 1024 elements in [65], which is the finest mesh 
considered in that paper. In all of our discretizations, 
t = 1.28hE .

of divergence-conforming B-splines while keeping all other aspects of our algorithm the same. In [47], besides of proposing 
divergence-conforming B-splines as a smooth spline generalization of Raviart–Thomas elements, smooth spline generaliza-
tions of Nédélec elements of second kind and Taylor–Hood elements are proposed. All these three smooth spline general-
izations are inf–sup stable and H1 conforming, but only divergence-conforming B-splines lead to pointwise divergence-free 
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solutions. Using the incompressible Neo-Hookean material defined in Eq. (11), the spline generalization of Nédélec elements 
of second kind led to various orders of magnitude of reduced accuracy in eV C , the results are plotted in Fig. 2b) under the 
tag Nédélec3. The spline generalization of Taylor–Hood elements led to even larger values of eV C and failed to converge 
around t = 5.5 s as in [43]. In [6], it is mentioned that using a compressible material law instead of its incompressible 
analog leads to significantly lower values of eV C in immersed FSI methods that impose the incompressibility constraint in 
both the fluid and the solid domains in an Eulerian manner through Eq. (2). The compressible analog of Eq. (11) is

ψ = 1

2
G
(

J−2/d I1 − d
)

+ 1

2
κ

(
1

2
( J 2 − 1) − ln J

)
. (90)

Using Eq. (90) instead of Eq. (11) with κ = 0 g/(cm · s) significantly decreases the values of eV C when using the spline 
generalization of Nédélec elements of second kind; the results are plotted in Fig. 2b) under the tag Nédélec2. The spline 
generalization of Taylor–Hood elements using Eq. (90) with κ = 0 g/(cm · s) still failed to converge around t = 5.5 s. As 
mentioned in [6], considering a value of κ different than zero, further decreases the value of eV C , but it makes it harder 
to converge the final system of equations. The largest value of κ for which we are able to obtain convergence is κ =
0.5 g/(cm · s). With this value of κ , the spline generalization of Taylor–Hood elements are now able to complete the test. 
The results for the spline generalizations of both Nédélec and Taylor–Hood elements with κ = 0.5 g/(cm · s) are included 
in Fig. 2b) under the tags Nédélec1 and Taylor–Hood1, respectively. The most widespread stabilized IGA discretization is 
variational multiscale (VMS) [83]. The VMS discretization also fails to converge around t = 5.5 s when Eq. (11) is used. 
However, it is able to converge when Eq. (90) is used with either κ = 0 g/(cm · s) and κ = 0.5 g/(cm · s), the values of 
eV C are plotted in Fig. 2b) under the tags VMS2 and VMS1, respectively. We have used Eq. (90) instead of Eq. (11) using 
divergence-conforming B-splines, unlike the other IGA discretizations, the values of eV C are essentially the same. Therefore, 
we will use Eq. (11) in the next examples, which is the material law consistent with the fact that Eq. (2) is imposed in both 
the fluid and the solid domains.

Fig. 2c) plots the time evolution of eD I V for the four IGA discretizations considered in this example using 64 × 64
Eulerian elements. Divergence-conforming B-splines lead to more than seven orders of magnitude of increased accuracy 
in comparison with the other IGA discretizations. Figs. 2c) and b) evince that the large error of immersed FSI methods in 
mass conservation is at the Eulerian level and then this error is propagated to the Lagrangian level when the Lagrangian 
displacement is computed from the Eulerian velocity using Eq. (3). The use of divergence-conforming B-splines eliminates 
the incompressibility error at the Eulerian level and this in turn leads to a large drop of the incompressibility error at the 
Lagrangian level. We believe that measuring eD I V in this and other benchmarks for immersed FSI methods is at least as 
important as measuring eV C .

As can be seen in Fig. 2a) the DCIB method leads to second-order convergence of eV C as the discretization is refined. 
However, as shown in Figs. 2a) and b), eV C converges at first order in both the immersed FSI methods from the literature 
[82,14] and the other IGA discretizations considered in this paper. This difference in the convergence of eV C is probably 
due to the fact that when pointwise divergence-free Eulerian discretizations as divergence-conforming B-splines are used, 
the Lagrangian displacement does not inherit any incompressibility error coming from the Eulerian velocity and the only 
source of error in eV C is the discretization error of solving the kinematic equation that relates the Lagrangian velocity with 
the Eulerian velocity (Eq. (3)).3 However, for other IGA discretizations and in [82,14], the main source of error in eV C is the 
incompressibility error coming from the Eulerian velocity which seems to decrease with only first-order convergence.

Our simulations are run until the disk is trapped in the main vortex, leading to a steady value of the solid’s cen-
ter of gravity around t = 45 s. Although the center of gravity reaches a steady value, the solid keeps rotating around 
itself as can be seen in Figs. 1e) and f) where the boundaries of some Lagrangian elements are plotted in white color 
so that the rotation motion can be observed. In Fig. 2b), the time evolution of the elastic energy stored in the solid 
(Eψ = ∫

�0
2
ψ d�0

2) is plotted for different mesh resolutions. Convergence is obtained as we refine our discretization, namely, 
the results with 256 × 256 Eulerian elements or more are indistinguishable at the scale of the plot. The evolution of the 
center of gravity (xG , yG ) for different discretizations is plotted in Fig. 2c). Again, the results with 256 × 256 Eulerian el-
ements or more are indistinguishable at the scale of the plot. In [65], the evolution of the center of gravity is studied 
for various discretizations using a full Eulerian finite difference approach for solving FSI problems. Note that in [65] the 
simulations are stopped at time t = 20 s. Both convergence studies are plotted in Fig. 2d) for comparison. Although res-
olutions of up to 1024 × 1024 elements are reached in [65], the trajectories plotted in Fig. 11 of [65] and reproduced 
here in Fig. 2d) do not reach a fully-converged result. Having said that, the trajectories in [65] clearly exhibit a convergent 
trend. As can be seen in Fig. 2d), this trend clearly moves towards the fully-converged curve obtained here with the DCIB 
method.

Finally, note that the DCIB method is able to accurately and automatically transfer data between meshes when the solid is 
on top of the Eulerian element row touching the domain boundary, which happens in this example when 32 × 32 elements 

3 In order to minimize this discretization error of Eq. (3) for a given mesh resolution, the DCIB method solves this equation in variational form using the 
Bubnov–Galerkin method. This is in contrast with our previous works [15,16,25] where Eq. (3) was solved in strong form using isogeometric collocation 
[84,85].
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or less are used in the Eulerian mesh. As mentioned in [43,81], managing this kind of situations is not straightforward when 
discretized Dirac delta functions are used to transfer data between meshes, namely, a simplified interpolation rule is usually 
used for the points that are too close to the domain boundary.

5.2. Oscillating disk surrounded by fluid

We next consider a benchmark problem [81,86] to evaluate the performance of immersed FSI methods with respect to 
their energy conservation at the discrete level. It consists of a deformable bulky disk embedded in a flow driven by the 
initial condition of the Eulerian velocity. The system behaves as a damped oscillator.

The physical domain � is a square with side L = 1 cm. The solid is a circle with diameter b = 0.4 cm whose center is 
initially located at (0.5 cm, 0.5 cm). Periodic boundary conditions are imposed in all sides of the square. The disk is initially 
stress free and the initial condition for the Eulerian velocity is defined through the stream function φ = φ0sin(kxx)sin(ky y), 
where φ0 = 0.05 cm2/s and kx = ky = 2π . The physical parameters proposed in [81] to solve this problem are the following: 
ρ1 = ρ2 = 1.0 g/cm3, μ1 = μ2 = 0.001 g/(cm · s), G = 1.0 g/(cm · s2), gM = (0.0 cm/s2, 0.0 cm/s2), and g V = (0.0 g/(cm2 ·
s2), 0.0 g/(cm2 · s2)).

At the continuous level, the total energy (E), that is, the sum of the kinetic energy (Ek), the viscous dissipation (Ed), and 
elastic energy of the solid (Eψ ) is constant:

E = Ek + Ed + Eψ , (91)

with

Fig. 3. Oscillating disk surrounded by fluid with an imposed initial condition for the velocity. (a) Evolution of the different types of energy for the time 
interval t ∈ [0.0 s, 1.0 s]. (b)–(d) The velocity magnitude and the deformed geometry of the solid are plotted at different times.
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Table 2
Energy-conservation error for the oscillating disk surrounded by fluid.

Numerical method ρ2 (g/cm3) nE
el eE

DCIB 1.0 80 × 80 8.5634e−3
DCIB 1.0 160 × 160 4.53130e−3
DCIB 1.0 320 × 320 2.4661e−3
Ref. [81] 1.0 128 × 128 1.2e−2
Ref. [86] 1.0 40 × 40 + 2 levels of local refinement 1.6e−2
DCIB 0.01 80 × 80 1.6001e−2
DCIB 0.1 80 × 80 1.2992e−2
DCIB 2.0 80 × 80 8.24688e−3
Ref. [86] 2.0 40 × 40 + 2 levels of local refinement 2.2e−2

Ek = ρ1

2

∫
�

v · v d� + ρ2 − ρ1

2

∫
�t

2

v · v d�t
2, (92)

Ed =
t∫

0

∫
�

μ1∇sym
x v : ∇x v d� ds, (93)

Eψ =
∫
�0

2

G

2
(I1 − d) d�0

2. (94)

The test established in the literature consists in measuring the energy-conservation error (eE = |E(t) − E(0)|/E(0)) for the 
time interval t ∈ [0.0 s, 1.0 s]. Fig. 3a) plots the evolution of the different types of energy in this interval. Figs. 3b)–d) shows 
the velocity magnitude together with the solid deformation at three different times.

We start with a coarse discretization, namely, 80 × 80 Eulerian elements with k = 2, 24 × 144 Lagrangian elements with 
p = 2, and time step 
t = 0.001 s. After that, the discretization is refined by performing uniform h-refinement two times 
in each mesh and dividing the time step by two each time a new level of refinement is introduced. In Table 2, we include 
the value of eE for the three discretizations considered in this work as well as the energy-conservation error obtained in 
[81,86]. For a given resolution, the DCIB method leads to a lower energy-conservation error.

As discussed in Section 4.1.6, using (p + 1)d quadrature points per Lagrangian element to compute the integrals that are 
posed in �0

2 is suboptimal. Using our coarsest discretization, we run simulations using (3)2, (4)2, (5)2, ..., (10)2 quadrature 
points per Lagrangian element. The variations in the total energy depending on the number of quadrature points being 
used per Lagrangian element are completely negligible, namely, smaller than 0.02% with respect to the value obtained using 
(p + 1)d quadrature points per Lagrangian element. Analogously, the variations in the area of the solid are smaller than 
0.0002% with respect to the value obtained using (p + 1)d quadrature points per Lagrangian element. We have done this 
test in other examples of this manuscript and the variations were negligible in all cases. Therefore, the accuracy with which 
these integrals are computed is not compromising the overall accuracy of our algorithm.

We now consider the following values for the solid density: ρ2 = 0.01 g/cm3, ρ2 = 0.1 g/cm3, and ρ2 = 2.0 g/cm3. The 
value of eE for each of these density values is included in Table 2 using our coarsest discretization. The value of eD I V is 
always lower than 9.0e−8 for all discretizations considered. Using our coarsest discretization, the value of eV C is 1.04e−4, 
1.18e−4, 5.19e−5, and 7.57e−5 for ρ2 = 0.01 g/cm3, ρ2 = 0.1 g/cm3, ρ2 = 1.0 g/cm3, and ρ2 = 2.0 g/cm3, respectively. 
With respect to eV C as the discretization is refined, when ρ2 = 2.0 g/cm3, its value goes from 7.5e−5 for the coarsest 
discretization to 4.9e−6 for the finest discretization. These errors are various orders of magnitude lower than those obtained 
in [86], where eV C goes from 1.1e−2 for the coarsest discretization to 2.4e−3 for the finest discretization.

5.3. Hollow disk in a shear flow

As third example, we consider a highly deformable hollow disk embedded in a shear flow. This example is used in 
order to numerically measure the convergence rates of the proposed method. As explained in [4,87,88,14], immersed FSI 
formulations often lead to exact solutions with low regularity at the fluid–solid interface. More specifically, the velocity has 
C0 continuity and the pressure is discontinuous at the interface for co-dimension one solids [4,88]. This is also the case for 
co-dimension zero solids as long as the elastic traction of the solid at the interface is nonzero [4]. The elastic traction at the 
interface is nonzero for most solid materials (materials composed by fibers parallel to the interface are notable exceptions). 
Therefore, when the elastic traction at the interface is nonzero, v belongs to H1, but not to H2 and p belongs to L2, but 
not to H1. As a consequence, the convergence rates of immersed FSI methods are usually bounded by the regularity of the 
exact solution instead of being bounded by the approximation properties of the discretization employed.

In this example, the physical domain � is a rectangle with sides Lx = 0.0032 cm and L y = 0.0016 cm. The solid is a 
hollow circle whose inner diameter is a = 0.0009 cm, its outer diameter is b = 0.0015 cm, and its center is initially located 
at (0.0016 cm, 0.0008 cm). A horizontal velocity v f = 0.08 cm/s is applied at the top and bottom sides of the rectangle 
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Table 3
Discretizations considered for the hollow disk in a shear flow.

nE
el EDOF k nL

el LDOF p 
t (s)

32 × 16 5,002 2 3 × 48 440 2 4.0e−4
64 × 32 12,002 2 6 × 96 1,024 2 2.0e−4
128 × 64 25,472 2 12 × 192 2,744 2 1.0e−4
256 × 128 100,096 2 24 × 384 10,088 2 5.0e−5
512 × 256 396,800 2 48 × 768 36,864 2 2.5e−5
1024 × 512 1,580,032 2 96 × 1536 147,456 2 1.25e−5

in opposite directions. No-penetration boundary condition is applied at the top and bottom sides of the rectangle. Periodic 
boundary conditions are applied in the left and right sides of the rectangle. If there was no solid, the applied boundary 
conditions would lead to a pure shear flow with shear rate γ̇ = 100 s−1. Both the fluid and the solid are initially at rest. 
The physical parameters defining this problem are the following: ρ1 = ρ2 = 1.0 g/cm3, μ1 = μ2 = 0.012 g/(cm · s), G =
20.0 g/(cm · s2), gM = (0.0 cm/s2, 0.0 cm/s2), and g V = (0.0 g/(cm2 · s2), 0.0 g/(cm2 · s2)). The channel Reynolds number, 
which describes the unperturbed channel flow, is Rc

e = (ρ1 v f L y)/μ1 = 1.066e−2 and the particle Reynolds number is 
R p

e = (Rc
e)b

2/L2
y = 9.375e−3.

We start with a very coarse discretization, namely, 32 × 16 Eulerian elements with k = 2, 3 × 48 Lagrangian elements 
with p = 2, and time step 
t = 0.0004 s. After that, the discretization is refined by performing uniform h-refinement five 
times in each mesh and dividing the time step by two each time a new level of refinement is introduced (see Table 3
for details). As in Sections 5.1 and 5.2, using quadratic NURBS for the Lagrangian mesh enables us to represent the initial 
geometry of the solid exactly in all discretizations considered. Figs. 4a)–f) represent the solid deformation at different times. 
In addition, Figs. 4a)–c) show the flow vorticity and Figs. 4d)–f) show the shear stress of the flow. Thanks to the higher 
inter-element continuity of divergence-conforming B-splines, we have plotted both the vorticity and the shear stress from 
a direct evaluation of our numerical solution, that is, without using any projection or smoothing technique. As can be seen 
in Fig. 5a), the inclination angle of the solid, measured as the angle between the minor principal axis of inertia of the solid 
and the horizontal direction, reaches a constant value around t = 0.15 s. Once this constant value is reached, the solid is 
not in a motionless configuration, instead it is rotating together with the inner fluid as can be seen in Figs. 4e) and f) by 
the Lagrangian elements drawn in white color. Regarding eD I V , its value until the inclination angle reaches a constant value 
is always lower than 1.0e−10 for all discretizations considered. With respect to eV C , its value until the inclination angle 
reaches a constant value goes from 2.7e−3 for the coarsest discretization to 1.4e−6 for the finest discretization.

Since the exact solution of this problem is unknown, the finest discretization is used as the reference solution for 
computing convergence rates. The convergence rates are computed at time t = 0.15 s. According to Figs. 5b), c), d), e), 
and f) the convergence rates for the Eulerian velocity in L2 norm, the Eulerian velocity in H1 norm, the Eulerian pres-
sure in L2 norm, the Lagrangian displacement in L2 norm, and the Lagrangian displacement in H1 norm seem to be 1.5, 
0.5, 0.75, 1.5, and 1.0 respectively. When discretized Dirac delta functions are used for the data transfer between meshes, 
IB methods, applied to problems with co-dimension zero solids and nonzero elastic traction at the interface, are consis-
tently reported [14,4] to lead to 1.0 as convergence rate of both the Eulerian velocity and the Lagrangian displacement 
in L2 norm. However, in [4], a variational formulation of the IB method led to a convergence rate of 1.5 for the Eulerian 
velocity in L2 norm. The convergent rate of the Eulerian velocity in L2 norm obtained in [4] is consistent with our re-
sults and it suggests that variational formulations lead to a 0.5 increase in the convergence rate of the Eulerian velocity 
in L2 norm in comparison with using discretized Dirac deltas. In [4], the convergent rate of the Lagrangian displacement 
in L2 norm was not measured, but our results suggest that it also increases 0.5 for variational formulations. The conver-
gence rate of the Eulerian velocity in H1 norm is 0.5 regardless whether or not discretized Dirac delta functions are used. 
With respect to the convergence rate of the Lagrangian displacement in H1 norm, we have not found any IB numerical 
method that computes this norm in the literature to compare performance. It stands out that the convergence rate in H1

norm for the Lagrangian displacement is 0.5 higher than for the Eulerian velocity. This difference may be related with 
the fact that the fluid–solid interface, which is the reduced-regularity region of our problem, is located in the interior of 
the domain in which the Eulerian velocity is defined, but it is located at the boundary of the domain in which the La-
grangian displacement is defined. A detailed study of this difference is beyond the scope of our current paper, but this 
difference clearly warrants additional research in the future. Regarding the convergence rate for the Eulerian pressure in 
L2 norm, IB methods that use either variational formulations or discretized Dirac delta functions lead to 0.5. In this ex-
ample, we seem to have mild increase of the convergence rate of the Eulerian pressure in L2 norm, which is closer to 
0.75 than 0.5. In any case, the main conclusion is that the convergence rates of immersed FSI methods under uniform 
h-refinement are generally bounded by the regularity of the exact solution. Therefore, it is particularly important to per-
form mesh-independence studies for the main physical quantities of interest when immersed FSI methods are applied to 
challenging applications. The accuracy per degree of freedom of immersed FSI methods can be increased through the use 
of adaptive local h-refinement capabilities in the Eulerian mesh, which is an appealing direction of future work for the 
authors.
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Fig. 4. Hollow disk in a shear flow. (a)–(f) The deformed geometry of the solid is plotted at different times. Some Lagrangian elements are highlighted in 
white color so that the rotation motion undergone by the solid can be observed. (a)–(c) show the fluid vorticity and (d)–(f) show the shear stress of the 
fluid.

5.4. Eight hollow spheres in a gravity-driven flow

As fourth example, we study eight hollow spheres in a gravity-driven flow. Along the simulation, the solids will undergo 
nearly-contact configurations. These configurations are challenging to handle in immersed FSI methods. The reason is that 
immersed FSI methods, unlike body-fitted FSI methods, are not able to exactly impose the no-penetration and no-slip 
conditions at the fluid–solid interface since the background mesh and the Lagrangian mesh on top of it are not conforming 
at the fluid–solid interface. As a result, two solids in a nearly-contact configuration may potentially undergo small unphysical 
overlaps when the kinematic interface conditions are not imposed with enough accuracy. To avoid unphysical overlaps, 
additional terms based on contact theory or collision theory are often added to immersed FSI methods as in [21,38,46,89,
35]. We use this three-dimensional example to check whether or not the DCIB method, without adding any additional term, 
leads to small unphysical overlaps between solids.
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Fig. 5. Convergence studies for the hollow disk in a shear flow. (a) Inclination angle for the different discretizations detailed in Table 3. The curves using 
256 × 128 or more Eulerian elements are indistinguishable at the scale of the plot. (b) The convergence rate of the Eulerian velocity in L2 norm is 1.5. 
(c) The convergence rate of the Eulerian velocity in H1 norm is 0.5. (d) The convergence rate of the Eulerian pressure in L2 norm is close to 0.75. (e) The 
convergence rate of the Lagrangian displacement in L2 norm is 1.5. (f) The convergence rate of the Lagrangian displacement in H1 norm is 1.0.

In this example, the physical domain � is a parallelogram with sides Lx = L y = 2.0 cm and Lz = 3.0 cm. The solids are 
hollow spheres with inner and outer diameters equal to a = 0.12 cm and b = 0.44 cm, respectively. The centers of the eight 
hollow spheres are C S1 = (0.5 cm, 0.5 cm, 0.75 cm), C S2 = (1.5 cm, 0.5 cm, 0.75 cm), C S3 = (0.5 cm, 1.5 cm, 0.75 cm), 
C S4 = (1.5 cm, 1.5 cm, 0.75 cm), C S5 = (0.54 cm, 0.54 cm, 1.5 cm), C S6 = (1.54 cm, 0.54 cm, 1.5 cm), C S7 = (0.54 cm,

1.54 cm, 1.5 cm), and C S8 = (1.54 cm, 1.54 cm, 1.5 cm). No-penetration and no-slip boundary conditions are applied at 
the top and bottom sides of the parallelogram. No-penetration boundary condition together with homogeneous Neumann 
boundary conditions in the other two directions are applied to the four lateral boundaries of the parallelogram. Both the 
fluid and the solid are initially at rest. The four solids at the top have density ρs1

2 = ρs2
2 = ρs3

2 = ρs4
2 = 1.5 g/cm3 and the 

four solids at the bottom have density ρs5 = ρs6 = ρs7 = ρs8 = 0.5 g/cm3 while the fluid density is ρ1 = 1.0 g/cm3. The 

The Trial Version
2 2 2 2



646 H. Casquero et al. / Journal of Computational Physics 374 (2018) 625–653

T

Fig. 6. Hollow spheres in a gravity-driven flow. The flow streamlines and the deformed geometry of the solids are plotted at different times. The gravity 
direction is the vertical direction and downwards. The flow patterns have a high complexity. The DCIB method, which is fully-implicit in time, is able to 
accurately impose the no-penetration and no-slip conditions at the fluid–solid interface. This prevents the solids from overlapping with each other without 
the need of adding ad hoc terms or contact theory to the FSI formulation.

remaining physical parameters that define this problem are the following: μ1 = μ2 = 0.1 g/(cm · s), G = 1.0 g/(cm · s2), 
gM = (0.0 cm/s2, 0.0 cm/s2, −9.81 cm/s2), and g V = (0.0 g/(cm2 · s2), 0.0 g/(cm2 · s2), 0.0 g/(cm2 · s2)). The channel 
Reynolds number is Rc

e = (ρ1 v f Lx)/μ1 = 5 and the particle Reynolds number is R p
e = (Rc

e)b
2/L2

x = 0.242, where the charac-
teristic velocity chosen is v f = 0.25 cm/s.

The following discretization is considered to solve this problem: 48 × 48 × 72 Eulerian elements with k = 2, 4 × 18 × 36
Lagrangian elements with p = 2, and time step 
t = 0.1 s. After that, the discretization is refined by performing uniform 
h-refinement two times in each mesh and dividing the time step by two each time a new level of refinement is introduced. 
The final discretization has 43,807,916 EDOF and 199,800 LDOF for each solid. The use of quadratic NURBS for the Lagrangian 
mesh enables us to represent the hollow spheres exactly for the three discretizations considered. Figs. 6a)–d) represent some 
flow streamlines colored by the velocity magnitude together with the deformed geometry of the solids at different times. As 
shown in Fig. 6c), the solids get very close to each other, but they never contact each other or undergo small overlaps, which 
would have violated the kinematic interface conditions of the mathematical model detailed in Section 3. This is the case 
for the three discretizations considered in this example and for other two-dimensional simulations involving nearly-contact 
configurations that we have performed (data not shown for shortness). The enhanced accuracy with which the kinematic 
interface conditions are imposed in the DCIB method may be related with its fully-implicit time discretization instead of 
treating some of the terms in charge of imposing the kinematic interface conditions in an explicit manner as it is usually 
done in immersed FSI methods including the aforementioned papers [21,38,46,89,35]. This topic warrants further research.
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Fig. 7. Convergence studies for the hollow spheres in a gravity-driven flow. (a), (b), and (c) plot the time evolution of the x, y, and z components of the 
mean Lagrangian velocity for the S1 sphere ( v̄ S1), respectively. (d), (e), and (f) plot the time evolution of the x, y, and z components of the mean Lagrangian 
velocity for the S5 sphere ( v̄ S5), respectively.

In Figs. 7a)–f), the convergence of the mean Lagrangian velocity in each direction is plotted for solids S1 and S5 show-
ing that the obtained results are nearly mesh independent. Regarding eD I V , its value is always lower than 5.0e−7 for all 
discretizations considered. With respect to eV C , its value goes from 4.3e−3 for the coarsest discretization to 2.8e−4 for the 
finest discretization.

5.5. Red blood cell passing through a constriction

The simulation of different kinds of biological cells going through small narrowings has attracted notable attention in 
recent years [90,25,91,92]. This kind of problem is a good way of testing how robust an immersed FSI method is when it 
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Fig. 8. Red blood cell traversing a constriction, mimicking an interendothelial slit in the human spleen. (a) Initial position of the red blood cell and details 
of the constriction geometry. (b)–(f) The deformed geometry of the red blood cell is plotted at different times. The large deformations of the red blood cell 
are evident, which are a challenge to handle in mesh-based numerical methods.

comes to deal with large distortions of the Lagrangian mesh. Here, we consider a red blood cell in a pressure-driven flow 
traversing a constriction. This problem setting mimics an interendothelial slit in the human spleen, which is the smallest 
narrowing that red blood cells go through in the human body. As material model, we use the following incompressible 
hyperelastic material that has been experimentally adjusted to represent the deformations of red blood cells through the 
use of optical tweezers in [93]
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ψ = G

2
(I1 − d) + G

30
(I1 − d)3 , (95)

S = G I + G

20
(trC − d)(trC − d)I , (96)

where trC is the trace of C .
The geometry of the physical domain � is described in Fig. 8a). The initial geometry of the red blood cell is chosen 

to be the biconcave shape that red blood cells develop at rest. This shape is defined in [94] and we use a thickness of 
5.0e−7 cm. The center of gravity of the red blood cell is initially located at C S = (0.0006 cm, 0.00075 cm, 0.00075 cm). 
Periodic boundary conditions are applied in the streamwise direction and no-penetration and no-slip boundary conditions 
are applied at the remaining boundaries. Both the fluid and the solid are initially at rest. The physical parameters defining 
this problem are the following: ρ1 = ρ2 = 1.0 g/cm3, μ1 = 0.012 g/(cm · s), μ2 = 0.0 g/(cm · s), G = 11000.0 g/(cm · s2), 
gM = (0.0 cm/s2, 0.0 cm/s2, 0.0 cm/s2), and g V = (55000.0 g/(cm2 · s2), 0.0 g/(cm2 · s2), 0.0 g/(cm2 · s2)).

The following discretization is considered to solve this problem: 144 ×48 ×48 Eulerian elements with k = 2, 162 ×1 ×384
Lagrangian elements with p = 2, which leads to 1,454,400 EDOF and 190,896 LDOF, respectively. The time step is 
t =
0.000025 s. Figs. 8b)–f) show the large deformations undergone by the red blood cell at different times as it goes through 
the constriction. As shown in Figs. 8b)–f), the higher inter-element continuity of NURBS gives us sufficient robustness [62]
to handle this kind of simulations even for relatively coarse meshes as the ones used in this example. As in Section 5.1, the 
solid goes on top of the Eulerian elements in contact with the domain boundary along the simulation, which is automatically 
managed in our numerical method. Regarding eD I V and eV C , their values along the simulation are always lower than 
5.0e−11 and 2.8e−3, respectively.

6. Conclusions

The DCIB method is applied to solve a widespread benchmark problem for evaluating the volume conservation of im-
mersed FSI methods. The DCIB method leads to completely negligible incompressibility errors at the Eulerian level and 
various orders of magnitude of increased accuracy at the Lagrangian level compared to other immersed FSI methods. 
These results evince how divergence-conforming B-splines can effectively tackle a main criticism of immersed FSI methods, 
namely, the difficulty to accurately impose incompressibility at both the Eulerian and Lagrangian levels. We also compared 
the evolution of our physical quantities with the convergence studies done in [65]. Good agreement is found between the 
two numerical methods. The DCIB method with 4,096 Eulerian elements results in the same level of accuracy than a mesh 
with 1,048,576 elements in [65]. The performance of the DCIB method regarding its energy conservation is evaluated in 
the second example of this manuscript. For a given discretization, the DCIB method is able to conserve energy with more 
accuracy than the other immersed FSI methods that have solved this benchmark before. With respect to the data transfer 
between the Eulerian and Lagrangian discretizations, the examples show the various advantages of performing the data 
transfer directly at the quadrature level without using discretized Dirac delta functions, namely, the solids can get as close 
to the boundary of the domain as the physics of the problem dictates without any special treatment and we obtain a 0.5 
increase in the convergence rates of the Eulerian velocity and the Lagrangian displacement in L2-norm. The DCIB method 
is a fully-implicit method in time. As shown in the fourth example, the DCIB method is able to accurately impose the no-
penetration and no-slip conditions at the interface thus avoiding solids from overlapping with each other for coarse and fine 
spatial discretizations and without adding any additional terms to the formulation. The robustness of the method is further 
enhanced by discretizing the Lagrangian displacement using NURBS, which enables to handle large mesh distortions as those 
encountered in the last example of this work. Finally, we would like to mention that the DCIB method is a general-purpose 
method for FSI problems. However, the authors believe that the DCIB method, as any other immersed FSI method, should 
be mainly used for problems where body-fitted FSI methods [70,95–97] cannot be applied in an automatic way or would 
require to remesh the fluid domain every few time steps with the associated accuracy losses. This is due to the fact that 
body-fitted methods, applied to FSI problems that can be solved without remeshing and without getting highly distorted 
meshes in the fluid domain, generally lead to higher accuracy per degree of freedom than immersed methods.

7. Future work

The following directions of future research are appealing to the authors:

• Using the DCIB method to solve FSI problems that involve solid formulations posed on co-dimension one manifolds 
such as, e.g., capsules [98], vesicles [99,100], and Kirchhoff–Love shells [101].

• Extending the DCIB method to FSI problems that require multi-patch spline meshes. Here, we explained how to con-
struct single-patch NURBS and single-patch divergence-conforming B-spline discretizations, which enables to represent 
geometries that can be generated by mapping a square (a cube) in a two-dimensional (three-dimensional) setting. This 
is usually enough for most benchmark and academic problems, but many problems of scientific and engineering in-
terest require multi-patch spline meshes. The construction of multi-patch NURBS discretizations with C0 continuity at 
patch boundaries is conceptually straightforward. Constructing multi-patch divergence-conforming B-spline discretiza-
tions requires the use of a discontinuous Galerkin framework at patch boundaries to enforce tangential continuity in this 
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region while maintaining the stability and conservation properties of the single-patch divergence-conforming B-spline 
discretization as explained and tested in [48,49].

• Deriving the consistent tangent matrix of the DCIB method. The nonlinear convergence of our block-iterative approach, 
which is the standard approach in immersed FSI methods, will end up failing to converge when either very large 
density ratios between the fluid and the solid or highly stiff solids are considered. For the FSI applications where the 
aforementioned situations apply, the convergence of the system can be achieved by assembling the consistent tangent 
matrix of the three equations involved in IB methods, that is, performing a monolithic/fully-coupled linearization.

• Applying the DCIB method to problems with high Reynolds number. The problems solved in this work have low and 
moderate Reynolds numbers. In order to apply the DCIB method to high Reynolds number problems, one can either still 
use the Galerkin method in conjunction with sufficiently refined Eulerian meshes or stabilize the convective term to use 
coarser Eulerian meshes. In [102], it was shown how, even for highly coarse meshes, divergence-conforming B-splines 
combined with either the Galerkin method or the variational multiscale (VMS) formulation give essentially the same 
results when applied to fluid mechanics problems with low and moderate Reynolds numbers.

• Including adaptive h-refinement capabilities at the Eulerian level to have increased resolution near the fluid–solid inter-
face while maintaining inf–sup stable and pointwise divergence-free solutions. Potential candidates to perform this task 
are analysis-suitable T-splines [103] and hierarchical B-splines [104]. Analysis-suitable T-splines can be used directly to 
obtain stable divergence-conforming discretizations [105]. In the case of hierarchical B-splines, a subset of hierarchical 
B-splines needs to be defined to make sure that a stable divergence-conforming discretization is obtained. In [106], 
a set of local, easy-to-compute, and sufficient conditions are defined that lead to two-dimensional stable divergence-
conforming hierarchical B-spline spaces. As mentioned by the authors in [106], appealing directions of future research 
are to generalize these local conditions to the three-dimensional setting and construct adaptive h-refinement algorithms 
which yield hierarchical B-spline spaces satisfying these conditions.
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