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Direct comparison of three-dimensional (3D) objects is computationally expensive due to the need for
translation, rotation, and scaling of the objects to evaluate their similarity. In applications of 3D object
comparison, often identifying specific local regions of objects is of particular interest. We have recently
developed a set of 2D moment invariants based on discrete orthogonal Krawtchouk polynomials for com-
parison of local image patches. In this work, we extend them to 3D and construct 3D Krawtchouk de-
scriptors (3DKDs) that are invariant under translation, rotation, and scaling. The new descriptors have the
ability to extract local features of a 3D surface from any region-of-interest. This property enables compar-
ison of two arbitrary local surface regions from different 3D objects. We present the new formulation of
3DKDs and apply it to the local shape comparison of protein surfaces in order to predict ligand molecules
that bind to query proteins.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Moment-based approaches have become very popular in 2D
[1,2] and 3D [3,4] image processing due to their compact repre-
sentation of images. A moment-based approach characterizes a 2D
or 3D image by considering its shape as a mathematical function
and computes integral of the function multiplied by specific base
functions. The approach has been used in many problems including
reconstruction, detection, pattern recognition, and compression of
images. The theory of moment invariants in 2D has been well es-
tablished since the foundation of algebraic Hu invariants [5]. Sad-
jadi and Hall [6] extended the algebraic 2D invariants to 3D and
explicitly derived the second order moment invariants, which were
later reproduced by Guo [7]. Using a group theoretic approach, Lo
and Don [8] constructed twelve complex moment invariants in-
cluding both second and third order moments. Galvez and Canton
[9] defined the 3D moments by evaluating them on the 3D object’s
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surface and extracting global descriptors from normalized surface
shapes. An extension of moment invariants to n-dimension can be
found in Mamistvalov’s work [10], in which the zeroth and sec-
ond order moment invariants of n-dimensional regular solids were
established. Other examples of 3D moments that are invariant to
rotation and blur were provided by Flusser et al. [11].

We have recently developed a set of 2D local moment invari-
ants based on the discrete Krawtchouk polynomials and success-
fully applied them to the comparison of local image patches [12].
Krawtchouk polynomials were used for the first time in image
analysis by Yap et al. [13]. In our previous 2D work [12], while con-
structing a set of local descriptors that are rotation, position, and
size independent, we have also preserved their ability to extract
features from any local interest region in an image.

In this paper, we extend our previous 2D work to 3D for lo-
cal comparison of 3D surface shapes. Our new method is based on
3D Krawtchouk polynomials. 3D Krawtchouk moments were ear-
lier defined and used in content-based search [14] and retrieval of
3D objects [15]. Despite the compact representation and discrimi-
native powers of these moments, the theory of invariants based on
3D Krawtchouk polynomials has not been well studied. Also, the
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very critical local retrieval property of the 3D moments has been
noticed in [16], but much of the focus is given to their fast com-
putation.

We propose a new approach on this long-standing issue of
local image comparison by constructing 3D Krawtchouk descrip-
tors (3DKDs) for describing local 3D surfaces. The new formula-
tion has many advantages over many similar moment-based ap-
proaches, such as TRS invariants [17] and Zernike descriptors [18]:
1) Krawtchouk polynomials are defined on a discrete space, so the
moments derived from them do not carry any error due to dis-
cretization unlike many other moments related to continuous func-
tions. 2) These polynomials are orthogonal; each moment brings in
a new feature of the image, where minimum redundancy is criti-
cal in their discriminative performance. Moreover, they are directly
defined in the image coordinate space, and hence their orthogo-
nality property is well retained in the computed moments. 3) They
are complete with a finite number of functions (equal to the im-
age size) while many other polynomial spaces have infinitely many
members. 4) They have the ability to retrieve local image patches
by only changing the resolution of reconstruction and using low
order moments. 5) The location of the patch can also be controlled
by changing three parameters and hence shifting the region-of-
interest along each dimension. 6) We also prove that these mo-
ments can be transformed into local descriptors, which are invari-
ant under translation, rotation, and scaling. Therefore, using only a
small number of invariant descriptors per image will make it pos-
sible to develop an efficient method for quick local image retrieval.

Moment-based approaches, particularly Krawtchouk moments,
are very useful for representing biological and medical images as
they are pixelized or voxelized data. In medical imaging, such as
computerized tomography (CT) scan and magnetic resonance imag-
ing (MRI), objects are observed at different viewpoints and local
images need to be extracted and examined. In digital pathology, for
instance, pathologists are interested in information about specific
structures rather than the whole image. Thus, it is necessary to
construct moment invariants that do not change by translation, ro-
tation, and scaling and can retrieve local image patches or subim-
ages.

Local shape search methods have many applications also in
structural biology, which deals with 3D structures of biomolecules.
An important application is the identification of ligand molecules
(i.e., small chemical compounds including drug molecules) that
bind to local protein surface regions, which is important for pre-
dicting biological function of proteins [19,20] and for computa-
tional drug design [21,22]. Ligand molecules that bind to a local
surface region in a protein can be predicted by finding similar local
regions (binding pockets) of known ligand-binding proteins in the
protein structure database. In this work, we applied the developed
3DKDs for the protein ligand binding pocket comparison. A ligand
binding pocket is represented as a combination of overlapping lo-
cal surface patches, each of which is characterized by its geomet-
ric shape. The shapes of surface patches are compactly represented
by 3DKDs. The method is benchmarked on a dataset, which con-
tains a total of 463 proteins that bind to at least one of 11 ligand
molecules. Overall, the 3DKD-based method showed better perfor-
mances than those obtained by the previously developed binding
prediction methods: Pocket-Surfer [23] and Patch-Surfer2.0 [20].

This paper is organized as follows. In Section 2, we give a brief
background of one-dimensional Krawtchouk polynomials. After in-
troducing the 3D weighted Krawtchouk polynomials and their mo-
ments in Section 3, we present the theory and formulation of our
new 3D Krawtchouk descriptors in Section 4. In Section 5, we
provide a detailed scheme for efficient computation of these de-
scriptors. In Section 6, we show numerical results from local sur-
face recognition performances of 3DKDs using protein structures
placed in different orientations. Finally, we discuss the application

of 3DKDs on the comparison of ligand binding pockets on protein
surfaces. We finish the paper with a conclusion and summary of
this work in Section 7.

2. Krawtchouk polynomials

We start with introducing one-dimensional Krawtchouk polyno-
mials, which can also be found in [13]. A more general and abstract
form of these polynomials was provided as Hahn polynomials in
[24].

The Krawtchouk polynomials of degree n are defined as

n A 1
Ky(x; p,N) = Zai,n.p.N x' =R (—Tl, —x; —N; E> (1)
i=0

where x,n=0,...,N, N>0, pe(0, 1) and the function ,F; is the
hypergeometric function which is defined as:

2Fi(a, b;c;z) = Z (azégl?)i %l

i=0

(2)

The symbol (a); in (2) is the Pochhammer symbol given by

I'(a+1)

(a)i=a(a+l)(a+2)...(a+i_1):W.

3)

Note that the series in (2) terminates if either a or b is a non-
positive integer. Hence, the polynomial coefficients a;, 5 in (1) can
be obtained by simplifying the summation. It is shown in [13] that
the range of Krawtchouk polynomials expands rapidly with the in-
crease of the degree. Besides, these polynomials are not numeri-
cally stable for large values of N. Hence, a more stable set of poly-
nomials can be obtained from the classical Krawtchouk polynomi-
als by normalizing with the norm and scaling by the square root
of a weight function [13]. The weighted Krawtchouk polynomials
is then defined by

06 pN) = Ko (s p Ny, [ WP N)
Ky (x; p, N) = K (x; p, N) S p )’ (4)

where
N N—x
wp.N) = )P -p)"" (5)
1-p\" n!

n;p,N) = (-1 ”(—) . 6
P p.N) = D' (6)
The set of weighted Krawtchouk polynomials
S={K.(x;p,N):n=0,...,N} (7)
becomes a complete orthonormal set of basis functions on the dis-
crete space {0, ..., N} with the orthonormality condition

N - -
ZKH(X? p, N)Kiy (x; p,N) = S (8)
x=0

To compute the weighted Krawtchouk polynomials, the three-
term recurrence relation given in [13] can be used. Such a recur-
sive computation is shown to be more efficient than computing
high-degree polynomials directly using (1) and (4). However, due
to error propagation, computing polynomials recursively may still
be numerically unstable for large N as noted by Zhang et al. [25].
To achieve numerical stability, we use symmetry and bi-recursive
algorithm given in [25].
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3. Three-dimensional weighted Krawtchouk moments

In this section, we give a brief formulation of 3D weighted
Krawtchouk moments, which are also introduced in [14,15]. Note
that the functions K, defined by (4) are orthonormal in the one-
dimensional discrete set {0,...,N}, but they can be easily ex-
tended to three-dimension as follows:

Let

={0,...,N} x{0,...,M} x {0, ...,L} (9)
be a discrete field in the 3D space. We define the set of 3D
weighted Krawtchouk polynomials on A as

S = {Kn(x: px. N) - K (v: py. M) - Ky (z: p2. L) :

n:O,...,N,m:O,...,M,l:O,...,L}. (10)

Note that S is orthonormal on A with the orthonormality condition

N M
ZZZKn(X pst)Km(.V pva)KI(Z Pz, L)
x=0

=0
. Kn’ (X, Dx, N) Km’(y§ Dy, M) KI’ (Z; Pz, L) = Snn’gmm/all”

which follows immediately from the orthonormality of 1D func-
tions given by (8). Let f(x, ¥, z) be a 3D function defined on the grid
A in (9). The 3D weighted Krawtchouk moments of order n + m + 1

(11)

of f(x, y, z) are defined by
) N M L ) ) )
Qumt = Y. 3 Y F (%Y. 2)Kn (X: p. N)Kin (y: py. M)K, (z: 2. L).
x=0 y=0 z=0
(12)
Note that by using (11) and solving (12) for f{x, y, z), the 3D

function f(x, y, z) can be written in terms of the 3D weighted
Krawtchouk polynomials, i.e.,

N M L
Fxy.2) =333 Qo (x: P N)Kin(v: Py MK, Z: p2. L).

n=0 m=0 [=0
(13)

This means that the object f{x, y, z) can be reconstructed perfectly
if all the moments Qnml are used forn=0,....N m=0,.... M, [ =
0,...,L. An approximate reconstruction f(x, y,z) of f(x, y, z) can be
written as

N M I
Fy.2) =3 33" QumiKn(X: px. N)Km (v: py. M)Ky(z: ;. L).

n=0 m=0 [=0
(14)

where 0<N<N,0<M<M, 0<L <L

Fig. 1 presents some reconstructions of 3D binary images us-
ing 3D weighted Krawtchouk polynomials for N, M, L values of 5,
10, 25, and 50, and different (px, py, p;) triplets. The 3D polygo-
nal models for the horse and the mug image are downloaded from
Princeton Shape Benchmark [26] and voxelized using the algorithm
in [27]. The 3D weighted Krawtchouk moments from the original
image are first computed using (12), and then these moments are
used in (14) for reconstructing the image. The center of a local
region corresponding to (px, py, pz) is at (X¢, Y, zc), where x; =
Npx, yc = Mpy, and zc = Lp,. These points are (97,126,167) near the
horse’s mouth and (169,145,100) near the mug’s handle. Since N =
M =L =200 in this example, the (px, py, p;) triplets at these cen-
ters will correspond to (0.485,0.630,0.835) and (0.845,0.725,0.500),
respectively.

As can be seen from left to right in Fig. 1, the reconstructions
start at a local region corresponding to (Npx, Mpy, Lp;) and ex-
pand as larger values of N, M, and [ are used. Theoretically, using

N=N=200, M=M =200, and [ =L =200, the original image
will be fully reconstructed regardless of the choice of (px, py, pz).
Using smaller numbers for N, M, and L, the reconstructed surfaces
contain only local information, which may actually be more useful
for local comparison of 3D images. The parameters py, py, and p;
play a vital role here to determine the center of local region-of-
interest.

In the third and fourth row of Fig. 1, we show the voxelized
surface of a protein, nucleosome recognition module of imitation
SWI ATPase from fruit fly (Drosophila melanogaster). The atomic
structure of this protein is downloaded from the Protein Data Bank
(PDB) [28] (PDB ID: 10FC) and then is voxelized using 3D-Surfer
[29]. The radius! of this protein is about 46.6 A (78 unit voxels). In
the grid shown, 1 unit corresponds to 0.6 A. For this example, two
(px» Py, pz) triplets are selected: (0.66,0.67,0.82) and (0.21,0.44,0.31)
in the third and the fourth row, respectively. Thus, the reconstruc-
tion centers will be (x¢, y¢, zc) = (132, 134, 164) and (42,88,62), re-
spectively, both chosen from salient parts on the surface of the
protein. Once again, using smaller numbers for N, M, and L, the re-
constructed surfaces contain only local information. Local retrieval
of structures may reveal important information about the function
of a protein, and this may be used to locally compare protein struc-
tures in a large database and quickly identify their ligand-binding
sites. This may be very useful for identifying biological functions
of proteins and further computational drug design for target pro-
teins. In this paper, we will employ px, py, and p, parameters for
detecting the local region-of-interest by changing them between 0
and 1.

4. 3D Krawtchouk descriptors

In this section, we introduce a new set of invariants, called 3D
Krawtchouk descriptors. We show that these invariants are not only
rotation, size, and position independent, but also contain discrim-
inative local features from any region-of-interest in a 3D image.
Such invariants in 2D have been introduced in our previous work
[12]. In this work, we extend them to 3D to locally compare 3D
images.

Let f(x, y, z) be a function representing a 3D image defined on
an orthogonal grid A given in (9) and define the 3D weight func-
tion corresponding to the triplets p = (px, py. pz) and N’ = (N, M, L)
by
W(x,y,z;p, N) = w(x; px, N) w(y; py, M) w(z; pz, L), (15)

where x=0,..., N,y=0,...,M, and z=0, ..., L Similarly, we can
define the 3D norms corresponding to the triplets p and A by

Qm,m,;p,N) = p[; px, N) p(m; py, M) p(l; pz, L) (16)

forn=0,...,N, m=0,....M, and [ =0,...,L. Using (4), the 3D
weighted Krawtchouk moments Q,,, in (12) become

Qumt = [Q(n.m, I p. N)] % ZZZ fx.y.2) (17)

x=0 y=0 z=0
K (x; px, N) Kin (v; Dy, M) K (z; p2, L),

where
fx.y.2) = [W(x,y,zp, N)]? f(x,y,2). (18)

Now, substituting K, Ky, and K; in (17) by their definitions from
(1), reordering summations, and grouping terms, we obtain

T The radius is calculated as the maximum of all distances between the center of
mass of the protein and each amino acid, i.e., the radius of the smallest sphere that
inscribes the protein.
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Voxelized 3D Image N=M-=L=5 N =

180

180

Fig. 1. Examples of 3D binary images and their reconstructions using (14) with N=M =L =5, 10, 25, and 50 and different (p,, Dy, D;) triplets. The voxel size for each box
is 2003. (px, py, p.) triplet plays the critical role here in determining the center of local region-of-interest in an image. (px, py, p;) was set to (0.485, 0.630, 0.835) and (0.845,
0.725, 0.500) for the horse and the mug image, respectively, to obtain local reconstructions centered at the horse’s mouth and the handle of the mug. The manually selected
isosurface levels for the images from top to bottom are 0.33, 0.355, 0.195, and 0.195, respectively.

Qumt = [Q(n,m, L p, N)|*

n m |
XY 3 i Gimopy M Gt p,.t M (19)
i=0 j=0 k=0
where
. N M L o
Mijk = ZZZf(X,y,z)x'yfzk (20)
x=0 y=0 z=0

are the geometric moments of the auxiliary function in (18).

Notice that the geometric moments 1\71,-]-,< and hence the
weighted Krawtchouk moments Q,,,,, are not invariant under trans-
lation, rotation, and scaling. The translation invariant central mo-
ments of f(x,y,z) can be defined as

N M L

P =3y fx.y.2) x=®)"@y-§H™(z-2)". (21)

x=0 y=0 z=0

where X = M100/M000, y = 1\7[019/1\7[000, and Z = ]\7[001 /]\7[000 are the
coordinates of the centroid of f(x,y, z).

If fm are the central moments, then we can define geometric
moments of f(x,y,z), which are invariant under translation and
scaling as follows:

Mnml (22)

ﬁnml = T~ _aimid 1"
(Mgop) 3™ +1

Obtaining rotation invariant geometric moments of f(x,y, z) is,
however, not as straightforward. To achieve rotational invariance,
we need to find a unique rotation matrix R that would rotate the
auxiliary image f(x,y,z) so that its principal axes lie in the x, y,
z—directions, respectively. In this work, we did not perform any
manual rotation to achieve invariance to rotation; we needed the
elements of R to compute the rotation invariants. When the auxil-
jary image f(x,y,z) is centered at the origin, the principal axes of
f(x,y,2z) can be defined as the eigenvectors of the inertia matrix

N L
i= | by I G3)
Ly Izy I,



538 A. Sit, W.-H. Shin and D. Kihara/Pattern Recognition 93 (2019) 534-545

where

I:xx = /}ozo + fLoo2, :

= fi200 + flooz_ L. = fi200 + fozo, (24)
Ixy = ]yx = —llllOs Ix

Ly = —flio1, Iy = Iy = —flon.

Here, instead of the inertia matrix T, the covariance matrix can
also be used as they have the same set of eigenvectors, perhaps, for
a difference in sign. We prefer using the inertia matrix because it is
commonly used for 3D rigid bodies and more related to our work.
Note that T is a symmetric matrix with real eigenvalues {A, 15, A3}
and orthogonal eigenvectors {il;, i, fi3} such that

Ta; =7 for i=1,2,3. (25)

The eigenvectors {ii, ii;, {i3} define the columns of the rotation
matrix R that aligns the principal axes with the standard xyz co-
ordinate system. However, for each eigenvalue ;, both i; and —ij;
are eigenvectors, so they define eight different rotation matrices
{%iiq, £y, £1i3} specifying the same principal axes [9].

Although it is possible to reduce this ambiguity to four com-
binations by only keeping right-handed coordinate systems [9], a
heuristic approach is still needed to obtain a unique standard ro-
tation matrix. In our work, we will use the invariants to locally
compare 3D image surfaces. For this reason, we first locate points
on the surface of the 3D image. Then for each local patch around
these points, a direction vector can be specified using the ver-
tex normal at the surface point, pointing away from the surface.
Among the eight rotations, the unique rotation matrix R can be
chosen, for example, as the one rotating the vertex normals to the
octant in which x, y, and z coordinates are all nonpositive. Once R
is selected, we can define geometric moments of f(x,y,z), which
are invariant under rotation, translation, and scaling by

Bije = (Moo) ™+ ! ZZZ fx.y.2)

x=0 y=0 z=0

(1%, Y. 2) (2 (x.3,2)) (B3 (x.y.2), (26)

$2(x.¥.2)
=Rz (x -

where ¢ (x.y.2) = Riy (x = %) + Rip(y — §) + Ris (z - 2).
=Ry (x—%) +R220/ P +Ry3(z-2). and ¢s(x.y.2)
X) + Ry —§) + R33(z - 2).

Fig. 2 shows 2D views of the square root of the 3D weight func-
tion W(x,y,z;p,N) in (15) for N'= (200, 200, 200) and five dif-
ferent p = (px. py. pz) triplets. To obtain the 2D views, we flatten
the function by summing slices along each of the three dimen-
sions. Note that the coverage of each function differs as the pa-
rameters p = (px, py. pz) change. The coverage is the largest for

= (0.5,0.5,0.5) and becomes smaller when p approaches faces
of the grid. Different weight functions result in loss of trans-
lation and scale invariance. One way to overcome this problem
is to determine a unique suitable p triplet, say p* = (p5, pj. p3),
and use the corresponding weight W(x, y, z; p*, V') for every lo-
cal region-of-interest by shifting the graph of W to that loca-
tion, in other words, use the translated weight W*(x,y, z; p*, \) =
W(x*,y*,z%;p,N) with x* =x—Np;+Npx, y*=y—Mpj+ Mpy,
and z* =z —Lp} +Lp,. Whenever (x*, y* z*) is situated outside
the grid, we set W*(x,y, z; p*,N) = 0. From now on in this pa-
per, we will set p* = (0.5, 0.5, 0.5) due to the largest coverage and
round shape of the corresponding weight function, which is also
critical for rotational invariance. In order to preserve the round
shape of the weight function, we will always use a cubical grid,
i.e, N=M=1L or set N = (N,N,N). Hence, the center of the grid
will be at C = (N/2,N/2,N/2). In order to shift the centroid of the
auxiliary image f(x,y,z) to the grid center C, Ujji in (26) is modi-

fied to
N N N
e = Vloo) ™ 3 3 3~ Fx.3.)[1x.3.2)/ (Voco) +N/2]
x=0 y=0 z=0
[¢2 (X Y, Z)/(NIOOO)3 +N/2] [¢3(X Yy, Z)/(M000)3 +N/2]

(27)

Using the binomial expansion and rearranging sums, Xijk can be
written as

Nijie = ZZZ ()( )( ) (N/2)HiHkr=s=t (M) =5 !

YYD Xy 1%y, 2) ($2(x,1,2))° (P3(x,y,2))".

x=0 y=0 z=0

(28)
Thus,

1

L& (i AYA i jk—r—s—t &
Z Z s ¢ (N/2)™ Vrst (29)
r=0 s=0 t=0

is a linear combination of invariants 7, where

N N N
Drst = (Mogo)™ 571 Y 33" f(x.,2)
(30)
- x=0 y=0 z=0 .
A(A1(x.y.2)) - (P2(x.y,2))" - (P3(x.y,2))",
for r=0,...,i, s=0,...,j and t =0, ..., k. Therefore, these new

geometric moments are rotation, translation, and scale invariant,
and yet centered at the point (N/2, N/2, N/2). If we set px =0.5,
py=0.5, and p,=0.5 in (19) and replace M;j, by their invari-
ant counterparts X,-jk from (27), we obtain a new set of moments
which are invariant under rotation, translation, and scaling, i.e.,

Gt = [2(n, m, I; p*, N)] 2

n m |
X YYD Gin05NAimosN Q05N Aijke (31)
i=0 j=0 k=0
where p* = (0.5,0.5,0.5) and N = (N, N, N). This new set of mo-

ments will be called 3D Krawtchouk descriptors and referred as
3DKDs in the rest of the paper. Note that 3DKDs still depend on
the number N, so it is important to use the same grid size while
performing the local comparison of 3D images.

5. Computation of descriptors

The descriptors defined in (31) requires precomputation of Xl-jk
in (29) which is a linear combination of geometric moments vy
given by (30). Notice that computation of ¥y requires exponen-
tiation of three 3D functions ¢;, ¢,. and @5, and then element-
wise multiplication of four 3D functions, and finally summation
over three variables. Thus, direct computation of Dy in (30) can be
quite time-consuming, especially when the grid size /' = (N, N, N)
is large. To save computational time, we will first separate the
z variable from the x and y variables by rewriting (¢ (x,.2))",
(éz(x,y, z))S, and (q33(x,y, z))t using the binomial expansion as
follows:

(¢1(x.y.2)" =3 (;) (A (. y))~* (D1(@))", (32)
£1=0

(¢2(x..2))°= 3 (;) (Ao (x,y) )~ (D2 (2)), (33)
&,=0
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Fig. 2. 2D views of the square root of the weight function in (18), flattened by summing slices along each dimension. The summations are performed along z, y, and x-axis,
respectively from top to bottom. Density plots are shown for five different choices of p = (px, py. p;) triplets. "= (200, 200, 200) in all cases. The gray scale colormaps at

the top show the intensity of plots in each column.

t

(Ps(x.y.2) =Y

eg3=0

where A;(x,y) =Ri1(x—%) +R2(y—¥) and D (2) =Ry3(z—2)
with 7 =1,2,3.

Hence, given a voxelized 3D surface function f(x, y, z), a triplet
p = (px. by, pz) corresponding to a point on the surface, and the
surface normal at that point, an efficient computation of 3DKDs in
(31) can be performed in the following steps.

( ;) (As (%)) (B3 (2))°, (34)

1. Compute the auxiliary image f(x,y,z) using (18).
2. Compute the function

N
T(x.y:e1.62.83) = Y f(x.y.2)(D1(2)) (D2(2))** (D3 (2))*
z=0

(35)
for 0 <&y + & + €3 < 5. Note that the z variable is eliminated
in this step and the rest of the computations will be carried

out in the x and y variables only.
3. Compute

t

8 t\ - "
Lxyeent)=)" (83> A3, y) 2 T(x,y; €1, 82, €3)
&g3=0
(36)

for0 <&y +6&,+t <5.
4. Compute

S

Lxyenst) =)

£,=0

S ~ ~
<8z> A (x.¥)) 2 T3(X,y; €1, €2, 1)

(37)

for0<eq+s+t<5.
5. Compute
;
i yrst)= )

£1=0

(;) A« hxyiers.0) (38)

forO<r+s+t<5.
6. Compute

N N
Drse = (1\71000)7%“7l ZZ Tl (*.y;1.5.0) (39)
x=0 y=0
forO<r+s+t<5.

Finally, we perform another couple of steps to compute 3DKDs
of the order up to 5.

7. Compute X,-jk in (29) for 0 <i+ j+k <5 using ¥y from step 6.
8. Compute Q,,,; in (31) for 0 <n+m+1 <5 using Xijk from step
7.

Separating the z variable as described above makes the compu-
tations very efficient. The computational performance of the algo-
rithm will be discussed at the end of Section 6.

6. Results and discussion
In this section, we test the local discriminative performance of

3DKDs. We use three feature vectors of descriptors

K3 = {Qum:0<n+m+1<3}
Ko = {Qum:0<n+m+1<4}
Ks = {Qum:0<n+m+1<5)

(40)

namely, the descriptors of order up to 3, 4, and 5, that are com-
puted using the algorithm summarized in Section 5. The number
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Fig. 3. Query protein surface (1gco.pdb, left) and three target surfaces obtained from the query protein by rotating it using different rotation matrices. The vertex normals
on each surface are also demonstrated. Each protein surface is placed in a voxel grid of size 170°.

of elements in K3, Ka, an~d Ks is 20, 35, a~nd 56, respectively. The
seven descriptors (Qooo. Q100, Qo10, Qoo1, Qo11. Qio1. Qu10) involved
in the normalization process were removed, because they take a
constant value irrespective of the 3D patch we are working with.
Thus, the actual number of elements in K3, K4, and K5 is 13, 28,
and 49, respectively.

As the similarity measure, we use the (squared) Euclidean dis-
tance between feature vectors of the same size, namely

T

d9, v = (v —vf)? (41)
i=1

where v9 and V! are the feature vectors for a query and a target

object, respectively, to be compared, and T is dimension of the fea-

ture vector.

6.1. Local comparison Test |

We first test 3DKDs for comparison of local patches on protein
surfaces. We have downloaded the PDB file of a protein (PDB ID:
1GCO) from PDB [28], generated a voxelized surface of the protein
using 3D-Surfer [29], and placed it in a voxel grid of size 1703.
Using the GETPOINTS subroutine of LZerD docking suite [30], we
have specified 1608 vertex points on the protein surface as well as
the normal vectors at these points pointing outside the surface. We
have then reduced the number of points to 500 so that the mini-
mal distance between neighboring points is more than 3 A, ie., 5
unit voxels (See Fig. 3, left). Each of these points and the normal
vectors were used to represent the center of a patch on the surface.
These normal vectors were also used for determining the unique
rotation matrix R as described in Section 4. The 3DKDs correspond-
ing to each patch were computed and stored as the query dataset.
Then the protein structure and the 500 surface points were rotated
so that each patch moves to a different location and orientation
(see Fig. 3). We have used three different rotation matrices Sy, Sy,
and S; and obtained three target sets. S; rotates the query protein
90° about the x-axis, S, rotates the query protein first 90° about
the x-axis, then 45° about the y-axis, and then 30° about the z-
axis, and S3 is a randomly generated rotation matrix. Using S, S,
and S3, the 3DKDs corresponding to each patch in the target sets
were computed and stored as Target 1, Target 2, and Target 3, re-
spectively.

Each of the 500 feature vectors in the first set was queried and
compared with the 500 feature vectors in a target set. The results
were ranked using the Euclidean distance. If the same patch as
the query ranks top (Top 1), it was labeled as “correctly classified”.
Otherwise, we look at the top five results in the ranking (Top 5),
or the top ten results (Top 10). We have then calculated the recog-
nition accuracies as

_ Number of “correctly classified” queries
- Total number of query inputs

(42)

whose denominator is equal to 500.

We have obtained very high recognition accuracies ranging be-
tween 93.6% and 97% for the Top 1 case (see Table 1). The recog-
nition accuracies stay between 97.6% and 99% for the Top 5 case.
For the Top 10 case, it reaches up to between 98% and 100%. The
results show that the 3DKDs are successful in local patch compar-
ison for this small problem. For the Top 1 case, K5 performs best
with all three targets. K4 gives the highest recognition accuracies
for all targets when our classification criterion is relaxed to Top 5
or Top 10.

6.2. Local comparison Test I

We also test the local performance of 3DKDs on a more diffi-
cult problem as follows. The surface grid, vertex points and normal
vectors of the query protein, namely 1608 query patches, are gen-
erated as before. For the three target sets, the target proteins and
their voxelized surface grids were also generated as before. How-
ever, the surface points and vertex normals of the target sets were
redistributed using GETPOINTS so that we had a new set of points
and normal vectors different than the ones obtained before. This
occurs due to a randomized subroutine of the program. This time,
we have obtained 1557, 1557, and 1546 such points in Target 1,
Target 2, and Target 3, respectively. For each point and the cor-
responding surface patch, the 3DKDs were computed and stored.
The number of query patches is then further reduced so that each
query patch remains with at least five neighboring target patches
when both query and target proteins are considered superimposed.
Here, by a neighbor, we mean that the physical distance between
centers of the query patch and the target patch is less than 3 A (5
unit voxels). Hence, the number of query patches to be compared
with those in the target sets now depends on each individual tar-
get protein, and we obtain 737, 736, and 701 such query patches
corresponding to Target 1, Target 2, and Target 3, respectively.

Each of the feature vectors in the query set was compared with
those from the corresponding target set. The results are ranked us-
ing the Euclidean distance and collected for three target sets. If one
of the five neighbors of the query patch ranks within top k, it is
labeled as “correctly classified”. We computed recognition accura-
cies for k=1,...,16 where k= 16 approximately corresponds to
the top 1-percentile.

The results are shown in Fig. 4. Compared to the results of the
Test I (Table 1), the accuracies dropped about 25% points in the re-
sults corresponding to k = 1 (Top 1 results). When we only look at
the top result (k = 1) in the rankings, K5 is the most successful set
of descriptors. The performances of K3 and Ks are comparable and
higher than K, for almost all k values in all three cases. In Test II,
we have actually tested how each 3DKD vector is tolerant to slight
changes in the location of patch centers. From Fig. 4, it is clear that
the descriptors in Ky, in particular, the 4th order descriptors that
are not in K3, are quite sensitive to such patch center shifts. This
deficiency appears to be corrected in K5 with the addition of 5th
order descriptors.
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Fig. 4. Test Il - Recognition accuracies (%) vs.

the number of closest patches in ranking (k) for Sy, S;, and S5 from left to right, respectively.

Table 1
Test I - Recognition accuracies (%).
3DKD vector  Target 1 Target 2 Target 3
Top 1 Top 5 Top10 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10
K3 96.8 98.2 98.6 95.4 97.6 98.0 95.8 98.4 98.6
Ky 96.2 99.0 100.0 93.6 98.0 98.8 94.8 98.4 99.0
Ks 97.0 98.0 98.6 95.6 97.6 98.0 96.0 98.2 98.6

6.3. Comparison with other descriptors

Next, we compare the discriminative performances of 3DKDs
with 3D Gaussian-Hermite Moments (3DGHMs) [31] and 3D
Zernike descriptors (3DZDs) [18] computed for local protein
surface patches. For these comparisons, we used the query and
Target 1 proteins from Test I, both placed in a voxel grid of size
1703. To compute 3DGHMs, we first computed and analyzed the
one-dimensional Gaussian-Hermite polynomials H,(x/c) using
the recursive algorithm provided in [32]. The Gaussian-Hermite
polynomials have a scale parameter o that controls the size of the
reconstructed region in an image. To choose the correct o value,
we compared the graph of the weighted Krawtchouk polynomial
of degree 0, namely Ko(x; p, N— 1) with p=.5 and N = 170, and
the graph of Gaussian-Hermite polynomial of degree 0, namely
Ao (x/o), for different o values. The Gaussian-Hermite polynomial
is defined on the interval [-1, 1] sampled by the same number
points (N = 170). We found that for o = 0.1083, the widths of
the two curves, i.e., the intervals that are not mapped to zero by
both functions, were identical. This way we ensure that 3DKDs
and 3DGHMs use the same local information. After choosing the
o value, we multiplied the voxelized surface of the protein by 3D
Gaussian as follows:

f(x, y,2) = e*[(x*XS)Z+U*YS)Z+(Z*ZS)Z]/(202)f(x’ y,2), (43)

where (xs, s, zs) are the coordinates of the surface point mapped
to the domain [-1,1] x [-1,1] x [-1, 1]. We then computed the
center of mass of f(x,y, z) and the unique rotation matrix R
using the formulas provided in Section 4. By using the matrix
R, we achieved invariance to rotation by means of principle axes
normalization. We finally computed the 3D Gaussian-Hermite
moments of the normalized auxiliary surface f(x,y,z) using the
method outlined in [31].

To compute 3DZDs, we used the same query and Target 1 pro-
teins from Test I. The 3D Zernike descriptors are not able to extract
local features from an object directly as 3DKDs do; yet Zernike
functions are defined as continuous functions whose domain is the
unit ball. For this reason, we first mapped each patch into the unit
ball by considering each surface point as the patch center and plac-

ing a sphere of 6 A radius around each point. 6 A here corresponds
to 10 unit voxels; the size of a typical ligand-binding pocket on
a protein surface. The patch cut from the surface is then mapped
into the unit ball so that the center of mass of the cropped patch is
placed at the coordinate origin. The geometric moments and hence
the 3D Zernike moments of the order up to 12 and 15 (3DZD_12
and 3DZD_15, respectively) are computed for each patch using the
algorithm provided in [33]. Finally, the rotation invariant 3DZDs
are computed from these moments using the formula provided in
[18]. The above work is repeated using a larger sphere for each
patch (9 A radius = 15 unit voxels) since there are some well-
known ligands binding to proteins by forming larger pockets. In
order to make the comparison fairer, we have recomputed 3DKDs
(Ks) and 3DGHMs using the same surface function but taking on
zero value at voxels that remain outside the spheres used above.
By this occlusion, we ensure that 3DKDs and 3DGHMs both use
the same local information as 3DZDs do.

The recognition accuracies for 3DKDs (Ks), 3DGHMSs, and 3DZDs
using different order of descriptors and patch radii are shown in
Table 2. The results show that our method was clearly better than
3DZDs and 3DGHMs in local feature extraction, even when 3DZDs
are allowed to use more invariants. The Top 1 prediction in our
method is 90%, whereas it is only between 7.4%-8.8% in 3DZDs and
13% in 3DGHMs. Increasing the order of invariants to 15 (i.e., the
vector size to 72) did not significantly improve the performance
of 3DZDs. All methods gave higher recognition accuracies when
the patch size was increased from 6 to 9 A but the performance
increase in 3DGHMs is remarkable. The recognition accuracy for
3DGHM:s increased from 13% to 91%, which makes 3DGHMs com-
parable 3DKDs. However, 3DKDs outperformed both 3DZDs and
3DGHMs in all cases shown in Table 2.

6.4. Binding ligand prediction

Finally, we test 3DKDs on binding ligand prediction for pro-
teins, which is one of the important tasks in bioinformatics as it
addresses a central question in molecular biology, protein func-
tion [19,20], and has real-life application in computational drug
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Table 2

Comparison of Ks with 3D Gaussian-Hermite Moments (3DGHMs) and 3D Zernike Descriptors (3DZDs).

Patch radius

6 A (10 voxels)

9 A (15 voxels)

Feature vector  Vector size  Top 1(%) Top 5(%) Top 10(%) Top 1(%) Top 5(%) Top 10(%)
3DKD—Ks 49 90.0 97.2 98.0 95.6 97.8 98.6
3DGHM 56 13.0 38.6 54.4 91.0 96.6 97.2
3DZD_12 49 74 20.0 29.0 26.0 46.2 58.0
3DZD_15 72 8.8 18.6 28.2 26.4 50.4 61.8
Table 3
The ligand pocket benchmark dataset .
Binding ligand molecule AMP  ATP FAD FMN FUC GAL GLC HEM MAN  NAD PLM
Average size (A) 6.4 7.6 11.9 74 3.8 4.2 3.9 8.7 4.1 104 8.7
Number of query pockets (497) 44 44 82 49 7 15 27 146 33 39 1
Number of patches (11039) 619 840 2663 978 49 125 195 4089 248 1095 138
Average number of patches 141 19.1 325 20.0 7.0 83 72 28.0 75 281 12.5

4

Fig. 5. An example of a ligand binding pocket on a protein surface. Receptor pro-
tein, left: FMN-binding domain of human cytochrome P450 reductase, PDB ID:
1B1C. Binding ligand, right: FMN (Flavin mononucleotide). Images were rendered
with UCSF Chimera [34].

design [21]. Ligand molecules that bind to a local surface region
in a protein can be predicted by finding similar local pockets of
known binding ligands in the structure database. An example of
a ligand binding pocket is demonstrated in Fig. 5. In order to test
3DKDs on binding ligand prediction, we have constructed a bench-
mark dataset of 463 proteins already known to bind to 11 different
ligands. See Fig. 6 for these ligand structures. For each protein in
the dataset, surface vertices and normals were generated using the
GETPOINTS subroutine as in the previous tests. In the dataset, we
also have the PDB file of each protein, which not only contains the
coordinates of all atoms in the protein, but also those that belong
to the bound ligand. For each atom in the ligand structure, we have
selected the nearest surface vertex on the protein and annotated it
with the bound ligand type. The collection of all such points and
the 3DKDs of the patches around these points were all stored in a
‘patch database’ of 11,039 patches together with their annotations
of binding ligands. Thus, for each query pocket, a database search
was performed for each of the patches in the query pocket, and
a patch score was assigned to each patch based on the database
rankings.

We query total 497 pockets for this task. See Table 3 for the
number of query pockets for each ligand type. In Table 3, we have
also listed the number of patches that corresponds to a ligand
type. The number of patches associated with each pocket depends
on the size of the pocket. By the average size of a pocket, we mean
the radius of a sphere that encapsulates all surface vertices anno-
tated with that ligand type. As can be seen from Table 3, there is a
high correlation between the size of a typical pocket and the aver-

age number of patches included in that pocket. For each patch in
the query pocket, we compute a patch score based on the follow-
ing formula:

k ko5
Patch_score(p, F. k) = > (8¢ log(n/i)) - Z;L?(')F
= > ic1 01y F

where [(i) denotes the ligand type (e.g. AMP, ATP, etc.) of the i-
th closest patch to the query, n is the number of patches in the
patch database, and the function §y;F is equal to 1 if i-th patch
is of type F, and 0 otherwise. This formula is used before as a
pocket score for binding-ligand prediction in [19]. The first term
in (44) is to only involve k closest patches in the patch database
to each patch from the query pocket, assigning a higher score to
a patch with a higher rank. The second term is to normalize the
score by the number of patches of the same type F included in the
patch database so that the results are not biased in favor of highly
populated ligand types in the database.

For each of the patches that belong to the query pocket and k
values from 1 to 300, patch scores are computed and then summed
to obtain a unique pocket score for each ligand type F as follows:

(44)

Np
Pocket_score(P, F, k) = ZPatch_score(pj,F, k),
j=1

(45)

where p;, j=1,..., Np are the patches within the pocket P, and Np
is the number of such patches. Thus, a pocket has a certain number
of patches (see the last row of Table 3) and the score for a query
pocket P for a ligand type F is computed as the sum of the score
of each patch for the ligand F.

For each query pocket, we computed the pocket score for each
of the 11 ligand type in the database. The ligand with the high-
est Pocket_score was predicted to bind to the query pocket. We
then compared these 11 scores and looked at the largest one (Top
1) and the largest three (Top 3) to obtain the number of success-
ful predictions (see Table 4). For each ligand type, the number of
successful cases was divided by the number of query pockets of
that type in the pocket database to obtain prediction accuracies.
For each prediction, the results are shown for the k value which
maximizes the average prediction accuracy. It turned out that the
average prediction accuracy is maximized for small values of k as
shown in Table 4.

When we look at the average prediction accuracies, K5 performs
best (with 41.2% correct prediction) among the 3DKDs. For the in-
dividual ligand types, K3 performs best only for FUC and HEM,
while K4 gives the highest accuracies for AMP, ATP, FMN, FUC, GLC,
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Fig. 6. Eleven ligand structures known to bound to proteins in the benchmark dataset. The ligand structures are shown for adenosine monophosphate (AMP), adenosine
triphosphate (ATP), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), fucose (FUC), galactose (GAL), glucose (GLC), heme (HEM), mannose (MAN), nicotinamide
adenine dinucleotide (NAD), and palmitic acid (PLM). Images were rendered with UCSF Chimera [34].

Table 4
Binding ligand prediction accuracies (%) using 3DKDs and comparison with other methods.
Rank Descriptor k AMP  ATP FAD FMN FUC GAL GLC HEM MAN NAD PLM  Average
Top 1 3DKD—K3 6 114 20.5 48.8 204 85.7 20.0 259 91.1 45.5 333 18.2 38.2
3DKD—K4 2 15.9 27.3 329 224 85.7 26.7 29.6 801 48.5 30.8 273 38.8
3DKD—Ks 3 13.6 27.3 48.8 224 85.7 26.7 222 87.0 48.5 43.6 273 41.2
Pocket-Surfer 0.0 214 50.0 0.0 214 389 0.0 875 38.9 60.0 92.3 373
(3DZD+PS)
Patch-Surfer2.0 0.0 0.0 8.5 0.0 0.0 0.0 7.4 98.6 36.4 2.6 0.0 14.0
(3DZD)
Patch-Surfer2.0 341 204 780 4238 0.0 6.7 18.5 90.4 54.5 333 18.2 36.1
(3DZD+GD)
Random 8.6 8.6 16.2 9.6 13 2.8 53 29.2 6.4 7.6 2.0 8.9
Top 3 3DKD—K3 19 341 50.0 90.2 38.8 85.7 40.0 519 98.6 75.8 76.9 36.4 61.7
3DKD—K4 5 477 54.5 73.2 40.8 85.7 46.7 55.6 96.6 84.8 64.1 54.5 64.0
3DKD—Ks 4 455  56.8 768 490 857 667 519 959 78.8 71.8 364 650
Pocket-Surfer 778 100.0 90.0 16.7 85.7 80.6 80.0 100.0 722 1000 923 814
(3DZD+PS)
Patch-Surfer2.0 114 15.9 92.7 388 143 6.7 37.0 100.0 63.6 84.6 0.0 423
(3DZD)
Patch-Surfer2.0 61.4 59.1 90.2 79.6 0.0 80.0 889 96.6 939 94.9 45.4 71.8
(3DZD+GD)
Random 23.8 239 414 26.3 3.7 84 15.2 64.8 18.1 215 5.8 23.0
Table 5
Confusion table for Ks.
AMP  ATP FAD FMN FUC GAL  GLC HEM MAN NAD PLM
AMP 6 7 6 4 0 3 1 9 1 5 2
ATP 5 12 1 0 3 2 4 3 1 7 6
FAD 1 6 40 1 3 1 6 12 2 6 4
FMN 3 1 5 1 3 1 5 9 1 5 5
FUC 0 0 0 0 6 0 1 0 0 0 0
GAL 0 1 1 1 3 4 4 0 0 0 1
GLC 2 0 2 3 5 3 6 1 3 2 0
HEM 2 3 1 1 0 1 1 127 0 0 10
MAN 0 1 1 1 9 2 1 0 16 1 1
NAD 3 5 4 1 1 0 3 3 0 17 2
PLM 0 1 2 0 0 1 1 2 1 0 3

and MAN. Among the 3DKDs, K5 is the one giving the best average
prediction and highest prediction accuracies (including ties) for al-
most all ligand types except for AMP, GLC, and HEM. In Table 5,
we take a closer look at the results for K5 by forming the confu-
sion matrix with the true positives being along the diagonal. Ac-
cording to Table 5, seven AMP queries are predicted as ATP, and
similarly, five ATP queries are predicted as AMP. This may be ex-
cused due to similar shapes of AMP and ATP (only differing from
each other by two phosphate groups.) Other similar shaped pairs
can be observed among sugar molecules FUC, GAL, GLC, and MAN.
FUC as a query gives one false positive (GLC), while GAL as a query
is confused seven times with other sugar molecules (three times
with FUC and four times with GLC). GLC as a query is confused

five times with FUC, three times with GAL, and three times with
MAN. Similarly, MAN as a query gives twelve false positives from
the sugar group (FUC, nine times; GAL, two times; and GLC once).
Thus, the confusion between ligands by 3DKDs is quite reasonable,
capturing similarity of binding pockets of similar ligand molecules.
In the results for Top 3, K5 is still the one showing the best aver-
age performance among the 3DKDs, and giving the highest average
accuracy and comparable results for almost all ligand types.

In Table 4, we also provide a comparison of our approach with
a former binding prediction method named Pocket-Surfer [23]. In
Pocket-Surfer, 3DZDs are used as shape descriptors of a pocket. In
addition to shape information, the pocket size is also utilized in
Pocket-Surfer as a classification measure by an optimal weighted
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Table 6
Number of query pockets and prediction accuracies (%) of holo and apo proteins using 3DKD—Ks.
Number of Pockets ~Form  AMP  ATP FAD FMN  FUC GAL  GLC HEM MAN NAD Total
Holo 12 20 2 2 3 8 12 6 7 15 87
Apo 7 1 2 2 1 6 8 4 4 7 52
Rank Form  AMP  ATP FAD FMN  FUC GAL  GLC HEM MAN NAD  Average
Top 1 Holo 429 182 0.0 0.0 0.0 167 125 0.0 75.0 571 22.2
Apo 50.0 50.0 0.0 0.0 1000 500 333 500 71.4 86.7 491
Top 3 Holo 714 818 0.0 0.0 0.0 50.0 500 250 75.0 85.7 439

Apo 58.3 90.0 50.0 00

1000 750 833 833 714 86.7 69.8

average of scores from both shape and pocket size. In the current
work, we only used shape information from 3DKDs without em-
ploying the pocket size in the scoring functions. When Top 1 is the
classification criterion, 3DKDs predict better than Pocket-Surfer for
seven ligand types and the average prediction. With Top 3 classi-
fication, Pocket-Surfer performs better than 3DKDs (Ks) for eight
(out of eleven) ligand types. We believe that this is partly due
to the fact that 3DKDs employ shape information only, whereas
Pocket-Surfer also used pocket size, which is often critical to dis-
tinguish ligands of the different sizes. We also show results with
random prediction, in which each query pocket is scored based on
a randomly shuffled pocket database, averaged over 3000 random-
izations. It is clear that 3DKDs outperform the random prediction
in all cases.

In addition to Pocket-Surfer, Patch-Surfer2.0 [20] was also
benchmarked. Patch-Surfer2.0 is a surface patch-based binding lig-
and prediction program using 3DZDs. It implements several physic-
ochemical features such as electrostatic potential and hydropho-
bicity. To make the comparison fairer, we only used shape infor-
mation by turning off the physicochemical features. In Table 4,
3DKDs were compared with two variants of Patch-Surfer2.0. The
first variant used only 3DZDs describing shape information (Patch-
Surfer2.0 (3DZD)). The other one also considers the geodesic dis-
tance (GD) information between patch centers (Patch-Surfer2.0
(3DZD+GD)), which provides additional information of relative po-
sitions of patches in a pocket. When Top 1 accuracy was consid-
ered, 3DKDs performed on average better than Patch-Surfer2.0. In
Top 3 prediction results, 3DKDs showed a better overall perfor-
mance than Patch-Surfer2.0 (3DZD). Patch-Surfer2.0 improved its
performance when GD was added as a feature, showing higher av-
erage accuracy over 3DKDs.

We also tested 3DKDs on apo form of the pockets. An apo form
is a ligand-unbound conformation of a pocket and thus it may
have a different shape from the corresponding holo form, a ligand-
bound form. This test is to mimic a more realistic situation, where
a ligand needs to be identified from an apo form of a target pocket.
PDB files of apo forms of pockets of the 11 ligands were identi-
fied as follows: From PDB files of the 463 holo proteins, we ex-
tracted related PDB IDs from the records at REMARK 900 in the
PDB files. This resulted in 87 pockets in apo-form. Apo-form struc-
tures for PLM were not found in PDB. To define binding sites of
the apo structures, they were superimposed to their holo structure
partners using TM-align [35]. Coordinates of the binding ligand in
the holo structure were copied to the apo-form structure after the
superimposition. The benchmark results using 3DKDs on the apo-
form pockets using K5 are given in Table 6.

Overall, prediction accuracies for the apo-form pockets were
higher than the holo-form counterparts for both Top 1 and Top 3
prediction results. This is somewhat surprising because, in general,
finding ligands for apo-forms is more difficult than holo-forms.
But we observed the same trend in our earlier paper on Patch-
Surfer2.0 [20]. Some related works that take flexibility of structures
into account can be found in [36] using diffusion distances, and in
[37] combining local and global shape descriptors.

Table 7
Computational times (seconds) for 3DKDs (Ks).
Laptop PC
Descriptors 0.5789 0.2733
Pocket Score 0.4156 0.1112
Search 3.5763e-05 1.0907e-05

Table 7 shows the time taken for computing 3DKDs of order up
to 5 (Ks) as outlined in steps (1)-(8) in Section 5. The programs
were tested on two different platforms: a Windows laptop with
i3 CPU of 2.53 GHz and 4 GB memory using MATLAB 2009b 64-bit,
version 7.9, and on a Linux workstation with Xeon CPU of 3.60 GHz
and 94 GB memory and using MATLAB 2016b 64-bit, version 9.1.
On each computer, MATLAB is limited to a single computational
thread to perform its jobs. The first row of Table 7 shows the aver-
age CPU times spent on computing 3DKDs of order up to 5, where
the average is taken among 1608 local protein surface patches from
Test 1. The computation of 3DKDs can be done in half a second in
a laptop, whereas it finishes twice faster on the PC. In the sec-
ond row of Table 7, we also show the computational time from
the binding prediction test, assuming that the 3DKDs of all 11,039
patches in the patch database are precomputed and stored. Given
a typical query pocket, the time it takes to compute the pocket
scores in (45) for 11 ligand types and k =1,2,...,10 is about 0.4 s
in a laptop, and 3.7 times faster in the second platform.

7. Conclusion

In this paper, we have developed a novel set of local descriptors,
three-dimensional Krawtchouk descriptors (3DKDs), for identifica-
tion and comparison of local regions of 3D voxelized oriented sur-
faces. Our approach is based on 3D Krawtchouk moments. While
obtaining the rotation, size, and position independent invariants,
we have preserved the critical ability of Krawtchouk moments to
extract local features of a 3D surface from any region-of-interest.
The locality property is due to the 3D weight function given in the
definition of Krawtchouk polynomials. The weight contains three
parameters py, py, and pz, shifting the center of the local surface re-
gion along the x, y, and z-axes, respectively. We have noticed that,
for each triplet (px, py, pz), the coverage of the weight function is
different, which prevents Krawtchouk moments from being trans-
lation and rotation invariant. To overcome these problems, we have
computed the 3D weight function corresponding to (0.5,0.5,0.5)
(center of the 3D grid) and used it for other local regions by trans-
lating the graph of the weight function as needed. To achieve ro-
tational invariance, we utilized the surface normal at the vertex of
the local surface region and computed the eigenvectors of the lo-
cal inertia matrix. Among the eight possible different orientations,
we have chosen the one positioning the vertex normal in a fixed
octant in 3D space. We have also provided a detailed scheme for
efficient computation of 3D Krawtchouk descriptors.

We have tested the discriminative performances of 3DKDs on
three test problems. For each test, we have used K3, Ky, and Ks,



A. Sit, W.-H. Shin and D. Kihara/ Pattern Recognition 93 (2019) 534-545 545

namely 3DKDs of the order up to 3, 4, and 5, respectively. In the
first test, the results have been comparable, while K5 has the best
recognition accuracies for predicting the top match. The second
test demonstrated that Ks, among the 3DKDs, is the most robust
set of descriptors to small changes in patch location. We have also
compared 3DKDs with 3DZDs and 3DGHMs. 3DKDs show better
recognition accuracies than 3DZDs and 3DGHMs in all cases re-
ported. As the third test, we have employed 3DKDs for prediction
of ligand binding sites on protein surfaces. 3DKDs showed better
average performance than Pocket-Surfer and Patch-Surfer2.0 when
Top 1 prediction was considered. From the results of the second
and the third tests, we conclude that 3DKDs are more sensitive
than 3DZDs and 3DGHMs to subtle changes in shape. The results
on the binding ligand prediction were obtained by only consider-
ing geometric shape information of protein surface. Therefore, fur-
ther improvement is expected by integrating other features, such
as the electrostatic potential or other physicochemical properties,
to characterize protein surface regions, which is analogous to rep-
resenting color images rather than black-and-white images of pro-
tein surfaces.

Acknowledgments

This work was supported by the National Science Founda-
tion (DMS1614777 and DMS1614661). DK also acknowledges sup-
port from National Institutes of Health, (ROIGM123055) and the
National Science Foundation (CMMI1825941) and the Purdue Insti-
tute for Drug Discovery. The authors would like to thank Xiaolei
Zhu for the help in voxelizing protein surfaces and Juan Esquivel-
Rodriguez for the help in running LZerD software.

References

[1] J. Zuni¢, P.L. Rosin, V. 1li¢, Disconnectedness: a new moment invariant for mul-
ti-component shapes, Pattern Recognit. 78 (2018) 91-102.

[2] R. Benouini, I. Batioua, K. Zenkouar, A. Zahi, H. El Fadili, H. Qjidaa, Fast and
accurate computation of racah moment invariants for image classification, Pat-
tern Recognit. 91 (2019) 100-110.

[3] D.E. Atrevi, D. Vivet, F. Duculty, B. Emile, A very simple framework for 3d hu-
man poses estimation using a single 2d image: comparison of geometric mo-
ments descriptors, Pattern Recognit. 71 (2017) 389-401.

[4] L. Luciano, A.B. Hamza, Deep learning with geodesic moments for 3d shape
classification, Pattern Recognit. Lett. 105 (2018) 182-190.

[5] M.-K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inf. The-
ory 8 (2) (1962) 179-187.

[6] EA. Sadjadi, E.L. Hall, Three-dimensional moment invariants, IEEE Trans. Pat-
tern Anal. Mach. Intell. 2 (1980) 127-136.

[7] X. Guo, Three dimensional moment invariants under rigid transformation,
in: International Conference on Computer Analysis of Images and Patterns,
Springer, 1993, pp. 518-522.

[8] C.-H. Lo, H.-S. Don, 3-D moment forms: their construction and application to
object identification and positioning, IEEE Trans. Pattern Anal Mach. Intell. 11
(10) (1989) 1053-1064.

[9] J. Galvez, M. Canton, Normalization and shape recognition of three-dimen-
sional objects by 3d moments, Pattern Recognit. 26 (5) (1993) 667-681.

[10] A.G. Mamistvalov, n-Dimensional moment invariants and conceptual mathe-
matical theory of recognition n-dimensional solids, IEEE Trans. Pattern Anal.
Mach. Intell. 20 (8) (1998) 819-831.

[11] J. Flusser, J. Boldys, B. Zitovd, Moment forms invariant to rotation and blur in
arbitrary number of dimensions, IEEE Trans. Pattern Anal Mach. Intell. 25 (2)
(2003) 234-246.

[12] A. Sit, D. Kihara, Comparison of image patches using local moment invariants,
IEEE Trans. Image Process. 23 (5) (2014) 2369-2379.

[13] P-T. Yap, R. Paramesran, S.-H. Ong, Image analysis by Krawtchouk moments,
[EEE Trans. Image Process. 12 (11) (2003) 1367-1377.

[14] A. Mademlis, A. Axenopoulos, P. Daras, D. Tzovaras, M.G. Strintzis, 3D con-
tent-based search based on 3D Krawtchouk moments, in: Third Interna-
tional Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT'06), IEEE, 2006, pp. 743-749.

[15] P. Xiang, C. Qihua, L. Zhi, Content-based 3D retrieval by Krawtchouk moments,
in: International Conference Image Analysis and Recognition, Springer, 2006,
pp. 217-224.

[16] A. Mesbah, M. El Mallahi, Z. Lakhili, H. Qjidaa, A. Berrahou, Fast and accu-
rate algorithm for 3D local object reconstruction using Krawtchouk moments,
in: 2016 5th International Conference on Multimedia Computing and Systems
(ICMCS), IEEE, 2016, pp. 1-6.

[17] J. Flusser, T. Suk, B. Zitov4, 2D and 3D image analysis by moments, John Wiley
& Sons, 2016.

[18] M. Novotni, R. Klein, 3D Zernike descriptors for content based shape retrieval,
in: Proceedings of the Eighth ACM Symposium on Solid Modeling and Appli-
cations, ACM, 2003, pp. 216-225.

[19] L. Sael, D. Kihara, Detecting local ligand-binding site similarity in nonhomol-
ogous proteins by surface patch comparison, Proteins Struct. Funct. Bioinf. 80
(4) (2012) 1177-1195.

[20] X. Zhu, Y. Xiong, D. Kihara, Large-scale binding ligand prediction by improved
patch-based method Patch-Surfer2.0, Bioinformatics 31 (5) (2015) 707-713.

[21] M. Rosenberg, A. Goldblum, Computational protein design: a novel path to fu-
ture protein drugs, Curr. Pharm. Des. 12 (31) (2006) 3973-3997.

[22] W.-H. Shin, CW. Christoffer, ]. Wang, D. Kihara, PL-Patchsurfer2: improved lo-
cal surface matching-based virtual screening method that is tolerant to target
and ligand structure variation, . Chem. Inf. Model. 56 (9) (2016) 1676-1691.

[23] R. Chikhi, L. Sael, D. Kihara, Real-time ligand binding pocket database search
using local surface descriptors, Proteins Struct. Funct. Bioinf. 78 (9) (2010)
2007-2028.

[24] E.G. Karakasis, G.A. Papakostas, D.E. Koulouriotis, V.D. Tourassis, Generalized
dual hahn moment invariants, Pattern Recognit. 46 (7) (2013) 1998-2014.

[25] G. Zhang, Z. Luo, B. Fu, B. Li, J. Liao, X. Fan, Z. Xi, A symmetry and bi-recur-
sive algorithm of accurately computing krawtchouk moments, Pattern Recog-
nit. Lett. 31 (7) (2010) 548-554.

[26] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The Princeton shape benchmark,
in: Proceedings Shape Modeling Applications, 2004, IEEE, 2004, pp. 167-178.

[27] S. Patil, B. Ravi, Voxel-based representation, display and thickness analysis of
intricate shapes, in: Ninth International Conference on Computer Aided Design
and Computer Graphics (CAD-CG’05), IEEE, 2005, pp. 6-pp.

[28] H.M. Berman, ]. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig,
LN. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Res. 28 (1)
(2000) 235-242.

[29] D. La, ]. Esquivel-Rodriguez, V. Venkatraman, B. Li, L. Sael, S. Ueng, S. Ahrendt,
D. Kihara, 3D-SURFER: Software for high-throughput protein surface compari-
son and analysis, Bioinformatics 25 (21) (2009) 2843-2844.

[30] J. Esquivel-Rodriguez, V. Filos-Gonzalez, B. Li, D. Kihara, Pairwise and Mul-
timeric Protein-Protein Docking Using the LZerD Program Suite, in: Protein
Structure Prediction, Springer, 2014, pp. 209-234.

[31] B. Yang, T. Suk, M. Dai, J. Flusser, G.A. Papakostas, 2D and 3D image analy-
sis by Gaussian-Hermite moments, Moments Moment Invariants-TheoryAppl.
1 (2014) 143-173.

[32] B. Yang, M. Dai, Image reconstruction from continuous Gaussian-Hermite mo-
ments implemented by discrete algorithm, Pattern Recognit. 45 (4) (2012)
1602-1616.

[33] A. Sit, J.C. Mitchell, G.N. Phillips, S.J. Wright, An extension of 3D Zernike
moments for shape description and retrieval of maps defined in rectangular
solids, Comput. Math. Biophys. 1 (2013) 75-89.

[34] E.E. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng,
T.E. Ferrin, UCSF Chimeraa visualization system for exploratory research and
analysis, J. Comput. Chem. 25 (13) (2004) 1605-1612.

[35] Y. Zhang, ]. Skolnick, TM-Align: a protein structure alignment algorithm based
on the TM-score, Nucleic Acids Res. 33 (7) (2005) 2302-2309.

[36] Y.-S. Liu, Q. Li, G.-Q. Zheng, K. Ramani, W. Benjamin, Using diffusion distances
for flexible molecular shape comparison, BMC Bioinform. 11 (1) (2010) 480.

[37] A. Axenopoulos, D. Rafailidis, G. Papadopoulos, E.N. Houstis, P. Daras, Similarity
search of flexible 3D molecules combining local and global shape descriptors,
IEEE/ACM Trans. Comput. Biol. Bioinform. 13 (5) (2016) 954-970.

Atilla Sit is currently an Assistant Professor with the Department of Mathematics
and Statistics, Eastern Kentucky University, Richmond, KY, USA. He received the B.S.
degree from Middle East Technical University, Ankara, Turkey, the M.S. degree from
Bogazici University, Istanbul, Turkey, and the Ph.D. degree from lowa State Univer-
sity, Ames, IA, USA, in 2001, 2005, and 2010, respectively. His current research inter-
ests include image analysis, orthogonal systems, special functions, protein structure
determination and classification.

Woong-Hee Shin is currently a Post-Doctoral Researcher of the Kihara Laboratory
with the Department of Biological Sciences, Purdue University, West Lafayette, IN,
USA. He received the B.S. and Ph.D. degrees from the Seoul National University,
South Korea, in 2008 and 2014, respectively. His current research topics are devel-
oping a structure-based virtual screening program using molecular surface descrip-
tors and a ligand conformation sampling method using pseudo pockets.

Daisuke Kihara is currently a Professor with the Department of Biological Sciences
and the Department of Computer Science, Purdue University, West Lafayette, IN,
USA. He received the B.S. degree from the University of Tokyo, Japan, in 1994, and
M.S. and Ph.D. degrees from Kyoto University, Japan, in 1996 and 1999, respectively.
His research projects include biomolecular shape comparison, computational drug
design, protein tertiary structure prediction, protein-protein docking. He is named
Showalter University Faculty Scholar from Purdue University in 2013.



	Three-dimensional Krawtchouk descriptors for protein local surface shape comparison
	1 Introduction
	2 Krawtchouk polynomials
	3 Three-dimensional weighted Krawtchouk moments
	4 3D Krawtchouk descriptors
	5 Computation of descriptors
	6 Results and discussion
	6.1 Local comparison Test I
	6.2 Local comparison Test II
	6.3 Comparison with other descriptors
	6.4 Binding ligand prediction

	7 Conclusion
	Acknowledgments
	References


