Computer-Aided Design 102 (2018) 12-21

journal homepage: www.elsevier.com/locate/cad

Contents lists available at ScienceDirect

Computer-Aided Design

Point cloud resampling using centroidal Voronoi tessellation methods m

Zhonggui Chen *¢, Tieyi Zhang?, Juan Cao ™“*!, Yongjie Jessica Zhang ¢, Cheng Wang*

Check for
updates

2 Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen 361000, China

b School of Mathematical Sciences, Xiamen University, Xiamen 361000, China

¢ Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

ARTICLE INFO ABSTRACT

Keywords:

Point cloud

Resampling

Centroidal voronoi tessellation
Restricted voronoi cells

This paper presents a novel technique for resampling point clouds of a smooth surface. The key contribu-
tion of this paper is the generalization of centroidal Voronoi tessellation (CVT) to point cloud datasets
to make point resampling practical and efficient. In particular, the CVT on a point cloud is efficiently
computed by restricting the Voronoi cells to the underlying surface, which is locally approximated

by a set of best-fitting planes. We also develop an efficient method to progressively improve the
resampling quality by interleaving optimization of resampling points and update of the fitting planes. Our
versatile framework is capable of generating high-quality resampling results with isotropic or anisotropic
distributions from a given point cloud. We conduct extensive experiments to demonstrate the efficacy and
robustness of our resampling method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of modern scanning and data
acquisition technologies, a huge amount of point clouds on the
shape of complicated geometric objects are routinely collected
by 3D scanners at an explosive speed. 3D point data is widely
used for a variety of applications, such as reverse engineering,
prototyping, and entertainment industry. Raw point clouds usu-
ally involve noise, redundancy, incompleteness, and uneven dis-
tributions, negatively affecting the performance of downstream
operations. Hence, resampling the acquired raw data into a noise-
free dataset, which is evenly distributed and well represents the
underlying shape, has become an important preprocessing stage
for point cloud based geometric processing applications.

Most recent attempts have been focused on providing high-
quality isotropic point cloud resampling techniques. In many ex-
isting methods, the quality of created sampling data points heavily
relies on the input data. Uneven distributions are usually intro-
duced in the resampling results when the input point sets are lo-
cally sparse or distribute unevenly. Anisotropic resampling, which
aims to generate point distributions following given tensor fields
such as curvature, provides a more compact representation of the
underlying surface. Hence, anisotropic point cloud resampling is

ool of Mathematical Sciences, Xiamen University,

a! pdfelement

1.edu.cn (J. Cao).
hile Zhonggui Chen and Juan Cao were visiting
hgineering, Carnegie Mellon University.

The Trial Version

https://doi.org/10.1016/j.cad.2018.04.010
0010-4485/© 2018 Elsevier Ltd. All rights reserved.

more desired in many applications, such as surface approximation
and free-from surface modeling.

As a counterpart of point cloud resampling, surface remeshing
has received considerable attention over the past few years, and
there has been a flourishing of research in computer graphics
and numerical computation community on high quality isotropic/
anisotropic remeshing. Among them, centroidal Voronoi tessella-
tion (CVT) is a popular technique that has been successfully ap-
plied to isotropic/anisotropic remeshing. By minimizing a tailored
energy function, CVT based remeshing methods are capable of
producing well-shaped elements while preserving the given shape
faithfully. Despite the success of CVT methods in remeshing, there
remain difficulties in extending them to point cloud resampling.
In CVT based surface remeshing techniques, the restricted Voronoi
diagram (RVD), i.e., the intersection between a 3D Voronoi diagram
and an input surface mesh, is required. Nevertheless, the underly-
ing surface of a point cloud is generally unknown in advance. We
notice that the Voronoi diagram can be computed locally as long
as the underlying local surface is available. Based on this observa-
tion, we can approximate the underlying surface by using tangent
planes and compute the Voronoi diagram restricted on them. This
approximation gives continuous geometric regions rather than a
discrete set of points for the computation of CVT, and enables us
to apply the CVT methods to point cloud resampling. Based on
the above idea, we propose a versatile CVT-based framework for
uniform/weighted or isotropic/anisotropic point resampling in this
paper; see Fig. 1. To the best of our knowledge, this is the first
study to address the problem of anisotropic point cloud resampling.
The specific contributions of this paper are as follows:

https://doi.org/10.1016/j.cad.2018.04.010
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2018.04.010&domain=pdf
mailto:Juancao@xmu.edu.cn
https://doi.org/10.1016/j.cad.2018.04.010

Z. Chen et al. | Computer-Aided Design 102 (2018) 12-21 13

(d) (e

Fig. 1. CVT-based isotropic and anisotropic resampling results of an unstructured
point could. (a) Input point cloud; (b) uniform resampling; (c) weighted resampling;
(d) anisotropic resampling; and (e) L, resampling result.

e We provide an extension of the CVT energy function defined
on point clouds. The surface represented by a point cloud
is approximated by a set of tangent planes, and the RVD
is computed as the intersection of the Voronoi diagram of
resampling points and tangent planes. Specifically, a regular
octagon centered at a resampling point is used to represent
the tangent plane. The size of the octagon is adaptively
determined to enable fast computation of RVD and robust
evaluation of our energy function.

e Effective optimization methods coupled with an improved
initialization algorithm are presented to minimize the en-
ergy function efficiently, leading to high-quality resampling
results with isotropic or anisotropic distribution. By con-
verting the discrete point cloud into a set of continuous
planes, the Lloyd’s method is used to generate evenly spaced
points according to a given density function, despite the
sparse and uneven distributions in the input point cloud.
The BFGS method, which cannot be directly applied to min-
imization of the energy function, is tactfully incorporated
into our optimization framework to generate anisotropic
resampling results.

e Ourresampling method can effectively remove noise and fill
holes or preserve boundaries of the point cloud. The com-
putation time mainly depends on the number of resampling
points, thus it scales up very well to input datasets with mil-
lions of points. Furthermore, owing to the dual relationship
between the restricted Voronoi diagram and the restricted
Delaunay triangulation, our method naturally yields a high-

quality surface mesh from the resampling points, providing

pr remeshing the underlying surface with-

e reconstruction.

a pdfelement
s paper is organized as follows. After re-
s work in Section 2, we give our objective
e then describe details of our algorithm
1n Section 4. Implementation details and experimental results are
shown in Section 5. Finally, we close with discussions and limita-
tions in Section 6.

The Trial Version

2. Related work

Here, we only review some closely related resampling methods
for point clouds and the CVT methods. For a more comprehensive
review on methods of filtering 3D point clouds, we refer the readers
to[1].

Simplification methods. Simplification is a commonly used tool
for efficiently reducing abundances of geometric data. There have
been a lot of studies focusing on mesh simplification [2,3], and
some analogous methods can be applied to point cloud simplifi-
cation [4]. The goal of point cloud simplification is to find a point
cloud X with a target sampling rate that minimizes the distance
between the surfaces represented by X and the input point dataset
P. However, due to the discrete nature of the data, it is not easy to
measure the distance between two point clouds. Song and Feng [5]
approximated the local shapes of a point cloud by tangent planes,
and defined the objective function as the sum of squared distances
between the resampled points and the tangent planes, which is
then minimized by iteratively clustering the data and selecting
a representative point for each cluster. Based on a mean-shift
clustering scheme, a curvature-aware resampling method was pro-
posed [6]. To improve the efficiency and quality of simplification, a
hierarchical cluster tree was adopted in [7]. Shi et al. [8] employed
the k-means clustering algorithm to group points together and
choose representative points. Another error metric based on a
Hausdorff distance of principal curvature vectors was proposed
in [9]. Point cloud simplification mainly focuses on how to preserve
the surface shape represented by the point cloud, rather than the
distribution of the output points, leading to a low level of local
uniformity in the resampling results.

Consolidation methods. The raw data points acquired by a scan-
ner usually contain noises and outliers, making the downstream
reconstruction difficult. Consolidation is a process to massage the
point set into the surface where it was sampled from, by removing
noises and outliers [10-12]. These consolidation methods usually
resample point sets to avoid point redundancy or under-sampling
problem. Alexa et al. [10] reconstructed a surface from a point
set using the moving least squares method, where the point with
the smallest contribution to the reconstructed shape is repeatedly
removed. Lipman et al. [13] proposed a locally optimal projec-
tion (LOP) method, which approximates the shape of the raw
dataset by a number of uniformly distributed points. To deal with
non-uniform distributions in raw data, Huang et al. [14] devel-
oped a weighted locally optimal projection operator (WLOP). Liao
et al. [15] further considered both spatial and geometric feature
information of the point clouds and proposed a feature-preserving
locally optimal projection operator. Another edge-aware point set
resampling method was given in [16]. It first resamples away from
the edges using an anisotropic LOP operator, and then progres-
sively resamples the points near the edges. Preiner et al. [17]
presented a continuous formulation of the WLOP operator and
achieved a significant acceleration. LOP operator and its variants
work on adequately dense raw datasets, but they suffer more or
less from non-uniform distributions. In addition, they generally
target for an even point distribution and do not have any control
over density distribution of the resampling points.

Sampling methods. Point sampling is one of the core algorithms
in computer graphics. A lot of methods have been proposed to
generate distributions with blue noise properties on a meshed
surface [18-21]. Some of them can also be directly applied to re-
sampling point clouds lying near a surface [18,20]. While blue noise
properties are desirable in many applications such as stippling and
rendering, in the context of surface remeshing, uniform distribu-
tions are generally preferred for generating high-quality isotropic

14 Z. Chen et al. / Computer-Aided Design 102 (2018) 12-21

remeshing results. A recent point cloud resampling method based
on the Gaussian-weighted graph Laplacian [22] is capable of mak-
ing the resultant point distribution conformal to a target density
distribution while achieving good local uniformity between points.
However, this algorithm runs in O(N log N), where N is the number
of the resampled points. The time increases significantly when
N gets large. In this paper, we propose an efficient method that
constructs high-quality isotropic/anisotropic resampling results of
a point cloud in a time complexity depending only linearly on the
target number of points.

CVT methods. A CVT is a particular type of Voronoi tessellation
whose generating points coincide with the centroids of the corre-
sponding Voronoi regions. It has been used in a wide scope of appli-
cations, ranging from computational sciences to engineering [23].
In computer graphics, CVT based methods have been a promising
tool for generating high-quality surface and volume meshes. The
Lloyd’s method [24] is the most widely used to generate CVTs, due
to its simplicity. But it converges slowly for large-scale problems. A
quasi-Newton method was adopted in [25] to speed up the rate of
convergence. CVT methods can also be applied to surface mesh-
ing by resorting to parameterization [26] or efficient algorithms
of computing Voronoi diagrams restricted to surfaces embedded
in 3D [27] or high dimensional spaces [28]. By incorporating a
tensor field and an L, norm into the CVT objective function, the
optimized Voronoi cells align their axes with the given tensor field,
resulting in an anisotropic surface/volume mesh [29]. CVT methods
relying on the exact computation of restricted Voronoi diagrams
on continuous domains are capable of achieving well-separateness
between points in the resultant point distribution. On the other
hand, discrete CVTs, such as k-means clusters, are greatly affected
by non-uniform distributions in raw data.

In this paper, the restricted Voronoi diagram on a point cloud
is computed as the intersection between the Voronoi cells of the
resampling points and a set of disks centered at the resampling
points. Thus existing CVT objective functions can be defined and
efficiently minimized over point clouds. It removes the effect of
non-uniform distributions in point clouds and leads to high-quality
isotropic/anisotropic resampling results.

3. Formulation of objective function

Let X = {x;}I_, be a set of seed points on a given domain
£ C R4, then a centroidal Voronoi tessellation corresponds to a
minimizer of the objective function, which has a general formula-
tion as follows:

B =Y [povix x)do, (1)
i=1 7%

where £2; = V(x;) N £2 is the Voronoi cell V(x;) of x; restricted to
the domain £2, p(X) is a density function, and ¥ (X, y) is a metric
defining distance between points x and y. The minimizers of the
CVT objective function correspond to different point distributions,
depending on the choice of the distance metric (-, -). A typical
case is (x,X;) = |x — x||%, which results in isotropic point
distributions on £2. For more details on the theory of CVT, we refer
readers to a comprehensive survey paper [23].

3 i ion of CVTs in the context of point cloud
forward, as the underlying surface is
is paper, we settle for computing the
Ils and an approximation of the under-
we locally approximate the underlying
ts tangent plane t;, which is computed
as the least squares ritting plane of the k-nearest neighbors of x; in
the input point cloud. Then, we locally compute the restrict Voronoi
cell (RVC) for each point x; as the intersection of the 3D Voronoi

a pdfelement

The Trial Version

Input: an ’ Initial sampling
unstructured
point cloud <0
’ Compute tangent
planes
J<0
Construct RVC
Optimize point A+ i+
positions
T =
Yes
Pull back to
the point cloud
Output:
resampling Yes i>T 9 No
points P

Fig. 2. Algorithm overview of CVT-based point resampling.

cell V(x;) and its tangent plane 1;. The CVT objective function is
therefore modified as follows:

E(X):ign;/v

In the next sections, we will employ different distance metrics
to generate desired point distribution of resampling results and
describe our algorithms of optimizing the corresponding objective
functions.

PX)Y (X, xi)do . (2)

(xi)N7j

4. Algorithm of CVT-based point resampling

Our goal is to provide a versatile framework for generating a
point cloud with an isotropic/anisotropic distribution while well
approximating the underlying shape of a given raw point dataset.
Our CVT-based algorithm takes an unstructured point cloud P =
{p:}, as input, with a density function p(x), and a desired point
number n. Starting from the raw point cloud, our algorithm pro-
ceeds as shown in Fig. 2.

(1) In the initialization stage, n points {x;}]_; are randomly
sampled from the raw point cloud according to a density
function.

(2) For each sampling point x;, we estimate its tangent plane
by computing the least squares fitting plane of its k-nearest
data points.

(3) We locally compute Voronoi cells restricted to the tangent
planes.

(4) Sampling points are relocated on each local tangent plane
suggested by the Lloyd’s method or a gradient-based opti-
mization method. We repeat Steps (3)—(4) Jmax times with-
out changing local tangent planes.

(5) Asthe updated sampling points may lie a litter far away from
the underlying surface, these points are pulled back onto the
underlying surface.

The distribution of the resampling points is gradually improved
by iteratively running Steps (2)-(5). In other words, point positions
and their tangent planes are alternatively updated. The algorithm
terminates upon either of the following two criteria: convergence
occurs, i.e., the maximum distance moved by any point in an itera-
tion falls below a preset threshold, or a predetermined maximum
number of iterations is reached. Details of the algorithm are given
as follows.

Z. Chen et al. | Computer-Aided Design 102 (2018) 12-21 15

(b)

(d) (e

Fig. 3. Initial sampling. (a) Input point cloud with 35k points; (b) initial sampling result by randomly choosing 5k points from (a); (c) an optimized result after applying 10
Lloyd’s iterations to (b); (d) initial sampling result according to the areas of RVCs; and (e) a result after applying 10 Lloyd’s iterations to (d).

4.1. Initialization

A straightforward initialization of our algorithm is to randomly
sample n points from the point cloud P, which is greatly affected
by the distribution of the input points and results in an initial point
set that is inconsistent with the target density function p(x); see
Fig. 3(b) for an example. To speed up the convergence of our iter-
ative algorithm, we here propose a more sophisticated algorithm
for initialization as follows.

1. A point set {x;}_, of size n is randomly chosen from the
input data P and its 3D Voronoi diagram is computed.

2. For each point x;, we compute its tangent plane ;. In par-
ticular, for a point x;, we find its k nearest neighbors {1),-]}]"‘=1
from the point cloud P and compute the plane t; that best
fits the samples {p;, }J’.‘Zl in the least-squares sense.

3. We compute the restriction of Voronoi cell V(x;) onto the
corresponding tangent plane 7;. Note that, the computation
of RVC is non-trivial, whose details will be given in Sec-
tion 4.2. If no confusion arises, we will use the same notation
7; for both the tangent plane and the RVC (i.e., the cropped
tangent plane) of the point X;.

4. The weighted area for each RVC t;, denoted by A, (1), is
computed as A, (7)) = |t,-|Zj’-<:1p(p,-j)/k, where |z;| is the
area of RVC t;. Then, n points are randomly sampled from
the RVC set {7;}i_;, with the probability of selecting a RVC ;
proportional to A, (ti)/>_ i Aw(Ti).

5. The newly sampled points may deviate from the underlying
surface, and will be pulled back to the surface according
to the method described in Section 4.3. The pulled back
point set, also denoted by {x;}!_,, will be the initial sampling
points for our method.

Note that, our initialization method solely relies on the density
functions. Hence, the distribution of the resampling points is inde-
pendent of the distribution of the input data points. Fig. 3 shows re-
sampling results with a constant density function. We can see that
the points obtained by random initialization are clustered heavily
on the ear region of the model, even after applying Lloyd relaxation.
By contrast, our method generates a better initialization, leading
to a more uniform distribution after applying only a few Lloyd
iterations.

loi cells, one needs to first build the 3D
of the point set {x;}!_,. In this paper, we
hod [28] to compute the RVD for every
e high computational cost associated with

omputing the sD voronoi cells of the resampling points. The
algorithm is based on the observation that Voronoi cell V(x;) is the
intersection of half-spaces, bounded by the bisectors of point pairs

a pdfelement

The Trial Version

Fig. 4. RVC computation: data points and resampling points are marked in gray
and blue, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(xi, X;). In particular, RVD of x; is obtained by clipping the tangent
plane 7; by the bisectors of all point pairs (X;, X;),j € 1,...,n,j # i.

In our implementation, the tangent plane t; of X; is replaced
with an octagon of radius r and centered at x;, denoted by §],
where 1 is set to be the average distance between X; and its six
nearest neighbors in resampling set X; see Fig. 4. The benefits of
this substitution are twofold.

(1) It makes the computation of the energy function stable.
Since some Voronoi cells are unbounded, it may lead to a
RVC with infinite area if we use the unbounded tangent
plane for the RVC computation. As shown in Fig. 4, the
tangent plane 7; could be nearly parallel to the bisector
of (x;, X;) on highly curved regions, which will result in a
RVC with a very large area and an improper approximation
of the underlying surface. Thus it will be difficult or even
impossible to compute and minimize the energy function
in Eq. (2).

(2) It accelerates the aforementioned clipping algorithm. When
implementing the clipping algorithm, we only need to clip
the octagon &/ by bisectors of x; and the points x; with
distances less than 2r, as the rest bisectors have no con-
tribution to the clipping results. We use the NanoFLANN
library [30,31] for the efficient neighbor searching within a
radius bound.

Note that the computation of a RVC is independent on the
others, thus it can be easily parallelized. RVCs shown in Fig. 5 are
obtained by computing the intersections between the disks §] and
their corresponding Voronoi cells. The RVCs may not cover the
underlying surface of the input point cloud when the points are
unevenly distributed, but they will gradually reduce the gaps while
the point positions are being optimized.

16 Z. Chen et al. / Computer-Aided Design 102 (2018) 12-21

0.68 || ECX)
0.66
0.64
0.62

0.6 D
0.58
0.56
0.54

Iteration no.
20 40 60 80 100

(©

0.52
0

Fig. 5. Lloyd’s method. (a, b) The RVCs before and after Lloyd’s relaxation; and (c)
the plot of CVT energy function versus the iteration number of Lloyd’s relaxation.

4.3. Optimization

This section describes the minimization of energy functions
associated with different distance metrics (-, -) defined in Sec-
tion 3. In particular, the Lloyd’s method and the BFGS method are
adopted to generate isotropic and anisotropic resampling results,
respectively.

4.3.1. Lloyd’s method

One prevalent method used for computing isotropic CVTs is the
Lloyd’s method [24], which interleaves moving each point to the
centroid of the corresponding Voronoi cells and recomputing the
Voronoi tessellation, until certain stopping criterion is met. We
follow a similar approach by alternatively optimizing the point
positions and updating RVCs. However, we update the points in
a slightly different way. In traditional restricted CVT computation,
the centroids of restricted Voronoi cells are restricted to a given
mesh/surface. However, the underlying surface is unknown in our
application. A straightforward way of computing RVC on an input
point cloud, i.e., the k-means clustering method [8], is to collect
the points of the input data inside a Voronoi cell and compute
their discrete centroid, leading to sampling results heavily relying
on the distribution of the input data. To achieve better results, we
compute the centroid of each Voronoi cell restricted to a tangent
plane:

d
fV(x,-)mr,- px)xdo (3)

0; =

fV(X,‘)I"It,‘ ,O(X)dO' .

The point X; is then moved to 0;. Note that, the density function p(x)
is only defined over the input point cloud. To compute the integral
terms in the above equation, we need first extend the definition
of the density function to RVCs. To do this, we approximate the
density at each vertex of RVC by the average of densities at its k-
nearest points in the input point cloud. After triangulating each
RVC, the density at any point on a RVC can then be computed
by linear interpolation. With the interpolated density function in
hand the 1ntegral terms in Eq. (3) can be computed numerically by

gagl triangles, e.g., the Gaussian quadrature

B pdfelement

obtained above is on the tangent plane,
underlying surface. We therefore pull
nderlying surface. In partlcular we find
a new plane, Stlll denoted as ;, that best fits x;’s k-nearest points
from the input point cloud. Then, x; is projected onto the plane

The Trial Version

7;. Once the positions of all x; are updated, we will compute the
Voronoi cells restricted on the new tangent planes and start the
next iteration until convergence or the termination condition is
met.

Examples of Lloyd’s relaxation are shown in Figs. 3 and 5. Fig. 5
shows a plot of the CVT objective function versus the iteration
number of Lloyd’s relaxation. We can see that the CVT objective
function generally decreases, with oscillations occurring after up-
dating tangent planes and RVCs. This is because the estimated tan-
gent planes do not change smoothly with respect to the positions
OfX,'.

4.3.3. BFGS method

Lloyd’s relaxation is a gradient decent algorithm with linear
convergence, and there are many more advanced ways of nu-
merical optimizations for CVT energy functions. Among them, the
BFGS method [32], which achieves superlinear convergence, is the
most commonly used one for accelerating the CVT computation.
Traditional Newton’s method, though converging quadratically, is
not suitable for CVT computation, due to the prohibitive cost of
computing and storing the inverse Hessian matrix. Whereas, BFGS
belongs to the family of quasi-Newton methods, which uses accu-
mulated gradient information to approximate the inverse Hessian.
However, BFGS cannot be directly used for the acceleration of the
minimization of our energy function. It can be applied successfully
only if the energy function is at least C? continuous. As pointed
out above, the CVT objective function in Eq. (2) is not smooth, as
the integral domains change discontinuously. This phenomenon
is radically different from the case of the classical CVT energy
optimization. As a C? continuous function, the CVT energy can be
monotonically optimized by both the Llody’s relaxation and the
BFGS methods.

Although the BFGS method is not suitable for improving the
convergence rate of the Lloyd’s method in our case, we still resort
to it for the minimization of the anisotropic CVT energy function
when the Lloyd’s method is no longer applicable. To facilitate the
discussion, we let p(x) = 1 and assume that the distance metric
in Eq. (2) has the form y(x,y) = |[M(x)(x —y)|I, where ||.|,
denotes the L, norm and M(X) is a given matrix defining a tensor
field G(x), i.e., G(x) = M(x)"M(x). Then, the energy function (2)
becomes:

n

=y [MO0~ Xl 0

The minimization of the above energy function leads to an
anisotropic sampling with respect to the tensor field G(x). In order
to run the BFGS method for the minimization, we make the above
energy function a smooth function by fixing the tangent planes
during the iterations. That is, we only use the BFGS method to
compute the new point positions and their corresponding RVCs on
the current tangent planes. After we update the tangent planes, we
restart the BFGS method. Thus, it is not necessary to run the BFGS
method until convergence as we only need to get an intermediate
result. In our experiments, we set the maximum number of itera-
tions for the BFGS method to be 5, i.e. Jj,qx = 5 in our algorithm as
shown in Fig. 2. A backtracking line search is used to determine a
step size that reduces the objective function.

Computing E(x) and VE(x). The BFGS method requires the eval-
uations of the energy function E(x) given in Eq. (4) and its gradient
VE(x). Here we give the closed-form expressions for computing
E(x) and VE(x), which are the counterparts of the computation of
anisotropic CVTs on surface meshes [29] now applied to tangent
planes. We refer the readers to [29,33] for the detailed derivations.

Z. Chen et al. | Computer-Aided Design 102 (2018) 12-21 17

Fig.6. Computing E(x) and VE(x) on arestricted Voronoi cell. The RVC of x; (marked
in orange) consists of a set of triangles obtained by clipping a octagon (marked in
gray), with bisector planes between x; and its neighbor points. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Recall that the RVCs are the intersections between the 3D
Voronoi cells and the octagons lying on tangent planes and cen-
tered at the resampling points. Each RVC is a set of triangles ob-
tained by using the clipping method [28]. Suppose T is one triangle
of the RVC of x; with vertices {c1, ¢3, ¢3} as shown in Fig. 6. We
assume that the matrix M(x) is constant over T, denoted by Mr,
and is computed by averaging the corresponding matrices at the
vertices of T. Then the energy E(X) over T is given by:

Er(X) = / I (x — x)l2do

IT|
=353 > T —
(2)0‘+/3+)/—P

u = Mr (Cj—Xi),
Uy Uy = [X1X2, Y1Y2. 2122],
“ = ukxu*---*u(xtimes),
u =x+y+z.

where

The gradient of Er(X) relative to X is obtained by the chain rule:
dET(X,', Cq, Cy, C3) . dET dET dC] dET dC2 dET dC3
dx T dx; de; dX | dey dX | des dX

Finally, we get the energy E(x) and its gradient VE(X) by summing
the contributions Er(X) and VE(x) of each triangle T.

5. Implementation and results

In this section, we present the results of our CVT-based method
applied to isotropic/anisotropics resampling of point clouds and
show its application to surface reconstruction. We experimented
with both synthetic and real world datasets. In order to evaluate
our resampling results, we also compare our method with the
state-of-the-art approaches, including the WLOP method [14], and
the graph Laplac1an based method [22]. All tests are executed on an

»ith 16 GB RAM, running the multi-threading
re i7-6700Kk is a quad core processor with
ireading contexts per core.

B pdfelement
The Trial Version
X, y) be the squared Euclidean distance be-

tween two points X and y, i.e., ¥(X,y) = ||x — y||?, and density
function p(x) = 1, then the minimization of the energy function

(CY) O} R

Fig. 7. Comparisons with the state-of-the-art methods. (a) Input point cloud with
110k points; (b) result from the WLOP method [14], 0 = 0.182; (c) result from
the k-means method, 0 = 0.124; (d) result from the graph Laplacian based
method [22], 0 = 0.037; and (e) our CVT-based result, 0 = 0.052.

in Eq. (2) leads to a uniform point cloud. We compare our CVT-
based method to the aforementioned state-of-the-art approaches,
using the cow model shown in Fig. 7. The number of the input
data points is 110k, while the output point number is set to 5k. To
achieve fair results, we use implementations provided in [14,22]
and conduct all the experiments on the same machine. To give a
rough quantitative measure of the uniformity of points, we adopt
the standard deviation of distances to the nearest neighbors at
resampling points, which is denoted by o. The average value of
the distances is normalized. We also implement a discrete version
of the Lloyd’s method, which moves each resampling point to the
center of its associated cluster of the data points as the k-means
algorithm [8] does. From Fig. 7 it can be seen that the WLOP
method [14] and k-means method fail to generate uniform point
distributions, as they suffer from the non-uniform distribution of
the input point cloud. Both the graph Laplacian based method [22]
and our CVT-based method is capable of generating uniform re-
sampling results. Our method is much more efficient than the
graph Laplacian based method [22], as we will show in the next
paragraph.

Running time comparison. Our iterative resampling algorithm
involves repeatedly querying the k-nearest neighbors of a re-
sampling point among the input point cloud. To optimize the
queries, the input point cloud is organized in a kd-tree by using
the NanoFLANN library [30,31] in the initialization stage, of which
time complexity is O(n log(n)) with respect to the number of input
data n. Then, in each iteration, the k-nearest neighbors of each re-
sampling point can be found in O(log(n)) time. In total, the running
time of our CVT-based algorithm is O(n log(n)+1-m-log(n)), where
nis the number of the input points, I is the iteration number, and m
is the number of resampling points. Note that, the time complexity
is O(nlog(n)) with respect to the number of input points n and
linear with respect to the number of output points m. We might
think that the computation time mainly depends on the number
of input points at the first glance, as n is usually much larger
than m in practical applications. However, through experiments,
we can show that the total computation time of our algorithm is
mainly determined by the number of output points m when the
iteration number is fixed. The kd-tree construction is very efficient
in practice by using the NanoFLANN library, whose contribution
to the total running time is small. We test our algorithm on a

18 Z. Chen et al. / Computer-Aided Design 102 (2018) 12-21

108 Time (in seconds) —+CVT-Based 10* Time (in seconds) —CVT-Based
~-WLOP ~-WLOP
Graph Laplacian Graph Laplacian

10°
10?

100 Input point no. (x]06) 5 Output point no. (x]04)
10
0

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11

(a) (b)

Fig. 8. (a) Running time against the number of input points, ranging from 10k to
10M, with a fixed output point number (m = 10k); and (b) running time against
the number of output points, ranging from 10k to 110k, with a fixed input point
number (n = 110k).

(b)

Fig. 9. Weighted resampling. (a) Input point cloud (3M points) with color-coded
density function derived from the discrete curvatures of the point cloud (red
indicates the maximum value and blue indicates the minimum value); and (b)
weighted resampling result (50k points) adapted to the density function, obtained
after 35 Lloyd’ iterations in 16.4 s. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

sequence of point cloud datasets with different resolutions while
fixing the output point number (m = 10k) and iteration number
(I = 35). The number of points in the input point cloud varies
from 10k to 10M. The plot of running time against the input point
number is shown in Fig. 8(a). When the number of the input
points increases from 10k to 10M, the running time for our CVT-
method [14], and the graph Laplacian
y 4.3,226.6, and 71.7 s, respectively. We
bsults with different sizes from the same
rts the running time of our CVT-based
d [14], and the graph Laplacian based

. gethat our algorithm is much more efficient
than the other two methods when the resampling point number m
increases.

a pdfelement

The Trial Version

ou vvT Cd

(b)

Fig. 10. Anisotropic resampling. (a) Resampling result adapted to curvature tensor
field; and (b) Lg resampling result.

5.2. Weighted resampling

Given an input point cloud and a user-specified density function
p(x) defined over it, we can also generate a resampling result
adapted to the given density function. In our experiments, the
density function is set to p(x) = |k1(X)| + |k2(X)|, where k;i(X) =
max(|«;(x)], 107%) and |«i(x)|, i = 1,2, are the two principal
curvatures at X, respectively. Here, the principal curvatures are
truncated by 10~ to avoid the instability in numerical calculation.
We estimate the curvatures at each data point using CGAL'’s imple-
mentation [34]. Moreover, we use the Laplacian filter to smooth the
discrete curvatures such that the density function varies smoothly.
Fig. 9 shows an adaptive resampling result of scan data of a dragon
model from [35]. Our method resamples it from 3M to 50k points in
16.4 s. Our resampling result adapts to the given density function
by distributing fewer (more) points in flat (curved) regions.

5.3. Anisotropic resampling

To obtain anisotropic resampling results, we minimize the en-
ergy function in Eq. (4), where the tensor field G(x) = MT(x)M(x)
at each point of the input data should be specified. In our experi-
ments, we use the curvature tensors as the tensor field. Let U;(x) be
the principal directions and N(x) be the surface normal at x. Then,
we set M(x) = Diag(+/k1(X), v/k2(X), 0)Q(x)", where «;(x) are the
principal curvatures, and Q(x) = [U(x), Ux(x), N(x)]. Here, the
curvatures, principal directions and surface normals are estimated
by the aforementioned CGAL’s implementation [34]. Fig. 10 shows
an example of anisotropic resampling using an anisotropic L, norm
(i.e.,p = 2inEq.(4)), where resampling points tend to gather along
the high-curvature directions and vice versa. It also demonstrates
the feasibility of the combination of our alternative optimization
framework and the BFGS method for energy minimization.

Note that if the axes of anisotropy have the same length, the
minimizer of the energy function in Eq. (4) under L, norm corre-
sponds a “honeycomb” pattern of RVCs. Nevertheless, minimizing
Eq. (4) with a large value of p leads to rectangle-shaped RVCs [29].
As a consequence, the resampling points have a lattice-like dis-
tribution, with lattice directions aligning with the tensor field.
Fig. 10(b) shows a point resampling result using an Lg-CVT energy
function with M(x) = Diag(1, 1, 0)[U;1(x), U(X), N(x)]". Though
the lengths of the two anisotropic axes are set to the same value,
the directions of the axes guide the point distribution, which is
entirely different from the L, case.

Z. Chen et al. / Computer-Aided Design 102 (2018) 12-21 19

(a)

Fig. 11. Noise depression. (a) A noisy input with 180k points; (b) result with 10k
points from the graph Laplacian based method [22]; and (c) our result with 10k
points.

5.4. Noise depression

During optimization the resampling points are repeatedly pro-
jected onto a plane that best fits their k-nearest neighbors at the
input point cloud. This procedure is similar to that in a standard
point cloud smoothing approach, in which the points are projected
onto the average plane of neighbors as one round of smoothing.
Hence, our method presents a good anti-noise ability when the
input data contains moderate levels of noise, as shown in Fig. 11.In
contrast, the result from the graph Laplacian based method [22] is
more easily affected by noise. For input data with large scale noise,
we can apply our algorithm after several rounds of smoothing to
achieve visually more pleasant results.

5.5. Boundary handling

Note that, by simply following the procedure presented above
without any special processing on the boundaries, the RVC of a
resampling point at the boundary usually contains a region be-
yond the scope of the underlying surface. Thus, the corresponding
centroid tends to drift away from the underlying surface. Here we
propose a simple method to handle this problem.

First, the boundary points of the input point cloud are extracted,
by using the boundary point detection method provided in the
point cloud library (PCL) [36]. The basic steps are as follows: (1)
For each point p in the point cloud P, find the plane t(p) which
best fits its k-nearest neighbors from P. (2) The point p and its
k-nearest neighbors Ni(p) are projected onto the plane z(p). (3)
Obtain k vectors on t(p) by connecting the projection of p with
the projections of its k-nearest neighbors, respectively. (4) Find the
maximum turning angle between each pair of adjacent vectors. If
the maximum turning angle is greater than a threshold, then p is
considered to be a boundary point. Fig. 12(b) shows the boundary
points detected by the above method. Second, the boundary points
are considered as virtual resampling points, which participate in
the RVC computation but are fixed during optimization. By this
way, RVCs of real resampling points and their centroid will always
stay within the regions covered by the underlying surface, see
Fig. 12(c). Fmally, as a post-processing step, we further resample
aabtain a consistent point distribution on the
r each pair of adjacent resampling points
ent to the boundary (namely, their RVCs
br with the virtual resampling points), see
oint of the segment X;X; is projected onto
k-nearest points from the boundary point
t is included in the resampling point set
only if its distance to the nearest resampling point is greater than
lIx; — Xl /2.

B pdfelement

The Trial Version

(@

Fig. 12. Boundary handling. (a) Input point cloud; (b) detected boundary points
(in purple) and initial resampling points (in blue); (c) resultant RVCs after Lloyd’s
relaxation and projected points (in red) on the boundary; and (d) final resampling
result. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

() (b)

Fig. 13. Hole filling. (a) Input point cloud with holes; and (b) resampling result with
holes filled.

5.6. Hole filling

Our algorithm can automatically infer substitute regions for
the missing parts and place an appropriate number of resampling
points on it. As based on local linear approximation, our algorithm
works well for holes which can be repaired by a simple surface
extrapolation, as shown in Fig. 13, but it has problem in recovering
highly curved regions. A possible solution to improve the hole
filling results is to use high-order surfaces, instead of the linear
plane, to locally approximate the input data. Another difficulty
is that it is hard to distinguish hole boundaries from the open
boundaries that the users want to preserve. For simplicity, we just
let the users decide which holes need to be filled.

5.7. Surface reconstruction

As a by-product, the RVCs generated by our algorithm gives
a piecewise linear approximation to the underlying surface, as
shown in Figs. 5 and 12. This polygon soup representation may
be sufficient for the application of geometric proximity analysis

20 Z. Chen et al. / Computer-Aided Design 102 (2018) 12-21

(@ (b)

@

Fig. 14. Surface reconstruction using the duality between RVCs and restricted Delaunay triangulation. (a) Uniform meshing; (b) non-uniform meshing; (c) anisotropic

meshing; and (d) L, meshing.

(b

Fig. 15. An example with sharp features. (a) Input point cloud with hidden sharp
features; and (b) resampling result, with the underlying surface rendered for a
better visualization of the locations of the resampling points.

and 3D visualization. Furthermore, the obtained polygon soup can
easily be converted into a widely used triangular mesh, using
the duality between RVCs and restricted Delaunay triangulation.
Fig. 14 shows the reconstructed surface meshes of point clouds
used in this paper. Note that the surface meshes constructed by
using only the duality of RVCs and restricted Delaunay triangu-
lation may contain holes and non-manifold faces. A clean and
orientable 2-manifold mesh can be recovered by using a manifold
extraction algorithm [37]. Based on our resampling results, we
get the isotropic/anisotropic meshing results of the point clouds
directly, which is more efficient than reconstructing the surface
from the point cloud first and then remeshing the surface.

6. Limitation and discussion

We have generalized the definition of the CVT energy function
to point clouds. Based on the generalized energy function, we
propose an efficient algorithm for energy function minimization
and provide a versatile CVT-based framework on which we can
generate uniform/adaptive or isotropic/anisotropic point resam-
pling results.

The proposed algorithm assumes that the point cloud is sam-
pled from a smooth surface and is free of outliers and large scale
noise. We locally approximate the underlying surface using planes.
Hence, if the number of resampling points is too small, especially
will give a poor approximation to the
b to unsatisfying resampling results. Be-
ot perform well on models with sharp
tangent planes at the sharp features
s a resampling result of a CAD model,
are not well preserved. If the sharp fea-

pled and can be clearly detected, we can handle
the sharp features in the same fashion as we do for boundaries.
However, it is hard to detect clear sharp features from a point

pdfelement

The Trial Version

cloud in practice, due to the inherent noise and incompleteness in
the acquired data. Integrating robust feature preserving techniques
into our resampling framework will be our future work.

Acknowledgments

The research of Zhonggui Chen and Juan Cao was sup-
ported by the National Natural Science Foundation of China (Nos.
61472332, 61572020, 61728206), the Natural Science Foundation
of Fujian Province of China (No. 2018J01104), and the program of
China Scholarship Council (Nos. 201706315019, 201706315001).
The research of Cheng Wang was supported in part by the National
Natural Science Foundation of China (No. U1605254). The research
of Yongjie Jessica Zhang was supported in part by the PECASE
Award N00014-16-1-2254 and NSF CAREER Award OCI-1149591.

References

[1] Han X-F, Jin JS, Wang M-], Jiang W, Gao L, Xiao L. A review of algo-

rithms for filtering the 3D point cloud. Signal Process, Image Commun

2017;57(Supplement C):103-12.

Heckbert PS, Garland M. Survey of polygonal surface simplification algorithms.

Multiresolution surface modeling course, SIGGRAPH 97. 1997.

Luebke DP. A developer’s survey of polygonal simplification algorithms. IEEE

Comput Graph Appl 2001;21(3):24-35.

Pauly M, Gross M, Kobbelt LP. Efficient simplification of point-sampled sur-

faces. In: Proceedings of IEEE conference on visualization. 2002. p. 163-70.

Song H, Feng H-Y. A global clustering approach to point cloud simplification

with a specified data reduction ratio. Comput Aided Des 2008;40(3):281-92.

Miao Y, Pajarola R, Feng J. Curvature-aware adaptive re-sampling for point-

sampled geometry. Comput Aided Des 2009;41(6):395-403.

[7] YuZ, Wong H-S, Peng H, Ma Q. ASM: an adaptive simplification method for 3D

point-based models. Comput Aided Des 2010;42(7):598-612.

Shi B-Q, Liang J, Liu Q. Adaptive simplification of point cloud using k-means

clustering. Comput Aided Des 2011;43(8):910-22.

Ma X, Cripps R]. Shape preserving data reduction for 3D surface points. Comput

Aided Des 2011;43(8):902-9.

[10] Alexa M, Behr], Cohen-Or D, Fleishman S, Levin D, Silva CT. Computing and
rendering point set surfaces. IEEE Trans Vis Comput Graphics 2003;9(1):3-15.

[11] LiuS, ChanK-C, Wang CCL. Iterative consolidation of unorganized point clouds.
IEEE Comput Graph Appl 2012;32(3):70-83.

[12] Wang], Xu K, Liu L, Cao J, Liu S, Yu Z, et al. Consolidation of low-quality point
clouds from outdoor scenes. Comput Graph Forum 2013;32(5):207-16.

[13] Lipman Y, Cohen-Or D, Levin D, Tal-Ezer H. Parameterization-free projection
for geometry reconstruction. ACM Trans Graph 2007;26(3):22.

[14] Huang H, Li D, Zhang H, Ascher U, Cohenor D. Consolidation of unorganized
point clouds for surface reconstruction. ACM Trans Graph 2009;28(5):1-7.

[15] Liao B, Xiao C, Jin L, Fu H. Efficient feature-preserving local projection operator
for geometry reconstruction. Comput Aided Des 2013;45(5):861-74.

[16] HuangH, Wu S, Gong M, Cohen-Or D, Ascher U, Zhang H. Edge-aware point set
resampling. ACM Trans Graph 2013;32(1):1-12.

[17] Preiner R, Mattausch O, Arikan M, Pajarola R, Wimmer M. Continuous projec-
tion for fast L reconstruction. ACM Trans Graph 2014;33(4):47.

[18] Oztireli AC, Alexa M, Gross M. Spectral sampling of manifolds. ACM Trans
Graph 2010;29(6):168.

[19] Chen Z, Yuan Z, Choi Y-K, Liu L, Wang W. Variational blue noise sampling. [EEE
Trans Vis Comput Graphics 2012;18(10):1784-96.

[20] Chen], Ge X, Wei L-Y, Wang B, Wang Y, Wang H, et al. Bilateral blue noise
sampling. ACM Trans Graph 2013;32(6):216.

[2

3

[4

[5

6

8

[9

http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb1
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb3
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb5
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb6
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb7
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb8
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb9
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb10
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb11
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb12
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb13
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb14
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb15
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb16
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb17
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb18
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb19
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb20

Z. Chen et al. / Computer-Aided Design 102 (2018) 12-21 21

[21] Yan D-M, Guo J-W, Wang B, Zhang X-P, Wonka P. A survey of blue-noise [30] Blanco JL, Rai PK. NanoFLANN: a C++ header-only fork of FLANN, a library for
sampling and its applications.] Comput Sci Tech 2015;30(3):439-52. nearest neighbor (NN) wih kd-trees, https://github.com/jlblancoc/nanoflann,

[22] Luo C"Ge X, Wang Y.}Uniformization and density adaptation for point cloud 2014.

53 dData V‘; %rap\l/q Lgplac;an. Corl\r/llpgt Gt"apg l-;o\;um 2915337(”1 1{325_‘37' feat [31] Muja M, Lowe DG. Scalable nearest neighbor algorithms for high dimensional

(23] aﬁd%lggriilrlm; Sl;XlZ\/l ;Lg\,e;ggg.:?.ég; a76 oronot tessellations: applications data. IEEE Trans Pattern Anal Mach Intell 2014;36(11):2227-40.

[24] LloydS. Least squares quantization in PCM. IEEE Trans Inform Theory 1982;28((321 Nocgdal J. Wright S. Numerical optimization. Springer Science & Business
2):129-37. Media; 2006.

[25] Liu Y, Wang W, Sun F, Yan DM, Lu L, Yang C, et al. On centroidal Voronoi [33] Parigi ‘G, Piastra M Gradier}t of the object‘ive functi.on for an a}nisotrol?ic
tessellationenergy smoothness and fast computation. ACM Trans Graph centroidal Voronoi tessellation (CVT)-a revised, detailed derivation, arXiv:
2009;28(4):101. 1408.5622, 2014.

[26] Alliez P, De Verdiére EC, Devillers O, Isenburg M. Centroidal Voronoi diagrams [34] Cazals F, Pouget M. Estimating differential quantities using polynomial fitting
for isotropic surface remeshing. Graph. Model. 2005;67(3):204-31. of osculating jets. Comput Aided Geom Design 2005;22(2):121-46.

[27] Yan D, Lévy B, Liu va Sun F, V\(/jang w. l;o(;_roplc rer(r:leshmg ‘(’;‘”th hfast and [35] Stanford computer graphics laboratory, URL http://graphics.stanford.edu/
3)8?)(:9':'2(:8()(?)?;1}112(—”5140 restricted Voronoi diagram. Comput Graph Forum data/3Dscanrep).

P i s [36] RusuRB, Cousins S. 3D is here: point cloud library (PCL), In: Proceedings of the

[28] Lévy B, Bonneel N. Variational anisotropic surface meshing with Voronoi IEEE i ional f boti d ‘o, 2011. p. 1-4
parallel linear enumeration. In: Proceedings of the 21st international meshing 1nternat10’na conterence on ro 0t1c§ an automatl'on. . p. 1-4. .
roundtable. 2013. p. 349-66. [37] Boltch?va D, Lévy B. Surface rgconstructlon by computing restricted Voronoi

[29] Lévy B, LiuY.L, centroidal Voronoi tessellation and its applications. ACM Trans cells in parallel. Comput Aided Des 2017;90(Supplement C):123-34,

Graph 2010;29(4):1-11.

SI:SPM2017.

a pdfelement

The Trial Version

http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb21
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb22
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb23
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb24
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb25
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb26
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb27
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb29
https://github.com/jlblancoc/nanoflann
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb31
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb32
http://arxiv.org/1408.5622
http://arxiv.org/1408.5622
http://arxiv.org/1408.5622
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb34
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37
http://refhub.elsevier.com/S0010-4485(18)30219-7/sb37

	Point cloud resampling using centroidal Voronoi tessellation methods
	Introduction
	Related work
	Formulation of objective function
	Algorithm of CVT-based point resampling
	Initialization
	RVC computation
	Optimization
	Lloyd's method
	Pulling back
	BFGS method

	Implementation and results
	Uniform resampling
	Weighted resampling
	Anisotropic resampling
	Noise depression
	Boundary handling
	Hole filling
	Surface reconstruction

	Limitation and discussion
	Acknowledgments
	References

