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Abstract. We present a robust approach to perform 3D nonrigid image registration
suitable for large deformation and topology change, and develop a software pack-
age named DTHB3D Reg (Dynamic Truncated Hierarchical B-spline based 3D Image
Registration). The optimum spatial transformation, defined using truncated hierar-
chical B-splines, is obtained through the minimization of an energy functional. The
optimization process minimizes sum of squared difference in the intensity values of
the grayscale images. Control points are dynamically updated without constructing
large matrices as in finite element method. To improve the computational efficiency,
an adaptive strategy carries out refinement only in the regions with large deformation.
The proposed method is demonstrated on 3D synthetic and medical images to show
robustness on topology change as compared to other image registration methods.
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Software licence: BSD 3-Clause License

CiCP scientific software URL: https://github.com/arpawar/DTHB3D_Reg

Programming language(s): Matlab and C++.

Computer platform: x86-64.

Operating system: Linux, Windows and Mac OS X.

Compilers: Supported and compatible compilers for MATLAB 2017a and previous re-
leases:

• http://www.mathworks.com/support/compilers

• http://www.mathworks.com/support/sysreq/previous_releases.html

RAM: 16 GB and higher recommended.

External routines/libraries: None

Running time: Running time will depend upon the size of the images and the computa-
tional resources allocated to run the software.

Restrictions:

Supplementary material and references:

Additional comments:

1 Introduction

Image registration is the process of computing optimum correspondence between two
images through a spatial transformation mapping. One of its most prominent appli-
cations is the alignment of medical images, where spatial correspondence is obtained
between salient features of different images. These images can be obtained at different
time frames, subjects or imaging modalities. Image registration plays a crucial role in ob-
taining a more comprehensive knowledge from separate images, thus having potential
applications in aiding medical diagnosis [16, 19, 24, 31].

Image registration methods can be classified based on whether the images are ob-
tained from the same or different imaging modalities [22, 40]. In monomodal image
registration, analysis can be carried out between images obtained for the same subject
(intra-subject) or different subjects (inter-subject). In intra-subject registration, changes
in certain features over time are measured. These feature changes can be computed
through the alignment of preoperative and postoperative images from the same patient.
Moreover, motion quantification of certain features can be achieved. This plays a signif-
icant role in studying disease progression such as tumor movement and growth [39]. In
inter-subject registration, images are taken from several subjects to study the variation of
features between normal subjects and patients. This registration process is more challeng-
ing in terms of increased complexity of shape and topology of the features [21, 37]. The
complexity of the registration problem also increases while registering image sequences
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with respect to both space and time [23]. In multimodal registration, images are obtained
from different imaging modalities such as Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI), Positron Emission Tomography (PET), Single-photon Emission
Computed Tomography (SPECT) and ultrasound. Important information from different
imaging modalities is combined to achieve comprehensive knowledge which helps in
improving clinical diagnosis [7].

Image registration methods can also be classified as rigid and nonrigid. In rigid regis-
tration, only global transformations such as translation, rotation, shearing and scaling can
be modeled. In contrast, nonrigid registration can model complex and localized defor-
mations in a more flexible manner. For example, spline-based image registration meth-
ods [9,28,30,34] are suitable to carry out nonrigid deformation as they exploit the advan-
tageous properties of B-splines in building the spatial transformation function, such as
local control, smoothness and compact support. Image deformation can be measured by
the difference of spatial coordinates of the voxels, or the voxel intensities [32, 35]. In [9],
a level set method was proposed to carry out large deformation based diffeomorphic
nonrigid registration. In this method, the image is represented by B-splines and is ma-
nipulated in a composition framework via level set propagation. Constraints are imposed
on the maximum deformation of B-spline control points to ensure that each transforma-
tion mapping is diffeomorphic [9, 27, 36], where topology change is not allowed during
deformation.

In this paper, we evaluate the optimal spatial transformation function through
the minimization of an energy functional, and develop a software package named
DTHB3D Reg (Dynamic Truncated Hierarchical B-spline based 3D Image Registration).
The energy functional is minimized using an L2-gradient flow method, and is constrained
to ensure a smooth and realistic deformation. Unlike the finite element method [20],
our approach solves the strong form directly [18] and dynamically updates the spa-
tial transformation without constructing large matrices, with a focus on modeling large
deformation to capture topology change. Here, diffeomorphism is not a crucial re-
quirement [11, 27]. B-spline based local refinement [17, 26, 38] has been adopted to
improve the computational efficiency and accuracy for 2D synthetic and medical im-
ages [25, 26]. In this work, we extend the approach to implement 3D image registra-
tion using trivariate truncated hierarchical B-splines (THB-splines). We support adaptive
refinement and enable only certain regions to undergo fine-scale deformations, while
keeping the rest of the control grid coarse. As compared to the level set method [9] and
the optical flow method [36], we improve the accuracy of the registration process by
achieving topology change and preserving important features. The implementation of
the proposed method has been submitted as a software package to the public domain
(https://github.com/arpawar/DTHB3D_Reg) for reference.

The rest of the paper is organized as follows. In Section 2, we describe the spatial
transformation construction and review THB-splines, followed by the introduction of
the registration framework in Section 3. We also provide details of software installation
and parallel implementation in MATLAB/C++. In Section 4, we carry out 3D synthetic
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and medical image registration and demonstrate the main contributions of the method.
The paper ends with a brief conclusion and the future work in Section 5.

2 Spatial transformation based on THB-Splines

In this section we describe the construction of the spatial transformation function. Local
refinement based on THB-splines is also reviewed.

2.1 Spatial transformation function

Given the source image I1(x) and the target image I2(x) at t= 0, the image registration
process computes an optimum f (x,t) that corresponds to the best possible match between
the deformed source image I1( f (x,t)) and the target image I2(x) at a particular instance
t. This process is also known as forward registration. f (x,t) is defined using trivariate
B-splines as

f (x,t)=
Nb

∑
m=1

Pm(t)φm(x)=
n3

∑
k=1

n2

∑
j=1

n1

∑
i=1

Pi,j,k(t)Ni,p(u)Nj,q(v)Nk,r(w), (2.1)

where Pm(t) are the control points associated with the trivariate basis functions φm(x),
and Nb represents the total number of basis functions. The parametric domain x =
(u,v,w). Each trivariate B-spline φm(x) is represented as a tensor product of three uni-
variate B-splines Ni,p(u), Nj,q(v) and Nk,r(w), which are defined on the knot vectors
U = {u1,··· ,un1+p+1}, V = {v1,··· ,vn2+q+1} and W = {w1,··· ,wn3+r+1} in u, v and w di-
rections, respectively. These open knot vectors span the entire image domain. n1, n2 and
n3 are the number of univariate basis functions, and p, q and r are the degree of polyno-
mials, respectively. Here we choose p= q= r=2 or triquadratic basis functions. We can
use higher order spline basis functions if a higher continuity is required. The control grid
is initialized as an identity map (or f (x)=x) to represent the initial source image I1(x) at
the beginning of the optimization process. In Eq. (2.1), f (x,t) is described in a paramet-
ric form where the control points Pm(t) are dynamically updated through the registration
process. We want to obtain f (x,t) such that I1( f (x,t))≈ I2(x). The control points at the be-
ginning of the registration process are defined using Greville Abscissae [13] in the image
domain.

2.2 A Review of THB-splines

We now explain the representation of the spatial transformation function using THB-
splines. Methods for adaptive refinement of splines have been introduced using PHT-
splines [12], T-splines [29] and hierarchical B-splines (HB-splines) [8, 14] to enable local
surface editing. Refinement for two consecutive levels using univariate B-splines is il-
lustrated in Fig. 1. Here the parametric domain is defined as U∈ [0,8]. The knot vectors
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Figure 1: Construction of HB-splines versus THB-splines. First column: B-splines at coarser level (a), B-splines
at finer level (c), collecting active splines to construct HB-splines (e). Second column: B-splines at coarser
level (b), B-splines at finer level (d), collecting active splines to construct THB-splines (f). The active splines
are shown in black, red and blue colors. The passive splines are shown in cyan color.

defined at level l+1 are obtained by bisecting the knot vectors at level l. The local sup-
port of the ith univariate B-spline at level l (Nl

i (u)) is defined in the parametric space
as supp(Nl

i (u))= [ui,··· ,ui+p+1], where p is the degree of the B-spline basis function. Ac-

cording to the principle of local refinement, the basis function Nl
i (u) at a given refinement

level l (shown in cyan in Fig. 1 (a)) can be represented as a linear combination of a subset
of the basis functions at the next refinement level (l+1) (four red curves in Fig. 1 (c)),
which are termed as the children basis functions of Nl

i (u). We have

Nl
i (u)=

Nc

∑
k=1

Si,kNl+1
k (u), (2.2)

where Nl+1
k (u) are the children basis functions, and Nc is the number of the children basis

functions which are completely contained in the local support of Nl
i (u).

The refinement coefficients Si,k are computed using the Oslo knot insertion algorithm
[10]. The steps explaining local refinement using HB-splines are given as follows:

1. To-be-refined B-splines are set as passive (Nl
p(u)); see the cyan curve in Fig. 1 (a).

The remaining B-splines are set as active (Nl
a(u)); see the black curves in Fig. 1 (a).

2. The children of the passive B-spline are set as active (Nl+1
a (u)); see the four red
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curves in Fig. 1 (c). The passive B-spline is replaced by its children using the refin-
ability equation (2.2). The total support of the active children B-spline basis func-
tions is denoted as Ul+1∈ [3,6].

3. The hierarchical structure is constructed by collecting all the active B-splines at lev-
els l and l+1 (shown in Fig. 1 (e)). We obtain

Nl+1
hb (u)=Nl

a(u)∪Nl+1
a (u). (2.3)

This process is continued recursively until we reach the maximum refinement level
lmax.

THB-splines were proposed in [15] to modify the construction of HB-splines in or-
der to satisfy partition of unity without rationalization and reduce the overlapping of
B-splines between different levels. By introducing THB-splines into the spatial transfor-
mation function, we can make the image registration computation more efficient. Among
the active B-splines at level l (shown in black and blue curves in Fig. 1 (b)), those having
partial support from the active B-splines at level l+1 (the blue curves in Fig. 1 (b)) are
modified using the truncation mechanism. The refinability equation Eq. (2.2) is modified
to obtain

trunc(Nl
i (u))= ∑

supp(N l+1
k (u)) 6⊂U l+1

Si,kNl+1
k (u). (2.4)

The truncated basis functions are shown in blue in Fig. 1 (f), where only the non-active
children B-splines contribute to the construction of the THB-splines. The THB-splines
constitute all the active B-splines at levels l and l+1. We obtain

Nl+1
thb (u)=Nl

a(u)∪Nl+1
a (u). (2.5)

The construction of trivariate THB-splines from univariate THB-splines is straight-
forward. Each trivariate B-spline (φl

m(x)) (defined in Eq. (2.1)) at the refinement level l
has local support defined as supp(φl

m(x))= [ui,ui+p+1]×[vj,vj+q+1]×[wk,wk+r+1]. φl
m(x)

is replaced by its non-zero children basis functions in supp(φl
m(x)).

3 Registration framework

In this section, we describe how to construct the energy functional and the optimization
process. Details of refinement based on the image deformation is also discussed. Finally,
the details on the implementation in MATLAB/C++ and code optimization based on
parallel computation are provided.
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3.1 Energy functional

The energy functional for 2D image registration was defined in [18, 20], and here we
extend it to incorporate the registration in 3D space. The optimization is carried out
by minimizing an energy functional E( f (x,t)) with the L2 gradient flow method, which
measures the amount of mismatch between two input images and converts the convex
optimization problem into an ordinary differential equation. The goal of optimization is
to iteratively decrease the dissimilarity in the intensities of the images. In 3D, the energy
functional is written as

E( f (x,t))=
∫

Ω
g(x,t)(I2(x)− I1( f (x,t)))2dΩ

+λ1

∫

Ω

(

‖ f,u(x,t)‖2
2+‖ f,v(x,t)‖2

2 +‖ f,w(x,t)‖2
2

)

dΩ

+λ2

∫

Ω

(

‖ f,u(x,t)‖2
2‖ f,v(x,t)‖2

2−(< f,u(x,t), f,v(x,t)>)2
)

+(‖ f,v(x,t)‖2
2‖ f,w(x,t)‖2

2−(< f,v(x,t), f,w(x,t)>)2)

+(‖ f,u(x,t)‖2
2‖ f,w(x,t)‖2

2−(< f,u(x,t), f,w(x,t)>)2)dΩ, (3.1)

where λ1 and λ2 are two regularization parameters chosen according to the amount of
regularization needed for the registration process. Here we set λ1 and λ2 to 0.0001 during
the entire registration process. f,u(x,t), f,v(x,t) and f,w(x,t) are the first derivatives of
f (x,t) with respect to u, v and w, respectively. < ·,·> is the inner product operator. The
term g(x,t) is defined as

g(x,t)=
1

√

γ+( ∂I1( f (x,t))
∂u )2+( ∂I1( f (x,t))

∂v )2+( ∂I1( f (x,t))
∂w )2

, (3.2)

where γ is a small non-zero quantity set to the value of 10−12 to prevent division by zero.
The first term in Eq. (3.1) measures the sum of squared difference (SSD) in the intensity
between the target image and the evolving source image. To prevent unrealistic changes
within the image while carrying out complex deformation, we introduce additional reg-
ularization terms in the energy functional. The second and third terms associated with
λ1 and λ2 respectively, impose regularization constraints to ensure the smooth defor-
mation of I1( f (x,t)) and generate a continuous mapping. The second term (first-order
regularization) ensures smooth variation of f (x,t) in u, v and w directions. The third
term (second-order regularization) ensures the consistency of the area of each face of the
3D control grid element during deformation.

During the minimization process, the energy functional is differentiated with respect
to control points Pm(t) (Eq. (2.1)) and is converted to an ordinary differential equation by
introducing a pseudo timestep, we have

dPm(t)

dt
=−δEm( f (x,t)). (3.3)
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The left hand side of the equation is approximated using the Euler method to obtain

Ps+1
m −Ps

m

ǫ
=−δEs

m( f (x,t)), (3.4)

where ǫ is the timestep introduced for the iterative process and the control points are
dynamically updated. Ps+1

m and Ps
m are the control points obtained at the current and

previous timestep. δEs
m( f (x,t)) can be written as

δEs
m( f (x,t))=−2

∫

Ω
g(I2(x)− I1( f (x,t)))∇I1( f (x,t))φm(x)dΩ

+λ1

∫

Ω
(2 f,u(x,t)φm,u(x)+2 f,v(x,t)φm,v(x)+2 f,w(x,t)φm,w(x))dΩ

+λ2

∫

Ω
2‖ f,u(x,t)× f,v(x,t)‖(φm,u(x) f,v(x,t)+φm,v(x) f,u(x,t))

+2‖ f,v(x,t)× f,w(x,t)‖(φm,v(x) f,w(x,t)+φm,w(x) f,v(x,t))

+2‖ f,w(x,t)× f,u(x,t)‖(φm,u(x) f,w(x,t)+φm,w(x) f,u(x,t))dΩ. (3.5)

The control points are updated dynamically at every time step to generate a new spatial
transformation function that corresponds to a better match between the images. We have

Ps+1=Ps−ǫδEs( f (x,t)), (3.6)

where Ps+1 and Ps are control points evaluated at the current and previous iterations
respectively. The time step ǫ can be determined using a line search. We empirically set the
value of ǫ based on the convergence of the registration metric. δEs( f (x,t)) is computed
at the previous time step using a Gaussian quadrature rule. Upon updating the control
points, we compute the updated f (x,t) and the evolving source image I1( f (x,t)) at the
end of each iteration. For each refinement level, we compute a pre-defined error, e.g.
the similarity ratio (RS) explained later in Eq. (4.2) in Section 4.1. The iteration loop is
terminated if the change in similarity falls below a given tolerance (e.g., 10−4).

3.2 Adaptive refinement

Here, we describe the procedure to implement adaptive refinement using THB-splines
in image registration. In uniform refinement methods [18, 20], when the registration ac-
curacy does not improve further at a certain refinement level, the solution is carried for-
ward on a uniformly refined grid to capture localized deformations. In these methods,
the computational cost increases as the number of refinement levels is increased. During
image registration, there are only certain regions of the image that undergo large defor-
mation. We can use the image difference (Ig) to detect these regions. We compute Ig for
all the elements of the control grid, and the mean value of Ig(Gmean). We set a threshold
parameter ρ that controls the amount of refinement required. For the elements within the
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support of each active B-spline, if the local mean value of Ig exceeds ρGmean, we refine
this active B-spline basis function. This process is carried out at each refinement level,
where the control points are added in the localized regions with large deformation.

Unlike 2D registration using finite element method in [25], here the control points are
dynamically updated without constructing large matrices, thus improving the compu-
tational efficiency of the 3D image registration process. The THB-spline based adaptive
refinement algorithm is shown in Algorithm 1.

Algorithm 1: Adaptive refinement using THB-splines

Input : Source image I1(x), target image I2(x), ∆, MAXITER, ρ, lmax, ǫ, P1
thb(t) are

the B-spline control points such that f (x,t)=P1
thb(t)φ(x)=x. Here t=0

and the iteration counter s=0.
Output: f (x,t) at a particular instance t, such that I1( f (x))≈ I2(x)

1: for level l = 1 to lmax do
2: if l>1 then

3: Compute Ig = |∇(I l−1
1 ( f (x,t))− I2(x))| where I l−1

1 ( f (x,t)) is the evolving image
obtained at the end of the previous refinement level at the centroid of all active
elements of the control grid.

4: Compute Gmean=mean(Ig)

5: for All the active B-splines φl−1
a at level= l−1 do

6: Compute Gj which is the average Ig value for elements within the support of

each active B-spline φl−1
a

7: if Gj>ρGmean then

8: REFINE
9: end if

10: end for

11: end if

12: Collect all the active B-spline basis functions, control points and cells from levels l
and l+1 to obtain the hierarchical structure.

13: While (RS(s+1)−RS(s))>∆ AND iteration<MAXITER:

1. Evaluate the integral δEs( f (x,t)).

2. Update the control points Pl,s+1=Pl,s−ǫδEl,s( f (x,t)).

3. Compute the spatial transformation function f (x)=Pl,s+1
thb φl

thb.

4. Compute the transformed image I l
1( f (x,t)) where t=ǫ(s+1).

5. s= s+1.

14: end for
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The setting of the size of the initial uniform grid at the first refinement level depends
on the image complexity. For images containing complex features, the solution is com-
puted at the full image resolution. The setting of the parameters ρ and ǫ is done empir-
ically. These parameters are set constant for a particular refinement level and vary for
different refinement levels. ρ depends on the image complexity and the level of refine-
ment. A small value of ρ is suitable for images of higher image complexity in order to
capture the complex features accurately. The value of ρ is increased as the refinement
levels are increased to prevent too much refinement in the domain. The value of ǫ is set
according to the rate of convergence of the solution. For faster convergence, a higher ǫ
value is set and if the accuracy does not improve or decreases, the value of ǫ is decreased.
It is observed that the value of ǫ is not that sensitive to the solution convergence at a
particular refinement level, but needs to be changed for different refinement levels.

3.3 Parallel computation and MATLAB/C++ implementation

The companion software package consists of several sub folders to aid in modularizing
the code implementation and can be found at the link (https://github.com/arpawar/
DTHB3D_Reg). The code implementation has been carried out on a computer of 2.5 GHz
quad-core Intel Core i7 processor and 16 GB RAM. The parallel implementation requires
Parallel Computing Toolbox to be installed along with the MATLAB 2017a software. For
large datasets, the code was run on the XSEDE (Extreme Science and Engineering Dis-
covery Environment) supercomputer called Bridges [33] in Pittsburgh Supercomputer
Center. Here the code was run on 2 nodes with 28 cores each having a RAM capacity
of 128 GB per node. We need to set the values of the parameters ǫ, ρ, ∆, the maximum
number of levels, maximum number of iterations and the number of elements for the first
refinement level at the beginning of the registration. These parameters are required as an
input for running the code.

For large image data sets, the proposed algorithm can be demanding in terms of
memory consumption and the total CPU time required for the entire registration process.
Moreover there can be some additional overhead caused due to the construction of the
hierarchical adaptive control grids using THB-splines. Thus we have improved the im-
plementation using parallelization. We have utilized the parfor loops wherever possible
to improve the speed to carry out the numerical integration over the adaptively refined
grids. The implementation of the parfor for computing numerical integration uses multi-
ple cores to compute the element-wise integration in the parallel framework. In our code,
the implementation of the subroutines pertaining to the construction of THB-splines has
not yet been parallelized. Note that adaptive refinement of B-splines cannot be easily
implemented in parallel due to a transfer of information carried out between B-splines.

To further improve the computational efficiency, we utilized the MEX function im-
plementation to convert certain MATLAB functions to C++. These C++ functions can be
directly called using MEX functions. Through the use of MEX functions, the speed of the
code can be accelerated drastically. We have used MEX functions during the refinement
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step of B-splines and during the numerical integration over the image domain. Details
of the software installation and the implementation of each function can be found in the
README file attached with the code.

4 Numerical examples and discussions

In this section we show the testing results of synthetic and medical images. We also
compare our results with the level set method [9] and the optical flow method [36]. The
implementation of the level set method [4] and the optical flow method [5] has been
carried out in MATLAB. The comparison of the computational efficiency between the
proposed method and uniform grid refinement is shown. The main contributions are
highlighted through the examples.

4.1 Synthetic images

For the first set of the numerical examples, we demonstrate the results of two pairs of
synthetic images. The registration accuracy is measured using similarity metrics, such as
the mean squared difference (MSD) and the similarity ratio (RS) [18]. MSD is defined as

MSD=
1

N

N

∑
n=1

(I2(n)− I1(n))
2, (4.1)

where N denotes the total number of voxels of the image. RS is defined as

RS(I2(x), I1( f (x,t)))=

(

1−
||I2(x)− I1( f (x,t))||2

||I2(x)− I1(x)||2

)

×100%, (4.2)

where I1( f (x,t)) is the evolving image obtained at a particular instance t. A higher value
of RS corresponds to a better registration result, with RS=100% corresponding to a per-
fectly registered image.

In Fig. 2, we perform the registration on two levels where the value of ρ is set to be 2.5
for the second level and ǫ is set to 0.00015 for both the refinement levels. The RS metric at
the end of the registration process reaches 91.87%. We compare the computational time
(wall time) with uniform grid refinement in Table 1. It is obvious that our method can
achieve the same accuracy more efficiently.

In Fig. 3, the process is carried out on three refinement levels. The refinement param-
eter ρ is set to 2.5 and 3 for the second and third refinement levels. The time step ǫ is set
as 0.00015 for the first and second refinement levels and 0.0001 for the third refinement
level. The value of RS at the end of registration is 92.28%. In comparison, the registration
accuracy using the level set method [9] is observed to reach 84.99% for Fig. 2 and 88.51%
for Fig. 3. For both examples in Figs. 2 and 3, the maximum iteration number for each
refinement level is set as 50 and the error tolerance is set as 10−4. Note that there is a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Registration of Sphere to Torus (size: 200×200×200): the source image (a), the target image (b),
initial image difference (c), final image difference (d), evolving image at level 1 (e), evolving image at level 2
(f), final registered image using DTHB3D Reg (g) and final registered image using the level set method [9] (h).

Table 1: Comparison of our adaptive refinement method with uniform B-spline refinement for the Sphere to
Torus example in Fig. 2.

Iterations Control Points RS (%) CPU Time (s)

L * Uniform Adaptive Uniform Adaptive Uniform Adaptive Uniform Adaptive

1 11 11 19,683 19,683 89.16 89.16 39.5 39.5

2 3 3 140,608 56,468 91.87 91.87 203.5 92.7

* Refinement levels

topology change in these two examples. Our algorithm is able to capture these topology
changes and result in a more accurate match with the target image. In addition, sharp
features of the registered image in Fig. 3 are also captured accurately as can be seen in
Fig. 4.

Table 2 shows the number of iterations, control points, the values of MSD and RS
obtained at each refinement level. We observe that larger-scale deformation is captured
on coarser grids and fine-scale deformations are captured on finer grids. By observing
the convergence of the RS value, we can see that when the accuracy does not improve
further at a refinement level, the process is stopped at that level and continues on the
next level. In this way, we prevent unrealistic deformations and stabilize the registration
process.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) Level-1 mesh (j) Level-2 mesh (k) Level-3 mesh

Figure 3: Registration of Sphere to Sun (size: 200×200×200): the source image (a), the target image (b),
initial image difference (c), final image difference (d), evolving image at level 1 (e), evolving image at level 2
(f), final registered image using DTHB3D Reg (g) and final registered image using the level set method [9] (h).
The adaptively refined control grids at each refinement level are shown in (i-k).

(a) (b)

Figure 4: Comparison of the registered images obtained from the DTHB3D Reg method (a) and the level set
method [9] (b) for the example shown in Fig. 3.
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Table 2: MSD and RS computed using the proposed adaptive refinement algorithm.

Images Level Iterations Control Points MSD RS(%)

Sphere-Torus (Fig. 2) 1 11 19,683 169.99 89.16

2 3 56,468 95.62 91.87

Sphere-Sun (Fig. 3) 1 14 19,683 205.86 86.07

2 30 49,868 73.07 91.70

3 10 230,434 63.15 92.28

4.2 Medical images

We illustrate medical image registration between images taken from different subjects.
Inter-subject registration is challenging and complex. The anatomical features may vary
with respect to size and location, and it requires a robust registration algorithm to per-
form large deformation to capture these changes accurately.

In Fig. 5, we perform registration of human brain MRI images [1] on four refinement
levels. The registration process performs highly localized image deformation to accu-
rately register certain complex features of the brain. The refinement parameter is set to
be 1, 4 and 6 for the second, third and fourth levels, respectively. The time step ǫ is set
as 0.0002 for the first level, 0.0005 for the next two refinement levels, and 0.0002 for the
fourth refinement level. Fig. 5 (d, h and l) show the adaptive grids obtained at each re-
finement level, where control points are only added in the regions with large deformation
and the rest of the control grid is kept coarse. This improves the computational efficiency
while maintaining the same registration accuracy as compared with uniform refinement.
To validate the registration result, we evaluate the Dice Similarity (DS) metric for the
registered images to validate the registration process and compare the segmentation ac-
curacy with the level set method [9] and the optical flow method [36]. DS of two image
volumes is given by

DS(label)=
2dc

d1+d2
, (4.3)

where d1, d2 and dc are the number of voxels corresponding to a particular class label in
the registered image, target image and the regions common to both the registered and
target image, respectively.

In Fig. 6, the DS metric is computed for 12 materials using the DTHB3D Reg method,
the level set method and the optical flow method. The average segmentation accuracy
is computed for ten pairs of brain MRI datasets taken from [1]. It can be seen that both
the DTHB3D Reg method and the level set method show comparable results and have
better segmentation accuracy than the optical flow method. The gray matter and the
white matter constitute larger fraction of the total brain volume. For these two materials
we obtained a high segmentation accuracy. The average values of DS (gray matter) and
DS (white matter) are 80.5% and 83.8%, respectively. In this example, there is no obvious
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Registration of brain MRI image (size: 200×224×200): the sagittal MRI of the source image (a), the
target image (e) and the initial image difference (i). Second column: the registered image using DTHB3D Reg
(b), the level set method (f) and the optical flow method (j). Third column: the final image difference between
the registered and target images using DTHB3D Reg (c), the level set method (g) and the optical flow method
(k). Fourth column: the adaptively refined grids at levels 2 (d), 3 (h) and 4 (l).
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Figure 6: Average segmentation accuracy between the registered images and the target images of 10 pairs
of brain MRI evaluated using the DTHB3D Reg method, the level set method and the optical flow method,
respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Inter-subject registration of brain MRI volume (size: 256×256×52): the axial MRI at z= 25mm of
the source image (a), the target image (b) and the initial image difference (c). Second row: the registered
image using DTHB3D Reg (d), the level set method (e) and the optical flow method (f). Third row: the final
image difference between the registered and target images using DTHB3D Reg (g), the level set method (h)
and the optical flow method (i).

topology change between the images, and our method gives similar or better results as
the level set method [9] for most types of tissue.

In the following examples we perform registration on medical images with significant
changes in the anatomical features. For a better visualization, we have only shown the
axial slices of the image volumes. In the case of the inter-subject registration as shown
in Figs. 7 and 8, the change in feature location and size is significant. In Fig. 7, the two
brain MRI volumes were obtained from two individuals from the RIRE database [2]. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Inter-subject registration of the liver CT images (size: 512×512×35): the axial MRI at z= 25mm
of the source image (a), the target image (b) and the initial image difference (c). Second row: the registered
image using DTHB3D Reg (d), the level set method (e) and the optical flow method (f). Third row: the final
image difference between the registered and target images using DTHB3D Reg (g), the level set method (h)
and the optical flow method (i).

registration process is performed on four refinement levels where ρ is set as 1, 1.5 and
5 for the second, third and fourth levels, respectively. ǫ is set as 0.0002 for the first two
levels and 0.0005 for the next two refinement levels. The maximum iteration number for
each refinement level is set as 30 and the error tolerance is set as 10−4. In this example
one can clearly identify that there is topology change in the target image due to resec-
tion operation. Compared with the level set method and the optical flow method, our
DTHB3D Reg method captures these significant changes in the anatomical features more
accurately.
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In Fig. 8, the liver CT images [6] are initially aligned using rigid transformation. Here
we use the command imregister() with the option of “rigid” transform. We then perform
nonrigid registration to capture the localized and complex deformations. In this example,
we perform registration on four refinement levels with ρ set as 1 for the second and third
levels and 3 for the last level. ǫ is set as 0.00005 for the first level and 0.000075 for the
next three refinement levels. The maximum iteration number for each refinement level
is set as 100 and the error tolerance is set as 10−4. It is observed for all numerical exam-
ples that higher image complexity corresponds to a smaller timestep value for optimum
convergence of the registration result.

In Fig. 9, we show an example of pre-operative and post-operative brain MRI where
there is large topology change due to the removal of tumor. The patient underwent surgi-
cal procedure to remove glioma in the left frontal region of the brain [3]. The registration
process is carried out on four refinement levels, with the values of ρ set as 1, 3 and 6
for the second, third and fourth levels, respectively. In this example, ǫ is set as 0.0003
for the first level, 0.0008 for the second and third levels and 0.0005 for the fourth level.
The maximum iteration number for each refinement level is set as 50 and the error toler-
ance is set as 10−4. From the corresponding slices at the same axial location, we can see
that the topology change due to the surgical procedure is captured accurately using our
DTHB3D Reg method as compared to other methods. Note that for four refinement lev-
els, we need run our code on a computer with higher RAM and higher number of cores to
fully implement the parallel framework. The default value of the maximum refinement
levels is set as three for easy implementation on a computer with 16 GB RAM.

Table 3 shows the MSD values computed for the above examples using the
DTHB3D Reg, level set and optical flow methods. It is obvious that our DTHB3D Reg
method yields the most accurate results indicated by the lowest MSD values. We also
compare the total number of control points used in the DTHB3D Reg method with the
level set method which performs uniform refinement. Based on the tabulated results for
all examples in Tables 3 and 4, we can see that we achieve higher accuracy per degree of
freedom. In addition, the total number of degrees of freedom used for the registration
process are much lower than the other methods.

Table 3: Comparison of the registration error (MSD) using DTHB3D Reg, level set and optical flow methods.

Images Initial MSD DTHB3D Reg Level set Optical flow

Brain MRI (Fig. 5) 1.94×103 161.25 263.80 489.19

Brain MRI (Fig. 7) 1.86×103 68.41 478.76 917.26

Liver CT (Fig. 8) 1.98×103 244.49 1.56×103 1.57×103

Brain tumor MRI (Fig. 9) 886.19 61.76 218.46 515.03

Although the proposed method is more efficient as compared to uniform refinement
methods, the computational cost is still high and the process is time consuming for large
datasets. Parallelization has been introduced in the implementation to make it more ef-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Pre-operative and post-operative image registration of brain MRI image (size: 256×256×130): the
axial MRI at z= 64mm of the source image (a), at z= 79mm of the target image (b) and the initial image
difference (c). Second row: the registered image using DTHB3D Reg (d), the level set method (e) and the
optical flow method (f). Third row: the final image difference between the registered and target images using
DTHB3D Reg (g), the level set method (h) and the optical flow method (i).

ficient. However, the implementation of the adaptive refinement using THB-splines is
yet to be parallelized, thus limiting the speed up of the code. For very large datasets, the
memory usage increases drastically, thus limiting the maximum refinement levels that
can be used. The framework can only be used for the registration of grayscale images of
the same imaging modality and having the same range of intensity values for the pair of
images. This is because we use SSD as the metric in the energy functional. Furthermore,
the registration process can be only be applied for the pair of images of equal sizes.
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Table 4: Comparison of the total number of B-spline control points used by the DTHB3D Reg (adaptive
refinement) and the level set (uniform refinement) methods.

Images DTHB3D Reg Level Set

Brain MRI (Fig. 5) 307,830 9,354,443

Brain MRI (Fig. 7) 185,714 3,689,455

Liver CT (Fig. 8) 188,793 10,078,550

Brain tumor MRI (Fig. 9)) 234,407 8,921,773

5 Conclusions and future work

A robust method to perform 3D nonrigid image registration suitable for large image de-
formation and topology change is proposed. The optimum spatial transformation is de-
fined using THB-splines. Adaptive refinement is introduced by locally detecting and
refining only those regions that undergo fine-scale deformations. Dynamic implementa-
tion of the optimization is carried out where the energy functional is minimized using
the strong formulation directly. Based on the numerical results, we have shown that
our method is more accurate in capturing large deformation and is robust to topology
change. We have developed a software package named DTHB3D Reg which is freely
available in the public domain. In the future work, we will focus on further applications
of our algorithm to carry out joint segmentation and registration of medical images. Im-
age registration via hp-refinement and coarsening is another area we will study. We will
also focus on the parallel implementation of the THB-splines in our software package in
order to further improve the code efficiency.
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