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ABSTRACT

Given an input three-dimensional (3D) image in this paper, we first segment it into several clusters by
extending the two-dimensional harmonic edge-weighted centroidal Voronoi tessellation method to the
3Dimage domain. The dual contouring method is then applied to construct tetrahedral meshes by analysing
both material change edges and interior edges. Hexahedral meshes can also be generated by analysing
each interior grid point. An anisotropic Giaquinta—Hildebrandt operator-based geometric flow method
is developed to smooth the surface with both volume and surface features preserved. Optimisation-
based smoothing and topological optimisations are also applied to improve the quality of tetrahedral
and hexahedral meshes. We have verified our algorithms by applying them to several data-sets.

1. Introduction

Many methods have been developed for two-dimensional/
three-dimensional (2D/3D) image segmentation in the literature
(Pal & Pal 1993; Chan & Vese 2002). Thresholding (Tobias &
Seara 2002; Arifin & Asano 2006) is a very common approach
which partitions the image based on the intensity values and a
given threshold. Binarisation was used in (Tsuda et al. 2008) to
segment the raw image for accurate 3D reconstruction of the
air exchange regions of the lung. K-means clustering (Pappas
1992) groups pixels in an image into non-overlapping clusters
through the minimisation of the total inter-cluster variance. Wa-
tershed (Sijbers et al. 1997) segments images into homogeneous
regions using concepts from edge detection and mathemati-
cal morphology. In recent years, centroidal Voronoi tessellation
(CVT) has been extensively studied for image segmentation (Du
et al. 1999, 2006), where the key idea is to partition the im-
age by updating generators with respect to a specific energy
function. The edge-weighted CVT (EWCVT) model (Wang et al.
2009) was proposed by incorporating spatial information into
the energy function in order to eliminate the noises and un-
necessary details. The harmonic EWCVT (HEWCVT) model (Hu &
Zhang 2016a) extends EWCVT by introducing a harmonic form
of the clustering energy to generate more stable and accu-
rate results. Starting from segmented images, the Dual Contour-
ing method (Zhang et al. 2005) generates dual meshes from
ire._Tetrahedral meshes for complicated do-
ambiguity can be generated by splitting
lIs into tetrahedra and analysing the edges
Vhang & Qian 2012). A parallel Image-to-
rithm (Foteinos & Chrisochoides 2014) was
p quality tetrahedral meshes via dynamic
pointinsertions and removals. The isosurface extraction method
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(Zhang & Bajaj 2006) extracts the boundary surface and con-
structs uniform and adaptive hexahedral meshes from volumet-
ric imaging data. However, it is still challenging to generate
quality finite element meshes directly from raw images bridging
image segmentation and mesh generation.

It is also crucial to improve the mesh quality in order to
avoid the ill-conditioned linear systems during the finite ele-
ment analysis. Smoothing methods improve mesh quality by
relocating vertices without changing the connectivity (Freitag
1997). However, traditional smoothing techniques are heuristic
and sometimes invert or degrade the local elements. To address
this problem, optimisation-based smoothing methods were pro-
posed, where each node is relocated to the optimum location
based on the local gradient of the surrounding element quality
(Canann et al. 1998). Methods based on local curvature and
volume preserving geometric flows were developed to iden-
tify and preserve the main surface features (Zhang et al. 2009;
Liao et al. 2016). Although there already exist a variety of mesh
denoising methods, research on feature preserving denoising
remains active due to its challenging nature. Besides smoothing,
topological optimisation techniques, such as face swapping and
edge removal (Leng et al. 2013), are utilised to improve the node
valence and mesh quality of tetrahedral meshes. To improve
the quality of hexahedral meshes, the pillowing technique was
developed to remove doublets that are formed when two neigh-
bouring hexahedra share two faces (Qian et al. 2010; Zhang et al.
2010).

In this paper, we first extend the HEWCVT (Hu & Zhang 2016a)
from 2D to 3D image segmentation and generate compact and
connected segments. Based on the segmented image, the dual
contouring method (Zhang et al. 2005; Zhang & Qian 2012)
is then applied to construct tetrahedral meshes by analysing
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both material change edges and interior edges, and hexahe-
dral meshes by analysing interior grid points. We also develop
an anisotropic Giaquinta-Hildebrandt operator (GHO) diffusion
flow for surface smoothing and quality improvement, while
optimisation-based smoothing and topological optimisations
are applied together. The key contributions of our proposed
algorithms include:

(1) The 2D HEWCVT (Hu & Zhang 2016a) is extended to 3D
image segmentation, where 3D spatial information is in-
cludedin orderto eliminate the noise effect. By improving
the connectivity of each segment, it generates compact
and connected segments without leaving isolated voxels
and keeping the connectivity of the structure; and

(2) The anisotropic GHO diffusion flow is developed for sur-
face smoothing which preserves surface features while
removing the noise with an anisotropic weighting func-
tion. Since GHO is defined based on the second funda-
mental form of the surface, our proposed algorithm is
more sensitive to curvature-related features.

The remainder of this paper is organised as follows. Section 2
describes the HEWCVT-based 3D image segmentation. Section 3
explains tetrahedral and hexahedral mesh generation via the
Dual Contouring method. Section 4 discusses surface smooth-
ing via the anisotropic GHO diffusion flow and explains how
to improve the quality of tetrahedral and hexahedral meshes.
Section 5 shows some results, and Section 6 presents conclusions
and future work.

2. CVT-based 3D image segmentation

CVT-based clustering methods (Du et al. 1999, 2006) partition
discrete data points into non-overlapping clusters with an ini-
tialisation of generators. It first constructs Voronoi regions by as-
signing each point to its nearest generator with certain distance
metric. For each Voronoi region, we can iteratively calculate its
centroid by minimising a pre-defined energy function until it
coincides with the corresponding generator. Inspired by the
HEWCVT method (Hu & Zhang 2016a) for 2D image segmen-
tation, here we extend it to 3D image segmentation.

The input image / is given in the form of function values,
I ={l(x,y,2)}, where x, y, z are indices of X, Y, Z coordinates. Let
the data-set F = {fp(;}"_, denote all the intensity values fp; of
the greyscale image, where n is the total number of voxels and
P(i) represents the ith voxel in the physical space. Let C = {c/},L=1
denote a set of Voronoi generators with intensity values, where
L is the number of clusters. The Voronoi regions V = {V,} _,inF
corresponding to the generators can be obtained by assigning
each voxel to the cluster whose generator is the nearest to it
according to the distance metric:

fp(,‘),Ck) < dist (fp(,’),CI) , forl=1,... ,L} ,

B pdfelement M)

\/|fp(,‘) — ck|2 ~+ 2xA, (P(i)) measures the
ce between fpgy and ¢, in the greyscale
ceagowerghted term f, (P(i)) represents the number
of voxels that do not belong to the kth cluster within w-ring
spherical neighbours of P(i), which includes the local 3D spatial
information in the physical space. Here, we choose a relatively

small value of w (w = 3) for all the examples in order to reduce
the computational cost. Given any set of generators C = {c/},L=1
and any partition U = {U,},L:1 of F, we can define the corre-
sponding HEWCVT energy function of (C; U) as

n

Z( Zd'St me,C/))- (2)

i=1

E(CU)=

Note that the HEWCVT energy function uses the edge-
weighted distance to all generators for each voxel. It means
that all the generators partially influence the harmonic average
for each voxel. By taking into account the physical information
and using the harmonic form of energy function, HEWCVT is
robust to the initialisation and can eliminate the noise in the
3D image during the segmentation. To calculate the updated
centroids {cz}i:v we minimise the HEWCVT energy function
with respect to the generators ¢k (k =1,...,L0).If the generators
of the Voronoi regions {V,} _, Of F equal to their corresponding
centroids, i.e. ¢, = ¢ for/ = 1,...,L, then we call the Voronoi
tessellation {V,}, 1 @ centroidal Vorono: tessellation of F. The
detailed implementation of HEWCVT-3D is explained as follows:

Algorithm of HEWCVT-3D

Given a 3D image F = {fp(;};_,, positive integer L and error
tolerance ¢ (¢ = 10~% in this paper). E; denotes the HEWCVT
energy in the ith iteration. Then perform the following:

(1) For each voxel, find its w-ring neighbouring voxels in
advance. Choose L random voxels in the image and take
their intensity values as the initialisation of the generators
{ath_y;

(2) Determine the edge-weighted Voronoi clusters {V,},L:1
of F associated with {c/},L:1 by (1). For each cluster V,
(I'=1,...,L), update the cluster centroid ¢} by minimis-
ing the HEWCVT clustering energy function;

3) If E’%I_E’ < ¢ is reached, return ({c/}_; {V)}i_,); other-
wise, set ¢ = c,* for/ =1,...,Land return to Step 2.

(4) Merge small isolated segments to its neighbouring clus-
ter with the longest boundary.

We have tested our HEWCVT-based 3D image segmentation
algorithm on a 3D MRI Brain-1 image (181 x 217 x 181) from
BrainWeb data-set (Cocosco et al. 1997), with 3% noise and 20%
intensity non-uniformity (INU), shown in Figure 1. We segmented
the 3Dimageinto four clustersin order to extract the grey matter,
white matter, cerebrospinal fluid and background. Figure 1(b)
shows the HEWCVT-3D segmentation result after 20 iterations,
where neighbouring clusters are rendered with different colours.
Figure 1(c) and (d) show the segmented white matter and grey
matter, respectively. We also compared our result with EWCVT-
3D by extending EWCVT (Wang et al. 2009) to 3D image domain.
From the slice 103 and corresponding segmented images in
Figure 1(e)-(h), we can observe that HEWCVT-3D yields more
accurate results in many regions and both of them can elimi-
nate the noise effect. Figure 1(i) shows the energy convergence
curves for both EWCVT-3D and HEWCVT-3D under the same
initialisation. Compared to EWCVT-3D, the HEWCVT-3D energy
converges faster to the minimum. We also segmented the image
with 100 different random initialisations using both EWCVT-3D
and HEWCVT-3D, and the minimised energy outputs are shown
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Figure 1. Segmentation result of the Brain-1 image with 3% noise and 20% INU. (a) Input 3D image; (b) HEWCVT-3D segmentation result; (c) segmented white matter; (d)
segmented grey matter; (e)-(h) the original image, ground truth, EWCVT-3D and HEWCVT-3D results of the slice 103, respectively; (i) energy outputs; and (j) minimised

energy outputs of 100 initialisations.

in Figure 1(j). It is obvious that HEWCVT-3D is much more stable
and less sensitive to the initialisations than EWCVT-3D.

Remark 2.1: The objective functionin HEWCVT-3D applies the
edge-weighted distances to all centroids for each voxel. This
means that all centroids partially influence the harmonic average
for each voxel. Compared to EWCVT-3D, HEWCVT-3D yields more
accurate results by imposing a soft membership function with a
harmonic average form of the energy function. By taking into
patial information of each voxel, HEWCVT-
ate the noise effect during the segmen-
broving the connectivity of each segment,
atically and robustly generates compact
ing isolated voxels. The segmented image
can be used to generate tetrahedral and hexahedral meshes
directly via the Dual Contouring method (Zhang et al. 2005); see
Section 3.

a pdfelement
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3. Tetrahedral and hexahedral mesh generation

After the segmentation, we set the image / as a scalar func-
tion, I(x,y,z) — J, whereJ = {0,1,...,L — 1} is a set of labels
where 0 represents the background and 1,...,L — 1 represent
the other materials. Based on the labelled image, we analyse
both material changes edges and interior edges to generate
tetrahedral meshes using the dual contouring method (Zhang
et al. 2005, 2010; Zhang & Qian 2012). A material change edge
is defined as an edge whose two end points have different
label indices. An interior edge is an edge whose two end points
have the same label. Each material change edge belongs to a
boundary cell, while interior cells only contain interior edges. For
each octree cell, a dual vertex is generated and the tetrahedral
mesh is constructed by connecting the dual vertices with octree
grids. For each boundary cell, we calculate the mass centre as
the dual vertex. The mass centre is defined as the average of
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all the middle points of the material change edges in the cell.
The cell centre is simply selected as the dual vertex for each
interior cell. For each material change edge, we first find out all
its four surrounding leaf cells and corresponding dual vertices.
These four dual vertices and the interior grid point of this edge
construct a pyramid. For each interior edge, we also obtain four
dual vertices. These four dual vertices and two endpoints of
this edge form a diamond. Finally, the pyramids and diamonds
can be split into two or four tetrahedra. To handle topology
ambiguities, a trilinear function can be introduced to detect the
ambiguous cells (Zhang & Qian 2012). The ambiguous cells are
split into tetrahedral cells, and tetrahedral dual meshes are then
generated by analysing the edges of these tetrahedral cells.
Mesh adaptation can be achieved via an adaptive octree data
structure (Zhang & Qian 2012).

Instead of analysing edges, we analyse interior grid points
to construct hexahedral meshes from segmented volumetric
data. Since each grid point is shared by eight octree cells in a
uniform case, we can obtain eight mass centres to construct
a hexahedron. To generate haxahedral mesh for each material
region with conforming boundaries, material change edges are
used to identify the interface between two or several materials
(Zhang et al. 2010). We can also generate adaptive hexahedral
meshes by extracting the dual mesh from a hybrid octree (Hu &
Zhang 2016b), which consists of polyhedral cells and each grid
point is always shared by eight cells.

Since the function values I(x, y, z) of the segmented images
are discontinuous, the surfaces of the generated tetrahedral
meshes and hexahedral meshes are bumpy. Figure 2(a) and (f)
show the initial tetrahedral meshes of the white matter and grey
matter of the Brain-1, where red/green windows in Figure 2(c)
and (h) highlight the bumpy surfaces. Figure 3(a) and (f) show the
initial hexahedral meshes of the white matter and grey matter
of the Brain-1, where red/green windows in Figure 3(c) and (h)
highlight the bumpy surfaces. A surface smoothing technique is
needed during the following mesh quality improvement.

4. GHO-based geometric flow and quality
improvement

In the meshes generated from the above algorithm, some el-
ements around the boundaries may have poor aspect ratio,
therefore the mesh quality needs to be improved. There are two
kinds of vertices in 3D meshes, boundary vertices and interior
vertices. For each boundary vertex, we use geometric flow to de-
noise the surface and improve the quality. The quality of interior
tetrahedra and hexahedra is simultaneously improved using the
optimisation-based smoothing and topological optimisations.
Laplacian smoothing is the most commonly used mesh
smoothing method which iteratively relocates a vertex to the
s neighbouring vertices. However, it also
effect and an oversmoothing result. Here,
HO-based geometric flow to smooth the
eserve the concave/convex features and
hge. Let S = {x(u,v), (u,v) € R?} be a
o rface in R3. Note that (u,v) can also be
written as (u u?) for convenience. The coefficients of the first
fundamental form of S are defined as gog = (Xue, Xy5) (o, B =

1,2), where xy« = % and x,s = ;T)fﬁ The coefficients of the
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second fundamental form of S are defined as beg = (N, Xyays ),

where X086 = auiaxuﬂ and n = (X X X)/ Xy X X,||. Letg =
det[gep], [9%P] = [gupl™", and [bf] = [bys]~". The mean
curvature H = 2m922-2612012+b22911 31 the Gaussian curvature

29
% Let f € C2(S), the GHO acting on f is defined as

K=

Of = div(of) = %} [@K [6°%] [, fV]T] . B

1 d
J9 Lou
where div is the divergence on the manifold surface and <> is the
second tangential operator (STO) given by

of = [xu %/ JK [6°F] [fu f]" (@)

To preserve the volume, here we define a surface diffusion flow
using the GHO as

ai): — sign(K(0))OHEON (). (5)

Let S(t) denote the smoothed surface at t > 0, A(t) denote the
area of S(t), and V(t) denote the volume of the region enclosed
by S(t). Then we have

dA(t) /DHHd dV(t) /DHd (6)

S(t) S(t)

Green’s formula. Let v = (v1 , V2, V3)T be a vector field on S and
f € C'(S) with compact support. Then

/< v, Vf>dA = — / fdiv(v)dA, (7)
s

where VF = [xy,x,][9%?] [fu, fV]T is the tangential gradient
operator acting on f. According to the Green'’s formula (Xu &
Zhang 2008), we have

dA(t) /DHHdU =— / VH<$HAo, (8)

S(t) S

and

dV(t) / [OHdo = / OHV(1)do = 0. (9)

S(t) St

Hence, the proposed geometric flow is volume preserving. Since
GHO is defined based on the second fundamental form of the
surface, it is more sensitive to the curvature-related features.
From the definition of <> and div, we can derive that

Uf = fu + 9y fv + gL:(l;fuu + guDVfuv + g\l/jfv, (10)
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(c¢) Original surface (d) Isotropic GHO (e) Anisotropic GHO

(8)

(i) Isotropic GHO (j) Anisotropic GHO
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The Trial Version bs. (a), (b) The original and smoothed meshes (using anisotropic GHO) of the white matter, respectively; (c) enlargement of the red window
es showing smoothed results of isotropic and anisotropic GHO flow, respectively; (f, g) the original and smoothed meshes (using anisotropic
GHO)-0 : 2 pectively; (h) enlargement of the green window in (f); and (i), (j) zoom-in pictures showing smoothed results of isotropic and anisotropic GHO
flow, respectively.
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(c¢) Original surface (d) Isotropic GHO (e) Anisotropic GHO
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(i) Isotropic GHO (j) Anisotropic GHO

The Trial Version bs. (3, b) The original and smoothed meshes (using anisotropic GHO) of the white matter, respectively; (c) enlargement of the red window in
owing smoothed results of isotropic and anisotropic GHO flow, respectively; (f, g) the original and smoothed meshes (using anisotropic GHO)
ely; (h) enlargement of the green window in (f); and (i), (j) zoom-in pictures showing smoothed results of isotropic and anisotropic GHO flow,

respectively.
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Table 1. Image segmentation statistics of all tested models.

Image Brain-1 Brain-2 Brain-3 Brain-4 Brain-5 Brain-6 Brain-7 Brain-8
Noise level 3% 3% 5% 5% 7% 7% 9% 9%
INU level 20% 40% 20% 40% 20% 40% 20% 40%
Number of clusters 4 4 4 4 4 4 4 4
A 0.05 0.05 0.10 0.10 0.15 0.20 0.30 0.30
k-means 74.38% 73.26% 69.78% 69.24% 68.84% 67.97% 67.46% 66.37%
Average EWCVT-3D 89.45% 88.68% 84.49% 86.65% 85.13% 83.28% 81.69% 78.43%
SA HEWCVT-3D 93.23% 93.12% 92.88% 92.26% 92.24% 91.56% 90.96% 89.26%
k-means 79.88% 76.96% 74.18% 73.24% 72.89% 72.47% 71.86% 71.64%
Average EWCVT-3D 91.25% 90.98% 89.69% 89.25% 88.62% 86.29% 83.57% 81.45%
BR HEWCVT-3D 95.28% 95.11% 94.89% 94.66% 93.84% 92.99% 92.16% 91.83%
k-means 13.79% 13.94% 14.22% 14.79% 15.03% 15.87% 16.24% 16.63%
NaY EWCVT-3D 11.96% 12.63% 12.99% 13.78% 13.98% 14.77% 15.21% 15.68%
HEWCVT-3D 0.78% 0.78% 0.79% 0.82% 0.85% 0.88% 0.90% 0.93%
Average k-means 35.2 354 35.6 34.8 35.2 353 34.2 354
time EWCVT-3D 45.2 46.4 45.7 44.9 45.6 454 44.9 45.5
(seconds) HEWCVT-3D 65.8 65.9 66.7 67.8 66.2 68.3 67.9 68.1
where is used to scale the speed of the movement. v(x) is the velocity

95' = —[bn(gzzguz — g129222) + 2b12(9129212 — 9229112)
+ b22(g229111 — 9129211)]/92,
QVD = —[bn(gngzzz — g129122) + 2b12(9129112 — 9119212)

+b22(g119211 —9129111)]/92,
H—p D —_2 O=b
guu - 22/9’ guv - 12/g' gvv - 11/9:

and gup, = <Xua,xuﬂuy>. Since bj; involves the second-order
derivatives of the surface, a C2-continuous surface represen-
tation is required. In this section, the Loop subdivision basis
functions are adopted to evolve the triangle surface and the
Catmull-Clark basis functions are used to evolve the quadrilateral
surface.

The above geometric flow smoothens the surface by moving
each vertex along its normal direction. The isotropic smoothing
in Equation (5) can eliminate noise but also smooth out impor-
tant features. To preserve surface features while removing the
noise, we introduce an anisotropic weight x (x) for each vertex
by using a function of its two principal curvatures, k; and k3
(Meyer et al. 2003). In order to improve the aspect ratio of the
surface mesh, we also add a tangent movement in Equation (5),

ox .
— = x (0sign(K(x))LIH)Nn(x) + v(x)T(x), (11)

at

1 if kil <Tand k| <T Case 1,
else if |k1| > T and |ka| > T and K> 0 Case 2,

lk1] = min (k1] k2|, H]) Case 3,
- lka| = min (k1] k2|, 1H]) Case 4,
m pdfelement IH| = min (lk:, [ka|, IH]) Case 5,
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ed constant (here we select T = 0.01).
ect uniformly noisy regions, which will be
smoothed isotropically. Concave/convex features (case 2) will
not be smoothed. We also smooth features detected by cases 3—
5 with a speed proportional to the minimum curvature and |K]|

in the tangent direction T(x), which controls the strength of the
regularisation. We first calculate the mass centre m(x) for each
vertex on the surface, and then project the vector m(x) — x onto
the tangent plane to obtain T(x). If the surface has no noise,
we can only apply the tangent movement v(x)T(x) to improve
the aspect ratio of the surface mesh while ignoring the vertex
normal movement. Equation (11) is solved over triangular sur-
faces using Loop subdivision-based isogeometric analysis (Pan
et al. 2015) and over quadrilateral surfaces using Catmull-Clark-
based isogeometric analysis (Wei et al. 2015). Note that the value
of the principal curvatures is related to the scale of the object.
Therefore, we scale the input mesh to a unit cube when we apply
Equation (11).

The surface smoothing via GHO-based geometric flow im-
proves the quality of the surface, but the quality of interior
mesh also needs to be improved. To measure tetrahedral mesh
quality, we choose three metrics (Leng etal.2013): Q1 = Omin, the
minimal dihedral angle of each element; Q2 = Omax, the maximgl
dihedral angle of each element;and Q3 = 8 - 3% V(Zjé=1 ejz) 2,
the Joe-Liu parameter, where {ej }}; are six edge lengths, and V
is the volume of each tetrahedron. Three techniques are applied
to improve the mesh quality: optimisation-based mesh smooth-
ing, face swapping and edge removal (Leng et al. 2013). The
optimisation-based smoothing improves all tetrahedra in the
mesh by minimising the objective function e = Zner max(Qin —
q,0)P, where 7 is the set of tetrahedra in the mesh, Q, rep-
resents Joe-Liu value of a tetrahedron n € 7, and g and p
are parameters. This approach can improve the overall mesh
quality efficiently, but some elements still have poor quality
because of the bad valence. Face swapping removes edges with
valence 3 or 4 by reconnecting vertices of some elements. Edge
removal removes poor quality elements by replacing one ring
neighbouring tetrahedra of the edge with new tetrahedra of
higher quality. To measure the hexahedral mesh quality, we
choose two metrics (Zhang et al. 2010): the scaled Jacobian
and the condition number. For each node x in a hexahedron,
three edge vectors are defined as e = x; — x (i = 1,2,3).
Then the Jacobian matrix is defined as J = [e;, e, €3], and
we have Jacobian(x) = det(J). If e;,e, and e3 are normalised,
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(d) Original image (f) EWCVT-3D (g) HEWCVT-3D

(h) Original image (i) K-means (j) EWCVT-3D (k) HEWCVT-3D

Figure 4. Brain-6 model. (a) Input image; (b) slice 106; (c) HEWCVT-3D-based segmentation; (d)—(g) and (h)—(k) from left to right: one slice of the original data, segmented
slices after applying k-means, EWCVT-3D and HEWCVT-3D, respectively.

Table 2. Tetrahedral mesh statistics of all tested models.

Image Mesh size Joe-Liu Dihedral angle Time
(vertices, elements) (min, max) (min, max) (s)

Brain-1 (368,584, 1,796,748) (0.12,1.0) (15.14°,166.56°) 189.7

Brain-2 (326,576, 1,616,551) (0.13,1.0) (15.10°,166.94°) 187.8
(332,681, 1,630,137) (0.12,1.0) (15.11°,167.39°) 184.7

(343,268, 1,682,014) (0.12,1.0) (15.06°,167.39°) 186.9

(301,298, 1,491,425) (0.13,1.0) (15.08°,167.76°) 179.9

T (282,352, 1,395,796) (0.11,1.0) (15.11°,167.17°) 179.6
7 pdfelement (312,453, 1,534,144) (0.12,1.0) (15.02°,167.83°) 188.8
(342,683, 1,686,006) (0.13,1.0) (15.01°,167.89°) 187.7

The Trial Version

det(J) is also called the scaled Jacobian. The condition number layer around the boundary. Optimisation-based smoothing is
of the Jacobian matrix is defined as « (J) = |J] {J*‘ | Pillowing then implemented to further improve the quality, where the
is firstly applied to improve the mesh quality by inserting one  objective function is to maximise the minimum scaled Jacobian.
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Figure 5. Tetrahedral mesh of the Brain-6 model. (a), (b) Cross section of the final tetrahedral mesh, with zoom-in pictures of the initial and improved meshes of the green
box; (c) zoom-in pictures of the initial and improved meshes with three neighbouring materials; (d) improved tetrahedral mesh of the white matter; (e) enlargement of
the red window in (d); (f) improved tetrahedral mesh of the grey matter; and (g) enlargement of the green window in (f).

Table 3. Hexahedral mesh statistics of all tested models.

| Mesh size Scaled Jacobian Condition number Time
mage X . )
(vertices, elements) (min, max) (min, max) (s)

Brain-1 (317,986, 256,956) (0.10, 1.0 (1.0, 386.8) 263.9
Brain-2 (350,768, 283,446) (0.09,1.0) (1.0,422.3) 288.2
Brain-3 (317,988, 256,956) (0.08,1.0) (1.0,408.6) 266.4
Brain-4 (370,438,299,342) (0.08,1.0) (1.0, 446.5) 311.6
Brain-5 (357,324, 288,746) (0.09, 1.0) (1.0,431.9) 296.8
Brain-6 (295,826, 239,049) (0.10,1.0) (1.0,358.8) 2441
Brain-7 (363,882, 294,046) (0.09,1.0) (1.0, 440.8) 3026
Brain-8 (340,934, 275,499) (0.08, 1.0) (1.0,412.6) 287.9

Figure 2(b) and (g) show the improved tetrahedral meshes of
the white matter and grey matter of the Brain-1 model. Both
isotropic and anisotropic GHO diffusion flows are applied to
denoise the bumpy surface with the same temporal step size

6-6 Raitamasion number (100 iterations). As shown in
isotropic GHO diffusion flow smooths out
rs the surface features. Compared to the
bn flow, it is obvious that our anisotropic
reserves surface features better while re-
Figure 2(e) and (j). Similarly, Figure 3(b)
and (g) show the improved hexahedral meshes of the white
matter and grey matter of the Brain-1 model. Both isotropic
and anisotropic GHO diffusion flows are applied to denoise the

bumpy surface with the same temporal step size (t = 0.02)
and iteration number (150 iterations). Compared to the isotropic
GHO diffusion flow results in Figure 3(d) and (i), it is obvious that
our anisotropic GHO diffusion flow preserves surface features
better while removing the noise, see Figure 3(e) and (j).

Remark 4.1: Since GHO is defined based on the second fun-
damental form of the surface, it is more sensitive to curvature-
related surface features, such as concave creases and convex
ridges. However, isotropic geometric flow smooths out impor-
tant features when reducing the noise. By introducing an aniso-
tropic weighting function which penalises surface vertices with a
large ratio between their two principal curvatures, the anisotropic
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Figure 6. Hexahedral mesh of the Brain-6 model. (a), (b) Cross section of the final hexahedral mesh, with zoom-in pictures of the initial and improved meshes of the green
box; (c) zoom-in pictures of the initial and improved meshes with three neighbouring materials; (d) improved hexahedral mesh of the white matter; (e) enlargement of
the red window in (d); (f) improved hexahedral mesh of the grey matter; and (g) enlargement of the green window in (f).

GHO diffusion flow preserves concave and convex features such
as brain wrinkles when removing the noise.

5. Results and discussion

In this section, we apply our presented algorithms to eight 3D
medical images that are either noise free or corrupted by dif-
ferent types of noises. All the results were computed on a PC
equipped with a 2.93 GHz Intel X3470 CPU and 8GB of Mem-
ory. Statistics of all tested models are given in Table 1. For
HEWCVT-3D-based image segmentation, we need to define two
parameters: L, the number of clusters; and 1, the weighting
parameter that balances the clustering energy and the edge-
weighted energy.

These eight 3D MRI brain images (181 x 217 x 181) are
from the BrainWeb (Cocosco et al. 1997), with four levels of
wo levels of intensity non-uniformity (INU)
ted each 3D image into four clusters in
y matter, white matter, cerebrospinal fluid
re 4(a) shows the initial Brain-6 3D image
INU, where the slice 106 in both 3D and
ghted in Figure 4(b). Figure 4(c) shows the
HEWCVT-3D- based image segmentation, where the green part
represent the white matter. We can observe that the noise effect
can be well removed during segmentation. We also compared

B pdfelement

The Trial Version

all results with two other methods: k-means (Pappas 1992) and
EWCVT-3D (Wang et al. 2009); see Figure 4(d)-(k). HEWCVT-3D
generates better segmentation results without leaving isolated
voxels and keeping the connectivity of the structure, while k-
means is not robust to handle the noise effect and EWCVT-3D
may generate inaccurate results. We first use the segmentation
accuracy (SA) (Ahmed et al. 2002) to quantitatively evaluate the
segmentation results. Given the segmented image R and the
ground truth image G obtained from BrainWeb data-set, the SA
can be defined as:

N Correct

SA = x 100%, (12)

Total

where Ncorrect represents the number of correctly classified vox-
els and Nrotay is the total number of voxels in the image. In order
to evaluate the accuracy of feature preservation, we also use the
boundary recall (BR) (Ren & Malik 2003) to measure the portion
of boundary voxels in the ground truth that are also identified as
boundary by the segmentation being evaluated. The BR can be
defined as:

TP
BR= ———— x 100%,
TP+ FN

where TP is the number of boundary voxels in G with at least one
boundary voxel in R in range of two voxels, FN is the number
of boundary voxels in G with no boundary voxel in R in range

(13)



a pdfelement

The Trial Version

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION e 341

of two voxels. Large SA and BR values are usually considered
high accuracy. We also introduce another metric named the
segmentation coefficient of variation (SCV) (Hu & Zhang 2016a)
to evaluate the stability of different methods. For each brain
image, we test N (N = 100 in this paper) random initialisations
of the generators using k-means, EWCVT-3D and HEWCVT-3D.
We can get one minimised energy value for each test and the
SCV can be defined as:

\/ﬁ 1L (Min€; - W)Z

MinE

SCV = x 100%, (14)

where MinE; represents the minimised energy for the ith test,
and MinE represents the mean of the minimised energy. Large
SCV values are usually considered high-variance, otherwise low-
variance. The average SA, the average BR and SCV values of
the each image with 100 tests are listed in Table 1. We can
observe that HEWCVT-3D improves the segmentation accuracy
compared to k-means and EWCVT-3D. From the comparison of
BR values, it is evident that HEWCVT-3D can also better preserve
the connectivity of structure compared to the other two meth-
ods. With different initialisations, the energy function converges
to different values for k-means and EWCVT-3D, while HEWCVT-
3D is much more stable and less sensitive to initialisations with
all SCVs < 1%. In addition, our HEWCVT-3D-based method is also
robust to noise since the SA, BR and SCV values do not change
much for different levels of noise and INU. Since HEWCVT-3D
updates cluster centroids by calculating distances to all centroids
for each voxel, the computational cost is higher than the other
two methods.

Tetrahedral and hexahedral meshes consisting of the white
matter, grey matter and cerebrospinal fluid are generated and
the mesh quality is improved via geometric flow-based smooth-
ing and optimisation. Tables 2 and 3 shows tetrahedral and
hexahedral meshing results for each model. Figure 5(b) shows
the improved tetrahedral mesh of Brain-6 with the white mat-
ter (yellow), grey matter (red) and cerebrospinal fluid (blue).
The improved mesh is in good quality with a dihedral angle
range of (15.11°,167.17°). From the zoom-in pictures we can
observe that smoothness and regularity of boundary surfaces
between different materials are significantly improved. Figure
5(d)-(g) show the improved meshes of the white matter and
grey matter, respectively, with mesh adaptation highlighted in
zoom-in pictures. We can observe that surface features are well
preserved during the surface denoising via the anisotropic GHO
diffusion flow. Figure 6(b) shows the improved hexahedral mesh
of Brain-6 with the white matter (yellow), grey matter (red) and
cerebrospinal fluid (blue). We can observe that the mesh quality
is also improved with surface features preserved after pillowing
and anisotropic GHO-based smoothing.

d future work

ve developed an algorithm to segment
rate tetrahedral and hexahedral meshes
~atven the input 3D image, we first segment
the image using the HEWCVT-3D algorithm. The Dual Contour-
ing method is then used to extract the initial tetrahedral and
hexahedral meshes. To smooth out surface noise and improve

the quality of the tetrahedral/hexahedral mesh, we developed
an anisotropic GHO diffusion flow. The quality of the interior
tetrahedra/hexahedra is also improved via various optimisation
techniques. We have successfully tested our method using sev-
eral volumetric imaging data-sets. In the future, we will investi-
gate more anisotropic schemes for the geometric flow method.
We will also parallelise our algorithms and apply to more real
applications.
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