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ABSTRACT

Neurons depend critically on active transport of cargoes
throughout their complex neurite networks for their survival
and function. Defects in this process have been strongly
associated with many human neurodevelopmental and
neurodegenerative diseases. To understand related neuronal
physiology and disease mechanisms, it is essential to
measure the traffic flow within the neurite networks.
Currently, however, image analysis methods required for
this measurement are lacking. To address this deficiency,
we developed a method that could measure the flow rates of
cargo traffic at any specified locations along individual
branches of the neurite networks. Our method is based on
detecting and counting cargo trajectories passing through
the specified locations of measurement in kymographs,
which are spatiotemporal maps of cargo movement within
one-dimensional neurites. A main focus of our method
development is robust performance, which ensures that our
method works reliably and accurately under low signal-to-
noise ratios. We validated and benchmarked our method
using both synthetic and actual image data and found its
accuracy to be >85% on average under normal conditions.
Our method can be used to measure traffic flow in not just
neurite networks but also other intracellular networks such
as cytoskeletal filament networks.

Index Terms— kymograph, neurite network, traffic
flow, network flow, image-based measurement

1. INTRODUCTION

Neurons build highly complex and branched networks
of neurites, i.e. axons and dendrites, to carry out their
information processing functions and to form neural circuits
(Fig. 1) [1]. However, the network geometry creates a
significant transportation challenge because to survive and
function, neurons must transport a wide variety of essential
materials packaged in different forms of cargoes, such as
membranous organelles, throughout the networks [2].
Dysfunction of this transport process has been closely
ide range of human neurodevelopmental
autism [3], and neurodegenerative
A\lzheimer’s disease [4]. To understand
brocess is conducted in healthy neurons
efects develop under disease conditions,
S tantitatively measure traffic flow in the
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neurite networks. For example, neurons must balance cargo
traffic to avoid either traffic jams or cargo shortage in
individual neurite branches. To understand how this balance
is achieved, quantitative measurements of cargo traffic flow
in individual neurite branches are required.
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Figure 1. Selected examples of complex geometry of neurite
networks. All examples are from the NeuroMorpho database [5].
Soma and axons: black; dendrites: red. (a) Rat pyramidal neuron
(NMO _00218) (b) Mouse cerebellum Purkinje neuron
(NMO _35058) (c) Drosophila multidendritic-dendritic arborization
class III neuron (NMO_06962)

Various image analysis methods have been developed
for characterizing cargo traffic in a single neurite [6-10]. A
common feature of these methods is that they are all based
on kymographs, which are intuitive and effective
representations of spatiotemporal patterns of cargo
movement. Another common feature of these methods is
that they all aim to recover complete cargo trajectories for
comprehensive characterization of cargo behavior. For
example, Mukherjee and colleagues developed an
automated method [7] that recovered complete trajectories
of secretory granules transported in the axon by detecting
the corresponding curves in kymographs using the mini-
cover approach [11]. A similar strategy was used by Welzel
and colleagues for recovering complete trajectories of
cargoes transported in the axon [9], except that they used
the Hough transform to detect curves in kymographs.
Overall, however, because these methods are designed for a
single neurite, they generally are not suitable for measuring
traffic in the neurite networks, given their complex and
branched geometry.

In this study, our goal is to measure the traffic flow
rate, which we define as the average number of cargoes
passing through a specified location of measurement over a
unit period of time. To measure this rate, we only need
knowledge of cargo movement through the specified
location, not complete cargo trajectories. Therefore, we
developed a method that counted the number of trajectories
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passing specified locations of measurement in kymographs.
A main focus of our method development is robustness so
that our method works reliably and accurately under low
signal-to-noise ratios (SNRs). Specifically, in this study, we
adopt the definition of SNR as

SNR = (lusignal - /ubackgraund ) / abackground Where /'lsigmll denOteS the

mean of signal, while 4,00 @04 Opyperpq denote  the

mean and standard deviation of background, respectively.
We validated and benchmarked our method using synthetic
and real images and confirmed that it could achieve >85%
accuracy on average. The method we developed can be used
to measure cargo traffic in not only neurite networks but
also other intracellular networks, such as cytoskeletal
filament networks.

2. METHODS

2.1 Overview of workflow

Figure 2 shows the overall workflow of our method.
Time-lapse images of cargo transport in a neurite network
are aligned to remove image drift if necessary and then
added up to produce a single sum image. From the sum
image, geometry of the neurite network is extracted
manually or semi-automatically using the neurite tracing
function in the TREES toolbox [12]. Extracted network
geometry is represented and stored using the data structure
for neurite networks in the TREES toolbox [12]. Then,
locations for measurement of traffic flow are specified
manually or automatically. For those neurites that contain
specified locations, kymographs are generated as described
Dtime-lapseimagesequences i) [7], except that they may span
multiple connected neurites (see e.g.
Fig. 3A). The computational
background removal algorithm
described in [13] is applied to the
kymographs to reduce the level of
background fluorescence and to

Ceneration of - remove trajectories of stationary
cargoes. After background removal,
! the Steger’s algorithm for curve

Computational removal of
background & stationary cargo
trajectories from kymograph

detection [14] is used to detect cargo
trajectories. Lastly, the number of
' trajectories  passing through the
Detecting & counting . . .
cargotrajectoriesthrough | specified locations of measurement in
specified locations .
] both anterograde (i.e. away from cell
body) and retrograde (i.e. towards cell
body) directions are counted, and the
calculated flow rates are exported.

Output of measurements of
traffic flow

ata collection
e used primarily time-lapse movies of
amyloid precursor protein) vesicles in

cultured rat hippocampal neurons for developing, validating
and benchmarking our method. Hippocampal neuron were
dissociated from dissected hippocampi (BrainBits) and
cultured in Neurobasal media containing B27 supplement
and 2.5 mM GlutaMAX-I (Gibco). Neurons were
transfected with APP-YFP plasmids, a gift of Dr. Carlos
Dotti from the Katholieke Universiteit Leuven, using
Lipofectamine 2000 (Invitrogen). Time-lapse movies of
APP vesicles were collected at 10 frame per second on a
Nikon Eclipse Ti-E inverted microscope with a CoolSNAP
HQ2 camera (Photometric) and a 100x/1.40NA oil
objective lens. During imaging, cells were maintained in a
Tokai Hit stage incubator at 37 °C with 5% CO,. The
effective pixel size was 0.0645 pm.

2.3 Computational removal
stationary cargo trajectories

A commonly encountered problem in analyzing cargo
traffic in neurite branches is the high level of background
fluorescence (Fig. 3A), which leads to high levels of
background and low SNRs in kymographs (Fig. 3B). To
resolve this problem, we applied the computational
background removal algorithm described in [13] to the
kymographs. The removal process served two purposes.
First, it reduced the background fluorescence level and
increased the SNR (Fig. 3C). For example, the kymograph
in Fig. 3B had an SNR of 4.7. After background removal,
the SNR was increased to 7.0 (Fig. 3C). Second, it removed
trajectories of stationary cargoes (Fig. 3D) and, therefore,
simplified subsequent detection and analysis of trajectories
of moving cargoes. Overall, we found this background
removal process to be essential to robustness of our method
under low SNRs.
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Figure 3. Kymograph background removal. (A) A
representative neurite junction, a basic element of the neurite
network structure. (B) Raw kymograph over pg and gr before
background removal. (C) Kymograph after background removal.
(D) Removed background, including stationary cargo trajectories.

2.4 Detecting and counting cargo trajectories
Following background removal, we detected cargo
trajectories in the kymograph using the Steger’s curve
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detection algorithm [14]. As noted by previous studies of
cargo transport in a single neurite [6-10], curve detected
from kymographs are often fragmented (Fig. 4C) because of
factors such as noise, cargo moving out of focus, etc. If the
goal is to recover complete cargo trajectories, the trajectory
segments must be linked. However, it is known that
performance of this linking process degrades substantially
under low SNRs [15]. Since measurement of traffic flow
does not require complete trajectories, we developed a
method that did not require linking of trajectory segments.
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Figure 4. Cargo trajectory detection and counting. (A) Raw
kymograph, same as Fig. 3B (B) Kymograph after background
removal, same as Fig. 3C. (C) Detected trajectories are shown in
green and overlaid onto the kymograph in (B). (D) A total of 9
equally spaced locations are specified between pq for traffic flow
measurement. The locations are indicated by the white dotted
lines. The red markers indicate passages of trajectory segments in
both directions through the dotted lines.

Taking the kymographs shown in Fig. 3A-B or Fig. 4A-B
as an example, a specified location of measurement
corresponds to a vertical line in the kymograph (see e.g. the
white dashed lines in Fig. 4C and the white dotted lines in
Fig. 4D). The numbers of cargoes passing through the
specified location in the anterograde and retrograde
direction can be determined by counting the trajectories
passing the vertical line accordingly. However, the
trajectories may be fragmented at the position of the vertical
line. To enhance the robustness of our method, we
developed a sliding-window strategy to suppress the
fluctuation in flow rate measurement caused by the
fragmentation. Specifically, instead of counting the
trajectories only at the specified location, we repeated this
counting process at a distance d to both the left and the right
of the location p (Fig. 4C). The total width of the window of
measurement was therefore 2d+1. Consequently, we would
obtain three readouts of cargo number for each trajectory, at
positions p-d, p, p+d, respectively. We then took their
median as the final measurement. In this way, if the gap of
ess than 2d, a correct readout could still
f the trajectory was broken at p. We
ey effectively increased the accuracy of
ement because the traffic flow usually
thin the measurement widow as long as
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the width was small enough. In practice, we typically set d
to be 5 pixels.

3. RESULTS

3.1. Experiments using synthetic images

To test our method, we generated synthetic images of
cargo transport in a single neurite under different SNRs
(Fig. 5A-C) and spatial densities (Fig. 5D-F). Our
simulation was designed to match the experimental imaging
settings described in Section 2.1. For a proof of principle,
we simulated cargoes to move at largely constant velocities
without pausing or switching in directions (Fig. SA-F). We
define measurement accuracy as
N,

Groundtruth

/ NGraundtruth ) X 100% .

where N, 1S the ground-truth number of cargoes

Accuracy = (1 —|NM

easured

passing a specific location of observation. N,,

ea

sured iS the
number of cargoes counted by our method.

Figure 5. Experimental results using synthetic images. (A-C)
Representative kymographs generated from synthetic images.
Cargo number was kept at 30. SNR was varied from 4 to 7. (D-F)
SNR was kept at 7, cargo number was varied from 20 to 40. (G) A
bar plot comparing measurement accuracies under different
conditions. (H) A table listing measurement accuracies under
different conditions.

Overall, we found that under the same spatial density,
increasing SNRs led to increases in measurement accuracy,
as expected (Fig. 5G-H). However, under the same SNR,
increases in spatial density led to decreases in measurement
accuracy decreases (Fig. 5G-H). The Steger’s curve
detection algorithm uses an isotropic Gaussian filter with
o > w/~/3 where wis the maximum width of curves to be
detected. We found that a main reason for the reduced
accuracy under high spatial densities was that curves close
to each were merged after the isotropic filtering.
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3.2 Experiments using real images

To further test our method, we also used it to analyze
real image data. Here we present results for the example
shown in Figure 4. We determined the ground-truth cargo
numbers by manual counting. Overall, we conducted
measurements at 9 locations, with a spacing of 20 pixels, or
1.29 um (Fig. 4D). Because the vast majority of cargoes in
this case moved towards the right of the kymograph, which
was in the anterograde direction, we benchmarked accuracy
of our method only in this direction.

Table 1. Summary of results for the example in Figure 4.

Observation Groundtruth Algorithm Accuracy
Location count count
20 10 8 80%
40 10 9 90%
60 9 10 89%
80 9 8 89%
100 9 8 89%
120 8 4 50%
140 8 5 63%
160 9 9 100%
180 9 10 89%
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We found that the accuracy in most cases was at ~90%
but decreased substantially in two cases. We found that the
performance degradation in these two cases was caused by
two factors. First, some very weak trajectories were not
detected by the Steger’s algorithm. Second, convergence of
multiple trajectories led to an increased counting error. We
have also tested our method on multiple other datasets
(result not shown). Overall, we found the accuracy of our
method to be >85% on average.

3.3 Generating synthetic images for complex neurite
networks

Figure 6. Generating synthetic images of cargo transport in a
neurite network (A) Network geometry used for generating
synthetlc 1mages same as Fig. 1C. (B) A representative frame of
gages. (C) A kymograph was generated along
s from top to bottom between the two green
. Red dotted lines correspond to junctions
es in (A).
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We have thus far tested our method under relatively
simple neurite geometry. To further test our method over
entire neurite networks, we generated synthetic images
based on actual geometry of neurons retrieved from the
NeuroMorpho database [5]. Figure 6 shows an example. For
simplification, cargoes were simulated to move at constant
velocities (Fig. 6C). Our method can be used to measure
traffic flow not just within individual neurite branches but
also over different branches.

4. CONCLUSIONS

In this study, we developed a method that measures
traffic flow rates at any specified locations in complex
neurite networks. To ensure robust performance under low
SNRs, we used two strategies. First, we applied our
computational background removal algorithm to improve
SNRs [13]. Second, we used a sliding-window in counting
trajectories to resolve at least partially the issue of
fragmentation in trajectory detection. We tested our method
using both synthetic and real image data and found that on
average it achieved >85% accuracy. Our method also has its
limitations. First, its accuracy may drop substantially in
some cases (see e.g. Table 1). We are systematically
documenting such cases, some of which are discussed in
Section 3.2. Our goal is to optimize our method specifically
to resolve such cases. Second, our method depends critically
on the performance of the Steger’s curve detection
algorithm, whose performance degrades when the spatial
density of trajectories is high due to its design to use a large
isotropic Gaussian kernel for image filtering [14]. We are
investigating different image filtering and curve detection
algorithms to overcome this limitation.

Because our method requires only kymograph
representation of cargo transport and does not depend on
specific properties of cargo traffic in neurites, it is not
restricted to neurite networks in its applications. Instead, it
can be used to measure traffic flow along other one-
dimensional structures, such as cytoskeletal filaments.

5. ACKNOWLEDGEMENTS
X.C. acknowledges a Ji-Dian Liang Graduate
Research Fellowship. Y.J.Z. acknowledges NSF Faculty
Career grant OCI-1149591. G.Y. acknowledges NSF
Faculty Career grant DBI-1149494. Y.J.Z. and G.Y. also
acknowledge a CMU Department of Mechanical
Engineering seed grant for this project.

6. REFERENCES
[1] L. Luo, Principles of Neurobiology: Garland Science,
2015.
[2] C. L. Maeder, K. Shen, and C. C. Hoogenraad, "Axon

and dendritic trafficking," Current
Neurobiology, vol. 27, pp. 165-170, 2014.

Opinion in

3293



[3] V. Martinez-Cerdeflo, "Dendrite and spine modifications
in autism and related neurodevelopmental disorders in

patients and animal models," Developmental
Neurobiology, p. 10.1002/dneu.22417, 2016.
[4] V. A. Kulkarni and B. L. Firestein, "The dendritic tree

and brain disorders," Molecular and Cellular
Neuroscience, vol. 50, pp. 10-20, 2012.

[5] G. A. Ascoli, D. E. Donohue, and M. Halavi,
"NeuroMorpho.Org: a central resource for neuronal
morphologies," Journal of Neuroscience, vol. 27, pp.
9247-9251, 2007.

[6] N. Chenouard, J. Buisson, 1. Bloch, P. Bastin, and J. C.
Olivo-Marin, "Curvelet analysis of kymograph for
tracking  bi-directional particles in fluorescence
microscopy images," in 2010 IEEE International
Conference on Image Processing, 2010, pp. 3657-3660.

[7] A. Mukherjee, B. Jenkins, C. Fang, R. J. Radke, G.
Banker, and B. Roysam, "Automated kymograph
analysis for profiling axonal transport of secretory
granules," Medical Image Analysis, vol. 15, pp. 354-367,
2011.

[8] K. Zhang, Y. Osakada, W. Xie, and B. Cui, "Automated
image analysis for tracking cargo transport in axons,"
Microscopy Research and Technique, vol. 74, pp. 605-
613,2011.

[9] O. Welzel, J. Knorr, A. M. Stroebel, J. Kornhuber, and
T. W. Groemer, "A fast and robust method for automated
analysis of axonal transport," FEuropean Biophysics
Journal, vol. 40, pp. 1061-1069, 2011.

[10] M. Qiu, H.-C. Lee, and G. Yang, "Nanometer resolution
tracking and modeling of bidirectional axonal cargo
transport," in 2012 9th IEEE International Symposium
on Biomedical Imaging (ISBI) 2012, pp. 992-995.

[11] P. Felzenszwalb and D. McAllester, "A Min-Cover
Approach for Finding Salient Curves," in 2006
Conference on  Computer Vision and Pattern
Recognition Workshop (CVPRW'06), 2006, pp. 185-185.

[12] H. Cuntz, F. Forstner, A. Borst, and M. Héausser, "The
TREES toolbox—probing the basis of axonal and
dendritic branching," Neuroinformatics, vol. 9, pp. 91-
96,2011.

[13] H.-C. Lee and G. Yang, "Computational removal
ofbackground fluorescence for biological fluorescence
microscopy," in 2014 IEEE 11th International
Symposium on Biomedical Imaging (ISBI) 2014, pp. 205-
208.

[14] C. Steger, "An Unbiased Detector of Curvilinear
Structures," IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 20, pp. 113-125, 1998.

[15] N. Chenouard, I. Smal, F. de Chaumont, M. Maska, I. F.
Sbalzarini, Y. Gong, et al., "Objective comparison of
particle tracking methods," Nat Meth, vol. 11, pp. 281-
289, 2014.

a pdfelement

The Trial Version

3294





