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Abstract. We introduce a simple model illustrating the utility of con-
text in compressing communication and the challenge posed by un-
certainty of knowledge of context. We consider a variant of distribu-
tional communication complexity where Alice gets some information
X ∈ {0, 1}n and Bob gets Y ∈ {0, 1}n, where (X, Y ) is drawn from a
known distribution, and Bob wishes to compute some function g(X, Y )
or some close approximation to it (i.e., the output is g(X, Y ) with high
probability over (X, Y )). In our variant, Alice does not know g, but
only knows some function f which is a very close approximation to g.
Thus, the function being computed forms the context for the commu-
nication. It is an enormous implicit input, potentially described by a
truth table of size 2n. Imprecise knowledge of this function models the
(mild) uncertainty in this context.
We show that uncertainty can lead to a huge cost in communication.
Specifically, we construct a distribution μ over (X, Y ) ∈ {0, 1}n×{0, 1}n

and a class of function pairs (f, g) which are very close (i.e., disagree
with o(1) probability when (X, Y ) are sampled according to μ), for
which the communication complexity of f or g in the standard setting
is one bit, whereas the (two-way) communication complexity in the
uncertain setting is at least Ω(

√
n) bits even when allowing a constant

probability of error.
It turns out that this blow-up in communication complexity can be
attributed in part to the mutual information between X and Y . In
particular, we give an efficient protocol for communication under con-
textual uncertainty that incurs only a small blow-up in communication
if this mutual information is small. Namely, we show that if g has a
communication protocol with complexity k in the standard setting and
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the mutual information between X and Y is I, then g has a one-way
communication protocol with complexity O((1+I) ·2k) in the uncertain
setting. This result is an immediate corollary of an even stronger result
which shows that if g has one-way communication complexity k, then it
has one-way uncertain-communication complexity at most O((1+I)·k).
In the particular case where the input distribution is a product distri-
bution (and so I = 0), the protocol in the uncertain setting only incurs
a constant factor blow-up in one-way communication and error.

Keywords. Reliable Communication, Context, Uncertainty,
Communication Complexity.

Subject classification. 68Q01

1. Introduction

Most forms of communication involve communicating players that
share a large common context which they use to compress com-
munication. In natural settings, the context may include under-
standing of language, and knowledge of the environment and laws.
In designed (computer-to-computer) settings, the context includes
“commonsense knowledge” as well as the knowledge of the op-
erating system, communication protocols, and encoding/decoding
mechanisms. This notion of “context” held by intelligent systems
plays a fundamental role both in the classical study of artificial
intelligence and in the emerging area of “conversational artificial
intelligence” which underlies intelligent virtual assistants such as
Siri, Google Assistant and Amazon Alexa. Remarkably, especially
in the natural setting, context can seemingly be used to compress
communication, even when it is enormous and not shared perfectly.
This ability to communicate despite a major source of uncertainty
has led to a series of works attempting to model various forms
of communication amid uncertainty, starting with Juba & Sudan
(2008), Goldreich et al. (2012) followed by Juba et al. (2011), Juba
& Sudan (2011), Juba & Williams (2013), Haramaty & Sudan
(2014) and Canonne et al. (2015). The latter works implicitly
give examples of context which share the three features mentioned
above—the context helps compress communication, even though it
is large and imperfectly shared. This current work is the first in
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this series to explicitly highlight this notion and features of con-
text. It does so while studying a theme that is new to this series
of works, namely a functional notion of uncertainty. We start by
describing the setup for our model and then present our model and
results below, before contrasting them with some of the previous
works.

Our model builds on the classical setup of communication com-
plexity due to Yao (1979). The classical model considers two in-
teracting players Alice and Bob each possessing some private in-
formation X and Y , with X known only to Alice and Y to Bob. In
the general setting, both players can send messages to each other,
while in the one-way setting, only Alice sends a message to Bob.
They (specifically Bob, in the one-way setting) wish to compute
some joint (Boolean-valued) function g(X,Y ) and would like to do
so while communicating the minimum possible number of bits. In
this work, we use the function g to model (part of) the context of
the communication. Indeed it satisfies some of the essential char-
acteristics of context: It is potentially “enormous.” For example,
if g were represented as a truth table of values and if X and Y
are n-bit strings, then the representation of g would be 22n bits
long. And indeed knowledge of this context can compress commu-
nication significantly: Consider the trivial collection of examples
where g(X,Y ) = g′(X), i.e., g is simply a function of X. In this
case, knowledge of the context (i.e., the function g′) compresses
communication to just one bit. In contrast, if Alice does not know
the context, her other option is to send X to Bob which requires
n bits of communication. This intuitive explanation can be for-
malized using the well-known Indexing problem (Kushilevitz &
Nisan 1997, Example 4.19) which essentially considers the setting
where Alice has an “index” (corresponding to X) and Bob has a
vector (corresponding to the truth table of g′) and their goal is to
compute the indexed value of the vector (i.e., computing g′(X) in
our correspondence). Standard lower bounds for Indexing (see
Theorem 6.2) imply that Ω(n) bits of communication are needed
to compute g′(X).

In this work, we focus on the case where the context is im-
perfectly shared. Specifically, we consider the setting where Bob
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knows the function g and Alice only knows some (close) approxi-
mation f to g (with f not being known to Bob).1 This leads to the
questions: How should Alice and Bob interact while accounting for
this uncertainty about their shared context? What quantitative ef-
fect does this uncertainty have on the communication complexity
of computing g(X,Y )?

It is clear that if X ∈ {0, 1}n, then n bits of communication
suffice—Alice can simply ignore f and send X to Bob. We wish
to consider settings that improve on this. To do so, a necessary
condition is that g must have low communication complexity in the
standard model. However, this necessary condition does not seem
to be sufficient to compute g correctly on every input—since Alice
only has an approximation f to g. (In Theorem 6.1 in Section 6,
we formally prove this assertion by giving a function g with low
communication complexity, but where computing g(X,Y ) takes
Ω(n) bits in the worst case if Alice is only given an approximation f
to g.) Thus, we settle for a weaker goal, namely that of computing
g correctly only on most inputs. This puts us in a distributional
communication complexity setting. A necessary condition now is
that g must have a low-error low-communication protocol in the
standard (distributional complexity) setting. The question is then:
Can g be computed with low error and low communication when
Alice only knows an approximation f to g (with f being unknown
to Bob)? Formalizing this model still requires some work and we
do so next.

1.1. Uncertain-communication complexity. We first recall
the standard model of communication complexity, in the distribu-

1 We note that the assumption that Bob knows the precise function g to
be computed is not a restrictive assumption but merely a convention that is
consistent with our earlier suggestion that Bob wishes to compute the function
g. We could have equally well asserted that the function to be computed is f
(and so only Alice knows the function to be computed), or picked a neutral
setting saying the function to be computed is h which is very close to both
f and g. The definitions do not really make a significant difference to the
communication problem since any protocol Π that computes a function close
to g is also close to f or h, and hence all versions have the same communication
complexity with small changes in error.
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tional setting. For contrast with our model, we sometimes refer to
this as the model of “certain-communication”.

Let Π denote a communication protocol that specifies how Alice
with input X and Bob with input Y interact. That is, Π includes
functions that specify: (1) given a history of transmissions, if the
communication should continue and if so which one of Alice or
Bob should speak next; (2) given a history of transmissions and
the speaker’s private input (one of X or Y ), what the speaker’s
next message should be; and (3) what the output of the protocol is
when the communication stops. We let Π(X,Y ) denote the output
of the protocol. Note that protocols may involve private or public
(shared) randomness and if so Π(X,Y ) is a random variable. We
let the communication complexity of Π, denoted CC(Π), be the
maximum number of bits exchanged by a protocol, maximized over
all inputs and all (private or public) random coins. We say that a
protocol is one way if all communication comes from one speaker,
typically from Alice to Bob.

In order to describe what it means for a protocol to compute a
close approximation to a given function, we describe our distance
measure on functions. For a distribution μ supported on {0, 1}n ×
{0, 1}n, we let δμ(f, g) denote the probability that f and g differ on
a random input drawn from μ, i.e., δμ(f, g) := Pr(X,Y )∼μ[f(X,Y ) �=
g(X,Y )]. If exactly one of f or g is probabilistic, then we include
the randomness in the probability space.2 We say f and g are
δ-close (with respect to μ) if δμ(f, g) ≤ δ.

For parameter ε > 0, the distributional communication com-
plexity (in the setting of certain-communication) of a function f :
{0, 1}n ×{0, 1}n → {0, 1} over a distribution μ, denoted CCμ

ε (f), is
the minimum communication complexity of a protocol, minimized
over all protocols that compute a function that is ε-close to f , i.e.,

CCμ
ε (f) � min

Π:δμ(f,Π)≤ε
{CC(Π)}.

2 The correct generalization to the case when both f and g are probabilistic
is to take the expectation of the statistical distance (also known as total vari-
ation distance) between f(X,Y ) and g(X,Y ), but we won’t need to consider
this setting in this paper.
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Similarly, owCCμ
ε (f) denotes the corresponding one-way communi-

cation complexity of f .
We now turn to defining the measure of complexity in the un-

certain setting. Ideally, we would like to define the uncertain-
communication complexity of computing some function g, given
that Alice has some nearby function f . But this definition will
not make sense as such! Even if Alice doesn’t know g the protocol
might itself “know” g. (Formally, the protocol Π that minimizes
the communication complexity should not depend on g, but how
does one forbid this?) So the right formulation is to define the
communication complexity of an entire family F of pairs of func-
tions, F ⊆ {(f, g) | f, g : {0, 1}n × {0, 1}n → {0, 1}}. We define
such a measure shortly, but before doing so, we discuss one more
aspect of uncertain-communication.

One view of communication, applicable in the uncertain-
communication setting as well as the certain-communication set-
ting, is to make the function being computed an explicit input
to the communicating players, say by presenting it as a truth ta-
ble. Thus, in the setting of uncertain-communication, we may view
the goal as computing the universal function U : ((f,X), (g, Y )) �→
g(X,Y ), where Alice’s input is (f,X) and Bob’s input is (g, Y ). In
the certain-communication setting, we would further require f = g,
but in our “uncertain” setting we do not. Instead, the functions
f, g are adversarially chosen subject to the restrictions that they
are close to each other (under some distribution μ on the inputs)
and that g (and hence f) has a low-error low-communication proto-
col. The pair (X,Y ) is drawn from the distribution μ (independent
of the choice of f and g). The players both know μ in addition to
their respective inputs.

Under this view, a protocol Π solving an uncertain-
communication problem is simply a protocol for the universal com-
munication problem with its communication complexity being the
maximum communication over all inputs and all possible random-
ness.3 The ability to solve communication problems from F under

3 It might seem more appropriate to define the communication as the max-
imum only over pairs (f, g) ∈ F and (X,Y ) in the support of μ, but this does
not make a difference for optimal protocols. A protocol can be modified to
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distribution μ is taken into account in defining the error of this
protocol. For a protocol Π computing a (probabilistic) function
Π((f,X), (g, Y )) we let Π(f,g) denote the function Π(f,g)(X,Y ) =
Π((f,X), g(Y )).

Definition 1.1 (Uncertain-Communication Complexity). The
uncertain-communication complexity of a family F of pairs of func-
tions (f, g) with respect to a distribution μ supported on {0, 1}n ×
{0, 1}n, denoted CCUμ

ε (F), is the minimum communication com-
plexity of a protocol Π, minimized over all protocols Π such that
for every (f, g) ∈ F , the function Π(f,g) is ε-close to g. That is,

CCUμ
ε (F) � min

{Π | ∀(f,g)∈F : δμ(Π(f,g),g)≤ε}
{CC(Π)}.

Similarly, let owCCUμ
ε (F) denote the one-way uncertain-communic-

ation complexity of F .

Our goal is to study CCUμ
ε (F) for a family F , but this can be

small only if the certain-communication complexity of functions
in F , specifically CCμ

ε (F) � max(f,g)∈F{CCμ
ε (g)}, is small. Fur-

thermore, we want to model “mild” uncertainty (and not total
uncertainty) between Alice and Bob. To this end, we define the
distance of a family F , denoted by δμ(F), to be the maximum over
all (f, g) ∈ F of δμ(f, g).

In what follows, we will study the behavior of CCUμ
ε (F) as a

function of CCμ
ε (F) and δμ(F) and especially focus on the case

where δμ(F) 	 ε (so the uncertainty between Alice and Bob is
very small compared to the error they are willing to tolerate).

1.2. Results. For general distributions, it turns out we can prove
a large gap between the uncertain-communication complexity of
functions and their certain-communication complexity.

Theorem 1.2. For every constant δ ∈ (0, 1) and ε ∈ (0, 0.5),
there exist constants τ > 0 and c < ∞ such that for all n, there is

Footnote 3 continued
stop after a given number of bits of communication, and the result would only
affect the accuracy of the output, which thereby becomes the only parameter
tied to the problem being solved.
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a distribution μ supported on {0, 1}n ×{0, 1}n and a function class
F satisfying δμ(F) ≤ δ and owCCμ

0(F) ≤ 1 such that CCUμ
ε (F) ≥

τ · √
n − c.

In particular, if δ is any positive constant (e.g., 0.001), then
Theorem 1.2 asserts the existence of a distribution and a class of
distance-δ functions for which the zero-error (one-way) communi-
cation complexity in the standard model is a single bit, but under
contextual uncertainty, any two-way protocol (with an arbitrary
number of rounds of interaction) having a noticeable advantage
over random guessing requires Ω(

√
n) bits of communication!

Given the strong negative result in Theorem 1.2, a natural ques-
tion is to understand if there are any non-trivial settings where
the uncertain-communication complexity is close to the certain-
communication complexity. Surprisingly, it turns out that
uncertain-communication complexity can always be upper-bounded
in terms of the certain-communication complexity and the mu-
tual information of the input distribution. Recall that for random
variables (X,Y ) drawn from some joint distribution, the mutual
information between X and Y , denoted I(X; Y ), measures the
amount of information that X has about Y (or vice versa).4 Theo-
rem 1.3 shows that if μ is a distribution on which f and g are close
and each has a one-way certain-communication complexity of at
most k bits (for all (f, g) ∈ F), then the family F has one-way
uncertain-communication complexity of at most O(k · (1 + I)) bits
with I being the mutual information of (X,Y ) ∼ μ. We denote
by CCμ

ε (F) (resp. owCCμ
ε (F)) the maximum over all (f, g) ∈ F of

CCμ
ε (g) (resp. owCCμ

ε (g)).5 We prove the following theorem.

Theorem 1.3. There exists a constant c such that for all positive
integers k and n and positive real ε, δ, θ, for every distribution
μ over {0, 1}n × {0, 1}n, and every family F of pairs of Boolean

4 Formally, given a distribution μ over a pair (X,Y ) of random variables
with marginals μX and μY over X and Y , respectively, the mutual information
of X and Y is defined as I(X;Y ) � E(a,b)∼μ[log( μ(a,b)

μX(a)μY (b) )].
5 Note that if δμ(f, g) ≤ δ and CCμ

ε (g) ≤ k, then CCμ
ε+δ(f) ≤ k.
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functions satisfying δμ(F) ≤ δ and owCCμ
ε (F) ≤ k, it holds that

owCCUμ
ε+2δ+θ(F) ≤ c ·

(
k + log

(
1
θ

))

θ2
·
(

1 +
I(X; Y )

θ2

)
.

Using the well-known fact that the one-way certain-
communication of any function is at most exponential in its two-
way communication complexity (e.g., (Kushilevitz & Nisan 1997,
Exercise 4.21)), Theorem 1.3 also immediately implies the next
corollary.

Corollary 1.4. There exists a constant c such that for all posi-
tive integers k and n and positive reals ε, δ, θ, for every distribution
μ over {0, 1}n × {0, 1}n, and every family F of pairs of Boolean
functions satisfying δμ(F) ≤ δ and CCμ

ε (F) ≤ k, it holds that

(1.5) owCCUμ
ε+2δ+θ(F) ≤ c ·

(
2k + log

(
1
θ

))

θ2
·
(

1 +
I(X; Y )

θ2

)
.

We stress that the exponential blow-up in (1.5) can be signifi-
cantly smaller than the length n of the inputs (which is the trivial
upper bound on the communication in the uncertain case). In the
special case where μ is a product distribution, we have I(X; Y ) = 0
and so we obtain the following particularly interesting corollary of
Theorem 1.3.

Corollary 1.6. There exists a constant c such that for all pos-
itive integers k and n and positive reals ε, δ, θ, for every product
distribution μ over {0, 1}n × {0, 1}n, and every family F of pairs
of Boolean functions satisfying δμ(F) ≤ δ and owCCμ

ε (F) ≤ k, it
holds that

owCCUμ
ε+2δ+θ(F) ≤ c ·

(
k + log

(
1
θ

))

θ2
.

In words, Corollary 1.6 says that for product distributions and
for constant error probabilities, one-way uncertain-communication
complexity is only a constant factor larger than the one-way certain-
communication complexity.
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One intuitive interpretation of the dependence on the mutual
information I(X; Y ) in Theorem 1.3 is that the parties can make
strong use of correlations among their inputs (i.e., between X and
Y ) in the standard setup. In contrast, they are unable to make
such strong use in the uncertain case. Since the distribution μ
in Theorem 1.2 has mutual information ≈ n, Theorem 1.2 rules
out improving the dependence on the mutual information in The-
orem 1.3 to anything smaller than

√
I(X; Y ). It is a very interest-

ing open question to determine the correct exponent of I(X; Y ) in
Theorem 1.3.6

Finally, we point out that our results in Theorem 1.3, Corol-
lary 1.4 and Corollary 1.6 achieve reliable communication despite
uncertainty about the context even when the uncertainty itself is
hard to resolve. To elaborate on this statement, note that one
hope for achieving a low-communication protocol for g would be
for Alice and Bob to first agree on some function h that is close
to f and g, and then apply some low-communication protocol for
this common function h. Such a protocol obviously exists if we
assume g has a low-communication protocol, albeit with slightly
higher error. (In particular, an ε-error protocol for g computes h
with error ε+δμ(g, h).) This would be the “resolve the uncertainty
first” approach.

We prove (in Theorem 1.7 below) that resolving the uncertainty
is definitely an overkill and can lead to communication exponential
in n (and much more so than the trivial protocol of sending x), and
hence, this cannot be a way to prove Theorem 1.3. Namely, denote
by Agreeδ,γ(F) the communication problem where Alice gets f
and Bob gets g such that (f, g) ∈ F and their goal is for Alice to
output hA and Bob to output hB such that δ(hA, f), δ(hB, g) ≤ δ
and Pr[hA = hB] ≥ γ, where the probability is over the internal

6 We note that the upper bound of (roughly) 1 + I(X;Y ) on the commu-
nication blow-up due to uncertainty in Theorem 1.3 holds for every function
class and input distribution, whereas the lower bound of

√
I on this blow-up

implied by Theorem 1.2 holds for some function class and input distribution.
In particular, if the distribution μ only puts mass on points (X,Y ) for which
X = Y , then the mutual information can be very large, while there would be
no blow-up in communication due to uncertainty (since on such distributions
no communication is needed to compute any function).
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randomness of the protocol. Even getting a positive agreement
probability γ, leave alone getting agreement with high probability,
turns out to require high communication as shown by the following
theorem.

Theorem 1.7. Let μ denote the uniform distribution over
{0, 1}n ×{0, 1}n. For every δ, δ′ ∈ (0, 1/2) and γ ∈ (0, 1), there ex-
ist α > 0 and β < ∞ and a family F of pairs of Boolean functions
satisfying δμ(F) ≤ δ and CCμ

0(F) = 0, such that

CC(Agreeδ′,γ(F)) ≥ α · 2n − β.

In particular, the theorem shows that there’s a class of func-
tion pairs (f, g) where f and g are very close (say δ(f, g) ≤ .01)
but agreeing on a function h with even a slight correlation with
f and g (say δ(f, h), δ(g, h) ≤ .499) incurs an exponentially high
communication cost in n.

1.3. Prior work. The first works to consider communication
with uncertainty in a manner similar to this work were those of
Juba & Sudan (2008) and Goldreich et al. (2012). Their goal was
to model an extreme form of uncertainty, where Alice and Bob
do not have any prior (known) commonality in context and in-
deed both come with their own “protocol” which tells them how
to communicate. So communication is needed even to resolve this
uncertainty. While their setting is thus very broad, the solutions
they propose are less communication-efficient and typically involve
resolving the uncertainty as a first step.

The later works Juba et al. (2011), Haramaty & Sudan (2014)
and Canonne et al. (2015) tried to restrict the forms of uncer-
tainty to see when it could lead to more efficient communication
solutions. For instance, Juba et al. (2011) consider the compres-
sion problem when Alice and Bob do not completely agree on the
prior. This introduces some uncertainty in the beliefs, and they
provide fairly efficient solutions by restricting the uncertainty to a
manageable form. Canonne et al. (2015) were the first to connect
this stream of work to communication complexity, which seems
to be a good umbrella to study the broader communication prob-
lems. The imperfectness they study is, however, restricted to the
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randomness shared by the communicating parties and does not in-
corporate any other elements. (We point out that the setup of
communication with imperfectly shared randomness had indepen-
dently been studied by Bavarian et al. (2014) in the simultaneous
message passing model. It was also further studied by Ghazi et al.
(2016)). Canonne et al. (2015) suggest studying imperfect under-
standing of the function being computed as a general direction,
though they do not suggest specific definitions, which we in par-
ticular do in this work.

1.4. Future directions and open questions. In the current
work, we introduce and study a simple model illustrating the role of
context in communication and the challenge posed by uncertainty
of knowledge of context. Several interesting questions are raised
by this work.

On the technical side, it would be very interesting to determine
the correct exponent of I(X; Y ) in Theorem 1.3. Theorem 1.3
and Theorem 1.2 imply that this exponent is between 1/2 and 1.
Moreover, it would be nice to understand the needed dependence
on k in the product k·I(X; Y ) in Theorem 1.3. A very recent follow-
up work Ghazi & Sudan (2017) obtained an improved lower bound
of Ω(

√
k ·√I(X; Y )), but the tight bound is still elusive. A related

(but perhaps more challenging) question is whether the dependence
on n can be improved from Ω(

√
n) to Ω(n) in Theorem 1.7 (while

keeping the communication in the standard case equal to O(1)).
As discussed in Section 3, such an improvement would require a
new construction of a family of pairs of Boolean functions and an
input distribution since the Ω(

√
n) lower bound is tight (up to a

logarithmic factor) for the considered construction.
We point out that our protocol in Theorem 1.3 uses shared ran-

domness. A very interesting question is whether shared random-
ness is actually needed for communication amid uncertainty. In
fact, an ideal protocol for communication amid uncertainty would
only use private randomness (or even no randomness at all). The
follow-up work Ghazi & Sudan (2017) studied this question of the
power of shared randomness in communication with uncertainty.
In the case of product distributions, it was shown that imperfectly
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shared randomness (as studied in Bavarian et al. (2014), Canonne
et al. (2015) and Ghazi et al. (2016)) is enough to incur not more
than a constant factor blow-up in communication for constant error
probabilities. Moreover, Ghazi & Sudan (2017) showed that the
private-coin communication complexity with uncertainty is larger
than the public-coin communication by a growing function of n.
Nevertheless, the questions of determining the tight bounds for
communication amid uncertainty in the deterministic, private-coin
and imperfectly shared randomness setups remain open, and are
likely to require fundamentally new ideas and constructions. For
instance, can one prove a non-trivial upper bound—such as The-
orem 1.3—on the communication complexity of deterministic pro-
tocols?

It would also be extremely interesting to prove an analog of
Theorem 1.3 for two-way protocols. Our proof of Theorem 1.3 uses
in particular the fact that any low-communication one-way pro-
tocol in the standard distributional communication model should
have a canonical form: to compute g(x, y), Alice tries to describe
the entire function g(x, ·) to Bob, and this does not create a huge
overhead in communication. Coming up with a canonical form of
two-way protocols that somehow changes gradually as we morph
from g to f seems to be the essence of the challenge in extending
Theorem 1.3 to the two-way setting. A concrete question here is
whether the dependence on k in the special case of product distri-
butions ((1.5) of Corollary 1.4 with I(X; Y ) = 0) can be improved
from 2k to poly(k).

On the more conceptual side, arguably, the model considered
in this work is realistic: Communication has some goals in mind
which we model by letting Bob be interested in a specific function
of the joint information that Alice and Bob possess. Moreover,
it is an arguably natural model to posit that the two are not in
perfect synchronization about the function that Bob is interested
in, but Alice can estimate the function in some sense. One aspect
of our model that can be further refined is the specific notion of
distance that quantifies the gap between Bob’s function and Alice’s
estimate. In this work, we chose the Hamming distance which
forms a good first starting point. We believe that it is interesting
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to propose and study other models of distance between functions
that more accurately capture natural forms of uncertainty.

Finally, we wish to emphasize the mix of adversarial and prob-
abilistic elements in our uncertainty model—the adversary picks
(f, g) whereas the inputs (X,Y ) are sampled from a distribution.
We believe that richer mixtures of adversarial and probabilistic
elements could lead to broader settings of modeling and coping
with uncertainty—the probabilistic elements offer efficient possi-
bilities that are often immediately ruled out by adversarial choices,
whereas the adversarial elements prevent the probabilistic assump-
tions from being too precise.

Organization In Section 2, we carefully develop the uncertain-
communication complexity model after recalling the standard dis-
tributional communication complexity model. In Section 3, we
prove the hardness of contextual agreement. In Section 4, we prove
our main upper bound (Theorem 1.3). In Section 5, we prove our
main lower bound (Theorem 1.2).

2. The uncertain-communication complexity
model

We start by recalling the classical communication complexity model
of Yao (1979) and then present our definition and measures.

2.1. Communication complexity. We start with some basic
notation. For an integer n ∈ N, we denote by [n] the set {1, . . . , n}.
We use log x to denote a logarithm in base 2. For two sets A and B,
we denote by A�B their symmetric difference. For a distribution
μ, we denote by X ∼ μ the process of sampling a random variable
from the distribution μ. Similarly, for a set X we denote by X ∼ X
the process of sampling a value X from the uniform distribution
over X . For any event E, let 1(E) be the 0-1 indicator of E.
For a pair (X,Y ) of random variables sampled from a probability
distribution μ, we denote by μX (respectively μY ) the marginal
of μ over X (respectively Y ). By μY |x, we denote the conditional
distribution of μ over Y conditioned on X = x.
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Given a distribution μ supported on a set X and functions
f, g : X → Σ, we let δμ(f, g) denote the (weighted and normalized)
Hamming distance between f and g, i.e., δμ(f, g) � PrX∼μ[f(X) �=
g(X)]. (Note that this definition extends naturally to probabilistic
functions f and g, i.e., by letting f(X) and g(X) be sampled inde-
pendently for every fixed value of X.) We say that f is δ-close to
g (with respect to μ if μ is not clear from context) if δμ(f, g) ≤ δ.

We now turn to the definition of communication complexity. A
more extensive introduction can be found in Kushilevitz & Nisan
(1997). Let f : X × Y → {0, 1} be a function and Alice and Bob
be two parties. A protocol Π between Alice and Bob specifies how
and what Alice and Bob communicate given their respective inputs
and communication thus far. It also specifies when they stop and
produce an output (that we require to be produced by Bob). A
protocol is said to be one-way if it involves a single message from
Alice to Bob, followed by Bob producing the output. The protocol
Π is said to compute f if for every (x, y) ∈ X × Y it holds that
Π(x, y) = f(x, y). The communication cost of Π is the number of
bits transmitted during the execution of the protocol between Alice
and Bob, maximized over all possible inputs. The communication
complexity of f is the minimal communication cost of a protocol
computing f .

It is usual to relax the above setting by introducing a distribu-
tion μ over the input space X × Y and requiring the protocol to
succeed with high probability (rather than with probability 1). We
say that a protocol Π ε-computes a function f under distribution
μ if δμ(Π, f) ≤ ε. We next define the distributional communication
complexity both for functions (as usual in the field of communica-
tion complexity) and for families of pairs of functions (which, as
discussed in Section 1, are central to our work).

Definition 2.1 (Distributional Communication Complexity).
Let f : X × Y → {0, 1} be a Boolean function and μ be a proba-
bility distribution over X × Y . The distributional communication
complexity of f under μ with error ε, denoted by CCμ

ε (f), is defined
as the minimum over all protocols Π that ε-compute f over μ, of
the communication cost of Π. The one-way distributional commu-
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nication complexity owCCμ
ε (f) is defined similarly by minimizing

over one-way protocols Π.
Let F ⊆ {f : X × Y → {0, 1}}2 be a family of pairs of Boolean

functions with domain X ×Y . We define the distributional commu-
nication complexity CCμ

ε (F) of F as the maximum value of CCμ
ε (g)

over all pairs (f, g) ∈ F . Similarly, we define the one-way distribu-
tional communication complexity owCCμ

ε (F) of F as the maximum
value of owCCμ

ε (g) over all functions (f, g) ∈ F .

We note that it is also common to provide Alice and Bob with
a shared random string which is independent of x, y and f . In the
distributional communication complexity model, it is a known fact
that any protocol with shared randomness can be used to get a
protocol that does not use shared randomness without increasing
its distributed communication complexity Yao (1977).

In this paper, unless stated otherwise, whenever we refer to
a protocol, we think of the input pair (x, y) as coming from a
distribution.

2.2. Uncertain-communication complexity. We now turn to
the central definition of this paper: uncertain-communication com-
plexity. Our goal is to understand how Alice and Bob can com-
municate when the function that Bob wishes to determine is not
known to Alice. In this setting, we make the functions g (that Bob
wants to compute) and f (Alice’s estimate of g) explicitly part
of the input to the protocol Π. Thus, in this setting a protocol
Π specifies how Alice with input (f, x) and Bob with input (g, y)
communicate, and how they stop and produce an output. We
denote the output by Π((f, x), (g, y)). We say that Π computes
(f, g) if for every (x, y) ∈ X × Y , the protocol outputs g(x, y).
We say that a (public-coin) protocol Π ε-computes (f, g) over μ if
Pr(X,Y )∼μ[g(X,Y ) �= Π((f,X), (g, Y ))] ≤ ε.

Next, one may be tempted to define the communication com-
plexity of a pair of functions (f, g) as the minimum over all pro-
tocols that compute (f, g) of their maximum communication. But
this does not capture the uncertainty! (Rather, a protocol that
works for the pair corresponds to both Alice and Bob knowing
both f and g.) To model the uncertainty, we have to consider the
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communication complexity of a whole class of pairs of functions,
from which the pair (f, g) is chosen (in our case by an adversary).

Let F ⊆ {f : X × Y → {0, 1}}2 be a family of pairs of Boolean
functions with domain X × Y . We say that a public-coin protocol
Π ε-computes F over μ if for every (f, g) ∈ F , we have that Π
ε-computes (f, g) over μ.

We now define the uncertain-communication complexity of a
family of functions F . (Note that this is exactly the same as in
Definition 1.1.)

Definition 2.2 (Uncertain-Communication Complexity). Let μ
be a distribution on X × Y and F ⊆ {f : X × Y → {0, 1}}2. The
uncertain-communication complexity of F , denoted CCUμ

ε (F), is
the minimum over all public-coin protocols Π that ε-compute F
over μ, of the maximum communication complexity of Π over all
(f, g) ∈ {h : X ×{Y → {0, 1}}2, all (x, y) ∈ X ×Y and all settings
of the public coins.

The one-way uncertain-communication complexity of F , de-
noted by owCCUμ

ε (F), is defined similarly by restricting to one-way
protocols.

We remark that while in the standard distributional model of
Section 2.1, the “easy direction” of Yao’s min–max principle (Yao
1977) implies that shared randomness can be assumed without loss
of generality, and this is not necessarily the case in Definition 2.2.
This is because the function pair (f, g) is selected adversarially
from the class F , and hence shared randomness can help the pro-
tocol “fool” this adversary.7

Also, observe that in the special case where F = {(f, g)}, Defi-
nition 2.2 reduces to the standard definition of distributional com-
munication complexity (i.e., Definition 2.1) for the function class
F = {(f, g)}, and we thus have CCUμ

ε ({(f, g)}) = CCμ
ε ({(f, g)}).

7 If the pair (f, g) was sampled from some fixed probability distribution,
then shared randomness would no longer be needed and deterministic proto-
cols would be optimal. However, an adversarial assumption on (f, g) is more
desirable since it is more likely to model natural scenarios. The reason why
we choose the input pair (x, y) from a fixed distribution is to be able to define
a notion of distance between two functions. Henceforth, we assume that the
pair (f, g) is chosen adversarially.
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Furthermore, the uncertain-communication complexity is mono-
tone, i.e., if F ⊆ F ′ then CCUμ

ε (F) ≤ CCUμ
ε (F ′). Hence, we con-

clude that CCUμ
ε (F) ≥ CCμ

ε (F).
In this work, we attempt to identify a setting under which the

last lower bound above can be matched. If the set of functions
Γ(g) := {f | (f, g) ∈ F} is not sufficiently informative about g,
then it seems hard to conceive of settings where Alice and Bob
can do non-trivially well. We thus impose a simple and natural
restriction on Γ(g), namely, that it consists of functions that are
close to g (in δμ-distance). This leads us to the definition of the
distance of a family of pairs of functions.

Definition 2.3 (Distance of a family, δμ(F)). Let F ⊆ {f : X ×
Y → {0, 1}}2 be a family of pairs of Boolean functions with domain
X × Y , and let μ be a distribution over X × Y . The μ-distance of
F , denoted δμ(F), is defined as the maximum over all (f, g) ∈ F
of the distance δμ(f, g).

An optimistic hope might be that given (f, g) the players can
exchange a few bits and agree on a function h which is close to
both f and g, and thus reduce the task to that of computing h in
the standard (certain-communication) setting. Our Theorem 1.7
shows that this naive strategy cannot work, in that there exists
a family of nearby functions where agreement takes exponentially
more communication than the simple strategy of simply exchanging
x and y. We then prove Theorem 1.3 which gives an upper bound
on the one-way uncertain-communication complexity, owCCUμ

ε (F),
which is comparable to the one-way certain-communication com-
plexity owCCμ

ε (F), when δμ(F) is small, and μ is a product distri-
bution. More generally, the theorem shows that the bound grows
slowly as long as the mutual information between X and Y is
small. Finally we prove Theorem 1.2, showing that for general
non-product distributions, owCCUμ

ε (F) can be much larger than
owCCμ

ε (F) even when the distance δμ(F) is a small. More precisely,
we construct a family of close-by functions along with a distribu-
tion μ for which the one-way certain-communication complexity is
a single bit whereas the two-way uncertain-communication com-
plexity is at least Ω(

√
n).
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3. Hardness of contextual agreement

In this section, we show that even if f and g are very close and
have small one-way distributional communication complexity over
a distribution μ (for every (f, g) ∈ F), agreeing on an h such that
δμ(h, f) and δμ(g, h) are non-trivially small takes communication
that is roughly the size of the binary representation of f (which is
exponential in the size of the input). Thus, agreeing on h before
simulating a protocol for h is exponentially costlier than even the
trivial protocol where Alice sends her input x to Bob. Formally,
we consider the following communication problem:

Definition 3.1 (Agreeδ,γ(F)). For any given family of pairs of
functions F ⊆ {f : X × Y → {0, 1}}2, the F -agreement problem
with parameters δ, γ ≥ 0 (denoted by Agreeδ,γ(F)) is the com-
munication problem where Alice gets f and Bob gets g such that
(f, g) ∈ F and their goal is for Alice to output hA and Bob to
output hB such that δ(hA, f), δ(hB, g) ≤ δ and Pr[hA = hB] ≥ γ,
where the probability is over the internal randomness of the pro-
tocol.

Somewhat abusing notation, we will use Agreeδ,γ(D) to denote
the distributional problem where D is a distribution on {f : X ×
Y → {0, 1}}2 and the goal now is to get agreement with probability
γ over the randomness of the protocol and that of the inputs.

If the agreement problem could be solved with low communica-
tion for a family F of pairs of Boolean functions, then it would im-
ply a natural protocol for F in the uncertain-communication case.
The following theorem, which is a refinement of Theorem 1.7 proves
that agreement is extremely expensive even when all the functions
that appear in the class F have zero communication complexity.

Theorem 3.2. Let μ denote the uniform distribution over X ×Y .
For every δ, δ′ ∈ (0, 1/2), there exist α > 0 and β < ∞ such that
for every γ > 0 and finite sets X and Y the following hold: There
is a family F of pairs of Boolean functions over X × Y satisfying
δμ(F) ≤ δ and CCμ

0(F) = 0, such that CC(Agreeδ′,γ(F)) ≥ α|Y|−
β log(1/γ) where μ is the uniform distribution over X × Y .
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Note that Theorem 1.7 corresponds to the special case of X =
Y = {0, 1}n and γ being an absolute constant.

Theorem 3.2 says that there is a family of pairs of functions
supported on functions of zero communication complexity (with
zero error) for which agreement takes communication polynomial
in the size of the domain of the functions. Note that this is ex-
ponentially larger than the trivial communication complexity for
any function g, which is at most min{1 + log |Y|, log |X |} (which
would result from either Alice sending the binary representation of
her input to Bob, or Bob sending the binary representation of his
input to Alice). Furthermore, this lower bound holds even if the
goal is to get agreement with probability only exponentially small
in |Y|, which is really tiny!

Our proof of Theorem 3.2 uses a lower bound on the commu-
nication complexity of the agreement distillation (with imperfectly
shared randomness) problem defined in Canonne et al. (2015), who
in turn rely on a lower bound for randomness extraction from cor-
related sources due to Bogdanov & Mossel (2011). We describe
their problem below and the result that we use. We note that
their context is slightly different and our description below is a
reformulation. First, we define the notion of ρ-noisy sequences of
bits. A pair of bits (a, b) is said to be a pair of ρ-noisy uniform
bits if a is uniform over {0, 1}, and b = a with probability 1 − ρ
and b �= a with probability ρ. A pair of sequences of bits (r, s) is
said to be ρ-noisy if r = (r1, . . . , rn) and s = (s1, . . . , sn) and each
coordinate pair (ri, si) is a ρ-noisy uniform pair drawn indepen-
dently of all other pairs. For a random variable W , we define its
min-entropy as H∞(w) � minw∈supp(W ){− log(Pr[W = w])}.

Definition 3.3 (Agreement-Distillation
k
γ,ρ). In this

problem, Alice and Bob get as inputs r and s respectively, where
(r, s) form a ρ-noisy sequence of bits. Their goal is to commu-
nicate deterministically and produce as outputs wA (Alice’s out-
put) and wB (Bob’s output) with the following properties: (i)
H∞(wA), H∞(wB) ≥ k and (ii) Pr(r,s)[wA = wB] ≥ γ.

Lemma 3.4 (Canonne et al. 2015, Theorem 2). For every ρ ∈
(0, 1/2), there exists α > 0 and β > 0 such that for every k
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and γ, it holds that every deterministic protocol Π that solves
Agreement-Distillation

k
γ,ρ has communication complexity at

least αk − β log(1/γ).

We note that while the agreement distillation problem is very
similar to our agreement problem, there are some syntactic dif-
ferences. We are considering pairs of functions with low commu-
nication complexity, whereas the agreement distillation problem
considers arbitrary random sequences. Also, our output criterion
is proximity to the input functions, whereas in the agreement distil-
lation problem, we need to produce high-entropy outputs. Finally,
we want a lower bound for our agreement problem when Alice and
Bob are allowed to share perfect randomness while the agreement
distillation bound only holds for deterministic protocols. Never-
theless, we are able to reduce to their setting as we will see shortly.

Our proof of Theorem 3.2 uses the standard Chernoff–Hoeffding
tail inequality for random variables that we include below. Denote
exp(x) � ex, where e is the base of the natural logarithm.

Proposition 3.5 (Chernoff bound; see, e.g., Mitzenmacher &
Upfal (2005)). Let X =

∑n
i=1 Xi be a sum of independent iden-

tically distributed random variables X1, . . . , Xn ∈ {0, 1}. Let
μ = E[X] =

∑n
i=1 E[Xi]. It holds that for every δ ∈ (0, 1),

Pr[X < (1 − δ)μ] ≤ exp
(−δ2μ/2

)

and

Pr[X > (1 + δ)μ] ≤ exp
(−δ2μ/3

)
,

and for a > 0,

Pr[X > μ + a] ≤ exp(−2a2/n)

Proof of Theorem 3.2. Let μ be the uniform distribution on X ×
Y . We prove the theorem for α/β < δ/6, in which case we may
assume γ > exp(−δ|Y|/6) since otherwise the right-hand side in
the statement of Theorem 3.2 is non-positive.

Let FB denote the set of functions that depend only on Bob’s
input, i.e., f ∈ FB if there exists f ′ : Y → {0, 1} such that f(x, y) =
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f ′(y) for all x, y. Our family F will be the subset of FB × FB

consisting of pairs of functions that are at most δ apart (with
respect to the uniform distribution on X × Y), i.e.,

F � {(f, g) ∈ FB × FB | δμ(f, g) ≤ δ}.

Note that the zero-error communication complexity of every func-
tion in the support of F is zero since Bob can correctly compute
its value without any information from Alice. Thus, δμ(F) = δ
and CCμ

0(F) = 0.8 So it remains to prove a lower bound on
CC(Agreeδ′,γ(F)).

We prove our lower bound by picking a distribution Dρ

supported mostly on F and by giving a lower bound on
CC(Agreeδ′,γ(Dρ)). Let ρ = δ/2. The distribution Dρ samples
(f, g) as follows. The function f is drawn uniformly at random
from FB. Since f ∈ FB, there exists a function f ′ : Y → {0, 1}
such that f(x, y) = f ′(y) for all x, y. Then, g is chosen to be a
“ρ-noisy copy” of f . Namely, we define a function g′ : Y → {0, 1}
such that for every y ∈ Y , g′(y) is chosen to be equal to f ′(y) with
probability 1 − ρ and equal to 1 − f ′(y) with probability ρ. Then,
for every x ∈ X and y ∈ Y , we set g(x, y) = g′(y).

By the Chernoff bound (Proposition 3.5), we have that

Pr
(f,g)∼Dρ

[δ(f, g) > δ] ≤ exp(−ρ|Y|/3) < γ.

So with probability at least 1 − γ, the distribution Dρ draws el-
ements from F . So, if a protocol solves Agreeδ′,γ(F), then if
(f, g) ∼ Dρ then with probability at least (1 − γ) · γ we would
have that the functions (f, g) are from F and the protocol achieves
agreement on a nearby function. We conclude that a protocol solv-
ing Agreeδ′,γ(F) is also a protocol solving Agreeδ′,γ−γ2(Dρ).

We thus need to show a lower bound on the communication
complexity of Agreeδ′,γ−γ2(Dρ). We now note that since this
is a distributional problem, by Yao’s min–max principle, if there

8 Indeed, even the uncertain-communication complexity of F is zero, further
highlighting the lack of need of agreement to solve uncertain-communication
problems.
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is randomized protocol to solve Agreeδ′,γ−γ2(Dρ), then there is
also a deterministic protocol for the same problem and with the
same communication complexity. Thus, it suffices to lower bound
the deterministic communication complexity of Agreeδ′,γ−γ2(Dρ).
Claim 3.6 below shows that any such protocol gives a determin-
istic protocol for Agreement-Distillation with k = Ωδ′(|Y|).
Combining this with Lemma 3.4 gives us the desired lower bound
on CC(Agreeδ′,γ−γ2(Dρ)) and hence on CC(Agreeδ′,γ(F)). �

Claim 3.6. Every protocol for Agreeδ′,γ(Dρ) is also a protocol
for Agreement-Distillation

k
γ,ρ for k = (1−Hb(δ

′′)) · |Y|, where
δ′′ = δ′(1 + o(1)) and Hb(·) is the binary entropy function given by
Hb(x) � −x log x−(1−x) log(1−x), where o(1) denotes a function
that goes to 0 as |Y| grows.

Proof. Suppose Alice and Bob wish to solve
Agreement-Distillation

k
γ,ρ. They can sample a ρ-noisy pair of

strings (r, s) ∈ {0, 1}|Y| and interpret them as functions f ′, g′ : Y →
{0, 1} or equivalently as functions (f, g) ∼ Dρ by letting f, g : X ×
Y → {0, 1} be given by f(x, y) = f ′(y) and g(x, y) = g′(y) for
all x ∈ X and y ∈ Y . They can now simulate the protocol for
Agreeδ,γ(f, g) and output hA : X × Y → {0, 1} (on Alice’s side)
and hB : X × Y → {0, 1} (on Bob’s side). By definition of Agree,
we have that hA = hB with probability at least γ. So it suffices to
show that H∞(hA), H∞(hB) ≥ k.

The intuitive idea for establishing this is simple. In order to
show that the min-entropy of hA (symmetrically, hB) is large, we
need to argue that a given hA cannot be a output by a correct
protocol for Agreeδ′,γ(Dρ) with too high a probability. We expect
this to be true because a given hA cannot be close within δ′ to too
many input functions f . In order to formally argue this, we define
the real-valued function h′

A : Y → [0, 1] as h′
A(y) := Ex∼X [hA(x, y)]

for all y ∈ Y . By the triangle inequality, we have that

δ(h′
A, f ′) := Ey∼Y [|h′

A(y) − f ′(y)|]
= Ey∼Y [|Ex∼X [hA(x, y) − f(x, y)]|]
≤ E(x,y)∼X×Y [|hA(x, y) − f(x, y)|]
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= δ(hA, f)

≤ δ′.

We now define a “randomized rounding” of hA to be a random
function h′ : Y → {0, 1} such that independently for each y ∈ Y ,
we have that h′(y) = 1 with probability h′

A(y), and h′(y) = 0 with
probability 1−h′

A(y). Define S to be the set of all Boolean-valued
functions f̃ ′ : Y → {0, 1} such that δ(h′

A, f̃ ′) ≤ δ′. We now show
that with probability 1−o(1) over the random choice of h′, at least
a 1 − o(1) fraction of the functions f̃ ′ ∈ S are such that δ(h′, f̃ ′) ≤
δ′(1 + o(1)). To see this, note that for any fixed f̃ ′ ∈ S, we have
that Eh′ [δ(h′, f̃ ′)] = δ(h′

A, f̃ ′) ≤ δ′, and hence by the Chernoff
bound (Proposition 3.5), Pr[δ(h′, f̃ ′) > δ′(1 + o(1))] ≤ o(1). This
implies that

Eh′

[
Pr

f̃ ′∼S
[δ(h′, f̃ ′) > δ′(1 + o(1))]

]
≤ o(1).

Thus, there exists a setting h′ : Y → {0, 1} such that a 1 − o(1)
fraction of the functions in S are within a distance of δ′(1 + o(1))
from h′. Thus,

|S| ≤ |{f̃ ′ : Y → {0, 1} | δ(h′, f̃ ′) ≤ δ′(1 + o(1))}| · (1 + o(1))

≤ 2Hb(δ
′(1+o(1)))|Y| · (1 + o(1)),(3.7)

where the last inequality follows from the fact that h′ is a Boolean-
valued function. Thus, we conclude that the right-hand side in
((3.7)) is also an upper bound on the number of functions f : X ×
Y → {0, 1} such that f(x, y) = f ′(y) for all x ∈ X , y ∈ Y for some
function f ′ : Y → {0, 1} and that satisfy δ(hA, f) ≤ δ. Since the
probability of sampling any such f is equal to 2−|Y|, we get that
probability of outputting any particular function hA : X × Y →
{0, 1} is at most 2−(1−Hb(δ

′(1+o(1)))|Y|. This means that H∞(hA) ≥
(1−Hb(δ

′(1+o(1)))|Y|. A similar lower bound applies to H∞(hB).
Thus, we have that the outputs of the protocol for Agree solve
Agreement-Distillation

k
γ,ρ with k = (1−Hb(δ

′(1 + o(1))))|Y|.
�
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4. One-way uncertain-communication
complexity

In this section, we prove Theorem 1.3 which we restate below (with
a slight notational change—we use X ×Y to denote the domain of
the functions, as opposed to {0, 1}n × {0, 1}n).

Theorem 4.1 (restated). There exists a constant c such that for
all positive integers k and n and positive reals ε, δ, θ, for every
distribution μ over X × Y , and every family F of pairs of Boolean
functions satisfying δμ(F) ≤ δ and owCCμ

ε (F) ≤ k, it holds that

(4.2) owCCUμ
ε+2δ+θ(F) ≤ c ·

(
k + log

(
1
θ

))

θ2
·
(

1 +
I(X; Y )

θ2

)
.

4.1. Overview of protocol. We start with a high-level descrip-
tion of the protocol. Let μ be a distribution over an input space
X × Y . For any function s : X × Y → {0, 1} and any x ∈ X , we
define the restriction of s to x to be the function sx : Y → {0, 1}
given by sx(y) = s(x, y) for any y ∈ Y . We will consider a pair
(X,Y ) of random variables drawn from μ.

First, we consider the particular case of Theorem 1.3 where μ
is a product distribution, i.e., μ = μX ×μY . Note that in this case,
I(X; Y ) = 0 in the right-hand side of (4.2). We will handle the
case of general (not necessarily product) distributions later on.

The general idea is that given inputs (f,X), Alice can deter-
mine the restriction fX , and she will try to describe it to Bob. For
most values x ∈ X , we have that fx will be close (in δμY

-distance)
to the function gx. Bob will try to use the (yet unspecified) descrip-
tion given by Alice in order to determine some function B that is
close to gx. If he succeeds in doing so, he can output B(Y ) which
would equal gx(Y ) with high probability over Y .

We next explain how Alice will describe fX , and how Bob will
determine some function B that is close to gX based on Alice’s
description. For the first part, we let Alice and Bob use shared
randomness in order to sample Y1, . . . , Ym, where the Yi’s are drawn
independently with Yi ∼ μY , and m is a parameter to be chosen
later. Alice’s description of fX will then be (fX(Y1), . . . , fX(Ym)) ∈
{0, 1}m. Thus, the length of the communication is m bits and we
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need to show that setting m to be roughly O(k) suffices. Before we
explain this, we first need to specify what Bob does with Alice’s
message.

As a first cut, let us consider the following natural strategy:
Bob picks an X̃ ∈ X such that gX̃ is close to fX on Y1, . . . , Ym,
and sets B = gX̃ . It is clear that if X̃ = X, then B = gX̃ = gX ,
and for every y ∈ Y , we would have B(y) = gX(y). Moreover,
if X̃ is such that gX̃ is close to gX (which is itself close to fX ,
for most values of X), then B(Y ) would now equal gX(Y ) with
high probability. It remains to deal with X̃ such that gX̃ is far
from gX . Note that if we first fix any such X̃ and then sample
Y1, . . . , Ym, then with high probability, we would reveal that gX̃ is
far from gX . This is because gX is close to fX (for most values of
X), so gX̃ should also be far from fX . However, this idea alone
cannot deal with all possible X̃—using a naive union bound over
all possible X̃ ∈ X would require a failure probability of 1/|X |,
which would itself require setting m to be roughly log |X |. Indeed,
smaller values of m should not suffice since we have not yet used
the fact that CCμ

ε (g) ≤ k—but we do so next.
Suppose that Π is a one-way protocol with k bits of communi-

cation. Then, note that Alice’s message partitions X into 2k sets,
one corresponding to each message. Our modified strategy for Bob
is to let him pick a representative from each set in this partition,
and then set B = gX̃ for an X̃ among the representatives for which
gX̃ and f are the closest on the samples Y1, . . . , Ym. A simple anal-
ysis shows that the gx’s that lie inside the same set in this partition
are close, and thus, if we pick X̃ to be the representative of the set
containing X, then gX̃ and fX will be close on the sampled points.
For another representative, once again if gX̃ is close to gX , then
gX̃(Y ) will equal gX(Y ) with high probability. For a representative
x′ such that gx′ is far from gX (which is itself close to fX), we can
proceed as in the previous paragraph, and now the union bound
works out since the total number of representatives is only 2k.9

9 We note that a similar idea was used in a somewhat different context
by Bar-Yossef et al. (2002) (following on Kremer et al. (1999)) in order to
characterize one-way communication complexity of any function under product
distributions in terms of its VC-dimension.
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We now turn to the case of general (not necessarily product)
distributions. In this case, we would like to run the above proto-
col with Y1, Y2, . . . , Ym sampled independently from μY |x (instead
of μY ) where x is the particular realization of Alice’s input. Note
that Alice knows x and hence knows the distribution μY |x. Unfor-
tunately, Bob does not know μY |x; he only knows μY as a “proxy”
for μY |x. While Alice and Bob cannot jointly sample such Yi’s
without communicating (as in the product case), they can still run
the rejection sampling protocol of Harsha et al. (2007) in order to
agree on such samples while communicating at most O(m·I(X; Y ))
bits (see Section 4.2 for more details).

The outline of the rest of this section is the following. In Sec-
tion 4.2, we describe the properties of the correlated sampling pro-
cedure that we will use. In Section 4.3, we give the formal proof of
Theorem 1.3.

4.2. Rejection sampling. We start by recalling two standard
notions from information theory. Given two distributions P and
Q, the KL divergence between P and Q is defined as D(P ||Q) �
Eu∼P [log(P (u)/Q(u))]. Given a joint distribution μ of a pair (X,Y )
of random variables with μX and μY being the marginals of μ over
X and Y , respectively, the mutual information of X and Y is de-
fined as I(X; Y ) � D(μ||μXμY ). The following lemma summarizes
the properties of the rejection sampling protocol of Harsha et al.
(2007).

Lemma 4.3 (Rejection Sampling; Harsha et al. 2007). Let P be a
distribution known to Alice and Q be a distribution known to both
Alice and Bob, with D(P ||Q) being finite. There exists a one-way
public-coin protocol (with communication from Alice to Bob) such
that at the end of the protocol, Alice and Bob output a sample from
P such that the expected communication cost (over the public-
randomness of the protocol) is at most D(P ||Q)+2 log(D(P ||Q)+
1) + O(1) bits.

We will use the following corollary of Lemma 4.3.

Corollary 4.4. Let μ be a distribution over (X,Y ) with
marginal μX over X, and assume that μ is known to both Al-
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ice and Bob. Fix ε > 0 and let Alice be given a realization x ∼ μX .
There is a one-way public-coin protocol that uses at most

O(m · I(X; Y )/ε) + O(1/ε)

bits of communication such that with probability at least 1−ε over
the public coins of the protocol and the randomness of x, Alice and
Bob agree on m samples Y1, Y2, . . . , Ym i.i.d. ∼ μY |x at the end of
the protocol.

Proof. When x is Alice’s input, we can consider running the
protocol in Lemma 4.3 on the distributions P �

∏m
i=1 μYi|x and

Q �
∏m

i=1 μYi
. Note that each of P and Q is a distribution over

tuples (y1, y2, . . . , ym). Let Π be the resulting protocol transcript.
The expected communication cost of Π is at most

Ex∼μX
[O(D(P ||Q)) + O(1)] = O(Ex∼μX

[D(P ||Q)])) + O(1)

= O(m · I(X; Y ))) + O(1),(4.5)

where the last equality follows from the fact that

Ex∼μX
[D(P ||Q)] = Ex∼μX

[
Ey1|x,...,ym|x

[
log

(∏m
i=1 μYi|x(yi)∏m
i=1 μYi

(yi)

)]]

=
m∑

i=1

Ex∼μX

[
Ey1|x,...,ym|x

[
log

(
μYi|x(yi)

μYi
(yi)

)]]

=
m∑

i=1

Ex∼μX

[
Eyi|x

[
log

(
μYi|x(yi)

μYi
(yi)

)]]

=
m∑

i=1

E(x,y)∼μ

[
log

(
μY |x(y)

μY (y)

)]

= m · I(X; Y ).

By Markov’s inequality applied to ((4.5)), we get that with prob-
ability at least 1 − ε, the length of the transcript Π is at most

O(m · I(X; Y )/ε) + O(1/ε) bits.

The statement now follows. �
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4.3. Proof of Theorem 1.3. Recall that in the uncertain set-
ting, Alice’s input is (f,X) and Bob’s input is (g, Y ), where
(f, g) ∈ F , (X,Y ) ∼ μ and F is a family of pairs of Boolean
functions satisfying owCCμ

ε (F) ≤ k and δμ(F) ≤ δ. Let Π be the
one-way protocol for g in the standard setting that shows that
owCCμ

ε (g) ≤ k. Note that Π can be described by an integer L ≤ 2k

and functions π : X → [L] and {Bi : Y → {0, 1}}i∈[L], such that
Alice’s message on input X is π(X), and Bob’s output on message
i from Alice and on input y is Bi(Y ). We use this notation below.
We also set the parameter m = Θ

(
(k + log(1/θ))/θ2

)
, which is

chosen such that 2k · exp(−θ2m/75) ≤ 2θ/5.

Protocol. Protocol 1 describes the protocol Π′ we employ in the
uncertain setting. Roughly speaking, the protocol works as follows.
First, Alice and Bob run the one-way rejection sampling procedure
given by Corollary 4.4 in order to sample y1, y2 . . . , ym i.i.d. ∼
μY |x. Then, Alice sends the sequence (fx(y1), . . . , fx(ym)) to Bob.
Bob enumerates over i ∈ [L] and counts the fraction of z ∈ {y1, . . . ,
ym} for which Bi(z) �= fx(z). For the index i which minimizes this
fraction, Bob outputs Bi(y) and halts.

Protocol 1. The
uncertain-communication protocol Π′.
The Setting: Let μ be a probability distribution over a message

space X ×Y . Alice and Bob are given functions f and
g, and inputs x and y, respectively, where (f, g) ∈ F
and (x, y) ∼ μ are realizations of the random pair
(X,Y ).

The Protocol:

1. Alice and Bob run one-way rejection sampling with error
parameter set to (θ/10)2 in order to sample m values Z =
{y1, y2, . . . , ym} ⊆ Y each sampled independently according
to μY |x.

2. Alice sends {fx(yi)}i∈[m] to Bob.

3. For every i ∈ [L], Bob computes erri � 1
m

∑m
j=1 1(Bi(yj) �=

fx(yj)). Let imin � argmini∈[L]{erri}. Bob outputs Bimin
(y)

and halts.
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Analysis. Observe that by Corollary 4.4, the rejection sampling
procedure requires O(m·I(X; Y )/θ2+1/θ2) bits of communication.
Thus, the total communication of our protocol is at most

O(m · I(X; Y )/θ2 + 1/θ2) + m ≤ c
(
k + log

(
1
θ

))

θ2
·
(

1 +
I(X; Y )

θ2

)

bits for some absolute constant c, as promised. The next lemma
establishes the correctness of the protocol.

Lemma 4.6. PrΠ′,(x,y)∼μ [Bimin
(y) �= g(x, y)] ≤ ε+2δ+θ, where the

probability is over both the internal randomness of the protocol Π′

and over the randomness of the input pair (x, y).

Proof. We start with some notation. For x ∈ X , let δx �
δμY |x(fx, gx) and let εx � δμY |x(gx, Bπ(x)). Note that by defi-
nition, δ = Ex∼μX

[δx] and ε = Ex∼μX
[εx]. For i ∈ [L], let

γi,x � δμY |x(fx, Bi). Recall the description of the (given) deter-

ministic protocol Π by the positive integers integer L ≤ 2k and
functions π : X → [L] and {Bi : Y → {0, 1}}i∈[L], such that Alice’s
message on input x is π(x), and Bob’s output on message i from
Alice and on input y is Bi(y). Note that by the triangle inequality,

γπ(x),x = δμY |x(fx, Bπ(x)) ≤ δx + εx.(4.7)

In what follows, we will analyze the probability that Bimin
(y) �=

g(x, y) by analyzing the estimate erri and the index imin computed
in the above protocol. Note that erri = erri(x) computed above
attempts to estimate γi,x, and that both erri and imin are functions
of x.

Note that Corollary 4.4 guarantees that rejection sampling suc-
ceeds with probability at least 1−θ2/100. Henceforth, we condition
on the event that rejection sampling succeeds (we will account for
the event where this does not happen at the end). By the Chernoff
bound (Proposition 3.5), and using the definition of erri in Algo-
rithm Protocol 1 and the fact that E[1(Bi(yj) �= fx(yj))] = γi,x, we
have for every x and i ∈ [L]

Pr
y1,...,ym i.i.d.∼μY |x

[
|γi,x − erri| >

θ

5

]
≤ exp

(
−θ2 · m

75

)
.
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By a union bound, we have for every x ∈ X,

Pr
y1,...,ym∼μY |x

[
∃i ∈ [L] s.t. |γi,x − erri| >

θ

5

]
≤ L · exp

(
−θ2 · m

75

)

≤ 2θ

5
,

where the last inequality follows from our choice of m = Θ
(
(k +

log(1/θ))/θ2
)
.

Now assume that for all i ∈ [L], we have that |γi,x −erri| ≤ θ/5,
which we refer to below as the “Good Event.” Then, for imin, we
have

γimin,x ≤ errimin
+ θ/5(since we assumed the Good Event)

≤ errπ(x) + θ/5(by definition of imin)

≤ γπ(x),x + 2θ/5(since we assumed the Good Event)

≤ δx + εx + 2θ/5.(by (4.7))

Let W ⊆ {0, 1}n be the set of all x for which rejection sampling
succeeds with probability at least 1 − θ/10 (over the internal ran-
domness of the protocol). By Corollary 4.4 and an averaging ar-
gument, Prx∼μX

[x /∈ W ] ≤ θ/10. Denoting by μX |x ∈ W the
conditional probability distribution of x ∼ μX conditioned on the
event that x ∈ W , we thus get,

Pr
Π′,(x,y)∼μ

[Bimin
(y) �= f(x, y)]

≤ Pr
x∼μX

[x ∈ W ] · Ex∼μX |x∈W

[
Pr

Π,y∼μY |x
[Bimin

(y) �= f(x, y)]

]
+

θ

10

≤ Pr
x∼μX

[x ∈ W ] · Ex∼μX |x∈W

[
Pr

y1,...,ym,y∼μY |x
[Bimin

(y) �= f(x, y)]

]

+θ/5

= Pr
x∼μX

[x ∈ W ] · Ex∼μX |x∈W

[
γimin,x

]
+ θ/5

≤ Pr
x∼μX

[x ∈ W ] · Ex∼μX |x∈W

[
δx + εx + 2θ/5

]
+ 3θ/5

≤ Ex∼μX

[
δx + εx

]
+ θ

= δ + ε + θ,
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where the third inequality follows from the fact that the Good
Event occurs with probability at least 1 − 2θ/5, and from the
corresponding upper bound on γimin,x. The other inequalities
above follow from the definition of the set W and the fact that
Prx∼μX

[x /∈ W ] ≤ θ/10. Finally, since δ(f, g) ≤ δ, we have that
Bob’s output does not equal g(x, y) (which is the desired output)
with probability at most ε + 2δ + θ. �

5. Lower bound for non-product distributions

In this section, we prove Theorem 1.2, or rather a slight strength-
ening of this theorem as stated below.

Theorem 5.1. There exist absolute constants α > 0 and β < ∞
such that for positive integer n, every δ ∈ (0, 1), and ε < 1/2 −
2−β

√
δn the following holds: There exists a distribution μ supported

on {0, 1}n × {0, 1}n and a function class F satisfying δμ(F) ≤ δ
and owCCμ

0(F) ≤ 1 such that

CCUμ
ε (F) ≥ α

√
δn − log

(
2

1/2 − ε

)
.

Note that Theorem 1.2 is the special case where δ and ε are
absolute constants.

To prove Theorem 1.2, we start by defining the class of function
pairs and distributions that will be used. Consider the parity func-
tions on subsets of bits of the string x ⊕ y ∈ {0, 1}n (which is the
coordinate-wise XOR of the strings x, y ∈ {0, 1}n). Specifically,
for every S ⊆ [n], let χS : {0, 1}n → {0, 1} be defined by χS(x) =
⊕i∈Sxi for all x ∈ {0, 1}n, and let fS : {0, 1}n ×{0, 1}n → {0, 1} be
defined as

fS(x, y) � χS(x ⊕ y) = ⊕i∈S(xi ⊕ yi).

Let q = q(n) > 0 and define the class of pairs of Boolean
functions

(5.2) Fq � {(fS, fT ) : |S�T | ≤ q · n}.
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Next, we define a probability distribution μp on {0, 1}n×{0, 1}n

where p = p(n). We do so by giving a procedure to sample accord-
ing to μp. To sample a pair (X,Y ) ∼ μp, we draw X ∼ {0, 1}n

(i.e., we draw X uniformly from {0, 1}n) and let Y be a p-noisy
copy of X, i.e., Y ∼ Np(X). Here, Np(x) is the distribution on
{0, 1}n that outputs Y ∈ {0, 1}n such that, independently, for each
i ∈ [n], Yi = 1−xi with probability p, and Yi = xi with probability
1 − p. In other words, μp(x, y) = 2−n · p|x⊕y| · (1 − p)n−|x⊕y| for
every (x, y) ∈ {0, 1}n × {0, 1}n where the notation |z| stands for
the Hamming weight of z, for z ∈ {0, 1}n.

We will prove Lemma 5.3 and Lemma 5.4 below about the
function class Fq and the distribution μp. In words, Lemma 5.3
says that every pair of functions in Fq are (pqn)-close in δμp-
distance, and every function in Fq has a one-way zero-error certain-
communication protocol with a single bit of communication.
Lemma 5.4 lower bounds the uncertain-communication complexity
of Fq under distribution μp.

Lemma 5.3. For every n, p, q ∈ [0, 1], we have owCC
μp

0 (Fq) ≤ 1
and δμp(Fq) ≤ pqn.

Lemma 5.4. There exist constants γ, τ > 0 such that for every n,
p ∈ (0, 1/2), q ∈ (0, 1) and ε < 1/2, it holds that:

CCUμp
ε (Fq) ≥ γ · min{p · n, (q/2) · n} − log

(
1

1/2 − (ε + η)

)
,

where η = 2−τ ·q·n.

Note that applying Lemma 5.3 and Lemma 5.4 with F =
Fq, μ = μp and p = q =

√
δ/n (where δ > 0) implies

Theorem 5.1.
In Section 5.1 below, we prove Lemma 5.3 which follows from

two simple propositions. The main part of the rest of this section is
dedicated to the proof of Lemma 5.4. The idea behind the proof of
Lemma 5.4 is to reduce the problem of computing Fq under μp with
uncertainty, from the problem of computing a related function in
the standard distributional communication complexity model (i.e.,
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without uncertainty) under a related distribution. We then use
the discrepancy method to prove a lower bound on the commu-
nication complexity of the new problem. This task itself reduces
to upper bounding the spectral norm of a specific communication
matrix. The choice of our underlying distribution then implies a
tensor structure for this matrix, which reduces the spectral norm
computation to bounding the largest singular value of an explicit
family of 4 × 4 matrices.

We point out that our lower bound in Lemma 5.4 is essen-
tially tight up to a logarithmic factor. Namely, one can show using
a simple one-way hashing protocol that for any constant ε > 0,
owCCUμp

ε (Fq) ≤ O(r · log r) with r � min{p · n, (q · n)/2}. More
precisely, let us first assume that p ≤ (q/2), in which case r = p ·n.
Then, with very high probability, x and y are within a Hamming
distance of 2 · r. Thus, Bob can learn x ⊕ y (and thus deduce x)
if Alice sends him a (one-way) message of O(r · log r) bits. Specif-
ically, when r = Θ(

√
n), it can be seen that the one-way protocol

for the “(2 · r)-Hamming distance problem” (see, e.g., Huang et al.
(2006) and Blais et al. (2014)) reveals to Bob the coordinate-wise
XOR of x and y. Hence, Bob can deduce x and output χT (x⊕y) in
order to solve the uncertain problem in Lemma 5.4. The case where
p > (q/2) is similar, except that an “r-Hamming distance proto-
col” is now applied to the pair (S, T ) (instead of the pair (x, y));
this would allow Bob to deduce certain S and, upon receiving the
bit χS(y) from Alice, he can output χS(x ⊕ y) = χS(x) ⊕ χS(y).

5.1. Proof of Lemma 5.3. Lemma 5.3 follows from Proposi-
tion 5.5 and Proposition 5.6 below. We first show that every two
functions in Fq are close under the distribution μp.

Proposition 5.5. For every (f, g) ∈ Fq, it holds that δμp(f, g) ≤
pqn.

Proof. Any pair of functions (f, g) ∈ Fq is of the form f = fS

and g = fT with |S�T | ≤ q · n. Hence,

Pr
(x,y)∼μ

[f(x, y) �= g(x, y)] = Pr
(x,y)∼μ

[χS
T (x ⊕ y) = 1]

≤ 1 − (1 − p)|S
T |
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≤ 1 − (1 − p)qn

≤ pqn.

�
Next, we show that there is a simple one-way communication

protocol that allows Alice and Bob to compute fS (for any S ⊆ [n])
with just a single bit of communication.

Proposition 5.6. owCC(fS) = 1.

Proof. Recall that fS(x, y) = ⊕i∈S(xi ⊕ yi). We write this as
fS(x, y) = (⊕i∈S(xi)) ⊕ (⊕i∈S(yi)). This leads to the simple one-
way protocol where Alice computes b = ⊕i∈S(xi) and sends the
single bit result of the computation to Bob. Bob can now compute
b⊕(⊕i∈S(yi)) = fS(x, y) to obtain the value of fS (with zero error).

�

5.2. Proof of Lemma 5.4. In order to lower bound CCUμp
ε (Fq),

we define a certain-communication problem in the distributional
setting that can be reduced to the problem of computing Fq in the
uncertain setting. The lower bound in Lemma 5.4 is then obtained
by proving a lower bound on the communication complexity of the
new problem which is defined as follows:

◦ Inputs: Alice’s input is a pair (S, x) where S ⊆ [n] and
x ∈ {0, 1}n. Bob’s input is a pair (T, y) such that T ⊆ [n]
and y ∈ {0, 1}n.

◦ Function: The goal is to compute the function F given by

F ((S, x), (T, y)) � fT (x, y) = χT (x ⊕ y).

◦ Distribution: Let Dq be a distribution on pairs of subsets
(S, T ) of [n] defined by the following sampling procedure. To
sample (S, T ) ∼ Dq, we pick a subset S ⊆ [n] uniformly at
random, and we then sample T by letting its 0/1 indicator
vector be a (q/2)-noisy copy of the 0/1 indicator vector of
S. The joint distribution on the inputs of Alice and Bob is
then described by νp,q = Dq ⊗ μp: we sample (x, y) ∼ μp and
independently sample (S, T ) ∼ Dq.
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Proposition 5.7 below—which follows from a simple Chernoff
bound—shows that a protocol computing Fq under μp can also
be used to compute the function F in the standard distributional
model with ((S, x), (T, y)) ∼ νp,q, and with the same amount of
communication.

Proposition 5.7. There exists τ > 0 such that for every ε < 1/2,
it holds that CCUμp

ε (Fq) ≥ CC
νp,q

ε+η(F ) with η = 2−τ ·q·n.

Proof. Since ((S, x), (T, y)) ∼ νp,q, we have that (x, y) ∼ μp

and (S, T ) ∼ Dq. Thus, it suffices to show that for (S, T ) ∼ Dq,
it holds that |S�T | ≤ q · n with probability at least 1 − η, where
η = 2−τ ·q·n) for some universal constant τ > 0. This follows from
the definition of Dq, the Chernoff bound (Proposition 3.5) and the
fact that E(S,T )∼Dq [|S�T |] = (q · n)/2. �

In the rest of this section, we will prove the following lower
bound on CCνp,q

ε (F ), which along with Proposition 5.7, implies
Lemma 5.4:

Lemma 5.8. There exists γ > 0 such that for every n, p ∈ (0, 1/2),
q ∈ (0, 1) and ε < 1/2, we have

CCνp,q
ε (F ) ≥ γ · min{p · n, (q/2) · n} − log

(
1

1/2 − ε

)
.

We first state and prove a proposition that allows us to elimi-
nate one of the two parameters p and q.

Proposition 5.9. For every positive integer n, p ∈ (0, 1/2), q ∈
(0, 1) and ε < 1/2 we have: CCνp,q

ε (F ) ≥ CCνr,2r
ε (F ) where r �

min(p, q/2).

Proof. We use the fact that Alice and Bob can perturb their
inputs (using private randomness) to reduce the correlations among
them. Specifically we use the fact that if y is a p-noisy copy of x
and z is a η-noisy copy of y, then z is a (p(1 − η) + η(1 − p))-noisy
copy of x. Below we show how to use this formally in a reduction.

Suppose ((S, x), (T, y)) ∼ νr,2r and Alice has (S, x) and Bob
has (T, y) and the goal is to compute F ((S, x), (T, y)) = χT (x⊕y).
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Suppose Π is a protocol with communication complexity k, that
ε-computes F on νp,q.

If q/2 > p = r, then Alice samples S ′ η-noisily from S for
η = (q/2 − r)/(1 − 2r), so that (S ′, T ) ∼ Dq. Alice and Bob
can now compute Π((S ′, x), (T, y)) using k bits of communication.
By the correctness of Π, we have that their output disagrees with
F ((S ′, x), (T, Y )) with probability at most ε. But then we have
F ((S, x), (T, y)) = F ((S ′, x), (T, y)) since F does not depend on S,
and so Bob can simply output the output of Π to get a protocol
that ε-computes F on νr,2r.

Now we turn to the case that p ≥ q/2 = r. In this case Bob
samples y′ η-noisily from y, for η = (p−r)/(1−2r), to get y′ which
is an r-noisy copy of x. By simulating Π((S, x), (T, y′)), Bob can
ε-compute χT (x⊕y′). Now using the fact that χT (x⊕y) = χT (x⊕
y′) ⊕ χT (y′ ⊕ y) we have that if Bob outputs Π((S, x), (T, y′)) ⊕
χT (y′ ⊕ y) then he gets a protocol that is correct with probability
at least 1 − ε.

Thus in either case Π can be converted to a protocol with the
same communication that ε-computes F on νr,2r. �

So to prove Lemma 5.8 from now, we will set q = 2p and prove
a lower bound of γ · p · n − log(1/(1/2 − ε)) on the communication
complexity. So henceforth, we denote νp � νp,2p. The proof will use
the discrepancy bound which is a well-known method for proving
lower bounds on distributional communication complexity in the
standard model.

Definition 5.10 (Discrepancy Kushilevitz & Nisan (1997, Defi-
nition 3.27)). Let F and νp be as above and let R be any rectangle
(i.e., any set of the form R = C × D where C,D ⊆ {0, 1}2n).
Denote

Discνp(R, F ) �
∣
∣
∣
∣Pr

νp

[
F ((S, x), (T, y)) = 0 and ((S, x), (T, y)) ∈ R

]

− Pr
νp

[
F ((S, x), (T, y)) = 1 and ((S, x), (T, y)) ∈ R

]
∣
∣
∣
∣.

The discrepancy of F according to νp is

Discνp(F ) � max
R

Discνp(R,F ),
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where the maximum is over all rectangles R.

The next known proposition relates distributional communica-
tion complexity to discrepancy.

Proposition 5.11 (Kushilevitz & Nisan 1997, Proposition 3.28).
For every ε < 1/2, it holds that CCνp

ε (F ) ≥ log((1−2ε)/Discνp(F )).

We will prove the following lemma.

Lemma 5.12. Discνp(F ) ≤ 2−γ·p·n for some absolute constant γ >
0.

Note that Lemma 5.12 and Proposition 5.11 and Proposi-
tion 5.9 put together immediately imply Lemma 5.8. The proof
of Lemma 5.12 uses some standard facts about the spectral prop-
erties of matrices and their tensor powers that we next recall. Let
A ∈ R

d×d be a real square matrix. Then, v ∈ R
d is said to be

an eigenvector of A with eigenvalue λ ∈ R if Av = λv. If A is
furthermore (symmetric) positive semi-definite, then all its eigen-
values are real and non-negative. We can now define the spectral
norm of a (not necessarily symmetric) matrix.

Definition 5.13. The spectral norm of a matrix A ∈ R
d×d is

given by ‖A‖ �
√

λmax(AT A), where λmax(A
T A) is the largest

eigenvalue of AT A.

Also, recall that given a matrix A ∈ R
d×d and a positive

integer t, the tensor power matrix A⊗t ∈ R
dt×dt

is defined by
(A⊗t)(i1,...,it),(j1,...,jt) �

∏t
�=1 Ai�,j�

for every (i1, . . . , it), (j1, . . . , jt) ∈
{1, . . . , d}t. We will use the following standard fact which in par-
ticular says that the spectral norm is multiplicative with respect
to tensoring.

Fact 5.14 (e.g., Laub 2005). For any matrix A ∈ R
d×d, vector

u ∈ R
d, scalar c ∈ R and positive integer t, we have

(i) ‖cA‖ = |c| · ‖A‖.

(ii) ‖A⊗t‖ = ‖A‖t.
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(iii) ‖Au‖2 ≤ ‖A‖ · ‖u‖2, where for any vector w ∈ R
d, ‖w‖2

denotes the Euclidean norm of w, i.e., ‖w‖2 �
√∑d

i=1 w2
i .

The next lemma upper bounds the spectral norm of an ex-
plicit family of 4 × 4 matrices that will be used in the proof of
Lemma 5.12. Looking ahead, it is crucial for our purposes that
the coefficient multiplying a on the right-hand side of (5.16) is a
constant smaller than 2.

Lemma 5.15. Let a ∈ (0, 1) be a real number and N � N(a) �⎡

⎢
⎢
⎣

1 a a −a2

a 1 −a2 a
a a2 1 −a
a2 a −a 1

⎤

⎥
⎥
⎦. Then,

(5.16) ‖N‖ ≤ 1 +
√

2 · a + a2 +
a4

2
+

a5

√
2
.

The proof of Lemma 5.15 is deferred to the end of this section.
We are now ready to prove Lemma 5.12.

Proof of Lemma 5.12. Fix any rectangle R = C×D where C,D ⊆
{0, 1}2n. We wish to show that Discνp(R,F ) ≤ 2−γ·p·n. First,
note that Discνp(R,F ) = |1CM1D| where 1C and 1D are the 0/1
indicator vectors of C and D (respectively) and M is the 22n × 22n

real matrix defined by10

M((S,x),(T,y)) � νp((S, T ), (x, y)) · (−1)χT (x⊕y)

=
1

22n
(1 − p)2n(−1)〈T,x⊕y〉(

p

1 − p
)|S⊕T |+|x⊕y|

for every S, x, T, y ∈ {0, 1}n. Letting a � p/(1 − p), we can write

M((S,x),(T,y)) =
1

22n
(1 − p)2n(N⊗n)((S,x),(T,y))

10 We here use the symbols S and T to denote both subsets of [n] and the
corresponding 0/1 indicator vectors.
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with N = N(a) being the 4 × 4 real matrix defined by11

(5.17) N((S1,x1),(T1,y1)) � (−1)T1(x1⊕y1)a|S1⊕T1|+|x1⊕y1|

for all S1, x1, T1, y1 ∈ {0, 1}. Using the third property listed in
Fact 5.14, we get

Discνp(R,F ) = |1�
CM1D| ≤ ‖1C‖2 · ‖M‖ · ‖1D‖2

≤
√

22n · ‖M‖ ·
√

22n = 22n · ‖M‖(5.18)

We now use the first two properties listed in Fact 5.14 to relate
‖M‖ to ‖N‖ as follows:

(5.19) ‖M‖ = ‖ 1

22n
(1 − p)2nN⊗n‖ =

1

22n
(1 − p)2n‖N‖n.

Using (5.17), we can check that

N = N(a) =

⎡

⎢
⎢
⎣

1 a a −a2

a 1 −a2 a
a a2 1 −a
a2 a −a 1

⎤

⎥
⎥
⎦ .

Applying Lemma 5.15 with a = p/(1 − p) and p sufficiently
small (e.g., less than 1/10), we get

(5.20) ‖N‖ ≤ 1 +
√

2 · (
p

1 − p
) + O(p2).

Combining (5.18), (5.19), and (5.20) above, we conclude that

Discνp(R,F ) ≤ (1 − p)2n · (
1 +

√
2 · (

p

1 − p
) + O(p2)

)n

=

[
(1 − p) · (

1 + p · (
√

2 − 1) + O(p2)
)
]n

=

[
1 − p · (2 −

√
2) + O(p2)

]n

≤ 2−γ·p·n

for some absolute constant γ > 0. �
11 In (5.17), T1(x1⊕y1) denotes the product of the bit T1 and the bit (x1⊕y1).

Moreover, since (S1 ⊕ T1) is a single bit, its Hamming weight |S1 ⊕ T1| is the
same as its bit-value, and similarly for (x1 ⊕ y1).
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We conclude this section by proving Lemma 5.15.

Proof of Lemma 5.15. One can verify that

NT N =

⎡

⎢
⎢
⎣

(a2 + 1)2 2a(a2 + 1) 2a(1 − a2) 0
2a(a2 + 1) (a2 + 1)2 0 2a(1 − a2)
2a(1 − a2) 0 (a2 + 1)2 −2a(a2 + 1)

0 2a(1 − a2) −2a(a2 + 1) (a2 + 1)2

⎤

⎥
⎥
⎦ .

Assuming that a ∈ (0, 1), one can also verify that NT N has as
eigenvectors

v1 �

⎡

⎢
⎢
⎢
⎣

√
2(a4+1)

1−a2

a2+1
1−a2

1
0

⎤

⎥
⎥
⎥
⎦

, v2 �

⎡

⎢
⎢
⎢
⎣

a2+1
1−a2√
2(a4+1)

1−a2

0
1

⎤

⎥
⎥
⎥
⎦

with eigenvalue λ1(a) � 2a2 + a4 + 2a
√

2(a4 + 1) + 1,

and

v3 �

⎡

⎢
⎢
⎢
⎣

√
2(a4+1)

a2−1
a2+1
1−a2

1
0

⎤

⎥
⎥
⎥
⎦

, v4 �

⎡

⎢
⎢
⎢
⎣

a2+1
1−a2√
2(a4+1)

a2−1

0
1

⎤

⎥
⎥
⎥
⎦

with eigenvalue λ2(a) � 2a2 + a4 − 2a
√

2(a4 + 1) + 1.

Note that for any value of a ∈ (0, 1), the vectors v1, v2, v3 and
v4 are linearly independent and each of the eigenvalues λ1(a) and
λ2(a) has multiplicity 2. Moreover, we have that λ1(a) ≥ λ2(a).
Hence,

‖N‖ =
√

λ1(a) =

√
2a2 + a4 + 2a

√
2(a4 + 1) + 1.

Applying twice the fact that
√

1 + x ≤ 1+x/2 for any x ≥ −1,
we get that

‖N‖ =

√
1 + 2a2 + a4 + 2a

√
2
√

1 + a4
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≤ 1 + a2 +
a4

2
+ a

√
2
√

1 + a4

≤ 1 + a2 +
a4

2
+ a

√
2(1 +

a4

2
)

= 1 + a
√

2 + a2 +
a4

2
+

a5

√
2
.

�

6. The need to work with approximations

For completeness, we exhibit a class F of pairs of Boolean-valued
functions such that for every (f, g) ∈ F , the functions f and g are
very close with respect to the uniform distribution, the zero-error
communication complexity of each of f and g in the standard model
is a single bit, but the zero-error communication in the uncertain
model is quite large. Formally, we prove the following:

Theorem 6.1. For every δ ∈ (0, 1), there exists a class F of pairs
of Boolean-valued functions over the domain {0, 1}n such that

(i) δν(F) ≤ δ.

(ii) CC0(F) = 1.

(iii) CCUν
0(F) = Ω(n − log(1/δ)),

where ν is the uniform distribution on {0, 1}n × {0, 1}n.

To prove Theorem 6.1, we will need the following lower bound
on the well-studied Indexing function. Recall that in the Index-

ingm problem with parameter m, Alice is given an element x ∈ [m],
Bob is given a function h : [m] → {0, 1}, and they are required to
output h(x).12 The next theorem asserts that the two-way com-
munication complexity of Indexingm is Ω(log m) bits. Note that
this bound is essentially tight as Alice can send her input to Bob
using log m bits of communication.

12 The standard definition of Indexing terms x the “index” and views h
as a vector in {0, 1}m. Our version is equivalent and a little more convenient
notationally.
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Theorem 6.2. There is a constant ε > 0 such that

CCε(Indexingm) = Ω(log m).

Theorem 6.2 follows from the well-known fact that the one-
way communication complexity from Bob to Alice of Indexingn

(a.k.a, the “hard direction”) is Ω(n) bits (Kushilevitz & Nisan
1997, Exercise 4.20) and the generic fact that there is at most an
exponential gap between one-way communication complexity and
two-way communication complexity (Kushilevitz & Nisan 1997,
Exercise 4.21).

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We first describe the class of
functions we work with. Let T ⊆ {0, 1}n be a set of size δ · 2n.
Let F ′ = {g′ : {0, 1}n → {0, 1} | g′(x) = 0, ∀x �∈ T}. We now
define F in terms of F ′ as follows:

F = {(0, g) | ∃g′ ∈ F ′ s.t. g(x, y) = g′(x), ∀(x, y)}.

So the first function f is always the 0 function, and the second
function g depends only on x and is always 0 if x �∈ T .

Since f �= g only when x ∈ T and this happens with probability
δ, we have

δν(f, g) � Pr
(X,Y )∼ν

[f(X,Y ) �= g(X,Y )] ≤ Pr
(X,Y )∼ν

[X ∈ T ] = δ.

We conclude that δν(F) � max(f,g)∈F{δν(f, g)} ≤ δ yielding Part
(1) of the Theorem. Part (2) is immediate from the fact that
g(x, y) = g′(x) for every (f, g) ∈ F and so, in the certain-
communication setting, Alice can compute g′(x) and send it to
Bob.

We now turn to Part (3) for which we give a reduction from
Indexingm for m = δ · 2n. Suppose CCUν

0(F) ≤ k and so there is
a protocol Π that communicates k bits such that if Alice is given
(f, x) and Bob (g, y) with (f, g) ∈ F , the protocol outputs g(x, y).
We show k = Ω(log m) = Ω(n − log(1/δ)). (Note that since Π
is a zero-error protocol, we have that the output of Π is correct
on all valid inputs, and so we can ignore the distribution on (x, y)
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below.) Associate [m] with the set T , so that Alice’s input is
an element x ∈ T and Bob’s input is a function h : T → {0, 1},
and their goal is to compute h(x). Let g′ : {0, 1}n → {0, 1} be
given by g′(x) = 0 if x �∈ T and g′(x) = h(x) otherwise. Let
g(x, y) = g′(x). Alice can map her input to the pair (0, x) and
Bob to the pair (g, 0), and now they have inputs to our uncertain-
communication problem on F . Running Π on this pair produces
as output g(x) = h(x) (since x ∈ T ) which is the desired output
of Indexingm. Applying Theorem 6.2 we conclude k = Ω(log m)
and this yields Part (3). �
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