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ABSTRACT

Despite their well-documented learning capabilities in clean envi-

ronments, deep convolutional neural networks (CNNs) are extremely

fragile in adversarial settings, where carefully crafted perturbations

created by an attacker can easily disrupt the task at hand. Numerous

methods have been proposed for designing effective attacks, while

the design of effective defense schemes is still an open area. This

work leverages randomization-based defense schemes to introduce a

sampling mechanism for strong and efficient defense. To this end,

sampling is proposed to take place over the matricized mid-layer data

in the neural network, and the sampling probabilities are systemat-

ically obtained via variance minimization. The proposed defense

only requires adding sampling blocks to the network in the inference

phase without extra overhead in the training. In addition, it can be

utilized on any pre-trained network without altering the weights. Nu-

merical tests corroborate the improved defense against various attack

schemes in comparison with state-of-the-art randomized defenses.

Index Terms— Deep learning, convolutional neural networks,

adversarial examples, randomized defenses, image classification.

1. INTRODUCTION

Deep Neural Networks (DNNs) gained increasing popularity as their

capability in diverse tasks such as object recognition and detection

[1, 2], speech recognition and language translation [3], voice synthe-

sis [4], and many more, reach or even surpass human-level accuracy.

However, recent studies have cast doubt on the reliability of DNNs

as highly-accurate networks are shown to be extremely vulnerable to

carefully crafted inputs designed to fool them [5, 6]. This will chal-

lenge applicability of the DNNs in terms of safety and security in

critical environments such as autonomous cars [7], automatic speech

recognition [8], and face detection [9, 10].

Particularly, in the case of convolutional neural networks (CNN)

for image classification, the severity of brittleness is highlighted be-

cause small adversarial perturbations on the clean data are often im-

perceptible to the human eye, however they can cause the trained

CNNs to classify the adversarial examples incorrectly with high

confidence. Furthermore, adversarial noise generated using a given

trained network can successfully fool another CNN-based classifier

[11]. This addresses practical black-box attacks, where the attacker

does not have access to the target classifier, however he/she has a

high chance of sabotage. Thus, improving the robustness of CNNs

is of high importance for real-world applications in potentially ad-

versarial settings, especially in sensitive applications.
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Design of powerful adversarial perturbations in environments

with different levels of knowledge about the target CNN as well

as affordable complexity, have been considered in numerous works

[6, 12, 13]. Similarly, design of defense methods for enhancing the

robustness of CNNs against adversarial perturbations has pursued

two broad directions of detection and attack recovery schemes. The

defense mechanism for the former aims at detection of adversarial

images by classifying the input images into clean or adversarial ones,

by utilizing different tools such as auto-encoders [14], detection sub-

network learned during the training phase [15, 16], and dropout units

[17]. On the other hand, recovery schemes aim at enhancing the ro-

bustness of the classification accuracy by data pre-processing [18],

adversarial training [19, 20], and Lipschitz regularization [21, 22]

among other schemes.

Along the objective of this work and by focusing on attack de-

tection schemes, it has been shown that randomization-based de-

fenses exhibit higher robustness against strong attacks, while other

defense mechanisms can easily fail [12]. In particular, dropout units

have been analyzed from a Bayesian point of view in [23], where it

has been shown that they can provide a measure of (un)certainty on

the classification output. Subsequently, [17] utilizes randomness of

dropout units during the test phase as a defense mechanism, where

images with high classification uncertainty are declared as adversary.

Recently, randomized defense has been generalized to non-uniform

sampling known [24], where mid-layer tensors are vectorized and

randomly sampled, with probabilities proportional to the entry val-

ues.

Inspired by [17, 24], the goal here is to provide a systematic ap-

proach for obtaining an optimal and more efficient sampling scheme,

where instead of vectorizing the mid-layer tensors as in [24], blocks

of entries are sampled via reshaping the tensors into matrices, a.k.a.

matricization, for a faster inference. This is motivated by leverag-

ing the structure of the tensor image, where the sampling is in fact

selecting fibers of the 3D tensor, corresponding to pixels across dif-

ferent filters in the CNN mid-layers. The sampling probabilities are

then obtained by casting the problem as a variance minimization,

whose convexity yields an efficient solver. Numerical results cor-

roborate the effectiveness of the proposed defense, while improving

sampling efficiency due to reduced complexity of block sampling.

The advantages of our novel method can be summarized as follows.

• The proposed sampling unit can be placed in any network

regardless of its size and depth.

• The defense scheme takes place in the test phase, thus im-

posing no overhead in the training phase while also keeping

trained weights of the network untouched.

• Educated and structured sampling is utilized, where blocks

of data are sampled via optimally learned probabilities, thus

increasing sampling efficiency as well as defense strength.
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2. MATRICIZED VARIANCE MINIMIZATION DEFENSE

In this work, we build on the randomized defense schemes, as the

introduced randomness enables measuring the (un)certainty of the

output class as a means to detecting adversarial images. However,

unlike simple dropout methods which utilize blind Bernoulli ran-

dom variables, we aim at properly learning sampling probabilities

to improve performance. Furthermore, as also addressed in [23],

the dropout (sampling) unit may be placed at any point in the CNN

architecture, including the input image itself. Thus, to enhance in-

terpretability, we will build our objective by focusing on sampling

the input image first. The objective will be readily generalized later

for the hidden layers of the network.

Most adversarial perturbations are additive carefully crafted

noise, yielding adversarial images as

Xadv = Xclean +N

where Xclean is the clean (tensor) image, and N is the adversarial

noise, both of size m× n× h. In order to utilize the inherent struc-

ture of an image for a more efficient and smarter sampling, rather

than independent sampling across entries, our idea is to matricize

the tensor into a matrix of size mn× h, and systematically learn the

row sampling probabilities p := [p1, ..., pmn]
>.

Upon matricization, the adversarial image can be expressed as

Xadv = Xclean +N, where the m× n× h tensors are substituted by

their mn × h matricized counterparts. The proposed row sampling

method for sampling Xadv proceeds as follows.

For a given sampling probability vector p, and a total number

of c draws, select index i ∼ categorical(p) for c independent draws

with replacement, and gather all the drawn indices in the index set

I. Note that since draws are with replacement, we have |I| ≤ c.

The randomized approximation of the image is then given by X̂ =
SDXadv, where Smn×mn is the sampling matrix with Sii = 1 for

i ∈ I, and zero otherwise. Similarly, the diagonal matrix Dmn×mn

scales the selected rows i ∈ I by the factor Dii.

One would ideally seek a sampling scheme such that E[X̂] =
Xclean. In lieu of such a scheme, we choose the scaling matrix D

such that an unbiased approximation is provided for the clean image,

that is, if N = 0, then E[X̂] = E[SDXclean] = Xclean. To this end,

scaling is selected as Dii = 1/(1− (1− pi)
c), and the off-diagonal

entries are set to 0. The algorithm is tabulated in Alg. 1.

This choice of matrix D gives rise to unbiased approxima-

tions for the noise component as well as the adversarial image, i.e.

Algorithm 1: Matrix approximation via row sampling with

replacement.

Input: Matrix Z and probabilities p = [p1, · · · , pmn]
>

1 Initialize S,D = 0mn×mn, and set diagonal entries of D as

[D]ii =
1

1− (1− pi)c
, i = 1 · · · ,mn.

for t = 1, 2, · · · , c do

2 Sample index it ∼ categorical(p)
3 I = I ∪ {it}

4 end

5 Set Sii = 1, ∀i ∈ I

Output: Ẑ = SDZ

E[SDN] = N and E[X̂] = Xadv. Since unbiased approxima-

tion of the clean image is unavailable, one is motivated to find the

sampling probabilities p such that the variance of the clean image

approximation is minimized; that is,

min
p≥0,1>p=1

E

[
‖X̂clean −Xclean‖

2
F

]
(1)

where X̂clean = SDXclean. Intuitively, minimizing (1) is of interest

since low values of the variance of X̂clean will make different real-

izations of X̂clean to concentrate around its mean Xclean with high

probability, while the same will not happen for the adversarial noise

component N.

Expanding the objective across rows, one readily obtains

E[‖X̂clean −Xclean‖
2
F ] =

mn∑

i=1

E[‖SiiDiix
clean
i − x

clean
i ‖22]

=

mn∑

i=1

E[‖SiiDiix
clean
i ‖22]− E[‖xclean

i ‖2F ]

=

mn∑

i=1

‖xclean
i ‖22

(
1

πi

− 1

)
(2)

where Xclean := [xclean
1 , ...,xclean

mn ]>, and the second equality is writ-

ten using the fact that draws are iid and with replacement, rendering

binary random variables Sii ∼ Bernoulli(πi) where πi = 1− (1−
pi)

c. Thus, (1) can be rewritten as

min
p≥0,1>p=1

n∑

i=1

1

1− (1− pi)c
‖xclean

i ‖22 . (3)

We refer to the probabilities obtained by solving (3) as Matri-

cized Variance Minimization (MVM) probabilities. It is easy to

show that within the feasible set of simplex vectors, the objective

of (3) is convex, which together with the convexity of the feasible

set render the minimization convex. The optimal value for sam-

pling probabilities p can thus be obtained by a projected gradient

descent solver, with smart initialization, to prevent getting stuck at

local optima due to possible cases with ‖xclean
i ‖ = 0, as tabulated in

Alg. 2. Operator Πsimplex(.) denotes projection onto the simplex set,

αi = ‖xclean
i ‖22, and nnz(.) denotes the number of non-zero entries.

In practice however, one only has access to the adversarially per-

turbed image Xadv rather than the clean Xclean. This along with the

Algorithm 2: MVM Solver.

1 Solve: minp≥0,1>p=1

∑mn

i=1

αi

1− (1− pi)c

Input : [α1, α2, . . . , αmn], Imax, γtolerance

Output: Sampling probabilities p = [p1, p2, . . . , pmn]
>

2 Initialize ∀i : p
(1)
i =

{
0, if αi = 0

1
nnz(α)

, αi 6= 0
, and set k = 1

3 while k < Imax and
‖p(k+1) − p(k)‖2

‖p(k)‖2
> γtolerance do

4 ri = p
(k)
i + µ

αic(1− p
(k)
i )c−1

(
1− (1− p

(k)
i )c

)2 ∀i

5 p
(k+1)
i = Πsimplex([r1, r2, · · · , rmn])

6 k = k + 1

7 end
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Fig. 3. ROC-curve for detection of adversarial images with different attack-detection sampling schemes.

MNIST SVHN CIFAR

FGSM BIM-A JSMA FGSM BIM-A JSMA FGSM BIM-A JSMA

c = 0.5Npixel 0.947 0.982 0.983 0.901 0.741 0.794 0.630 0.578 0.643

MVM c = Npixel 0.848 0.987 0.982 0.933 0.834 0.885 0.756 0.718 0.804

c = 2Npixel 0.699 0.972 0.936 0.906 0.766 0.934 0.787 0.858 0.899
50% 0.613 0.749 0.746 0.752 0.601 0.804 0.757 0.785 0.850

SAP 80% 0.618 0.713 0. 667 0.667 0.568 0.729 0.718 0.736 0.871

100% 0.631 0.715 0.628 0.635 0.550 0.692 0.688 0.694 0.878
Dropout pdrop = 0.5 0.845 0.991 0.984 0.951 0.853 0.904 0.701 0.606 0.710

Table 3: AUC-ROC of different attack-detection sampling schemes. Higher values indicate better detection.

after the ReLU activation units prior to flattening; e.g., see Fig. 2 for

inference network used for CIFAR-10 dataset.

Fig. 5 plots the ROC curve for detection of adversarial versus

clean images, where the curve is obtained by varying the threshold

τ , as discussed in Alg. 3. We set R = 100, and the number of pix-

els in MNIST, SVHN, and CIFAR images are Npixel = 784, 1024,
and 1024, respectively. We tested SAP with 50%, 80% and 100%

sampling ratios, and for dropout, varying the drop probability in

pdrop = {0.1, 0.2, 0.5} showed negligible effect in the ROC-curve,

thus we are reporting the results for pdrop = 0.5. Also note that since

most attack detection algorithms are very successful in the MNIST

dataset, the x-axis is in logarithmic scale for better visualization.

In addition to the ROC curves, the area-under-curve (AUC) is

also provided in Table 3, which further quantifies the accuracy of

attack detection across different methods. Interestingly, it is ob-

served that a smaller number of draws c provides a powerful de-

tection in simpler images such as the MNIST dataset, while in more

detailed images such as SVHN and particularly CIFAR-10, a larger

number of draws yields higher AUC. Moreover, MVM-based de-

tection can provide upto 10% improved AUC in MNIST as well as

CIFAR-10 datasets with FGSM and BIM-A perturbations, respec-

tively, while the AUC is almost the same or higher compared to the

best of competing state-of-the-art detection methods in other cases.

Further analysis of randomized defenses and potential improvements

on larger datasets and CNNs are among future directions.
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