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ABSTRACT

Multiview canonical correlation analysis (MCCA) looks for

shared low-dimensional representations hidden in multiple

transformations of common source signals. Existing MCCA

approaches do not exploit the geometry of common sources,

which can be either given a priori, or constructed from do-

main knowledge. In this paper, a novel graph-regularized (G)

MCCA is developed to account for such geometry-bearing in-

formation via graph regularization in the classical maximum-

variance MCCA model. GMCCA minimizes the distance

between the sought canonical variables and the common

sources, while incorporating the graph-induced prior of these

sources. To capture nonlinear dependencies, GMCCA is fur-

ther broadened to the graph-regularized kernel (GK) MCCA.

Numerical tests using real datasets document the merits of

G(K)MCCA in comparison with competing alternatives.

Index Terms— Dimensionality reduction, signal process-

ing over graphs, Laplacian regularization, multiview learning

1. INTRODUCTION

Multiview data collected from different transformations of

common signal(s) are typical in applications, such as multi-

camera surveillance systems, where single-view data do not

suffice for a comprehensive description of the common sig-

nal sources. In paper classification for instance, there are

three views representing any given paper: the title, keywords,

and its citations [1]. Learning with heterogeneous data from

different domains is often referred to as multiview learn-

ing, which is an emerging direction in machine learning [2].

Canonical correlation analysis (CCA) is a learning tool with

well-documented merits. It seeks linear transformations of

two datasets so that the correlation between the transformed

low-dimensional features is maximized [3]. Multiview (M)

CCA generalizes the vanilla CCA to cope with data from

more than two views [4], and enjoys popularity that grows

with the heterogeneity of sensing devices.

Graph-aware subspace learning methods have been widely

used in machine learning applications, such as dimensional-

ity reduction, clustering, classification, and data reconstruc-
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tion [5, 6]. Specifically, graph CCA accounts for the structural

information present in a common source [7], but it is limited

to analyzing two datasets. The geometric information of the

common sources has not been leveraged in the context of

MCCA.

Building upon but considerably going beyond our results

in [7], a novel graph-regularized (G) MCCA framework is

put forth here. GMCCA aims at minimizing the distance

between the low-dimensional representations of each view

and the common sources, while accounting for the statisti-

cal dependencies among these sources that are hidden in the

multiple views. Such dependencies may be available from

the given data, or can be deduced from correlations, which

are encoded in a graph and we invoke as graph regulariz-

ers of standard MCCA. Going beyond linear transformations,

we employ kernels along with a Tikhonov regularizer on the

low-dimensional representations to develop a novel graph-

regularized kernel (GK) MCCA tool. Interestingly, the so-

lutions of GMCCA and GKMCCA can be analytically found

by performing a single eigenvalue decomposition.

2. PRELIMINARIES

Consider M ≥ 2 datasets {Xm ∈ R
Dm×N}Mm=1

collected

from M views of the N common sources collected in the

matrix Š ∈ R
ρ×N , with possibly ρ � minm {Dm}Mm=1

.

Without loss of generality, assume that per dataset Xm has

been centered. MCCA looks for low-dimensional subspaces

{Um ∈ R
Dm×d}Mm=1

with d ≤ ρ, such that the difference be-

tween each pair of linear projections U>
mXm is minimized.

To reveal the underpinnings of our approach, we outline

two popular MCCA formulations. The first, termed sum-of-

correlations (SUMCOR) MCCA [4], matches the pairs by

min
{Um}M

m=1

M−1
∑

m=1

M
∑

m′>m

∥

∥U
>
mXm −U

>
m′Xm′

∥

∥

2

F
(1a)

s. to U
>
m

(

X
>
mXm

)

Um = I, m = 1, . . . ,M (1b)

where columns of Um are known as the loading vectors of

Xm, and projections {U>
mXm} are the so-termed canoni-

cal variables, which can be viewed as low (d)-dimensional

approximations of the hidden sources in Š. However, when

M ≥ 3, problem (1) is provably NP-hard [8].
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Instead of minimizing the Euclidean distance between all

low-dimensional representation pairs, one can also explicitly

look for a common low-dimensional approximation of the

common source matrix S ∈ R
d×N , by solving [4]

min
{Um},S

M
∑

m=1

∥

∥U
>
mXm − S

∥

∥

2

F
(2a)

s. to SS
> = I (2b)

which yields the so-termed maximum-variance (MAXVAR)

MCCA formulation. If all sample covariance matrices

{XmX
>
m}Mm=1

have full rank, then the columns of the S-

minimizer are given by the first d principal eigenvectors of
∑M

m=1
X

>
m(XmX

>
m)−1

Xm, while the Um-minimizers are

found as {Ûm = (XmX
>
m)−1

XmŜ
>}Mm=1

[9].

3. GRAPH-REGULARIZED MCCA

In a gamut of applications, the N common source columns

{ši}
N
i=1

that form Š, may be nodal vectors residing on a graph

G comprising N nodes. Besides the given data {Xm}, such

structural prior knowledge can be exploited to better estimate

the canonical variables. Specifically for the present paper, this

extra information is encoded in a graph G and embodied in

the common low-dimensional approximation through a graph

regularization term. This section deals precisely with graph-

regularized MCCA.

Supposing that the graph G is undirected, its weighted ad-

jacency matrix W ∈ R
N×N is symmetric, that is W = W

>.

Letting di :=
∑N

j=1
wij with wij denoting the (i, j)-th en-

try of W, and the diagonal matrix D := diag({di}
N
i=1

) ∈
R

N×N , the Laplacian of G is defined as LG := D − W.

Sources {ši}
N
i=1

are assumed smooth over G, that is two vec-

tors (ši, šj) residing on connected nodes are also close in

the Euclidean distance sense. As explained in Sec. 2, vec-

tors si and sj are d-dimensional approximations of ši and šj ,

respectively. To capture this, a meaningful regularization is

the weighted sum of Euclidean distances between all pairs of

common source estimates (si, sj) over G, given by

Tr
(

SLGS
>
)

=

N
∑

i=1

N
∑

j=1

wij‖si − sj‖
2

2
. (3)

Evidently, minimizing (3) over S forces vectors si and sj re-

siding on adjacent nodes associated with large weights wij to

be close to each other. To account for this prior on common

sources, the quadratic term (3) is well motivated as a regular-

izer of the standard MAXVAR MCCA (cf. (2)), yielding our

novel graph-regularized (G) MCCA as the solution of

min
{Um},S

M
∑

m=1

∥

∥U
>
mXm − S

∥

∥

2

F
+ γTr

(

SLGS
>
)

(4a)

s. to SS
> = I (4b)

where the hyper-parameter γ ≥ 0 balances minimizing the

distance between canonical variables and common source es-

timates, and promoting smoothness of common source esti-

mates over G. Clearly, GMCCA reduces to MCCA in (2)

when γ = 0; and as γ increases, GMCCA progressively lever-

ages this additional graph-induced knowledge when seeking

the common sources and canonical variables.

Taking the derivative of (4a) with respect to Um and set-

ting it to 0 lead to Ûm := (XmX
>
m)−1

XmS
>. After sub-

stituting Um by Ûm and ignoring the constant term in (4a),

solving (4) boils down to maximizing Tr(SCS
>) subject to

(4b), where C :=
∑M

m=1
X

>
m(XmX

>
m)−1

Xm − γLG . It fol-

lows readily that rows of the Ŝ-optimizer are the d-principal

eigenvectors of C. Subsequently, the Ûm-optimizer can be

obtained as Ûm = (XmX
>
m)−1

XmŜ
> for m = 1, . . . , M .

Two remarks are worth making at this point.

Remark 1. Distinct from the single graph Laplacian regular-

izer in our GMCCA, the related approaches in [10] and [11]

rely on M different regularizers {U>
mXmLGm

X
>
mUm}m to

exploit this extra graph information, for view-specific graphs

{LGm
}m on data {Xm}m. The approach in [11] however

does not admit an analytical solution, while [10] copes with

semi-supervised learning, where cross-covariances of pair-

wise datasets are not fully available. In contrast, our single

graph regularizer in (4) is focused on the common sources. In

practice, this is critical when one has prior information about

the common sources along with the M views. In paper classi-

fication for instance, except for titles, keywords, and introduc-

tions of given articles, one may also have access to the cita-

tion network, capturing the similarities among papers. More

generally, the graph knowledge of inter-dependent sources

can be a prior given by an ‘expert,’ or, it can be dictated by

the underlying physics (e.g., [12] in power networks), or, it

can be learned from alternate views of the data. Finally, our

GMCCA comes with simple analytical solutions.

Remark 2. In terms of selecting γ, two feasible methods are:

i) cross-validation for supervised learning tasks, where γ is

set to the one yielding the best empirical performance on the

labeled training data; and, ii) a spectral clustering approach

that automatically finds the best γ from a given set of candi-

dates; see e.g., [13] for details.

4. GRAPH-REGULARIZED KERNEL MCCA

In various practical setups, nonlinearly mapped data vectors

are dependent and high-dimensional with N � minm{Dm},

while sample covariance matrices {XmX
>
m} become singu-

lar. This renders GMCCA infeasible due to the following two

reasons: i) GMCCA presumes M linear low-dimensional hy-

perplanes to project the M -view data vectors; and, ii) GM-

CCA incurs high computational complexity O(MD3) with

D := maxm{Dm}. To address these issues, the linear GM-

CCA in (4) will be first re-expressed in its dual form, and the
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M -view data will be then mapped to higher dimensional fea-

ture spaces through M nonlinear functions. Subsequently, the

common low-dimensional representations can be obtained.

Toward this objective, we start by rewriting the load-

ing vectors {Um} as linear functions of associated datasets

{Xm}, yielding {Um := XmAm}, where {Am ∈ R
N×d}

are the unknown dual matrices. Substituting Um by XmAm

in linear GMCCA (4) gives rise to its dual form

min
{Am},S

M
∑

m=1

∥

∥A
>
mX

>
mXm − S

∥

∥

2

F
+ γTr

(

SLGS
>
)

(5a)

s. to SS
> = I. (5b)

Invoking kernels, (5) can be generalized to capture non-

linear dependencies among the M views. Specifically, as-

suming M nonlinear functions {φm}, data vectors {xm,i}
in space R

Dm (columns of Xm) are mapped to {φm(xm,i)}
in space R

Lm with possibly Lm = ∞. Interestingly, the

dual in (5) depends on Xm only through X
>
mXm. Using the

‘kernel trick,’ we can thus replace {〈xm,i,xm,j〉}
N
i,j=1

with

{〈φm(xm,i),φm(xm,j)〉}
N
i,j=1

.

Define a kernel matrix K̄m ∈ R
N×N for each Xm, whose

(i, j)-th entry is κm(xm,i,xm,j) := 〈φm(xm,i),φm(xm,j)〉,
where κm(·) is a so-termed kernel function. Similar to GM-

CCA, we first remove the means of all transformed data

{φm(xm,i)}
N
i=1

to effect centering

Km := K̄m − 1K̄m/N − K̄m1/N + 1K̄m1/N2 (6)

where 1 ∈ R
N×N is an all-one matrix. In the sequel, replac-

ing {X>
mXm} in (5) with the centered kernel matrices {Km},

the nonlinear counterpart of (5) can be obtained as

min
{Am},S

M
∑

m=1

∥

∥A
>
mKm − S

∥

∥

2

F
+ γTr

(

SLGS
>
)

(7a)

s. to SS
> = I. (7b)

Kernel matrices {Km} are assumed to be nonsingular.

Analogous to the process of solving GMCCA, one can con-

firm that rows of the Ŝ-optimizer of (7) coincide with the d
principal eigenvectors of MI−γLG and that Âm = K

−1

m Ŝ
>.

Clearly, the common source estimate Ŝ does not depend on

{Xm}, which contradicts our goal of finding the shared

low-dimensional representation in {Xm}. To bypass this

impasse, following kernel CCA (see e.g., [14]), we penalize

the norms of
{

‖Um‖2F = Tr
(

A
>
mKmAm

)}

by introducing

a Tikhonov regularization term on each loading vector. This

yields our graph-regularized kernel (GK) MCCA as

min
{Am},S

M
∑

m=1

∥

∥A
>
mKm − S

∥

∥

2

F
+ γTr

(

SLGS
>
)

+

M
∑

m=1

εmTr
(

A
>
mKmAm

)

(8a)

s. to SS
> = I (8b)

Algorithm 1 Graph-regularized kernel MCCA.

1: Input: {Xm}Mm=1
, ε, γ, W, and {κm}Mm=1

.

2: Construct {Km}Mm=1
using (6).

3: Build LG = D−W.

4: Form Cg =
∑M

m=1
(Km + εI)

−1
Km − γLG .

5: Perform eigendecomposition on Cg to obtain the d prin-

cipal eigenvectors collected as the columns of Ŝ>.

6: Compute {Âm = (Km + εI)
−1

Ŝ
>}Mm=1

.

7: Output: {Âm}Mm=1
and Ŝ.

where hyper-parameters {εm ≥ 0} are predetermined penalty

constants. Similar to the process of solving (4), optimizers of

(8) can be readily obtained; see Alg. 1 for details.

MCCA, GMCCA, GKMCCA, and KMCCA incur respec-

tively computational complexity of O(N2max(N,DM)),
O(N2max(N,DM)), O(N2M max(N,D)), and O(N2M
max(N,D)). When N � Dm for some m ∈ {1, . . . ,M},

GMCCA is not applicable, or suboptimal even if pseudo-

inverse is used at a computational cost of order O(MD3). On

the other hand, GKMCCA is computationally more afford-

able since its cost grows only linearly with D. Furthermore,

when Dm � N for all m, it can be readily verified that

GMCCA is computationally more attractive than GKMCCA.

5. NUMERICAL TESTS

The UCI digit image database1 is used to demonstrate the

effectiveness of GMCCA in clustering. This database com-

prises 6 feature sets of 10 digits (classes), each having 200
data samples. Seven classes including digits 1, 2, 3, 4, 7, 8, 9
were used to form the 6 views {Xm ∈ R

Dm×1,400}6m=1
with

D1 = 76, D2 = 216, D3 = 64, D4 = 240, D5 = 47,

and D6 = 6. Based on X3, the W was constructed having

(i, j)-th entry

wij :=

{

K3(i, j), i ∈ Nk1
(j) or j ∈ Nk1

(i)
0, otherwise

where K3 is a Gaussian kernel matrix of X3 with bandwidth

equal to the mean of the corresponding Euclidean distances,

and Nk1
(j) the set of column indices of K3 containing the

k1-nearest neighbors of column j. GPCA and PCA were run

on the concatenated feature vectors, while the K-means was

performed using either Ŝ, or the principal components (PCs)

with parameters γ = 0.1 and d = 3.

Clustering performance is evaluated in terms of both clus-

tering accuracy and scatter ratio defined in [13, Sec. VII-A].

Table 1 depicts the clustering performance of MCCA, PCA,

GMCCA, and GPCA under different k1 values. Evidently,

GMCCA achieves the best clustering accuracy and scatter ra-

tio. For k1 = 50, Fig. 1 reports the first two rows of Ŝ ob-

tained by (G)MCCA along with the first two PCs of (G)PCA,

1Downloaded from http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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