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ABSTRACT

The present paper deals with asynchronous decentralized opti-

mization over networks. Pertinent algorithms are either cen-

tralized relying on a specific topology, where a single master

connects all workers, or decentralized devoid of any master by

only exchanging information between single-hop neighbors.

The present work bridges the gap of existing approaches with

a novel hybrid framework that is capable of accommodating

multiple masters. Moreover, it enables considerable accelera-

tion of decentralized approaches without physically deploying

masters, thus making it possible to achieve a desirable tradeoff

between convergence and communication/computation com-

plexity by tuning the configuration. Numerical tests showcase

advantages over decentralized counterparts.

Index Terms— Asynchronous, decentralized optimiza-

tion, distributed optimization, topology

1. INTRODUCTION

Consider the following distributed optimization problem over

N networked computing nodes (henceforth called workers)

with node-specific cost functions and privately available data

min
x

N∑

i=1

fi(x) + h(x) (1)

where x ∈ R
p is the global decision variable, fi denotes the

local cost function at node i and h a (not necessarily smooth)

regularizer. The goal is to find the optimal solution by coopera-

tively solving the per-worker subproblems. This setting arises

frequently in estimation, learning and control tasks [1–4, 17].

Among various solvers, alternating direction method of multi-

plier (ADMM) has gained popularity for its decomposability

and flexibility [2, 4]. Typically, ADMM-based solvers come

in two formats: i) centralized, where a single master node

is connected all workers [2]; and ii) decentralized, where no

master is present and workers talk to single-hop neighbors

only [1, 5]. Until recently [6], there has been no principled ap-

proaches to dealing with multiple masters. However, [6] dealt
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with synchronous algorithms that require global coordination,

thus challenging their implementation.

Asynchronous algorithms may be more appealing in some

settings, especially for decentralized optimization, since they

do not need global coordination and consequently are more

efficient when workers differ significantly in computing speed

[11, 12, 16]. With prior art dealing with either centralized or

decentralized operations, the main contribution of this work to

develop an ADMM-based asynchronous decentralized solver

of (1) using multiple masters is well motivated.

Related work. From the plethora of distributed optimization

schemes, we will focus on ADMM-based ones, which can be

split in two categories: synchronous and asynchronous.

Synchronous distributed optimization has been studied ex-

tensively for decades; see e.g., [4]. These methods may be

centralized [2] or decentralized [1,5], depending on whether a

master (fusion center) is present or not. This setup of multiple

masters remains a largely uncharted territory. Progress was

made recently in [7] where a cluster of workers are handled

together, but no explicit means to accommodate multiple mas-

ters. A novel synchronous approach that is capable of handling

multiple masters was proposed in [6].

Similarly, asynchronous algorithms are either centralized

or decentralized. Centralized ones are popular, and are easier

to analyze and implement [8–11], but the single master opera-

tion faces single-point failure and bottleneck related challenges

that limit the overall system performance. Consequently, de-

centralized alternatives have been developed [11, 12]. But no

method is available to accommodate multiple masters except

for the asynchronous version of [13].

Contributions. We classify our contributions as follows: C1)

we develop AH-ADMM that is able to accommodate multiple

masters; C2) we show that AH-ADMM enables topology-

aware acceleration of decentralized algorithms without chang-

ing the underlying network; and C3) we establish convergence

of AH-ADMM for nonconvex functions.

The rest of the paper is organized as follows. Sec. 2

presents detailed derivation of AH-ADMM, Sec 3 deals with

topology-aware acceleration, Sec. 4 presents convergence anal-

ysis, Sec. 5 shows numerical tests and Sec. 6 concludes this

paper.
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Fig. 3: Relative error of SD-ADMM (SD), SH-ADMM (SH),

AD-ADMM (AD) and AH-ADMM (AH) with different thresh-

old (S) vs. wall clock time.

suggests that a large γ is needed when the maximum delay is

large. Also, (6) implies that ρ can be smaller when the cost

functions are smoother.

5. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments to test

the acceleration merits of AH-ADMM, and compare with

asynchronous decentralized ADMM (AD-ADMM) [11, 12],

synchronous decentralized ADMM (SD-ADMM) [1], and syn-

chronous hybrid ADMM [6].

Different from existing works [11,12,16], our method does

not assume every worker can activate each iteration. For this

reason, it can deal with more general settings. For example,

each worker has a positive activation probability in [11, 16] at

each iteration, while one edge is randomly selected each time

in [12]. Both assumptions exclude the case of deterministic

activation patterns, as verified in the following experiment.

In our experiment, the speed of each worker is determin-

istic and initialized randomly by drawing from a uniform dis-

tribution U [1, 10], so that the fastest worker can be 10 times

faster than the slowest one, which also ensures bounded de-

lays. We evaluate the performance by plotting its relative error
‖xk−x

?‖
‖x0−x

?‖ against wall clock time. The optimal solution x
? can

either be computed directly if it admits a closed-form solution,

or be obtained using CVX [14, 15]. We also show average

working and waiting time of workers to demonstrate the effects

of the threshold of masters.

The decentralized sparse compressed sensing we tested

aims at reconstructing a sparse unknown vector x ∈ R
p

through nodal measurements bi = Hix+ ei, i = 1, . . . , N ,

where Hi ∈ R
ni×p is the sensing matrix of node i and ei rep-

resents a vector of i.i.d. Gaussian noise. When p >
∑N

i=1
ni,

there are more unknowns than measurements. The sparsity of
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Fig. 4: Average working and waiting time of workers of SD-

ADMM, SH-ADMM, AD-ADMM and AH-ADMM.

x suggests solving a L1-regularized least-squares problem

min
x

N∑

i=1

1

2
‖Hix− bi‖

2 + µ‖x‖1 (8)

where µ > 0 is the regularization parameter.

We consider a ring graph of 10 nodes, and set ni = 3
and p = 40 such that p >

∑N

i=1
ni. The entries of Hi are

generated from the standard Gaussian distribution N(0, 1),
and then normalized so that ‖Hi‖2 = 1. The unknown vec-

tor x is drawn from N(0, 1) with 10% nonzero entries, and

subsequently bi is generated. Since (8) admits no closed-form

solution, we solve it using CVX to obtain the optimal solution

x
?. We set γ = 0 and tune ρ to be nearly optimal.

Fig. 3 depicts the relative error against wall clock time.

When S = 2, AH-ADMM and AD-ADMM are almost equiva-

lent to their synchronous counterparts, while AD-ADMM with

S = 1 corresponds to the case that each node updates as soon

as it receives information from any neighbor, thus eliminating

waiting time. One can immediately make two observations:

a) asynchronous approaches converge at least as fast as, if not

faster, than their decentralized counterparts; and b) hybrid ap-

proaches always outperform their decentralized counterparts,

showcasing their promising potential.

Fig. 4 compares average working and waiting time of dif-

ferent approaches. Again, we notice that a) asynchronous

approaches reduce or even eliminate waiting time, thus improv-

ing efficiency; and b) hybrid approaches consume significantly

less working and waiting.

6. CONCLUSIONS

This paper presents an asynchronous distributed optimization

algorithm, capable of handling multiple masters, AH-ADMM,

which not only broadens the applicability of ADMM, but also

yields a technique that significantly accelerates the conver-

gence of decentralized ADMM without changing the underly-

ing topology. A convergence result is provided and numerical

experiments are performed to compare AH-ADMM against

decentralized approaches.
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