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ABSTRACT

The present paper deals with asynchronous decentralized opti-
mization over networks. Pertinent algorithms are either cen-
tralized relying on a specific topology, where a single master
connects all workers, or decentralized devoid of any master by
only exchanging information between single-hop neighbors.
The present work bridges the gap of existing approaches with
a novel hybrid framework that is capable of accommodating
multiple masters. Moreover, it enables considerable accelera-
tion of decentralized approaches without physically deploying
masters, thus making it possible to achieve a desirable tradeoff
between convergence and communication/computation com-
plexity by tuning the configuration. Numerical tests showcase
advantages over decentralized counterparts.

Index Terms— Asynchronous, decentralized optimiza-
tion, distributed optimization, topology

1. INTRODUCTION

Consider the following distributed optimization problem over
N networked computing nodes (henceforth called workers)
with node-specific cost functions and privately available data

N
m)jn Zfl(x) + h(x) €))
i=1

where x € RP is the global decision variable, f; denotes the
local cost function at node ¢ and h a (not necessarily smooth)
regularizer. The goal is to find the optimal solution by coopera-
tively solving the per-worker subproblems. This setting arises
frequently in estimation, learning and control tasks [1-4, 17].
Among various solvers, alternating direction method of multi-
plier (ADMM) has gained popularity for its decomposability
and flexibility [2,4]. Typically, ADMM-based solvers come
in two formats: i) centralized, where a single master node
is connected all workers [2]; and ii) decentralized, where no
master is present and workers talk to single-hop neighbors
only [1,5]. Until recently [6], there has been no principled ap-
proaches to dealing with multiple masters. However, [6] dealt
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with synchronous algorithms that require global coordination,
thus challenging their implementation.

Asynchronous algorithms may be more appealing in some
settings, especially for decentralized optimization, since they
do not need global coordination and consequently are more
efficient when workers differ significantly in computing speed
[11,12,16]. With prior art dealing with either centralized or
decentralized operations, the main contribution of this work to
develop an ADMM-based asynchronous decentralized solver
of (1) using multiple masters is well motivated.

Related work. From the plethora of distributed optimization
schemes, we will focus on ADMM-based ones, which can be
split in two categories: synchronous and asynchronous.

Synchronous distributed optimization has been studied ex-
tensively for decades; see e.g., [4]. These methods may be
centralized [2] or decentralized [1,5], depending on whether a
master (fusion center) is present or not. This setup of multiple
masters remains a largely uncharted territory. Progress was
made recently in [7] where a cluster of workers are handled
together, but no explicit means to accommodate multiple mas-
ters. A novel synchronous approach that is capable of handling
multiple masters was proposed in [6].

Similarly, asynchronous algorithms are either centralized

or decentralized. Centralized ones are popular, and are easier
to analyze and implement [8—11], but the single master opera-
tion faces single-point failure and bottleneck related challenges
that limit the overall system performance. Consequently, de-
centralized alternatives have been developed [11, 12]. But no
method is available to accommodate multiple masters except
for the asynchronous version of [13].
Contributions. We classify our contributions as follows: C1)
we develop AH-ADMM that is able to accommodate multiple
masters; C2) we show that AH-ADMM enables topology-
aware acceleration of decentralized algorithms without chang-
ing the underlying network; and C3) we establish convergence
of AH-ADMM for nonconvex functions.

The rest of the paper is organized as follows. Sec. 2
presents detailed derivation of AH-ADMM, Sec 3 deals with
topology-aware acceleration, Sec. 4 presents convergence anal-
ysis, Sec. 5 shows numerical tests and Sec. 6 concludes this

paper.
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2. ASYNCHRONOUS HYBRID ADMM

This section provides background about optimization with
multiple masters, followed by development of AH-ADMM.

2.1. Accommodating multiple masters

The presence of multiple masters makes communication
among workers much more complicated. Some workers may
be connected to masters and also other worker, thus neces-
sitating exchange of information to both. We refer to such
communication constraints as hybrid constraints.
Communication constraints can be effectively described by
graphs. The centralized case corresponds to a star graph, with
the master at the center and workers around. The decentralized
case can be described by a connected graph, whose nodes
corresponds to workers and edges represent communication
between neighbors. Hybrid constraints are best depicted by
hypergraphs. Each master is described by a hyperedge consist-
ing of all its connected workers. Fig. 1 is an example of hybrid
constraints with a master connected to workers 1, 2 and 3.

2.2. Problem formulation

A hypergraph is a tuple H := (V, ), where V = {1,...,N}
is the vertex set, and £ = {&;|€; C V} denotes the set of
hyperedges. Let N be the number of nodes, and M = €|
the number of (hyper)edges. A vertex 7 and an edge &£; are
said to be incident if ¢ € £;. A simple edge can be seen as an
hyperedge consisting of two nodes.

By creating copies x; at each node and assigning each
hyperedge &; an auxiliary variable z;, we can write hybrid
constraints uniformly as x; = z;, Vi € £;. Let T be the
number of constraints. Consider now vectors x € RV?, z €
RMP concatenating {x;}, {z;}, and also matrices Ac ]RTXN
B € RT*M whose ¢-th row Ay = 1, B,J =1 corresponds to
t-th constraint x; = z;, ¢ € £;. Upon defining A = A® I,
B=B® I,, where ® is the Kronecker product, problem (1)
can be formulated as

N M
min 3 fi(xi) + 3 hy(2)

s.toAx—Bz=0. (2)

where h; := h/M. Let C € RV*M be the signless incidence
matrix of the hypergraph, meaning C‘ij = 1 if node 7 and edge
7 are incident, and C’ij = 0 otherwise. Let D; denote the
degree of node ¢ (number of incident edges), E; the degree
of hyperedge j (number of incident nodes), and dlagonal ma-
trix D € RV*N and E € RM*M collecting {D;}Y, and
{E; }7 1» respectively. With C := =C® I,,D := =D® I,
one can show that ATA =D, B'B=Eand ATB = C
(see [6] for the proof).

Example In Fig. 1, we have N = 4, M = 2, and T' = 5.
Specifically, the constraints are x; = 21,%1 = 1,2, 3; £3 = 29,
x4 = 29. These are expressible in compact form as Ax = Bz,
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Fig. 1: An example of hybrid constraints described by a hy-
pergraph. (a) is the underlying graph, and (b) is a hypergraph
where the shaded ellipsoid denotes an hyperedge.

where A and B are given by

100 0 10
0100 10
A=10 01 0/, B=]|10 (3)
00 1 0 0 1
000 1 0 1

2.3. Asynchronous Hybrid ADMM

The setup of AH-ADMM is similar to that of synchronous
hybrid ADMM [6], except that the former has to cope with
asynchrony. The high-level description of AH-ADMM is as
follows. i) Each worker solves its subproblem individually and
communicates the solution to incident master(s), then starts
waiting until responses from its masters arrive; ii) each mas-
ter updates its solution whenever updates from a preselected
number of workers have been received. Received values can
be outdated; and iii) after updating, each master sends results
to all received workers it received updates from, in order for
them to update their associated dual variables.

To describe the process mathematically, we first introduce
some definitions. Let k denote a virtual iteration counter that
is increased by 1 when any master finishes its update. By
definition, at iteration k, there is exactly one master updat-
ing, denoted by j.. Let AF be the active set at iteration F,
containing received workers of master jy.

The updates of AH-ADMM are obtained by optimizing the
augmented Lagrangian with respect to corresponding variables
(see [6] for details). However, due to asynchrony, x Hl may
depend on outdated values z; as incident masters could have
updated again while worker ¢ is computing. On the other

hand, the update of z;?:l always has access to latest values of
{xf“,i S Ak}, thanks to the updating order, and likewise
for AF*1 All other values not involved remain the same.
Equivalently, updates of active workers i € A* can be seen as
occuring right before the update of master ji. Specifically, the
updates are

T,k

xF = argmin f;(x;) + x; u}
X

p . L\
+£ (Di||xi||z —ox] sz>,z e A" (4a)
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Algorithm 1: AH-ADMM: worker side

Input: p, A°, z°

while stop criterion not satisfied do

for worker i = 1,2,..., N do

update x; by (4a)

while not enough masters are received do
| wait

update A; by (4c)

send {x;, A;} to incident masters and
neighboring workers

Algorithm 2: AH-ADMM: master side
0

Input: p, \°,x°, z
while stop criterion not satisfied do
for masterj = 1,2,..., M do
while not enough workers are received do
| wait
update z; by (4b)
send z; to all received workers

k : 2l
zjlj'l = argmin hj, (z;,) — ZJTkvfk + §HZM - z?}CH2
Zj,
p T k
+ 9 (E]'k”ijHQ o 2ij Z Xi+1) (4b)
i€ Ak

AT = A + p(AxH = Bzl ¢ =T(i, ) (4c)

where 7 (i,7) = t describes the mapping of worker ¢
and master j to the associated multiplier A;, while u :=
[ul,...,uy]" =ATxandv := [v],...,v),]" = BTA
are change of variables. We include a proximal term in (4b)
to guarantee the convergence of AH-ADMM, see Theorem 1.
The AH-ADMM algorithm is better understood by considering
masters and workers separately, see Algorithms 1 and 2.

3. TOPOLOGY-AWARE ACCELERATION

Hybrid ADMM generally converges faster than its decentral-
ized counterparts [6], which is not surprising due to the pres-
ence of multiple masters. When no masters are available,
AH-ADMM reduces to AD-ADMM, no longer providing any
performance gain. Therefore, we are more interested in the
question “Can we benefit from AH-ADMM even if no mas-
ter exists?” The answer is yes. The idea is to create virtual
masters inside workers and employ AH-ADMM afterwards.
This technique transforms a decentralized optimization prob-
lem to one that can be tackled using hybrid ADMM without
physically adding nodes or edges.

The first step to apply this technique is to select workers
as hosts that serves as virtual masters inside. Subsequently,
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Fig. 2: Tllustration of topology-aware acceleration. The under-
lying graph is (a), and node 2 is selected as host to serve as
virtual master, depicted by the square. The shaded ellipsoid in
(b) plays the same role as node 2 in (a).

we connect each virtual master to all neighbors of its host
and the host itself, which can be done using all edges of the
host. Repeating this procedure creates multiple masters, with
the help of whom it becomes possible to employ AH-ADMM
subsequently; see also Fig. 2 for an example. Notice that in the
process, no physical nodes or edges have been deployed since
virtual masters are just logical entities. However, host nodal
updates increase complexity. AH-ADMM is also flexible to
allow the deployment of any number of virtual masters, a
balanced means of boosting performance.

4. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of AH-ADMM.
Let 7 be the maximum delay, which means that every worker
performs update at least once during 7 iterations; and F'* the
optimal objective value of (2). Inspired by [9], the following
theorem establishes the convergence of AH-ADMM. The
analysis in [9] assumes a single master. It is nontrivial to
extend the reasoning in [9] to multiple masters, because the
dual variables in A are coupled.

Theorem 1. Suppose that the maximum delay is finite T < 00,
fi is twice differentiable and its gradient V f; is Lipschitz with
constant L, while h is proper and convex. Then sequences
{xN {z;c ;Vil and {\FYT_, converge to some limit points
satisfying the KKT condition of problem (2), provided that

0< Ly(x°2° A% — F* < o0 (5)
Dmin L Dmin L 2 8L2Dmin
. + L+ /(Dyin +L)? + ©
2-Dmin
SmT_]-22_ Emin
v ( )2/) p 7

where S,, = maxy, | A*

s Dyin = min; Dy, E,yjy = min; Ej.

Theorem 1 shows that the solution given by AH-ADMM
is guaranteed to converge to some KKT points of (2), as long
as p and ~y are large enough. Note that f; does not need to
be convex. Different from [11, 12], Theorem 1 does not need
assumptions of random activation of workers, thus being able
to cope also with deterministic settings.

Theorem 1 implies that p and  should be sufficiently large
to guarantee the convergence of AH-ADMM. Speicifically, (7)
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Fig. 3: Relative error of SD-ADMM (SD), SH-ADMM (SH),
AD-ADMM (AD) and AH-ADMM (AH) with different thresh-
old (S) vs. wall clock time.

suggests that a large ~y is needed when the maximum delay is
large. Also, (6) implies that p can be smaller when the cost
functions are smoother.

5. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments to test
the acceleration merits of AH-ADMM, and compare with
asynchronous decentralized ADMM (AD-ADMM) [11, 12],
synchronous decentralized ADMM (SD-ADMM) [1], and syn-
chronous hybrid ADMM [6].

Different from existing works [11,12,16], our method does
not assume every worker can activate each iteration. For this
reason, it can deal with more general settings. For example,
each worker has a positive activation probability in [11, 16] at
each iteration, while one edge is randomly selected each time
in [12]. Both assumptions exclude the case of deterministic
activation patterns, as verified in the following experiment.

In our experiment, the speed of each worker is determin-
istic and initialized randomly by drawing from a uniform dis-
tribution U[1, 10], so that the fastest worker can be 10 times
faster than the slowest one, which also ensures bounded de-
lays. We evaluate the performance by plotting its relative error
H’;s:;‘: ” against wall clock time. The optimal solution x* can
either be computed directly if it admits a closed-form solution,
or be obtained using CVX [14, 15]. We also show average
working and waiting time of workers to demonstrate the effects
of the threshold of masters.

The decentralized sparse compressed sensing we tested
aims at reconstructing a sparse unknown vector x € RP
through nodal measurements b, = H;x+e;, i =1,..., N,
where H; € R™*P is the sensing matrix of node ¢ and e; rep-
resents a vector of i.i.d. Gaussian noise. When p > Zil N,
there are more unknowns than measurements. The sparsity of
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Fig. 4: Average working and waiting time of workers of SD-
ADMM, SH-ADMM, AD-ADMM and AH-ADMM.

x suggests solving a L;-regularized least-squares problem
1
min gillHiX—bilﬁ + plixll (3)
where 1 > 0 is the regularization parameter.

We consider a ring graph of 10 nodes, and set n; = 3
and p = 40 such that p > >~ | n;. The entries of H; are
generated from the standard Gaussian distribution N (0, 1),
and then normalized so that |H;|| = 1. The unknown vec-
tor x is drawn from N (0, 1) with 10% nonzero entries, and
subsequently b, is generated. Since (8) admits no closed-form
solution, we solve it using CVX to obtain the optimal solution
x*. We set v = 0 and tune p to be nearly optimal.

Fig. 3 depicts the relative error against wall clock time.
When S = 2, AH-ADMM and AD-ADMM are almost equiva-
lent to their synchronous counterparts, while AD-ADMM with
S =1 corresponds to the case that each node updates as soon
as it receives information from any neighbor, thus eliminating
waiting time. One can immediately make two observations:
a) asynchronous approaches converge at least as fast as, if not
faster, than their decentralized counterparts; and b) hybrid ap-
proaches always outperform their decentralized counterparts,
showcasing their promising potential.

Fig. 4 compares average working and waiting time of dif-
ferent approaches. Again, we notice that a) asynchronous
approaches reduce or even eliminate waiting time, thus improv-
ing efficiency; and b) hybrid approaches consume significantly
less working and waiting.

6. CONCLUSIONS

This paper presents an asynchronous distributed optimization
algorithm, capable of handling multiple masters, AH-ADMM,
which not only broadens the applicability of ADMM, but also
yields a technique that significantly accelerates the conver-
gence of decentralized ADMM without changing the underly-
ing topology. A convergence result is provided and numerical
experiments are performed to compare AH-ADMM against
decentralized approaches.
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