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Abstract—Graphs are pervasive in various applications cap-
turing the complex behavior observed in biological, financial,
and social networks, to name a few. Two major learning tasks
over graphs are topology identification and inference of signals
evolving over graphs. Existing approaches typically aim at iden-
tifying the topology when signals on all nodes are observed, or,
recovering graph signals over networks with known topologies.
In practice however, signal or graph perturbations can be present
in both tasks, due to model mismatch, outliers, outages or
adversaries. To cope with these perturbations, this work intro-
duces regularized total least-squares (TLS) based approaches
and corresponding alternating minimization algorithms with
convergence guarantees. Tests on simulated data corroborate the
effectiveness of the novel TLS-based approaches.

Index Terms— Graph and signal perturbations, total least-
squares, structural equation models, topology identification, graph
signal reconstruction.

I. INTRODUCTION

Graphs are widely adopted for analyzing interactions among

nodes in e.g. biological or financial systems, where data-driven

networks are constructed to capture (un)directed dependencies.

They are also useful for modeling and understanding proper-

ties of physical networks. For example, analyzing vehicular,

power, or communication networks is crucial for resource

allocation tasks. However, perturbations on links or vertices

may be present in both data-driven and physical networks.

In data-driven networks for instance, links of the inferred

topology may be uncertain due to e.g., model mismatch. While

in physical networks, topologies may be perturbed due to e.g.,

links outages, and the signals observed over nodes may deviate

from their real values because of outliers or node outages.

Perturbation analysis over graphs has been widely studied

recently. Error propagation analysis has been carried out

with respect to network characteristics, such as subgraphs

counts [3], [8]. Other works treat perturbations through prob-

abilistic or uncertain graphs, in the context of clustering [15],

graph filtering [13], or consensus [23]. Topology perturbations

have been also considered for robust resource allocation and

graph signal inference over uncertain networks [6], [7]; see

further [10] for tracking graph signals over dynamic undirected

networks, and [6], [7] for using small perturbation analysis of

the Laplacian matrix [22].

Structural equation models (SEMs) have well-documented

merits for network topology inference thanks to their sim-

plicity and ability to capture directed dependencies among
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nodes [2], [5], [11], [14]. Prior works on SEMs mostly assume

that signals over all nodes are observed. Leveraging piecewise

stationarity, SEM-based topology inference was pursued in

[18] when just (partial) statistics of nodal measurements are

given, while a joint inference algorithm was developed in [12]

to identify the topology as well as interpolating graph signals

when only partial observations of the nodal signals are avail-

able. However, neither [18] nor [12] account for perturbations

on the observations.

In this work, signal and graph perturbations are considered

for topology identification or graph signal inference tasks car-

ried using total least-squares (TLS). TLS is a widely-used tool

for analyzing perturbed linear systems that is also known under

the term ‘error-in-variables’ in statistical learning [19]. TLS

is a generalization of least-squares (LS) for fully-perturbed

linear models that allow error mismatch (a.k.a. noise) to be

present in both the input and the output matrices [21]. TLS and

regularized TLS emerge in several application fields, including

system identification, information retrieval, and reconstruc-

tion of medical images [17]. Building upon TLS, weighted

TLS [1], structured TLS [9], and sparse TLS [24] have been

introduced to incorporate different prior information. Based on

these prior works, two pertinent graph learning tasks with well-

appreciated applications will be investigated: Identifying the

topology from perturbed nodal measurements; and, inferring

nodal signals over perturbed graphs based on TLS and SEMs.

In other words, possible perturbations are accounted for, either

in the nodal measurements, or, in the graph structure for SEMs.

Notation. Bold lower (upper) case letters denote column

vector, e.g., a (matrix A), while operators (·)�, and vec(·)
stand for transposition, and column-wise matrix vectorization,

respectively. A K×K identity matrix is denoted by IK , and ei
stands for the i-th canonical vector; while diag(a) represents

a diagonal matrix with entries of a on its diagonal. Finally,

the �1, �2, and Frobenius norms will be denoted by ‖·‖1, ‖·‖2,

and ‖·‖F , respectively.

II. PRELIMINARIES

In this section, we will briefly introduce SEMs and TLS,

along with structured and weighted TLS variants.

A. Structural Equation Models

Consider an N -node directed network with unknown ad-

jacency matrix A ∈ R
N×N , and let yit denote the t-th
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measurement at node i. SEMs postulate that yit depends on

its single-hop neighbors, and an exogenous input xit; that is,

yit =
∑

j �=i

aijyjt + biixit, t = 1, . . . , T (1)

where aij := [A]ij , and aij �= 0 signifies that a directed

edge from j to i is present. Concatenating nodal measurements

into yt:=[y1t, . . . , yNt]
�, and xt:=[x1t, . . . , xNt]

� per slot t,
the matrix-vector version of (1) can be compactly written as

yt = Ayt + Bxt, t = 1 . . . T , where [A]ii = 0 and B :=
diag(b11, . . . , bNN ). Collecting observations over T instants in

a matrix Y := [y1, . . . ,yT ], yields the noiseless matrix SEM

Y = AY +BX . (2)

With Y and X available, prior works on SEMs develop

algorithms to obtain B and A. To focus on modeling and

analyzing perturbations on A and Y, we will consider here

that B has been found from historical data.

In the presence of noise, prior works on SEMs simply

consider perturbations as additive observation noise; that is,

Y = AY + BX + V, where V ∈ R
N×T denotes the error

matrix. Given measurements Y, X (and here B too), the

adjacency matrix A can be estimated via LS or regularized

LS [4], [5]. On the other hand, given A, BX and a subset of

entries of Y, it is also possible to interpolate the unobserved

nodal signals using LS-based methods [12]. However, such a

noisy model does not capture possible perturbations in A, and

as will be shown later, LS is not sufficient to account for the

error of SEMs, which is by its nature, a self-dictionary model.

This motivates our adoption of TLS to cope with graph signal

and topology perturbations present in SEMs.

B. Weighted and structured TLS

Consider the general under-determined linear system of

equations Φ = HΘ + V, where Φ ∈ R
M×T denotes

the output matrix with M < T , H ∈ R
M×N the input

(or regression) matrix, Θ ∈ R
N×M the unknown matrix,

and V ∈ R
M×T the additive noise matrix. Different from

classical LS where one considers output noise only, TLS treats

symmetrically input and output in the sense that both H and

Φ can have errors that arise due to model mismatch, noise, and

outliers that can be present in various applications. Accounting

for such errors, the linear model becomes Φ = (H+P )Θ+V,

where P denotes the input noise matrix.

Based on the latter, TLS solves the following problem

min
Θ,P

‖[P ,V]‖2F (3)

s. to Φ = (H + P )Θ+V.

Whenever possible, exploiting the input and output structure,

as well as prior information available about noise statistics, is

expected to yield improved performance of TLS estimates. In

our context, structure refers to the following [17], [24].

Definition 1. Given a parameter vector ω ∈ R
nω , the

M × (N + T ) data matrix [H Φ](ω) has a structure SSS (ω)
characterized by ω, if and only if there is a mapping such that

ω ∈ R
nω → [H Φ](ω) := SSS (ω) ∈ R

M×(N+T ).

We can take advantage of the structure when nω � M(N+T ),
because then ω provides a parsimonious representation of the

data matrix. Examples of structured matrices include Toeplitz

and Hankel ones that are present in system identification,

deconvolution, and linear prediction, or Vandermonde and cir-

culant matrices that show up in e.g., spatio-temporal harmonic

retrieval problems [17]. Note that Definition 1 reduces to the

trivial case ω := vec([H Φ]) with dimension M(N + T ),
which corresponds to the unstructured case. Consider now

introducing the parameter vector ω and the noise vector

ν ∈ R
nω , such that SSS (ω+ ν) := [H +P Φ+V](ω+ ν).

The Frobenious norm in (3) becomes the �2 norm of ν.

The weighted TLS is obtained if prior knowledge on the

errors is incorporated by weighting the norm in (3) through

matrix W. Jointly, the structured and weighted (SW) version

of the original TLS cost ‖P V ‖2F is expressed as ν�
Wν,

where W � 0 ∈ R
nω×nω . Clearly, with W = I, the SWTLS

cost reduces to a structured-only form.

III. TOPOLOGY ID WITH SIGNAL PERTURBATIONS.

In both physical and data-driven networks, nodal signals

may be perturbed due to outliers or defects in the measuring

process. In this case, consider the topology identification (ID)

problem with noisy nodal observations Z = Y+E available.

Substituting Y = Z − E into (2), yields the “measurement-

perturbed” SEM as

Z = A(Z−E) +BX+E (4)

where a common error is present both in the output (O) and

input (I) matrices. Equation (3) shows how the TLS-based

approach deals with I/O errors.

Because most real-world networks are not densely con-

nected, it is reasonable to consider that the adjacency matrix

A is sparse, which is the case with e.g., social, transportation,

and biological networks. Accounting for the latter through a

sparsity-promoting regularization term, (4) boils down to the

regularized TLS-based approach to SEM (TLS-SEM) given by

{Â, Ê} =argmin
A,E

‖[E,E]‖2F + λ ‖A‖1 (5a)

s.to Z = A(Z−E) +BX+E (5b)

[A]ii = 0, i = 1, . . . , N (5c)

where λ is a non-negative regularization parameter, and con-

straint (5c) enforces the absence of self-loops in A.

Substituting constraint (5b) in one of the errors in (5a), leads

to the equivalent formulation

{Â, Ê} =argmin
A,E

‖Z−A(Z−E)−BX‖2F (6)

+ ‖E‖2F +
λ

2
‖A‖1

s.to [A]ii = 0, i = 1, . . . , N.
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Problem in (6) is per-block convex wrt each block variable.

Given Â[k], we estimate the error in iteration k + 1 as

Ê[k+1] = argmin
E

∥

∥

∥
(Z− Â[k]Z) + Â[k]E−BX

∥

∥

∥

2

F
+‖E‖2F

(7)

which admits a closed-form solution

Ê[k+1] = (Â�[k]Â[k]+IN )−1
Â

�[k](Â[k]Z+BX−Z) (8)

Likewise, given Ê[k + 1], the adjacency matrix is updated as

Â[k+1] = argmin
A

∥

∥

∥
(Z−A(Z− Ê[k + 1])−BX

∥

∥

∥

2

F
+
λ

2
‖A‖1

(9)

As the objective in (9) is nonsmooth but strongly convex, it

admits a globally optimal solution. A proximal gradient itera-

tion can be employed to cope with the non-smooth regularizer.

The derivation of the algorithm is omitted due to the lack

of space, but can be deduced from [2]. Notice that problem

(6) is still per-block convex when B is also a variable to

be estimated [2]. The alternating minimization method under

regularity conditions is guaranteed to converge at least to a

stationary point, as asserted in the following proposition.

Proposition 1. The iterates {Ê[k], Â[k]} resulting from the

minimization of (7) and (9) converge monotonically at least

to a stationary point of problem (6).

Proof. See [20].

IV. SIGNAL INFERENCE WITH TOPOLOGY PERTURBATIONS

In several applications such as communications and power

networks, edges may drop due to link failures. Likewise for

data-driven networks, errors in the measurement collection

process, and model mismatch effects suggest modeling links

as being uncertain. In this context, the goal of this section

is graph signal reconstruction, when only a subset of nodal

measurements denoted by S is given, along with the perturbed

graph topology. The observation model can then be written as

ψt = DSyt + εt for t = 1, . . . , T , where ψt ∈ R
M , and

M denotes the cardinality of S . Let DS ∈ R
M×N denote

the selection matrix formed to have rows (with indices in the

set S) of the N × N identity matrix, and εt ∈ R
M is the

observation error vector at slot t. Stacking T observations to

form Ψ := [ψ1, . . . ,ψT ], and likewise for E := [ε1, . . . , εT ],
the matrix model boils down to

Ψ = DSY + E . (10)

Let now A0 denote the known and possibly perturbed nominal

adjacency matrix, ∆ ∈ R
N×N the topology perturbation

matrix. The linear SEM in (2) then reduces to

Y = (A0 −∆)Y +BX (11)

where A0 −∆ is the unknown adjacency matrix.

With BX acquired as mentioned in the previous section,

and bearing in mind that TLS can account for both input and

output errors (here E and ∆), we formulate our regularized

TLS-SEM task as (cf. (10) and (11))

{∆̂, Ê , Ŷ} =arg min
∆,E,Y

λ1||[∆||1 + λ2||E ]||
2
F (12)

+ ||Y − (A0 −∆)Y −BX||2F
s. to Ψ = DSY + E (13)

[∆]ii = 0, ∀i (14)

where the �1-norm promotes sparsity of the perturbed links,

while the fitting term takes into account the perturbed SEM

that allows us to reconstruct the graph signal over the entire

network. Upon substituting the constraint (13) into the cost

function, we arrive at

{∆̂, Ŷ} =argmin
∆,Y

λ1‖∆‖1 + λ2‖Ψ−DSY‖2F (15)

+ ‖Y − (A0 −∆)Y −BX‖2F
s.to [∆]ii = 0, ∀i .

Problem (15) is per-block convex, and thus it can be solved

iteratively via alternating minimization with guaranteed con-

vergence, to at least a stationary point; see [20] and Prop. 1.

A. Structured and weighted TLS for topological perturbations

In this subsection, we will leverage the structure of the

nominal adjacency matrix along with prior information on the

errors to formulate a structured and weighted TLS problem (cf.

Sec. II-B). If the nominal network has L links, the nominal

adjacency matrix has the following structure (cf. Definition 1)

A0 = SSS (ω) :=

L
∑

l=1

ωlS
A

l (16)

where S
A

l := il · f
�
l with il denoting the N × 1 vector having

all-zero entries except one entry that equals 1 at the position

of the source node of link l, and fl the N×1 vector of all-zero

entries except one that equals 1 at the position of the sink node

of link l. Let now ω := [ω1, . . . ωL]
� be the vector collecting

edge weights characterizing the structure SSS (ω) of A0. Such

a structure accounts for the (non)zero entries of the adjacency

matrix, and gives rise to a form having reduced the number

of unknowns from N2 to L.

In certain application domains, additional information can

be given on the failure probabilities πl for l = 1, . . . , L,

while the noise variance σ2
i can be also known across nodes

i = 1, . . . , N . Such prior information can be available after

observing a network over time, and collecting the occurrence

of failures, along with statistics of the measurement errors.

First, we will recast here the TLS formulation to account

for the structure of the nominal adjacency matrix. Based on

Sec. II-B and (16), the parameter vector of A0 is ω, while

that for the error is νA := [νA1 , . . . , νAL ]� with entries being

nonzero when a failure or an edge weight alteration occurs.

Likewise for the SWTLS cost in Section II-B, the first two

terms in (12) become the weighted �1-norm of the topology

error vector ‖WAνA‖1, and the weighted Frobenious norm

of the observation error ‖E‖2
WΨ

, where WA and WΨ are
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respectively the weight matrices of the topology and the

measurement errors.

Having introduced the structure and the weights, we will

now formulate the unconstrained regularized structured and

weighted (SW) TLS problem based on SEM, as follows

min
Y,νA,E

λ1

∥

∥WAν
A
∥

∥

1
+ λ2 ‖Ψ−DSY‖2

WΨ
(17)

+

∥

∥

∥

∥

∥

Y −
L
∑

l=1

(ωl + νAl )SA

l Y −BX

∥

∥

∥

∥

∥

2

F

where matrix WA := [diag(π1 . . . πL)]
−1, and WΨ :=

[diag(σ2
1 . . . σ

2
M )]−1. Problem (17) is per-block convex, and

can be solved again via alternating minimization. Given ν̂A[k]
at iteration k, the graph signal at k + 1 is reconstructed as

Ŷ[k + 1] = argmin
Y

λ2 ‖Ψ−DSY‖2
WΨ

(18)

+

∥

∥

∥

∥

∥

Y −
L
∑

l=1

(ωl − ν̂Al [k])SA

l Y −BX

∥

∥

∥

∥

∥

2

F

.

This sub-problem is also convex, and admits the closed-form

update

Ŷ[k + 1] =(C�[k]C[k] + λ2D
�
SWΨDS)

−1(C�[k]BX

+ λ2D
�
SWΨΨ) (19)

where C[k] := (I−
∑L

l=1(ωl + ν̂Al [k])SA

l ).

Given Ŷ[k + 1], the estimate ν̂A[k + 1] is obtained as

ν̂A[k + 1] = argmin
νA

λ1 ‖WAνA‖1 (20)

+

∥

∥

∥

∥

∥

Ŷ[k + 1]−
L
∑

l=1

(ωl − νAl )SA

l Ŷ[k + 1]−BX

∥

∥

∥

∥

∥

2

F

.

Sub-problem (20) is again convex, but not differentiable. For

this reason, we employ an iterative proximal gradient solver

with provably guaranteed convergence to at least a stationary

point, as asserted by [20] and Prop. 1.

V. NUMERICAL TESTS

Topology identification with signal perturbations. Here, we

test the performance of the iterative solver of (6), and compare

it with the conventional LS method based on SEM [2], [5].

The goal is to identify A when the signal measurements are

perturbed. A Kronecker graph with N = 64 is generated as

in [16]. With T = 120, the entries of X are drawn i.i.d. from

the uniform distribution U [0, 1.5], and those of E from the

Gaussian N (0, σ2
E). Matrices Y and Z are then constructed

according to (2) and (4), while λ is selected via cross-

validation. Figure 1 depicts the performance of LS-SEM and

TLS-SEM in terms of mean-square error (MSE), defined as

MSE :=
∑

ij(âij −aij)
2/N2. In this figure, the two methods

are compared as a function of σE . We observe that for small

values of σE , the methods perform comparably, but when σE

increases the TLS-SEM outperforms the SEM approach, until

the point when the error becomes too large. Figure 2 compares

0 0.1 0.2 0.3 0.4 0.5 0.6

E

0.005
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0.015

0.02
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0.04

M
S

E

LS-SEM

TLS-SEM

Figure 1: MSE versus Error standard deviation.
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T
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0.015
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M

S
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LS-SEM

TLS-SEM

Figure 2: MSE versus number of observations.

LS-SEM with TLS-SEM in terms of MSE as a function of

the number of observations T , with the standard deviation of

errors fixed to σE = 0.2.

These numerical results suggest that TLS-SEM outperforms

LS-SEM even when the number of observations is small.

Signal inference with topology perturbations. We further

tested the performance of the algorithm in Section IV, and

compared it with the conventional LS-SEM. Here, the topol-

ogy is perturbed and the goal is to identify Y from a

subset of observations. A Kronecker graph with N = 27
is generated as before. With T = 50 and B = I, the

entries of X and E are drawn i.i.d. from uniform U [0, 3],
and Gaussian N (0, σ2

nij
) distributions, respectively. Further-

more, we used Bernoulli(Pl) × [A] to model the pertur-

bation ∆, meaning that perturbations occur when one or

more weighted links fail. In particular, P1 = P2 = 0.7,

and Pl ∈ [0.001, 0.02], l = 3, . . . , L. Matrices Y and Ψ

are then constructed according to (11) and (10), while λ1

and λ2 are selected via cross validation. Figure 3 depicts
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Figure 3: NMSE versus number of samples

the performance of LS-SEM, TLS-SEM and SWTLS-SEM

in terms of normalized mean-square error (NMSE), with

NMSE :=
∑

ij([D̄S Ŷ ]ij − [D̄SY ]ij)
2/

∑

ij [D̄SY ]2ij , where

D̄S denotes the complement of the selection matrix. Figure 3

compares three methods, namely the LS-SEM, TLS-SEM and

SWTLS-SEM, as a function of the number of samples M .

As expected intuitively, estimation performance improves

considerably as extra prior information is accounted for.

VI. CONCLUSIONS AND RESEARCH OUTLOOK

Two major learning tasks over graphs were considered in

this paper in the presence of perturbations. With model mis-

match, error-prone laboratory measurements and outages of

physical networks, the need arises to account for perturbations

in the signal reconstruction and topology inference tasks that

in this paper were addressed using approaches based on total

least-squares and structural equation models (TLS-SEMs).

Structured and weighted (SW) variants of TLS-SEMs leverage

prior information to improve performance. Numerical tests

on simulated data demonstrated the efficacy of the proposed

algorithms.

In addition to thorough experimentation and comparisons

with real data sets, future research directions include dis-

tributed TLS-SEM approaches to accommodate large-scale

networks; more general SEM models to cope with data exhibit-

ing nonlinear dependencies and/or dynamic behaviors; and

algorithms to learn how to propagate labels in the presence

of perturbations.
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