Signal and Graph Perturbations via Total Least-Squares

Elena Ceci®, Yanning Shen?, Georgios B. Giannakis?, Sergio Barbarossa

1

!Sapienza University of Rome, DIET, Via Eudossiana 18, 00184, Rome, Italy
2Dept. of ECE and DTC, University of Minnesota, Minneapolis, USA
Emails: elena.ceci@uniromal.it, shenx513 @umn.edu, georgios@umn.edu, sergio.barbarossa@uniromal.it

Abstract—Graphs are pervasive in various applications cap-
turing the complex behavior observed in biological, financial,
and social networks, to name a few. Two major learning tasks
over graphs are topology identification and inference of signals
evolving over graphs. Existing approaches typically aim at iden-
tifying the topology when signals on all nodes are observed, or,
recovering graph signals over networks with known topologies.
In practice however, signal or graph perturbations can be present
in both tasks, due to model mismatch, outliers, outages or
adversaries. To cope with these perturbations, this work intro-
duces regularized total least-squares (TLS) based approaches
and corresponding alternating minimization algorithms with
convergence guarantees. Tests on simulated data corroborate the
effectiveness of the novel TLS-based approaches.

Index Terms— Graph and signal perturbations, total least-
squares, structural equation models, topology identification, graph
signal reconstruction.

[. INTRODUCTION

Graphs are widely adopted for analyzing interactions among
nodes in e.g. biological or financial systems, where data-driven
networks are constructed to capture (un)directed dependencies.
They are also useful for modeling and understanding proper-
ties of physical networks. For example, analyzing vehicular,
power, or communication networks is crucial for resource
allocation tasks. However, perturbations on links or vertices
may be present in both data-driven and physical networks.
In data-driven networks for instance, links of the inferred
topology may be uncertain due to e.g., model mismatch. While
in physical networks, topologies may be perturbed due to e.g.,
links outages, and the signals observed over nodes may deviate
from their real values because of outliers or node outages.

Perturbation analysis over graphs has been widely studied
recently. Error propagation analysis has been carried out
with respect to network characteristics, such as subgraphs
counts [3], [8]. Other works treat perturbations through prob-
abilistic or uncertain graphs, in the context of clustering [15],
graph filtering [13], or consensus [23]. Topology perturbations
have been also considered for robust resource allocation and
graph signal inference over uncertain networks [6], [7]; see
further [10] for tracking graph signals over dynamic undirected
networks, and [6], [7] for using small perturbation analysis of
the Laplacian matrix [22].

Structural equation models (SEMs) have well-documented
merits for network topology inference thanks to their sim-
plicity and ability to capture directed dependencies among
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nodes [2], [5], [11], [14]. Prior works on SEMs mostly assume
that signals over all nodes are observed. Leveraging piecewise
stationarity, SEM-based topology inference was pursued in
[18] when just (partial) statistics of nodal measurements are
given, while a joint inference algorithm was developed in [12]
to identify the topology as well as interpolating graph signals
when only partial observations of the nodal signals are avail-
able. However, neither [18] nor [12] account for perturbations
on the observations.

In this work, signal and graph perturbations are considered
for topology identification or graph signal inference tasks car-
ried using total least-squares (TLS). TLS is a widely-used tool
for analyzing perturbed linear systems that is also known under
the term ‘error-in-variables’ in statistical learning [19]. TLS
is a generalization of least-squares (LS) for fully-perturbed
linear models that allow error mismatch (a.k.a. noise) to be
present in both the input and the output matrices [21]. TLS and
regularized TLS emerge in several application fields, including
system identification, information retrieval, and reconstruc-
tion of medical images [17]. Building upon TLS, weighted
TLS [1], structured TLS [9], and sparse TLS [24] have been
introduced to incorporate different prior information. Based on
these prior works, two pertinent graph learning tasks with well-
appreciated applications will be investigated: Identifying the
topology from perturbed nodal measurements; and, inferring
nodal signals over perturbed graphs based on TLS and SEMs.
In other words, possible perturbations are accounted for, either
in the nodal measurements, or, in the graph structure for SEMs.
Notation. Bold lower (upper) case letters denote column
vector, e.g., a (matrix A), while operators (-)T, and vec(-)
stand for transposition, and column-wise matrix vectorization,
respectively. A K x K identity matrix is denoted by I, and e;
stands for the i-th canonical vector; while diag(a) represents
a diagonal matrix with entries of a on its diagonal. Finally,
the /1, {2, and Frobenius norms will be denoted by |||, |-l
and |[|-|| -, respectively.

II. PRELIMINARIES

In this section, we will briefly introduce SEMs and TLS,
along with structured and weighted TLS variants.

A. Structural Equation Models

Consider an N-node directed network with unknown ad-
jacency matrix A € RN*N_ and let y;; denote the ¢-th
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measurement at node ¢. SEMs postulate that y;; depends on
its single-hop neighbors, and an exogenous input z;;; that is,

Yit = Z aijYje + biiTi,
J#i

where a;; = [Al;;, and a;; # O signifies that a directed
edge from j to ¢ is present. Concatenating nodal measurements
into y,:=[y1¢, .-, yne) |, and Ty =14, ..., 2] | per slot t,
the matrix-vector version of (1) can be compactly written as
y, = Ay, + Bxy, t = 1...T, where [A];; = 0 and B :=
diag(b11,...,bnn). Collecting observations over 7" instants in
amatrix Y := [yq,...,yp], yields the noiseless matrix SEM

Y = AY + BX. Q)

t=1,...,T )

With Y and X available, prior works on SEMs develop
algorithms to obtain B and A. To focus on modeling and
analyzing perturbations on A and Y, we will consider here
that B has been found from historical data.

In the presence of noise, prior works on SEMs simply
consider perturbations as additive observation noise; that is,
Y = AY + BX + V, where V € R¥*T denotes the error
matrix. Given measurements Y, X (and here B too), the
adjacency matrix A can be estimated via LS or regularized
LS [4], [S]. On the other hand, given A, BX and a subset of
entries of Y, it is also possible to interpolate the unobserved
nodal signals using LS-based methods [12]. However, such a
noisy model does not capture possible perturbations in A, and
as will be shown later, LS is not sufficient to account for the
error of SEMs, which is by its nature, a self-dictionary model.
This motivates our adoption of TLS to cope with graph signal
and topology perturbations present in SEMs.

B. Weighted and structured TLS

Consider the general under-determined linear system of
equations ® = H® + V, where & ¢ RM*7T denotes
the output matrix with M < T, H € RM*N the input
(or regression) matrix, ® € RN*M the unknown matrix,
and V € RMXT the additive noise matrix. Different from
classical LS where one considers output noise only, TLS treats
symmetrically input and output in the sense that both H and
@ can have errors that arise due to model mismatch, noise, and
outliers that can be present in various applications. Accounting
for such errors, the linear model becomes ® = (H+P)©+V,
where P denotes the input noise matrix.

Based on the latter, TLS solves the following problem

. 2
win [P, V]| @

s. to ®=(H+P)O+V.

Whenever possible, exploiting the input and output structure,
as well as prior information available about noise statistics, is
expected to yield improved performance of TLS estimates. In
our context, structure refers to the following [17], [24].

Definition 1. Given a parameter vector w € R"™, the
M x (N +T) data matrix [H ®](w) has a structure % (w)
characterized by w, if and only if there is a mapping such that

weR™ = [H ®)(w) =S (w) € RMXIN+T),

We can take advantage of the structure when n,, < M (N+T),
because then w provides a parsimonious representation of the
data matrix. Examples of structured matrices include Toeplitz
and Hankel ones that are present in system identification,
deconvolution, and linear prediction, or Vandermonde and cir-
culant matrices that show up in e.g., spatio-temporal harmonic
retrieval problems [17]. Note that Definition 1 reduces to the
trivial case w := vec([H ®]) with dimension M (N + T'),
which corresponds to the unstructured case. Consider now
introducing the parameter vector w and the noise vector
v € R™, such that #(w+v):=[H+P ®+ V](w+v).
The Frobenious norm in (3) becomes the {5 norm of v.

The weighted TLS is obtained if prior knowledge on the
errors is incorporated by weighting the norm in (3) through
matrix W. Jointly, the structured and weighted (SW) version
of the original TLS cost || P VHQF is expressed as v W,
where W = 0 € R"*"_ Clearly, with W = I, the SWTLS
cost reduces to a structured-only form.

III. TOPOLOGY ID WITH SIGNAL PERTURBATIONS.

In both physical and data-driven networks, nodal signals
may be perturbed due to outliers or defects in the measuring
process. In this case, consider the topology identification (ID)
problem with noisy nodal observations Z =Y + E available.
Substituting Y = Z — E into (2), yields the “measurement-
perturbed” SEM as

Z=A(Z-E)+BX+E 4)

where a common error is present both in the output (O) and
input (I) matrices. Equation (3) shows how the TLS-based
approach deals with I/O errors.

Because most real-world networks are not densely con-
nected, it is reasonable to consider that the adjacency matrix
A is sparse, which is the case with e.g., social, transportation,
and biological networks. Accounting for the latter through a
sparsity-promoting regularization term, (4) boils down to the
regularized TLS-based approach to SEM (TLS-SEM) given by

{A,E} = argmin |[E,E]|[7 + A[|All, (5a)
sto Z=A(Z-E)+BX+E  (5b)

where A is a non-negative regularization parameter, and con-
straint (5¢) enforces the absence of self-loops in A.

Substituting constraint (5b) in one of the errors in (5a), leads
to the equivalent formulation

{AB} =argmin |[Z - A(Z-E) -BX[;  (©

A
2
+HIEF + 5 Al

s.to [A]“:O, Zzl,N
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Problerr} in (6) is per-block convex wrt each block variable.
Given A[k], we estimate the error in iteration k + 1 as

~ ~ N 2
B[k +1] = arg min H(Z —A[K)Z) + A[/.c}E—BXHF +E
@)

which admits a closed-form solution
E[k+1] = (AT[K]A[K)+Ix) AT [k](A[K]Z+BX—-Z) (8)

Likewise, given E[k + 1], the adjacency matrix is updated as

. . 2
Alk+1] = argmin [ (Z — A(Z — B[k + l])—BXHF—&—% AL,
©))
As the objective in (9) is nonsmooth but strongly convex, it
admits a globally optimal solution. A proximal gradient itera-
tion can be employed to cope with the non-smooth regularizer.
The derivation of the algorithm is omitted due to the lack
of space, but can be deduced from [2]. Notice that problem
(6) is still per-block convex when B is also a variable to
be estimated [2]. The alternating minimization method under
regularity conditions is guaranteed to converge at least to a
stationary point, as asserted in the following proposition.

Proposition 1. The iterates {E[k], A[k]} resulting from the
minimization of (7) and (9) converge monotonically at least
to a stationary point of problem (6).

Proof. See [20]. O

IV. SIGNAL INFERENCE WITH TOPOLOGY PERTURBATIONS

In several applications such as communications and power
networks, edges may drop due to link failures. Likewise for
data-driven networks, errors in the measurement collection
process, and model mismatch effects suggest modeling links
as being uncertain. In this context, the goal of this section
is graph signal reconstruction, when only a subset of nodal
measurements denoted by S is given, along with the perturbed
graph topology. The observation model can then be written as
Y, = Dsy, +¢&; fort = 1,...,T, where ¥, € R™, and
M denotes the cardinality of S. Let Ds € RM*N denote
the selection matrix formed to have rows (with indices in the
set S) of the N x N identity matrix, and &, € RM is the
observation error vector at slot ¢. Stacking 7" observations to

form ¥ := [¢,,..., 9], and likewise for € := [eq,...,er],
the matrix model boils down to
¥ =DsY +€&. (10)

Let now Ag denote the known and possibly perturbed nominal
adjacency matrix, A € RM*Y the topology perturbation
matrix. The linear SEM in (2) then reduces to
Y =(Ap—A)Y +BX (1

where Ay — A is the unknown adjacency matrix.
With BX acquired as mentioned in the previous section,
and bearing in mind that TLS can account for both input and

output errors (here £ and A), we formulate our regularized
TLS-SEM task as (cf. (10) and (11))

(A&, V) —arg muin Mll[AL -+ XellEE (12)
FIIY (Ao~ A)Y - BX}

s.to ¥=DgsY-+E& (13)

[Al;; = 0,Vi (14)

where the /;-norm promotes sparsity of the perturbed links,
while the fitting term takes into account the perturbed SEM
that allows us to reconstruct the graph signal over the entire
network. Upon substituting the constraint (13) into the cost
function, we arrive at

{A,Y}:arggig/\lﬂAHl+/\2H‘I’—DSYH% (15)

+[[Y — (Ao - A)Y - BX|[%

s.to [A]“ =0,Vi.

Problem (15) is per-block convex, and thus it can be solved
iteratively via alternating minimization with guaranteed con-
vergence, to at least a stationary point; see [20] and Prop. 1.

A. Structured and weighted TLS for topological perturbations

In this subsection, we will leverage the structure of the
nominal adjacency matrix along with prior information on the
errors to formulate a structured and weighted TLS problem (cf.
Sec. II-B). If the nominal network has L links, the nominal
adjacency matrix has the following structure (cf. Definition 1)

L
Ag=S(w):=) wsSH (16)
=1

where SlA =1 »flT with i; denoting the NV x 1 vector having
all-zero entries except one entry that equals 1 at the position
of the source node of link /, and §; the NV x 1 vector of all-zero
entries except one that equals 1 at the position of the sink node
of link [. Let now w := [wy,...wr] " be the vector collecting
edge weights characterizing the structure % (w) of Agy. Such
a structure accounts for the (non)zero entries of the adjacency
matrix, and gives rise to a form having reduced the number
of unknowns from N2 to L.

In certain application domains, additional information can
be given on the failure probabilities m; for I = 1,...,L,
while the noise variance o2 can be also known across nodes
i =1,...,N. Such prior information can be available after
observing a network over time, and collecting the occurrence
of failures, along with statistics of the measurement errors.

First, we will recast here the TLS formulation to account
for the structure of the nominal adjacency matrix. Based on
Sec. II-B and (16), the parameter vector of A is w, while
that for the error is v4 := [v{',...,v#]]" with entries being
nonzero when a failure or an edge weight alteration occurs.
Likewise for the SWTLS cost in Section II-B, the first two
terms in (12) become the weighted ¢;-norm of the topology
error vector |[W v 4], and the weighted Frobenious norm

. 2
of the observation error |||y, . where W4 and Wy are
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respectively the weight matrices of the topology and the
measurement errors.

Having introduced the structure and the weights, we will
now formulate the unconstrained regularized structured and
weighted (SW) TLS problem based on SEM, as follows

U A [WarA ]+ @ - DYy, (7)
2

_|_

L
Y = (w+vMSPY - BX
=1

F

where matrix W4 := [diag(m;...7r)]"!, and Wg =
[diag(o?...03%,)]" L. Problem (17) is per-block convex, and
can be solved again via alternating minimization. Given D4 [k|
at iteration k, the graph signal at k£ + 1 is reconstructed as

Y[k + 1] =arg H{i,n Ao || @ — DSYH%V\I, (18)
2

L
+ Y =) (i — oA RDSHY - BX
=1

F

This sub-problem is also convex, and admits the closed-form
update

Y[k + 1] =(C" [K]C[k] + A2DSWyDs) ' (CT[k]BX

+ X DiWy ) (19)
where C[k] = (T — S/, (wi + 9 [K])S).
Given Y[k + 1], the estimate 4 [k + 1] is obtained as
Dalk+ 1] = argmin Ay [[Wavall; (20)
va

2

L
Y(k+1 =Y (0 —*)SPY[k+1] - BX
=1

+

F

Sub-problem (20) is again convex, but not differentiable. For
this reason, we employ an iterative proximal gradient solver
with provably guaranteed convergence to at least a stationary
point, as asserted by [20] and Prop. 1.

V. NUMERICAL TESTS

Topology identification with signal perturbations. Here, we
test the performance of the iterative solver of (6), and compare
it with the conventional LS method based on SEM [2], [5].
The goal is to identify A when the signal measurements are
perturbed. A Kronecker graph with N = 64 is generated as
in [16]. With T" = 120, the entries of X are drawn i.i.d. from
the uniform distribution ¢/[0, 1.5], and those of E from the
Gaussian N(0,0%). Matrices Y and Z are then constructed
according to (2) and (4), while A\ is selected via cross-
validation. Figure 1 depicts the performance of LS-SEM and
TLS-SEM in terms of mean-square error (MSE), defined as
MSE := Y, (ai; — a;;)?/N?. In this figure, the two methods
are compared as a function of oz. We observe that for small
values of o, the methods perform comparably, but when o
increases the TLS-SEM outperforms the SEM approach, until
the point when the error becomes too large. Figure 2 compares

0.04
0.035
0.03
(ulg 0.025
2o.
0.02
0.015
0.01 —A—1S-SEM | |
' ==TLS-SEM
0'005 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
%
Figure 1: MSE versus Error standard deviation.
0.03 :
A S-SEM
== TLS-SEM

0.025

0.015

70 80 90

0.01 : :
100 110 120
T

Figure 2: MSE versus number of observations.

LS-SEM with TLS-SEM in terms of MSE as a function of
the number of observations 7', with the standard deviation of
errors fixed to o = 0.2.

These numerical results suggest that TLS-SEM outperforms
LS-SEM even when the number of observations is small.
Signal inference with topology perturbations. We further
tested the performance of the algorithm in Section IV, and
compared it with the conventional LS-SEM. Here, the topol-
ogy is perturbed and the goal is to identify Y from a
subset of observations. A Kronecker graph with N = 27
is generated as before. With 7' = 50 and B = 1, the
entries of X and E are drawn i.i.d. from uniform /[0, 3],
and Gaussian N (0,0,2”]_) distributions, respectively. Further-
more, we used Bernoulli(P;) x [A] to model the pertur-
bation A, meaning that perturbations occur when one or
more weighted links fail. In particular, P, = P, = 0.7,
and P, € [0.001,0.02],] = 3,...,L. Matrices Y and ¥
are then constructed according to (11) and (10), while \;
and )\, are selected via cross validation. Figure 3 depicts
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Figure 3: NMSE versus number of samples

the performance of LS-SEM, TLS-SEM and SWTLS-SEM
in terms of normaliged mean-square error (NMSE), with
NMSE := Zij([DSY]U — [DsY1i)?/ Zij[DsY]?j, where
Dy denotes the complement of the selection matrix. Figure 3
compares three methods, namely the LS-SEM, TLS-SEM and
SWTLS-SEM, as a function of the number of samples ).
As expected intuitively, estimation performance improves
considerably as extra prior information is accounted for.

VI. CONCLUSIONS AND RESEARCH OUTLOOK

Two major learning tasks over graphs were considered in
this paper in the presence of perturbations. With model mis-
match, error-prone laboratory measurements and outages of
physical networks, the need arises to account for perturbations
in the signal reconstruction and topology inference tasks that
in this paper were addressed using approaches based on total
least-squares and structural equation models (TLS-SEMs).
Structured and weighted (SW) variants of TLS-SEMs leverage
prior information to improve performance. Numerical tests
on simulated data demonstrated the efficacy of the proposed
algorithms.

In addition to thorough experimentation and comparisons
with real data sets, future research directions include dis-
tributed TLS-SEM approaches to accommodate large-scale
networks; more general SEM models to cope with data exhibit-
ing nonlinear dependencies and/or dynamic behaviors; and
algorithms to learn how to propagate labels in the presence
of perturbations.
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