
1

Multi-Timescale Online Optimization of Network
Function Virtualization for Service Chaining

Xiaojing Chen, Wei Ni, Tianyi Chen, Iain B. Collings, Fellow, IEEE , Xin Wang, Senior Member, IEEE ,

Ren Ping Liu, Senior Member, IEEE , and Georgios B. Giannakis, Fellow, IEEE

Abstract—Network Function Virtualization (NFV) can cost-efficiently provide network services by running different virtual network

functions (VNFs) at different virtual machines (VMs) in a correct order. This can result in strong couplings between the decisions of the

VMs on the placement and operations of VNFs. This paper presents a new fully decentralized online approach for optimal placement

and operations of VNFs. Building on a new stochastic dual gradient method, our approach decouples the real-time decisions of VMs,

asymptotically minimizes the time-average cost of NFV, and stabilizes the backlogs of network services with a cost-backlog tradeoff of

[ε, 1/ε], for any ε > 0. Our approach can be relaxed into multiple timescales to have VNFs (re)placed at a larger timescale and hence

alleviate service interruptions. While proved to preserve the asymptotic optimality, the larger timescale can slow down the optimal

placement of VNFs. A learn-and-adapt strategy is further designed to speed the placement up with an improved tradeoff

[ε, log2(ε)/
√
ε]. Numerical results show that the proposed method is able to reduce the time-average cost of NFV by 23% and reduce

the queue length (or delay) by 74%, as compared to existing benchmarks.

Index Terms—Network Function Virtualization, virtual machine, distributed optimization, stochastic approximation.

F

1 INTRODUCTION

D ECOUPLING dedicated hardware from network ser-
vices and replacing them with programmable virtual

machines (VMs), Network Function Virtualization (NFV) is
able to provide critical network functions on top of opti-
mally shared physical infrastructure [1], [2]. This can avoid
disproportional hardware investments on short-lived func-
tions, and adapt quickly as network functions evolve [3].
Particularly, a virtual network function (VNF) is a virtual-
ized task formerly carried out by proprietary and dedicated
hardware, which moves network functions out of dedicated
hardware devices and into software [3].

A network service (or service chain) can consist of mul-
tiple VNFs which need to be run in a predefined order at

Work in this paper was supported by the National Natural Science Foundation
of China grant 61671154, the National Key Research and Development
Program of China grant 2017YFB0403402, and the Innovation Program of
Shanghai Municipal Science and Technology Commission grant 17510710400;
US NSF grants 1509005, 1508993, 1423316, and 1442686.

• X. Chen is with the Shanghai Institute for Advanced Communica-
tion and Data Science, Shanghai University, Shanghai, China. E-
mail: jodiechen@shu.edu.cn. She was with Fudan University, Shanghai,
China, and Macquarie University, Sydney, Australia.

• W. Ni is with the Commonwealth Scientific and Industrial Re-
search Organization (CSIRO), Sydney, NSW 2122, Australia. E-
mail: wei.ni@data61.csiro.au.

• T. Chen and G. B. Giannakis are with the Dept. of Electrical and Computer
Engineering and the Digital Technology Center, University of Minnesota,
Minneapolis, MN 55455 USA. Emails: {chen3827, georgios}@umn.edu.

• I. B. Collings is with the School of Engineering, Macquarie University,
Sydney, NSW 2109, Australia. Email: iain.collings@mq.edu.au.

• X. Wang is with the Shanghai Institute for Advanced Communication
and Data Science, Key Laboratory for Information Science of Elec-
tromagnetic Waves (MoE), the Dept. of Communication Science and
Engineering, Fudan University, 220 Handan Road, Shanghai, China.
Email: xwang11@fudan.edu.cn.

• R. P. Liu is with the School of Electrical and Data Engineering, Univer-
sity of Technology Sydney, Sydney, NSW 2007, Australia. Email: Ren-
Ping.Liu@uts.edu.au.

different VMs running different VNF instances (i.e., soft-
ware) [4]–[6]. Challenges arise from making optimal online
decisions on the placement of VNFs, and the processing and
routing of network services at each VM, especially in large-
scale network platforms. On one hand, given the sequence
of VNFs to be executed per network service, the optimal
decisions of individual VMs are coupled. On the other hand,
stochasticity prevails in the arrivals of network services, and
the link capacity between VMs stemming from concurrent
traffic [7]. Prices can also vary for the service of a VM,
depending on the pricing policy of the service providers.
The possibility of leveraging temporal resource variability
implies the couplings of optimal decisions over time [8], [9].
Other challenges also include limited scalability resulting
from centralized designs [10].

These are open problems and have not been captured
in previous works on VNF placement. The work in [11]
focused on the placement of VNFs under the assumption of
persistent arrivals of network services, where network ser-
vices were instantly processed at the VMs admitting them
and network service chains cannot be supported. The work
in [12] addressed the placement of VNFs in a capacitated
cloud network. The placement problem was formulated as
a generalization of the Facility Location and Generalized
Assignment problem; near-optimal solutions were provid-
ed with bi-criteria constant approximations. However, the
model in [12] cannot account for function ordering or flow
routing optimization.

Taking network service chains into account, recent works
studied optimal decision-makings on processing and rout-
ing network services, under the assumption of the avail-
ability of the a-priori knowledge on service arrivals [13].
NP-complete mixed integer linear programming (MILP)
was formulated to minimize the delay of network service
chains [10]. A heuristic genetic approach was developed to

2

solve MILP by sacrificing optimality [10]. Greedy algorithms
were developed to minimize flowtime or cost, or maximize
revenue at a snapshot of the network [14]. These heuristic
methods need to run in a centralized manner, thereby limit-
ing scalability. Moreover, none of them have taken random
service arrivals or dynamic pricing into account.

In this paper, we propose a new approach to distributed
online optimization of NFV, where asymptotically optimal
decisions on the placement and operation of NFV are
adaptively generated at individual VMs. The proposed ap-
proach is able to significantly enhance the scalability of NFV
for large-scale computing platforms, such as the emerging
mobile edge computing (MEC) and pervasive computing.
Accounting for random service arrivals and time-varying
prices, a stochastic dual gradient method is developed to
decouple optimal decision-makings across different VMs
and different time slots. It minimizes the time-average cost
of NFV while stabilizing the queues of VMs. The gradi-
ents can be interpreted as the backlogs of the queues at
every VM, and updated locally by the VM. With a proved
cost-delay tradeoff [ε, 1/ε], the proposed method is able to
asymptotically approach the global optimum which would
be generated offline at a prohibitive complexity, by tuning
the coefficient ε.

Another key contribution of the paper is that we ex-
tend the distributed online optimization of NFV to two
timescales, where the placement of VNFs is carried out at
the VMs at a much larger time interval than the operations
of the VNFs. This can effectively alleviate the interruptions
that the placement/installation of VNFs can cause to net-
work service provisions. We prove that the optimality loss of
the two-timescale placement and operation of NFV is upper
bounded, and the asymptotic optimality of the proposed
distributed online optimization is preserved. Other contri-
bution is that we further speed up the placement of VNFs
and improve the cost-delay tradeoff to [ε, log2(ε)/

√
ε] by

designing a learn-and-adapt approach, where the statistics
of network dynamics is learned from history with increasing
accuracy.

Corroborated by numerical results, the proposed ap-
proach is able to reduce the time-average cost of NFV by
23% and reduce the queue lengths (or delays) by 74%, as
compared to existing non-stochastic approaches. Account-
ing for service chaining in stochastic NFV scenarios, the
proposed algorithm is important and practical. NFV de-
couples functions, services and software from dedicated
hardware, and changes the architecture of the networks [15].
The proposed approach further decouples decisions and
operations of NFV between network entities (e.g., VMs) to
enhance the scalability of NFV, and hence has the potential
to modernize the architecture of mobile networks.

In a different yet relevant context, stochastic optimiza-
tion has been developed for single- or multi-timescale re-
source allocation [16]–[22], routing [23], [24], and service
computing [25] in queueing systems to deal with stochastic
arrivals of workloads or energy. In particular, backpressure
routing algorithms were developed in [23], [24] to maximize
throughput or minimize time-average costs in distribut-
ed (wireless) mesh networks, while stabilizing the queues
across the networks. Yet, the backpressure algorithms were
only focused on the routing of workloads, and did not

involve any workload processing. An energy-efficient of-
floading algorithm was proposed for mobile computing in
[25], which can dynamically offload part of an application’s
computation request to a dedicated server. None of the ex-
isting approaches [16]–[25] have taken sequentially chained
network services into account. Distinctively different from
the existing methods, our approach is able to process and of-
fload/forward sequentially chained network services which
strongly couple the optimal decisions of VMs on routing and
processing in time and space (i.e., among VMs). In particu-
lar, our approach decouples the strong coupling, optimizes
both the processing and offloading of chained network
services, and substantially reduces the queue lengths (or
delays) by taking a learn-and-adapt strategy.

While part of the content has been presented in our con-
ference version [26], this paper has a number of new and im-
portant contributions. Specifically, this paper optimizes the
online placement of VNFs, apart from the operations of NFV
such as transmission and processing of tasks; and proves
the asymptotic optimality of the placement and operations.
The paper generalizes the online optimization of the VNF
placement and operations to multiple different timescales,
so that the disruption/interruption of operations caused
by the replacement of VNFs can be effectively alleviated
without compromising the asymptotic optimality. Moreover,
the paper provides full details on derivation, optimization
and optimality proof. In contrast, our earlier work [26] only
optimized the operations at a single timescale, given the
placement of VNFs (or in other words, VNFs were deployed
in prior). In addition, detailed proofs and analyses were not
provided in [26].

The rest of this paper is organized as follows. In Sec-
tion II, the system model is described. In Section III, the dis-
tributed online optimization of the placement of VNFs and
the processing/routing of network services is developed.
Optimal placement and operation of NFV are investigated
at two different timescales in Section IV to prevent its
interruptions to network service provisions. Numerical tests
are provided in Section V, followed by concluding remarks
in Section VI. Notations in the paper are listed in Table I.

2 SYSTEM MODEL

Consider a platform consisting of N VMs, supporting K
VNFs, and operating in a (possibly infinite) scheduling
horizon consisting of T slots. The slotted design is feasi-
ble, as Network Timing Protocol (NTP) and its variations
have been extensively adopted in networks and neighboring
devices/servers can be synchronized with a typical offset
of microseconds [27]. The slotted design is also efficient
to exchange information and coordinate operations among
neighboring VMs (on a slot basis). A VM can efficiently
utilize every slot to either transmit or receive tasks, and
process tasks, hence making the effective use of its virtual
links and processor.

The VMs can be located separately at different host
servers, or co-located at the same host server. Assume that
every VM can admit network services, and output the
results; see Fig. 1. This is consistent with existing designs of
NFV systems. Let N = {1, . . . , N} collect the N VMs. Let

3

{𝑓#, 𝑓%, 𝑓&}

{𝑓%
∗, 𝑓&

∗, 𝑓#}

VM	𝑛

Service	outputs:

Incoming	queues

Selection	of	

𝑄+,
- 	for	routing		

VM		with	

VNF	𝑓#

Selection	of	

𝑞+,
- 	for	routing		

{𝑓%
∗, 𝑓&

∗, 𝑓#
∗}

{𝑓#
∗, 𝑓%, 𝑓&}

…

𝑄+,
-

{𝑓%
∗, 𝑓&, 𝑓#}

Other	VMs

…

𝑞+,
-

Outgoing	queues

Selection	of	𝑄+,
- 	for	

processing	

Fig. 1. An illustration on the processing and routing procedure of network
services within VM n, where f∗ indicates processed VNFs.

fk (k = 1, . . . ,K) denote the k-th VNF which can only be
processed at the VMs running the corresponding software.

Assume that every VM runs a single VNF. Let ekn(t) ∈
{0, 1}, ∀k, n, t, denote the ability of VM n to process fk at
time t. Let ekn(t) = 1, if VM n is installed with VNF fk; and
ekn(t) = 0, otherwise. We have

∑

k ekn(t) = 1, ∀n, t, which
specifies that every VM runs a single VNF. This is consistent
with typical configurations of VMs [28]. The proposed algo-
rithm can be readily extended to general scenarios where a
VM runs multiple VNFs, as will be discussed in Section 3.2.

Let I collect all possible types of network services, and
each type of network service is to be processed by a permut-
ed sequence of {f1, . . . , fK} or its subset. A network service
needs to traverse among multiple VMs, until the service are
processed by the related VNFs in correct order. We design
up to 2|I|K service queues at each VM n. (For analytic
tractability, we assume here that the VMs have sufficient
memories, and the queues do not overflow. Nevertheless,
one of the constraints we consider in this paper is that
the time-average lengths of the queues are finite. As will
be proved in Section III-A, the time-average lengths of the
queues can be adjusted and reduced through parameter re-
configuration.) Half of the queues buffers network services
to be processed by fk (k = 1, . . . ,K); and the other half
buffers the results of the first half after processed by fk and
to be routed to downstream VMs for further processing.

Let Qi
kn(t) denote the queue lengths of type-i network

services to be processed by VNF fk at VM n per slot t. Let
qikn(t) denote the queue lengths of type-i network services
after processed by VNF fk′ at VM n, and to be processed by
VNF fk at downstream VMs per slot t. Here, fk′ denotes the
VNF which needs to be run prior to fk for type-i network
services; Q(t) = {Qi

kn(t), ∀n ∈ N , i ∈ I, k = 1, . . . ,K},
q(t) = {qikn(t), ∀n ∈ N , i ∈ I, k = 1, . . . ,K}, and A(t) =
{Q(t),q(t)}. Let Ri,t

kn ≤ Rmax denote the arrival rate (in
KB/slot) of new type-i network services to be processed by
VNF fk at VM n, where Rmax is the maximum arrival rate.

Note that, placing all network services in one queue, and
placing the network services in a large number of queues
based on the types of services, are just different ways of
arranging the storage at a VM, and would not markedly
change the requirement of the total storage memory of

TABLE 1
Notation and Definition

Notation Definition

N , K ,
|I|

Number of VMs, VNFs and types of network
services, respectively

T Total number of scheduling time slots
fk The kth VNF

Qi
kn Queue length of type-i network services to be

processed by VNF fk at VM n
qikn Queue length of type-i network services after

processed at VM n and to be further processed
by VNF fk at downstream VMs

A(t) A(t) = {Q(t),q(t)}
Ri,t

kn Arrival rate of new type-i network services to
be processed by VNF fk at VM n

αt
n Time-varying price for service processing at

VM n
βt
[a,b] Time-varying price for service routing over link

[a, b]
Rmax,
lmax
ab ,
pmax
n

The maximum arrival rate, the maximum trans-
mit rate of link [a, b], and the maximum pro-
cessing rate of VM n, respectively

Φt The total cost of routing services over all links
and running VNFs on all VMs per slot t

xt, X xt := {et,pt,ut,vt} and X := {xt, ∀t}
st st := [Ri,t

kn, α
t
n, β

t
[a,b], ∀[a, b], i, k, n]

λi
kn,1,

λi
kn,2

Lagrange multipliers

gλi
kn,1

,
gλi

kn,2

Gradient

T∆ Number of time slots within a large time inter-
val

ekn Binary decision to be optimized for installing
fk at VM n

ui
k,ab Transmit rate to be optimized for transmitting,

over link [a, b] (i.e., from VM a to VM b) at time
slot t, the type-i services to be run by VNF fk

vik,ab Transmit rate to be optimized for transmitting,
over link [a, b] (i.e., from VM a to VM b) at time
slot t, the type-i services which have been run
at VM a and are to be further run by VNF fk at
other VMs

pikn Processing rate of VM n to be optimized for
type-i network services to be processed by VNF
fk

the VM at all. This is due to the fact that the memory
requirement of the VM only depends on the total amount
of the services. The storage memory of the server would
not expand, as the number of VNF permutations increases
while the total amount of services does not.

Let ui
k,ab(t) denote the transmit rate (in KB/slot) for

transmitting, over link [a, b] (i.e., from VM a to VM b) at time
slot t, the type-i services to be run by VNF fk. Let vik,ab(t)
denote the transmit rate for transmitting, over link [a, b] (i.e.,
from VM a to VM b) at time slot t, the type-i services which
have been run at VM a and are to be further run by VNF fk

4

at other VMs. It is easy to see that at any time t, we have

ui
k,ab(t) ≥ 0, vik,ab(t) ≥ 0, ∀i, k, [a, b],
∑

i,k

[ui
k,ab(t) + vik,ab(t)] ≤ lmax

ab , (1)

where lmax
ab is the maximum transmit rate of link [a, b],

representing the capacity constraint of the link. The maxi-
mum transmit rates (or in other words, the link bandwidths)
are specified for the links. The instantaneous transmit rates
of the links are lower than the maximum transmit rates,
and can be random and time-varying due to random back-
ground traffic.

Let pikn(t) denote the processing rate of VM n (in K-
B/slot) for the type-i network services to be processed by
VNF fk at time slot t. We have

pikn(t) ≥ 0,
∑

i,k

pikn(t)ekn(t) ≤ pmax
n , ∀i, k, n, (2)

where pmax
n is the maximum processing rate of VM n,

representing the capacity constraint of the VM. The VMs are
preconfigured. Our decisions are on which VNF to place on
each VM, and the schedule of the VMs running the VNFs.
The preconfiguration of the VMs decouples the physical
resources and software, and facilitates NFV. The precon-
figured VMs (or the underlaying physical resources) can
be efficiently utilized by jointly optimizing the placement
and schedule of the VNFs executed on the VMs. This can
dramatically simplify the network initialization which can
be ineffective and quickly outdated anyway due to the time-
varying traffic arrivals and network conditions. Moreover,
the preconfiguration of VMs is particularly reasonable in
distributed platforms, such as MEC, where VMs can run at
distributed network nodes (e.g., server and switch). Each
VM counts on the physical resources of an individual net-
work node.

Therefore, the queue length of type-i network services to
be processed by VNF fk at VM n follows, ∀i, k, n, t,

Qi
kn(t+ 1) = max{Qi

kn(t)−
∑

b∈N

ui
k,nb(t)− pikn(t)ekn(t), 0}

+
∑

a∈N

ui
k,an(t) +

∑

c∈N

vik,cn(t) +Ri,t
kn.

(3)
The queue length of type-i network services after processed
by VNF fk′ at VM n, and to be processed by VNF fk at
downstream VMs follows, ∀i, k, n, t,
qikn(t+ 1) = max{qikn(t)−

∑

d∈N

vik,nd(t), 0}+ pik′n(t)ek′n(t),

(4)
where qikn(t) = 0 (k ∈ ∅) in the case that the type-i network
services complete processing at the terminal VM n and are
output from the platform.

We define the network is stable if and only if the follow-
ing is met [29] (recall that A(t) = {Q(t),q(t)}):

lim
T→∞

1

T

T∑

t=1

E[|A(t)|] ≤ ∞. (5)

Considering the processing and routing cost of network
services in the platform, we define the total cost of routing
services over all links and running VNFs on all VMs per slot

t, as given by:

Φt(et,pt,ut,vt) := φt
1(e

t,pt) + φt
2(u

t,vt), (6)

where et = {ekn(t), ∀k, n}, pt = {pikn(t), ∀i, k, n}, ut =
{ui

k,ab(t), ∀i, k, [a, b]}, and vt = {vik,ab(t), ∀i, k, [a, b]}. In

(6), φt
1(e

t,pt) =
∑

i,k,n α
t
n(p

i
kn(t)ekn(t))

2 and φt
2(u

t,vt) =
∑

a,b,i,k β
t
[a,b][(u

i
k,ab(t))

2 + (vik,ab(t))
2] are the costs that the

network service provider charges for usages of VMs and
links, respectively, e.g., following a quadratic pricing pol-
icy [30], [31]. For non-elastic network services, e.g., video
streaming and multimedia applications, these with urgent
demand for high resources (i.e., bandwidths and CPUs)
would charge for high prices [30]. Here, αt

n is the time-
varying price for service processing at VM n and βt

[a,b] is

the time-varying price for service routing over link [a, b].

3 DISTRIBUTED ONLINE OPTIMIZATION OF

PLACEMENT AND OPERATION OF NFV

In this section, the optimization problem of the placement
and operation of NFV is to be established, where the input
of the problem is the current time-varying prices for service
processing and routing variables {αt

n, β
t
[a,b], ∀[a, b], n, t},

and the random service arrivals {Ri,t
kn, ∀i, k, n, t}. The objec-

tive of the problem is to minimize the time-average cost of
NFV on a network platform while preserving the stability of
the platform [cf. (5)], under random network service arrivals
and prices. This can be achieved by making stochastically
optimal decisions on processing or routing network services
at every VM and time slot in a distributed fashion. Let
xt := {et,pt,ut,vt} and X := {xt, ∀t}. The problem of
interest is to solve

Φ∗ = min
X

lim
T→∞

1

T

T∑

t=1

E{Φt(xt)}

s.t. (1), (2), (3), (4), (5), ∀t
(7)

where the expectation of Φt(xt) is taken over all random-

nesses. The service arrival rate {Ri,t
kn, ∀i, k, n, t} and the

routing and processing prices {αt
n, β

t
[a,b], ∀[a, b], n, t} are all

random.

We assume here an ideal network setting where any
VM may execute different VNF at different time instants,
and derive the asymptotically optimal solution under the
ideal setting. The solution provides the stepping stone to
the solution for the more realistic setting where changes
of VNF incur costs (i.e., disruptions/interruptions to NFV
operations) and therefore can only take place once for a
while at a different timescale from the execution of VNF,
as will be described in Section 4.

3.1 Dual gradient and asymptotic optimality

It is difficult to solve (7) since we aim to minimize the
average cost over an infinite time horizon. In particular, the
queue dynamics in (3) and (4) couple the optimization vari-
ables in time, rendering intractability for traditional solvers.
Combining (3) and (4) with (5), however, it can be shown
that in the long term, the service processing and routing

5

rates must satisfy the following necessary conditions of
queue stability [29]

lim
T→∞

1

T

T∑

t=1

E[
∑

a∈N

ui
k,an(t) +

∑

c∈N

vik,cn(t) +Ri,t
kn

−
∑

b∈N

ui
k,nb(t)− pikn(t)ekn(t)] ≤ 0, ∀i, k, n.

(8a)

lim
T→∞

1

T

T∑

t=1

E[pik′n(t)ek′n(t)−
∑

d∈N

vik,nd(t)] ≤ 0, ∀i, k, k′, n.

(8b)

As a result, (7) can be relaxed as

Φ̃∗ = min
X

lim
T→∞

1

T

T∑

t=1

E{Φt(xt)},

s.t. (1), (2), (8), ∀t.
(9)

Compared to (7), problem (9) eliminates the time cou-
pling among variables {A(t), ∀t} by replacing (3), (4) and
(5) with (8). Since (9) is a relaxation of (7) with its optimal
objective Φ̃∗ ≤ Φ∗, if one solves (9) instead of (7), it is
prudent to derive the optimality bound of Φ∗, provided that
the solution X for (9) is feasible for (3), (4) and (5), as will
be shown in Theorem 1.

We can take a stochastic gradient approach to solv-
ing (9) with asymptotical optimality guarantee. Concate-
nate the random parameters into a state vector st :=
[Ri,t

kn, α
t
n, β

t
[a,b], ∀[a, b], i, k, n]. For analytic tractability, st is

assumed to be independent and identically distributed
(i.i.d.) across slots. (In practice, st can be non-i.i.d. and even
correlated. In such case, the algorithm proposed in this pa-
per can be readily applied. Yet, performance analyses of the
non-i.i.d. case can be obtained by generalizing the delayed
Lyapunov drift techniques [29]). Then, we can rewrite (9) as

Φ̃∗ = min
X

E{Φt(X (st); st)} (10a)

s.t. ui
k,ab(s

t) ≥ 0,
∑

i,k

[ui
k,ab(s

t) + vik,ab(s
t)] = ui∗

k∗,ab(s
t)(or vi

∗

k∗,ab(s
t))

≤ lmax
ab , (10b)

pikn(s
t) ≥ 0,

∑

i,k

pikn(s
t)ekn(s

t) = pi
∗

k∗n(s
t) ≤ pmax

n ,

(10c)

E[
∑

a∈N

ui
k,an(s

t) +
∑

c∈N

vik,cn(s
t) +Ri,t

kn

−
∑

b∈N

ui
k,nb(s

t)− pikn(s
t)ekn(s

t)] ≤ 0, (10d)

E[pik′n(s
t)ek′n(s

t)−
∑

d∈N

vik,nd(s
t)] ≤ 0, (10e)

where pikn(s
t) := pikn(t), ekn(s

t) = ekn(t), u
i
k,ab(s

t) :=
ui
k,ab(t), v

i
k,ab(s

t) := vik,ab(t), ∀[a, b], i, k, n, and

Φt(X (st); st) := Φt(xt). Formulation (10) explicitly
indicates the dependence of the decision variables
{et,pt,ut,vt} on the realization of st.

Let F t denote the set of {et,pt,ut,vt} satisfying con-

straints (1) and (2) per t, while λi
kn,1 and λi

kn,2 de-
note the Lagrange multipliers associated with the con-
straints (10d) and (10e). With a convenient notation λ :=
{λi

kn,1, λ
i
kn,2, ∀i, k, n}, the partial Lagrangian function of

(10) is given by

L(X ,λ) := E[Lt(xt,λ)] (11)

where the instantaneous Lagrangian is given by

Lt(xt,λ) := Φt(xt) +
∑

i,k,n

λi
kn,1(t)(

∑

a∈N

ui
k,an(t)

+
∑

c∈N

vik,cn(t) +Ri,t
kn −

∑

b∈N

ui
k,nb(t)− pikn(t)ekn(t))

+
∑

i,k,k′,n

λi
kn,2(t)(p

i
k′n(t)ek′n(t)−

∑

d∈N

vik,nd(t)). (12)

Notice that the instantaneous objective Φt(xt) and the in-
stantaneous constraints associated with λ are parameterized
by the observed state st at time t; thus the instantaneous
Lagrangian can be written as Lt(xt,λ) = L(X (st),λ; st),
and L(X ,λ) = E[L(X (st),λ; st)].

As a result, the Lagrange dual function is given by

D(λ) := min
{xt∈Ft}t

L(X ,λ), (13)

and the dual problem of (9) is: maxλ≥0 D(λ), where “ ≥ ”
is defined entry-wise.

For the dual problem, we can take a standard gradient
method to obtain the optimal λ∗ [32]. This amounts to
running the following iterations slot by slot

λi
kn,1(t+ 1) = [λi

kn,1(t) + εgλi
kn,1

(t)]+, ∀i, k, n, (14a)

λi
kn,2(t+ 1) = [λi

kn,2(t) + εgλi
kn,2

(t)]+, ∀i, k, n. (14b)

where ε > 0 is an appropriate stepsize. The gradient g(t) :=
[gλi

kn,1
(t), gλi

kn,2
(t), ∀i, k, n] can be expressed as

gλi
kn,1

(t) = E[
∑

a∈N

ui
k,an(t) +

∑

c∈N

vik,cn(t) +Ri,t
kn

−
∑

b∈N

ui
k,nb(t)− pikn(t)ekn(t)], (15a)

gλi
kn,2

(t) = E[pik′n(t)ek′n(t)−
∑

d∈N

vik,nd(t)], (15b)

where xt := {et,pt,ut,vt} is given by

xt = argmin
xt∈Ft

Lt(xt,λ). (16)

Note that a challenge associated with (15) is sequentially
taking expectations over the random vector st to compute
the gradient g(t). This would require high-dimensional inte-
gration over an unknown probabilistic distribution function
of st; or equivalently, computing the corresponding time-
averages over an infinite time horizon. Such a requirement
is impractical since the computational complexity could be
prohibitively high.

To bypass this impasse, we propose to rely on a s-
tochastic dual gradient approach, which is able to combat
randomness in the absence of the a-priori knowledge on the
statistics of variables. Stochastic gradient descent method is
applied to minimize the expectation of the instantaneous
cost of NFV at each time slot, subject to time-varying

6

random traffic demand, link bandwidth, and processor ca-
pacity. Stochastic gradient descent method is a stochastic
approximation of gradient descent method. It can recursive-
ly and asymptotically converge to the neighborhood of the
global optimum in the presence of time-varying random
parameters. Specifically, dropping E from (15), we propose
the following iterations

λ̃i
kn,1(t+ 1) = λ̃i

kn,1(t) + ε[
∑

a∈N

ui
k,an(t) +

∑

c∈N

vik,cn(t)

+Ri,t
kn −

∑

b∈N

ui
k,nb(t)− pikn(t)ekn(t)]

+, (17a)

λ̃i
kn,2(t+ 1) = λ̃i

kn,2(t) + ε[pik′n(t)ek′n(t)−
∑

d∈N

vik,nd(t)]
+,

(17b)

where λ̃t = {λ̃i
kn,1(t), λ̃

i
kn,2(t), ∀i, k, n} collects the stochas-

tic estimates of the variables in (14), and xt(λ̃) is obtained
by solving (16) with λ replaced by λ̃t, ∀i, k, n.

Note that the interval of updating (17) coincides with
slots. In other words, the update of (17) is an online approx-
imation of (14) based on the instantaneous decisions xt(λ̃t)
per slot t. This stochastic approach becomes possible due to
the decoupling of optimization variables over time in (9).

Relying on the so-called Lyapunov optimization tech-
nique in [29], we can formally establish that:

Theorem 1. If st is i.i.d. over slots, then the time-average cost of
(10) with the multipliers updated by (17) satisfies

Φ∗ ≤ lim
T→∞

1

T

T−1∑

t=0

E
[
Φt(xt))

]
≤ Φ∗ + εB (18a)

where B = 9
2 (N

maxlmax)2 + 3
2 (R

max2 + pmax2), Nmax

is the maximum degree of VMs, lmax = max[a,b] l
max
ab and

pmax = maxn p
max
n ; Φ∗ is the optimal value of (7) under any

feasible control policy (i.e., the processing and routing decisions
per VM), even if that relies on knowing future realizations of
random variables.

Assume that there exists a stationary policy X and

E[
∑

a∈N ui
k,an(t)+

∑

c∈N vik,cn(t)+Ri,t
kn−

∑

b∈N ui
k,nb(t)−

pikn(t)ekn(t)] ≤ −ζ , and E[pik′n(t)ek′n(t)−
∑

d∈N vik,nd(t)] ≤
−ζ , where ζ > 0 is a slack vector constant. Then all queues are
stable, and the time-average queue length satisfies:

lim
T→∞

1

T

T∑

t=1

∑

i,k,n

E[Qi
kn(t) + qikn(t)] = O(

1

ε
). (18b)

Proof. See Appendices A and B.

Theorem 1 asserts that the time-average cost of (10)
obtained by the stochastic dual gradient approach converges
to an O(ε) neighborhood of the optimal solution, where the
region of neighborhood vanishes as the stepsize ε → 0 (or
in other words, the convergence time is O(1/ε)). The typical
tradeoff from the stochastic network optimization holds in
this case [29]: an O(1/ε) queue length is necessary, when an
O(ε) close-to-optimal cost is achieved. Different from [29],
here the Lagrange dual theory is utilized to simplify the
arguments, as shown in Appendices A and B.

The asymptotic approximation of the proposed distribut-
ed online scheme to the cost lower bound achieved offline in

a posterior manner is rigorously proved. The lower bound
corresponds to the assumption that all the randomnesses
are precisely known in prior and the optimal decisions
over infinite time-horizon are all derived. This lower bound
would violate causality and be computationally prohibitive
to achieve, even in an offline fashion, given an infinite
number of variables. Theorem 1 indicates that the proposed
scheme can increasingly approach the lower bound by in-
creasing the tolerance to queue backlogs or delays.

The size of services does not violate the asymptotic
optimality of the proposed algorithm. The reason is that
the processing and routing decisions xt need to be dis-
cretized to the numbers of network services processed or

delivered, i.e., Sibx
t

Si
c, in practice. Here, Si denotes the

size of a type-i service. Let Smax denote the maximum
size of services. According to (6), the difference between

the cost under xt and the cost under Sibx
t

Si
c is at most

(αt
n + βt

[a,b])S
2
i ≤ (αt

n + βt
[a,b])(S

max)
2
. The right-hand side

(RHS) of the inequality is independent of ε, and hence
it is O(1) and becomes part of the constant B in (18a)
in Theorem 1. The asymptotic optimality in Theorem 1 is
preserved.

3.2 Distributed online implementation

The dual iteration (17) coincides with (3) and (4) for
λ̃i
kn,1(t)/ε = Qi

kn(t) and λ̃i
kn,2(t)/ε = qikn(t), ∀i, k, n, t;

this can be interpreted by using the concept of virtual
queue of this parallelism [29]. With λ̃i

kn,1(t) substituted by

εQi
kn(t) and λ̃i

kn,2(t) substituted by εqikn(t), we can obtain

the desired xt(A(t)) by solving the following problem:

min
xt∈Ft

1

ε
Φt(xt) +

∑

i,k,n

Qi
kn(t)[

∑

a∈N

ui
k,an(t) +

∑

c∈N

vik,cn(t)

+Ri,t
kn −

∑

b∈N

ui
k,nb(t)− pikn(t)ekn(t)]

+
∑

i,k,k′,n

qikn(t)[p
i
k′n(t)e

i
k′n(t)−

∑

d∈N

vik,nd(t)].

(19)
Through rearrangement, (19) is equivalent to

min
xt∈Ft

∑

i,k,n,b∈N

[f1(e
t,pt) + f2(u

t) + f3(v
t)] (20)

where

f1(e
t
,p

t) = [
αt
n

ε
(pikn(t))

2
− (Qi

kn(t)− q
i
k′′n(t))p

i
kn(t)]ekn(t);

(21a)

f2(u
t) = [

βt
[n,b]

ε
(ui

k,nb(t))
2
− (Qi

kn(t)−Q
i
kb(t))u

i
k,nb(t); (21b)

f3(v
t) =

βt
[n,b]

ε
(vik,nb(t))

2
− (qikn(t)−Q

i
kb(t))v

i
k,nb(t). (21c)

Here, fk′′ denotes the VNF to be processed after fk for type-
i network services.

Problem (20) can be readily solved by decoupling be-
tween ekn(t), p

i
kn(t), u

i
k,nb(t) and vik,nb(t), and between the

VMs. Specifically, (20) can be decoupled into the following

7

subproblems per VM or per inter-VM link:

min
et,pt

f1(e
t;pt), (22a)

min
ut

f2(u
t); (22b)

min
vt

f3(v
t). (22c)

Problem (22a) is a mixed integer programming. Its so-
lution can be obtained by comparing the minimums of
f1(e

t,pt) separately achieved under ekn(t) = 0 and 1. In the
case of ekn(t) = 0, f1(e

t,pt) = 0. In the case of ekn(t) = 1,
(22a) becomes the minimization of a quadratic function of
pikn(t), where the optimal solution is given by

pikn
∗
(t) = min{max{ε(Q

i
kn(t)− qik′′n(t))

2αt
n

, 0}, pmax
n }, ∀i, k.

(23)
Then, the optimal objective of (22a) can be obtained by
substituting (23) into f1(e

t,pt), as given by

P i
kn :=

{

− ε(Qi
kn(t)−qi

k′′n
(t))2

4αt
n

, if Qi
kn(t)− qik′′n(t) > 0;

0, if Qi
kn(t)− qik′′n(t) ≤ 0.

(24)
Since every VM only runs a single VNF (i.e.,

∑

k ekn(t) =
1, ∀n, t), we have

ekn
∗(t) =

{

1, if k = argmink P
i
kn;

0, otherwise.
(25)

Problems (22b) and (22c) are the minimizations of
quadratic functions of ut and vt, respectively. Like (22a)
under ekn(t) = 1, the optimal solutions for (22b) and (22c)
are

ui
k,nb

∗
(t) = min{max{ε(Q

i
kn(t)−Qi

kb(t))

2βt
[n,b]

, 0}, lmax
ab }, ∀i, k;

vik,nb
∗
(t) = min{max{ε(q

i
kn(t)−Qi

kb(t))

2βt
[n,b]

, 0}, lmax
ab }, ∀i, k;

(26)
with their corresponding objectives given by

U i
k,nb :=







− ε(Qi
kn(t)−Qi

kb(t))
2

4βt
[n,b]

, if Qi
kn(t)−Qi

kb(t) > 0;

0, if Qi
kn(t)−Qi

kb(t) ≤ 0;

V i
k,nb :=







− ε(qikn(t)−Qi
kb(t))

2

4βt
[n,b]

, if qikn(t)−Qi
kb(t) > 0;

0, if qikn(t)−Qi
kb(t) ≤ 0.

(27)

At each slot, a VM can prioritize the queues of different
service types to be processed by different VNFs, and process
or route services from the queue with the highest priority.
The priority is ranked based on the objectives P i

kn, U i
k,nb and

V i
k,nb in (24) and (27). For this reason, we refer to P i

kn, U i
k,nb

and V i
k,nb as queue-price objectives. The processing and

routing decisions can be made by one-to-one mapping be-
tween the queues and outgoing links/processor to minimize
the total of selected non-zero objectives, as summarized in
Algorithm 1.

The optimal strategy each VM takes does not stop differ-

Algorithm 1 Distributed Online Optimization of NFV

1: for t = 1, 2 . . . do
2: Each VM n observes the queue lengths of its own

and its one-hop neighbors.
3: Install VNF fk at VM n based on (25).
4: Repeatedly send network services to the VM pro-

cessor or outgoing links with the minimum non-zero
queue-price objectives in (24) and (27), using the optimal
rates derived in (23) and (26), until either the processor
and all outgoing links are scheduled or the remaining
objectives are all zero.

5: Update Qi
kn(t) and qikn(t) for all nodes and services

via the dynamics (3) and (4).
6: end for

VNF	!"

VNF	!#

VNF	!"

VNF	!$

VNF	!#

VNF	!$

VM	1 VM	2

VM	3

cost	0 cost	0

cost	0

Fig. 2. An illustration on VMs running multiple VNFs, where VNFs can be
interpreted as “VMs” and VMs can be interpreted as “clusters of VMs.”
Then the VM-based online optimization developed in this paper can be
readily applied to the “VMs.”

ent network services from concurrently occupying a link.
For example, if the most cost-effective service type for a
link is not sufficient to occupy the entire link, the second-to-
most cost-effective service type is selected to occupy the rest
part of the link. The link can be bidirectional. The different
service types can travel in the opposite directions.

Note that Algorithm 1 is decentralized, since every VM
only needs to know the queue lengths of its own and its
immediate neighbors. Optimal decisions of a VM, locally
made by comparing the queue-price objectives, comply with
(17) and therefore preserve the asymptotic optimality of the
entire network, as dictated in Theorem 1. As per times-
lot, the computational complexity consists of computing
(|I|KN +2|I|KN2) queue-price objectives and their corre-
sponding optimal processing and routing rates for all VM-
s. Therefore, the proposed algorithm has a computational
complexity of O(|I|KN2). With this quadratic complexity
in terms of network size, Algorithm 1 is scalable and suitable
to practical scenarios of large-scale network platforms.

Algorithm 1 can be readily extended to general scenarios
where a VM runs multiple VNFs; see Fig. 2. In this case,
all VNFs can be first interpreted as separate “VMs” in the
context of the baseline case of a VNF per VM, and colocated
VNFs at a VM then become a cluster of multiple “VMs.”

8

No cost incurs on the connections between the “VMs”
within the cluster. The only difference from the baseline
scenario of a VNF per VM, as described in Algorithm 1,
is that, between the clusters, only a pair of “VMs” which
are respectively from the two clusters and the most cost-
effective to transmit workloads, can be activated. This can
be achieved by comparing the price weights of the links to
pick up the most cost-effective link between clusters. The
optimal decisions of processing at each of the “VMs” stay
unchanged.

Algorithm 1 can readily incorporate the case where there
are multiple co-located VMs at a host server. Specifically, the
routing cost between these VMs can be set to zero, and the
bandwidth of the virtual links between the VMs can be high.
Hence, tasks can be offloaded between the VMs to balance
the backlogs for the VMs between the same host server. The
centralized decisions of a host server for the VMs executed
on it would not improve the performance of the algorithm.
As a matter of fact, the centralized decisions of a host server
would be exactly the same as the distributed decisions of
the VMs executed on the server. This is because Algorithm
1 first suppresses the temporal coupling of the optimal de-
cisions by applying the stochastic gradient descent method
(leading to the asymptotic optimality), and then decouples
the asymptotically optimal decisions at every time slot a-
mong individual VMs. The decoupling of the asymptotically
optimal decisions among the VMs is loss-free at every time
slot; see (17), (19), and (22). To this end, even if all the VMs
are co-located at the same server, the centralized decisions
of the host server at every time slot would be the same as
the decoupled decisions of the VMs which are made in a
decentralized manner.

Further, admission control is not considered at the VMs
or servers, but can be straightforwardly incorporated in the
proposed approach. In this case, the amount of requests that
can be admitted to a VM at a time slot is no larger than the
amount of traffic processed at the VM or offloaded to other
VMs at the time slot, thereby preserving the stability of the
VM and the entire platform. The admission control does
not invalidate the asymptotic optimality of the proposed ap-
proach, as it is based on, and does not violate, the adaptive
replacement of VNF and allocation of resources optimized
in the approach.

4 OPTIMAL PLACEMENT AND OPERATION OF NFV

AT DIFFERENT TIMESCALES

In this section, we consider a more practical scenario where
the placement of VNFs is carried out at the VMs at a much
larger time interval, i.e., at time τ = mT∆(m = 1, 2, . . .),
rather than on a slot basis. This is because the installation
of VNFs at the VMs could cause interruptions to network
service provisions. We prove that if the placement and the
operation of NFV are jointly optimized at two different
timescales, the aforementioned asymptotic optimality of the
proposed approach can be preserved.

4.1 Two-timescale placement and operation

By evaluating (22) at two different timescales, the placement
of VNFs, and the processing and routing of network ser-
vices, can be carried out as follows:

• Placement of VNFs at a T∆-slot interval: At time slot
τ = mT∆, each VM n decides on the VNF to install
to minimize the expectation of the sum of f1(e

t,pt)
in (22a) over the time window t = {τ, . . . , τ+T∆−1},

i.e., E
{∑τ+T∆−1

t=τ f1(e
t,pt)

}
, as given by

min
et

E

{ τ+T∆−1∑

t=τ

∑

i,k

[
αt
n

ε
(pikn(t))

2 − (Qi
kn(t)

− qik′′n(t))p
i
kn(t)]ekn(τ)

}

. (28)

• Processing and routing of network services per slot t:
Per slot t, each VM processes and routes network
services, following Algorithm 1, given the placement
decisions of VNFs given by (28).

• Queue update: Each VM updates its queues Qi
kn(t)

and qikn(t) at every slot t based on (3) and (4).

Note that the optimal solutions to (28) require fu-

ture knowledge on service arrivals {Ri,t
kn, t = τ, . . . , τ +

T∆ − 1}, and the prices of service processing and routing
{αt

n, β
t
[a,b], t = τ, . . . , τ + T∆ − 1}. This would violate

causality. We propose to take an approximation by setting
the future queue backlogs as their current backlogs at slot
τ = mT , as given by

Q̂i
kn(t) = Qi

kn(τ); (29a)

q̂ikn(t) = qikn(τ), ∀t = τ, . . . , τ + T∆ − 1, (29b)

where Q̂i
kn(t) and q̂ikn(t) are the approximated queue

backlogs. Taking the approximation of (29) and that the

stochastic variables st := [Ri,t
kn, α

t
n, β

t
[a,b], ∀[a, b], i, k, n] to be

invariant in the coming time window, (28) can be reduced
to the per-slot problem, as given in (22a). Therefore, as per
time slot τ = mT∆, the VNFs can be installed at the VMs
based on (25), as summarized in Algorithm 1.

4.2 Optimality loss of VNF placement

We next analyze the optimality loss due to the approxima-
tion of (29). We can prove that the optimality loss is bounded
and does not compromise the asymptotic optimality of
the proposed approach. To improve tractability, an upper
bound of the optimality loss is evaluated in the case where
all the variables {et,pt,ut,vt} are optimized under the
assumption of the availability of the full knowledge on the
future T∆ time slots, rather than taking the approximation
of (29).

Based on (29), we first establish the following lemma:

Lemma 1. At any slot t, the differences between the approximated
and actual queue backlogs in (29) are bounded by

∣
∣Qi

kn(t)− Q̂i
kn(t)

∣
∣ ≤ T∆ωQ, (30a)

∣
∣qikn(t)− q̂ikn(t)

∣
∣ ≤ T∆ωq, (30b)

where the constants ωQ = max{Nmaxlmax + pmax,
2Nmaxlmax +Rmax}, and ωq = max{Nmaxlmax, pmax}.

Proof. For any two consecutive slots t and t + 1, the dif-
ference of the queue backlogs is bounded, i.e.,

∣
∣Qi

kn(t +
1) − Qi

kn(t)
∣
∣ ≤ ωQ, where ωQ is the maximum difference

between the departure and the arrival of Q(t), denoted

9

by max{Nmaxlmax + pmax, 2Nmaxlmax +Rmax}. According
to (29) and the inequality |a + b| ≤ |a| + |b|, we have
∣
∣Qi

kn(t) − Q̂i
kn(t)

∣
∣ =

∣
∣Qi

kn(t) − Qi
kn(τ)

∣
∣ =

∣
∣
∑t

t0=τ [Q(t0 +
1) − Q(t0)]

∣
∣ ≤ (t − τ)ωQ ≤ T∆ωQ, where τ = mT∆ and

t = τ, . . . , τ + T∆ − 1. Therefore, (30a) is proved. Likewise,
(30b) can be proved.

Based on Lemma 1, we are ready to obtain the following
theorem:

Theorem 2. The optimality loss of the solution for (20) due to
the approximation of the queue backlogs in (29) is bounded, i.e.,

∣
∣
∣

∑

i,k,n,b∈N

[f1(ê
t, p̂t) + f2(û

t) + f3(v̂
t)]

−
∑

i,k,n,b∈N

[f1(e
t,pt) + f2(u

t) + f3(v
t)]
∣
∣
∣ ≤ εC, (31)

where C := εT∆
2N2|I|K[(1

2αmax + 1
2βmax)(ωQ + ωq)

2 +
2

βmaxω
2
Q]; α

max = maxn,t α
t
n, and βmax = max[a,b],t β

t
[a,b].

Proof. See Appendix C.

We can see from Theorem 2 that the optimality loss of the
two-timescale control increases quadratically with the time
interval of VNF placement, T∆. This allows us to balance
between the optimality loss and the cost of VNF placement.
As dictated in Theorems 1 and 2, the total optimality loss
of the two-timescale approach for problem (7) is upper
bounded, as given by

Φ(x̂t) ≤ Φ∗ + ε(B + C), (32)

where Φ(x̂t) is the time-average cost under the two-
timescale approach. In other words, the two-timescale place-
ment and operation of NFV preserves the asymptotic opti-
mality with approximated queue backlogs.

4.3 Impact of non-negligible deployment costs

It is proved in Section 4.2 that the multi-timescale design
preserves the asymptotic optimality in the case where a
charge of VNF only takes a portion of a time slot and the
new VNF can start to function straight away after installa-
tion (in other words, the VM does not suspend operations
for the installation). In this section, we proceed to consider
a further generalized case where the replacement of a VNF
can take a number of time slots (e.g., Tnull slots), and the op-
erations of the VM (including transmission and processing)
are suspended during the time slots. In this case, the tradeoff
of [O(ε),O(1

ε
)] remains valid. This is proved by considering

the worst-case scenario in terms of the time-average cost of
the platform, where every VM changes its VNF every T∆

slots. In other words, in Tnull slots out of every T∆ slots, the
entire platform is suspended. By extending (18) and (32),
we can show that the time-average cost of the platform is
upper-bounded by T∆−Tnull

T∆
O(ε), i.e.,

Φ′(x̂t) ≤ T∆ − Tnull

T∆
[Φ∗ + ε(B + C)], (33)

where Φ′(x̂t) is the time-average cost under the two-
timescale approach with non-negligible deployment cost. In

the worst-case scenario, the time-average queue length of
the platform grows to T∆

T∆−Tnull
O(1

ε
), i.e.,

lim
T→∞

1

T

T∑

t=1

∑

i,k,n

E[Qi
kn(t) + qikn(t)] =

T∆

T∆ − Tnull
O(

1

ε
).

(34)

From (33) and (34), there is still an [O(ε),O(1
ε
)]-tradeoff

between the optimality loss and queue length in the general-
ized case where the replacement of a VNF can take multiple
time slots.

4.4 Impact of non-negligible propagation delays

The asymptotic optimality of the proposed two-timescale
approach is not compromised in the presence of non-
negligible propagation delays between neighboring VMs
connected through multiple network nodes.

We assume that the knowledge of a VM on the queues of
its neighboring VM n is outdated by ω time slots (due to the
existence of network nodes between the VMs). We have ω ≤
ωmax ≤ N ′ − 1, where ωmax is the maximum propagation
delay measured in hops between any pair of nodes, and N ′

is the number of nodes in the network. Let Q̃i
kn(t) and q̃ikn(t)

denote the outdated queue lengths that a neighboring VM of
VM n has on VM n’s tasks at time slot t. Q̃i

kn(t) and q̃ikn(t)
are outdated by ω slots, as compared to the actual queues at
the time slot, Qi

kn(t) and qikn(t). By referring to Lemma 1,
both the propagation delays and multi-timescale operations,
leading to the outdated queue knowledge at neighboring
VMs, cause a bounded difference between the outdated and
up-to-date queue backlogs per slot t, as given by

∣
∣Qi

kn(t)− Q̃i
kn(t)

∣
∣ ≤ (T∆ + ωmax)ωQ, (35a)

∣
∣qikn(t)− q̃ikn(t)

∣
∣ ≤ (T∆ + ωmax)ωq, (35b)

where ωmaxωQ and T∆ωQ account for the maximum outdat-
ed backlogs due to the non-negligible propagation delays
and multi-timescale operations, respectively.

The outdated knowledge of VM n on its neighboring VM
b’s queues can affect its decision of service routing over link
[n, b] at time slot t. By substituting (35) into (21) and then
applying Theorem 2, we can show that the optimality loss
of the two-timescale solution for (20) under non-negligible
propagation delays can be updated by
∣
∣
∣

∑

i,k,n,b∈N

[f1(ê
t, p̂t) + f2(ũ

t) + f3(ṽ
t)]

−
∑

i,k,n,b∈N

[f1(e
t,pt) + f2(u

t) + f3(v
t)]
∣
∣
∣ ≤ ε(C +D),

(36)

where D := N2|I|K(2T∆ωmax + ω2
max)[

2
βmaxω

2
Q +

1
2βmax (ωQ + ωq)

2]. The functions f2(û
t) and f3(v̂

t) in The-

orem 2 is updated by f2(ũ
t) and f3(ṽ

t); the function
f1(ê

t, p̂t) is unaffected in the presence of non-negligible
propagation delays, since VM n always has the up-to-date
backlogs of its own queues. The optimality loss is also upper
bounded, and asymptotically diminishes as the stepsize ε
decreases.

10

Algorithm 2 Distributed Learn-and-Adapt NFV Optimiza-
tion

1: for t = 1, 2 . . . do
2: Online processing and routing (1st gradient):
3: Construct the effective dual variable via (39), observe

the current state st, and obtain placement, processing
and routing decisions xt(γt) by minimizing online La-
grangian (38).

4: Update the instantaneous queue length Q(t+1) and
q(t+ 1) with xt(γt) via queue dynamics (3) and (4).

5: Statistical learning (2nd gradient):

6: Obtain variable xt(λ̂t) by solving online Lagrangian
minimization with sample st via (41).

7: Update the empirical dual variable λ̂t+1 via (40).
8: end for

Based on Theorem 1 and (36), the optimality loss of the
two-timescale approach under non-negligible propagation
delays is upper bounded by

Φ(x̃t) ≤ Φ∗ + ε(B + C +D), (37)

where Φ(x̃t) is the time-average cost of the two-timescale
approach under non-negligible propagation delays, and it
can asymptotically approach the global optimum Φ∗ as ε
decreases. The asymptotic optimality of the proposed ap-
proach is proved under non-negligible propagation delays.

4.5 Learn-and-adapt for placement acceleration

While preserving the asymptotic optimality, the larger
timescale can slow down the optimal placement of VNFs.
We propose to speed the placement up through a learn-
ing and adaptation method [31]. The Lagrange multipliers
λ̃i
kn,1(t) and λ̃i

kn,2(t) play the key roles in the proposed
distributed online optimization of NFV in (17). We can in-
crementally learn these Lagrange multipliers from observed
data and speed up the convergence of the multipliers driven
by the learning process.

In the proposed learn-and-adapt scheme, with the online
learning of λ̃i

kn,1(t) and λ̃i
kn,2(t), ∀n, i at each slot t, two

stochastic gradients are updated using the current st. The
first gradient γt is designed to minimize the instantaneous
Lagrangian for optimal decision makings on processing or
routing network services, as given by [cf. (16)]

xt(γt) = arg min
xt∈Ft

Lt(xt,γt) (38)

which depends on what we term effective multiplier γt :=
{γi

kn,1(t), γ
i
kn,2(t), ∀n, i}, as given by

γt

︸ ︷︷ ︸

effective multiplier

= λ̂t

︸ ︷︷ ︸

statistical learning

+ εA(t) − θ
︸ ︷︷ ︸

online adaptation

, (39)

where λ̂t := {λ̂i
kn,1(t), λ̂

i
kn,2(t), ∀i, k, n} is the empirical du-

al variable, and θ controls the bias of γt in the steady state,
and can be judiciously designed to achieve the improved
cost-delay tradeoff, as will be shown in Theorem 3.

For a better illustration of the effective multiplier in (39),

we call λ̂(t) the statistically learnt dual variable to obtain the
exact optimal argument of the dual problem maxλ�0 D(λ).
We call εA(t) (which is exactly λ as shown in (17)) the online

adaptation term, since it can track the instantaneous change
of system statistics. The control variable ε tunes the weights
of these two factors.

The second gradient is designed to simply learn the
stochastic gradient of (13) at the previous empirical dual

variable λ̂t, and implement a gradient ascent update as

λ̂i
kn,1(t+ 1) = λ̂i

kn,1(t) + η(t)[
∑

a∈N

ui
k,an(λ̂

i
kn,1(t)) +Ri,t

kn

+
∑

c∈N

vik,cn(λ̂
i
kn,1(t))−

∑

b∈N

ui
k,nb(λ̂

i
kn,1(t))

− pikn(λ̂
i
kn,1(t))ekn(λ̂

i
kn,1(t))]

+,

λ̂i
kn,2(t+ 1) = λ̂i

kn,2(t) + η(t)[pik′n(λ̂
i
k′n,2(t))ek′n(λ̂

i
k′n,1(t))

−
∑

d∈N

vik,nd(λ̂
i
kn,2(t))]

+, (40)

where η(t) is a proper diminishing stepsize, and the “virtu-

al” allocation xt(λ̂t) can be found by solving

xt(λ̂t) = arg min
xt∈Ft

Lt(xt, λ̂t). (41)

With learn-and-adaption incorporated, Algorithm 2
takes an additional learning step in Algorithm 1, i.e., (40),
which adopts gradient ascent with diminishing stepsize η(t)
to find the “best empirical” dual variable from all observed
network states. In the transient stage, the extra gradient
evaluations and empirical dual variables accelerate the con-
vergence speed of Algorithm 1; while in the steady stage, the
empirical dual variable approaches the optimal multiplier,
which significantly reduces the steady-state queue lengths.

Using the learn-and-adapt approach, we are ready to
arrive at the following theorem [31, Theorems 2 and 3].

Theorem 3. Suppose that the assumptions in Theorem 1 are
satisfied. Then with γt defined in (39) and θ = O(

√
ε log2(ε)),

Algorithm 2 yields a near-optimal solution for (7) in the sense
that

Φ∗ ≤ lim
T→∞

1

T

T∑

t=1

E
[
Φt
(
xt(γt)

)]
≤ Φ∗ +O(ε). (42)

The long-term average expected queue length satisfies

lim
T→∞

1

T

T∑

t=1

∑

i,k,n

E[Qi
kn(t) + qikn(t)] = O

(

log2(ε)√
ε

)

, (43)

where xt(γt) denotes the real-time operations obtained from the
Lagrangian minimization (38).

Theorem 3 asserts that by setting θ = O(
√
ε log2(ε)),

Algorithm 2 is asymptotically O(ε)-optimal with an average
queue length O(log2(ε)/

√
ε). This implies that the algo-

rithm is able to achieve a near-optimal cost-delay tradeoff
[ε, log2(ε)/

√
ε]; see [31]. Comparing with the standard trade-

off [ε, 1/ε] under Algorithm 1, the learn-and-adapt design of
Algorithm 2 remarkably improves the delay performance.

5 NUMERICAL TESTS

Numerical tests are provided to validate our analytical
claims and demonstrate the merits of the proposed algo-
rithms. Two types of network services are considered on
the platform with N = 50 VMs. The first type of network

11

0 5000 10000

Time slot

(a)

0

0.5

1

1.5

2

2.5

A
v

er
ag

e
co

st

104

Heu

Algorithm 1

Algorithm 2

0 5000 10000

Time slot

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

In
st

an
ta

n
eo

u
s

q
u

eu
e

le
n

g
th

104

Heu

Algorithm 1

Algorithm 2

Fig. 3. Comparison of time-average costs and instantaneous queue
lengths, where N = 50, ε = 0.1 and average arrival rate is 220
services/slot.

0.02 0.04 0.06 0.08 0.1

Parameter

(a)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
te

ad
y

-s
ta

te
 c

o
st

104

Heu

Algorithm 1

Algorithm 2

0.02 0.04 0.06 0.08 0.1

Parameter

(b)

0

0.5

1

1.5

2

2.5

3

3.5

S
te

ad
y

-s
ta

te
 q

u
eu

e
le

n
g

th

105

Heu

Algorithm 1

Algorithm 2

Fig. 4. Comparison of steady-state costs and queue lengths under
different ε, where N = 50 and average arrival rate is 220 services/slot.

service is {f1, f2, f3} and the second type of network service
is {f3, f1, f2}. Suppose that each service has a size of 1
KB. The processing and routing prices αt

n and βt
[a,b] are

uniformly distributed over [0.1, 1] by default; pmax
n and lmax

ab

are generated from a uniform distribution within [10, 20].
The default arrival rate of network services is uniformly
distributed with a mean of 220 services/slot. The stepsize
is η(t) = 1/

√
t, ∀t, the tradeoff variable is ε = 0.1, and

the bias correction vector is chosen as θ = 2
√
ε log2(ε).

Algorithms are evaluated in a two-timescale scenario, where
the placement of VNFs is carried out every T∆ = 5 slots. In
addition to the proposed Algorithms 1 and 2, we also simu-
late a heuristic algorithm (Heu) as the benchmark, which
decides the placement of VNFs and processing/routing
rates similarly as Algorithm 1, but with the prices in (23)
and (26) replaced by their means. Therefore, the decisions
are made only based on queue differences, with no price
considerations.

Fig. 3 compares the three algorithms in terms of the time-
average cost and the instantaneous queue length. It can be
seen from Fig. 3(a) that the time-average cost of Algorithm 2
converges slightly higher than that of Algorithm 1, while the
time-average cost of Heu is about 23% larger. Furthermore,

0 2 4 6 8

Price variance

(a)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

S
te

ad
y

-s
ta

te
 c

o
st

104

Heu

Algorithm 1

Algorithm 2

0 2 4 6 8

Price variance

(b)

1

1.5

2

2.5

3

3.5

S
te

ad
y

-s
ta

te
 q

u
eu

e
le

n
g

th

104

Heu

Algorithm 1

Algorithm 2

Fig. 5. Comparison of steady-state costs and queue lengths under
different price variances, where N = 50, ε = 0.1 and average arrival
rate is 220 services/slot.

0 2 4 6 8

Price variance

(a)

640

645

650

655

660

665

670

675

680

685

690

A
v

er
ag

e
p

ro
ce

ss
in

g
 r

at
e

Heu

Algorithm 1

Algorithm 2

0 2 4 6 8

Price variance

(b)

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
v

er
ag

e
ro

u
ti

n
g

 r
at

e

Heu

Algorithm 1

Algorithm 2

Fig. 6. Comparison of average processing and routing rates for all
network services on all VMs under different price variances, where
N = 50, ε = 0.1 and average arrival rate is 220 services/slot.

Algorithm 2 exhibits faster convergence than Algorithm 1
and Heu, as its time-average cost quickly reaches the opti-
mal steady-state value by leveraging the learning process.
Fig. 3(b) shows that Algorithm 2 incurs the shortest queue
lengths among the three algorithms, followed by Algorithm
1. Particularly, the aggregated instantaneous queue length
of Algorithm 2 is about 72% and 74% smaller than those of
Algorithm 1 and Heu, respectively. Clearly, the learn-and-
adapt procedure reduces delay without markedly compro-
mising the time-average cost.

Fig. 4 compares the steady-state cost and queue length
of the three algorithms, under different stepsize (tradeoff
coefficient) ε. It is observed that as ε grows, the steady-
state costs of all three algorithms increase and the steady-
state queue lengths declines. This validates our findings in
Theorems 1 and 3.

The steady-state cost and queue length are also com-
pared under different price variances in Figs. 5(a) and (b).
Here, processing and routing prices are generated with the
mean of 0.55 and variance from 3.3 × 10−5 to 8.3 × 10−2.
The costs and queue lengths of Algorithms 1 and 2 decrease
as the price variance increases, while those of Heu remain

12

10 15 20 25 30 35 40 45 50

Network size

103

104

S
te

ad
y

-s
ta

te
 c

o
st

Heu

Algorithm 1

Algorithm 2

Arrival rate: 55 services/sec

Arrival rate: 110 services/sec

Fig. 7. Comparison of steady-state costs under different network sizes,
where ε = 0.1.

10 15 20 25 30 35 40 45 50

Network size

104

105

S
te

ad
y

-s
ta

te
 q

u
eu

e
le

n
g

th

Heu

Algorithm 1

Algorithm 2

Arrival rate: 110 services/sec

Arrival rate: 55 services/sec

Fig. 8. Comparison of steady-state queue lengths under different net-
work sizes, where ε = 0.1.

unchanged. This is because Heu adopts price-independent
processing and routing rates, while Algorithms 1 and 2
are able to minimize the cost by taking advantage of price
differences among VMs and links.

As further shown in Figs. 6(a) and (b), the average
processing and routing rates of Algorithms 1 and 2 rise with
the growth of price variance, since the algorithms either
choose a lower priced link with a higher routing rate, or
a lower priced VM with a higher processing rate.

An interesting finding is that the average backlog of
Algorithm 2 is insusceptible to price variances; see Fig. 5(b).
This is due to the fact that the algorithm, aiming to reduce
the backlog of unfinished network services, achieves the aim
by avoiding routing incoming network services to another
VMs. This can also be evident from Figs. 6(a) and (b),
where VNFs are processed typically at the first encountered
corresponding VMs, even at higher processing rates, hence
reducing routing rates.

Fig. 7 plots the steady-state costs of Algorithms 1 and 2,
and Heu, as the network size N (i.e., the number of VMs)
increases. It can be observed that when the arrival rate is 55
services/slot, the costs of Algorithms 1 and 2 first decrease
and then increase as the network becomes large. The re-
duction is because the increased connectivity of VMs helps

TABLE 2
Runtime per timeslot per VM (in milliseconds, c.f., time slot T = 1

second/slot)

N 10 20 30 50 75 100
Runtime 0.183 0.222 0.335 0.632 1.06 1.51

increase the routing links and neighboring VMs from which
the most cost-effective routing links and neighboring VMs
can be chosen for transmitting and processing services. As
the network size becomes larger, the number of routing hops
of services grows for stabilizing the network, and in turn,
increases the costs. We can also see that the costs increase
as the average arrival rate of services increases, since more
resources are required to accommodate the increased traffic
arrivals.

In Fig. 8, we plot the steady-state queue lengths of
Algorithms 1 and 2, and Heu, as the network size grows.
We can see that Algorithms 1 and 2 are able to reduce the
queue length of the network, as compared to Heu. The
reductions of Algorithms 1 and 2 are increasingly large,
as the arrival rate of services grows. Table 2 shows the
runtime performance of Algorithm 1. As analyzed in Section
3.2, Algorithm 1 has a quadratically increasing complexity
with regards to the network size N . The approach has a
significantly lower complexity and hence higher scalability
than the so-called, offline, optimal centralized approach.

6 CONCLUSIONS

In this paper, a new distributed online optimization was
developed to minimize the time-average cost of NFV, while
stabilizing the function queues of VMs. Asymptotically opti-
mal decisions on the placement of VNFs, and the processing
and routing of network services were instantly generated at
individual VMs, adapting to the topology and stochasticity
of the network. A learn-and-adapt approach was further
proposed to speed up stabilizing the VMs and achieve a
cost-delay tradeoff [ε, log2(ε)/

√
ε]. Numerical results show

that the proposed method is able to reduce the time-average
cost of NFV by 23% and reduce the queue length by 74%.

REFERENCES

[1] Y. Li and M. Chen, “Software-defined network function virtualiza-
tion: A survey,” IEEE Access, vol. 3, pp. 2542–2553, Dec. 2015.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network func-
tion virtualization: Challenges and opportunities for innovations,”
IEEE Commun. Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[3] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 2016.

[4] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network in-
stance migration in network function virtualization architectures,”
IEEE/ACM Trans. Netw., pp. 1–18, Mar. 2017.

[5] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Trans. Netw. Service Manag., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[6] V. Eramo, M. Ammar, and F. G. Lavacca, “Migration energy aware
reconfigurations of virtual network function instances in NFV
architectures,” IEEE Access, vol. 5, pp. 4927–4938, 2017.

13

[7] R. Riggio, A. Bradai, D. Harutyunyan, and T. Rasheed, “Schedul-
ing wireless virtual networks functions,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 2, pp. 240–252, June 2016.

[8] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An
online mechanism for resource allocation and pricing in clouds,”
IEEE Trans. Comput., vol. 65, no. 4, pp. 1172–1184, Apr. 2016.

[9] W. Chen, I. Paik, and Z. Li, “Cost-aware streaming workflow
allocation on geo-distributed data centers,” IEEE Trans. Comput.,
vol. 66, no. 2, pp. 256–271, Feb. 2017.

[10] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,” IEEE
Trans. Commun., vol. 64, no. 9, pp. 3746–3758, Sept. 2016.

[11] F. Z. Yousaf, P. Loureiro, F. Zdarsky, T. Taleb, and M. Liebsch, “Cost
analysis of initial deployment strategies for virtualized mobile
core network functions,” IEEE Commun. Mag., vol. 53, no. 12, pp.
60–66, Dec. 2015.

[12] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Computer Communica-
tions, 2015, pp. 1346–1354.

[13] V. Eramo, A. Tosti, and E. Miucci, “Server resource dimensioning
and routing of service function chain in NFV network architec-
tures,” J. Electr. Comput. Eng., vol. 2016, no. 9, pp. 1–12, 2016.

[14] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions,” in Proc. IEEE Conf. Netw.
Softwarization (NetSoft), London, UK, 13–17 Apr. 2015.

[15] R. Wen, G. Feng, W. Tan, R. Ni, S. Qin, and G. Wang, “Proto-
col function block mapping of software defined protocol for 5G
mobile networks,” IEEE Trans. Mobile Comput., vol. 17, no. 7, pp.
1651–1665, 2018.

[16] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, and G. B. Gian-
nakis, “Real-time energy trading and future planning for fifth-
generation wireless communications,” IEEE Wireless Commun.,
vol. 24, no. 4, pp. 24–30, Aug. 2017.

[17] X. Wang, Y. Zhang, T. Chen, and G. B. Giannakis, “Dynamic en-
ergy management for smart-grid-powered coordinated multipoint
systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 5, pp. 1348–1359,
May 2016.

[18] X. Wang, X. Chen, T. Chen, L. Huang, and G. B. Giannakis, “Two-
scale stochastic control for integrated multipoint communication
systems with renewables,” IEEE Trans. Smart Grid, vol. PP, no. 99,
pp. 1–1, 2016.

[19] X. Wang, T. Chen, X. Chen, X. Zhou, and G. B. Giannakis, “Dynam-
ic resource allocation for smart-grid powered MIMO downlink
transmissions,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp.
3354–3365, Dec. 2016.

[20] Y. Yao, L. Huang, A. B. Sharma, L. Golubchik, and M. J. Neely,
“Power cost reduction in distributed data centers: A two-time-
scale approach for delay tolerant workloads,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 200–211, Jan. 2013.

[21] S. Sun, M. Dong, and B. Liang, “Distributed real-time power
balancing in renewable-integrated power grids with storage and
flexible loads,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2337–2349,
Sept. 2016.

[22] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and Y. J. Guo, “Multi-
timescale decentralized online orchestration of software-defined
network,” IEEE J. Sel. Areas Commun., accepted in Aug. 2018.

[23] M. J. Neely, “Optimal backpressure routing for wireless networks
with multi-receiver diversity,” Ad Hoc Networks, vol. 7, no. 5, pp.
862–881, 2009.

[24] L. Huang and M. J. Neely, “The optimality of two prices: Maximiz-
ing revenue in a stochastic communication system,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 406–419, Apr. 2010.

[25] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading al-
gorithm for mobile computing,” IEEE Trans. Wireless Commun.,
vol. 11, no. 6, pp. 1991–1995, June 2012.

[26] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, R. P. Liu, and
G. B. Giannakis, “Distributed stochastic optimization of network
function virtualization,” in Proc. IEEE GLOBECOM, Singapore,
Dec. 2017.

[27] S. T. Watt, S. Achanta, H. Abubakari, E. Sagen, Z. Korkmaz,
and H. Ahmed, “Understanding and applying precision time
protocol,” in Smart Grid, 2016, pp. 1–7.

[28] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch,
“Approximation algorithms for the NFV service distribution prob-
lem,” in IEEE INFOCOM, 2017, pp. 1–9.

[29] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[30] Q. Zhu and R. Boutaba, “Nonlinear quadratic pricing for concavi-
fiable utilities in network rate control,” in Proc. IEEE GLOBECOM,
New Orleans, LA, Dec. 2008.

[31] T. Chen, Q. Ling, and G. B. Giannakis, “Learn-and-adapt stochastic
dual gradients for network resource allocation,” IEEE Trans. Contr.
Netw. Syst., Available online: https://arxiv.org/pdf/1703.01673v1.
pdf, 2017.

[32] D. M. Himmelblau, Applied nonlinear programming. McGraw-Hill
Companies, 1972.

Xiaojing Chen (S’14) received the B.E. de-
gree in Communication Science and Engineer-
ing from Fudan University, China in 2013. Cur-
rently she is working toward her Ph.D. degrees
in both Fudan University and Macquarie U-
niversity. Her research interests include wire-
less communications, energy-efficient commu-
nications, stochastic network optimization and
network functions virtualization. She received a
National Scholarship from China in 2016.

Wei Ni (SM’15) received the B.E. and Ph.D. de-
grees in Electronic Engineering from Fudan Uni-
versity, Shanghai, China, in 2000 and 2005, re-
spectively. Currently he is a Senior Scientist, and
Team and Project Leader at CSIRO, Australia.
He also holds honorary positions at the Univer-
sity of New South Wales (UNSW), Macquarie
University (MQ) and the University of Technolo-
gy Sydney (UTS). Prior to this he was a post-
doctoral research fellow at Shanghai Jiaotong
University (2005-2008), Research Scientist and

Deputy Project Manager at the Bell Labs R&I Center, Alcatel/Alcatel-
Lucent (2005-2008), and Senior Researcher at Devices R&D, Nokia
(2008-2009). His research interests include optimization, game theory,
graph theory, as well as their applications to network and security.

Dr Ni serves as Editor for Hindawi Journal of Engineering since 2012,
secretary of IEEE NSW VTS Chapter since 2015, Track Chair for VTC-
Spring 2016 and 2017, and Publication Chair for BodyNet 2015. He
also served as Student Travel Grant Chair for WPMC 2014, Program
Committee Member of CHINACOM 2014, TPC member of IEEE ICC’14,
ICCC’15, EICE’14, and WCNC’10.

Tianyi Chen (S’14) received the B. Eng. degree
(with highest honors) in Communication Science
and Engineering from Fudan University, and the
M.Sc. degree in Electrical and Computer Engi-
neering (ECE)from the University of Minnesota
(UMN), in 2014 and 2016, respectively. Since
July 2016, he has been working toward his Ph.D.
degree at UMN. His research interests lie in
online learning, online convex optimization, and
stochastic network optimization with applications
to smart grids, and Internet-of-Things. He was in

the Best Student Paper Award finalist of the Asilomar Conference on
Signals, Systems, and Computers. He received the National Scholarship
from China in 2013, UMN ECE Department Fellowship in 2014, and the
UMN Doctoral Dissertation Fellowship in 2017.

14

Iain B. Collings (Fellow’15) received the B.E.
degree in electrical and electronic engineering
from the University of Melbourne in 1992, and
the Ph.D. degree in systems engineering from
the Australian National University in 1995. Prior
to his current position as Head of Department
and Professor of Engineering at Macquarie U-
niversity, he was Research Director and OCE
Science Leader of theWireless and Network-
ing Technologies Laboratory at the CSIRO ICT
Centre, an Associate Professor at the University

of Sydney (1999C2005), a Lecturer at the University of Melbourne
(1996C1999), and a Research Fellow in the Australian Cooperative
Research Centre for Sensor Signal and Information Processing (1995).

He was elected as a 2015 IEEE Fellow. He has published over 300
research papers in the area of wireless digital communications. In 2009,
he was awarded the Engineers Australia IREE Neville Thiele Award
for outstanding achievements in engineering, and in 2011 he was a
recipient of the IEEE CommSoc Stephen O. Rice Best Paper Award for
IEEE TRANSACTIONS ON COMMUNICATIONS. Dr. Collings served
as an Editor for the IEEE TRANSACTIONS ONWIRELESS COMMU-
NICATIONS (2002C2009), and the Physical Communication Journal
(2008C2012). He has served as a Co/Vice-Chair of the Conference
Technical Program Committees for IEEE International Conference on
Communications (ICC) 2013, IEEE Vehicular Technology Conference
(VTC) Spring 2011, IEEE Wireless Communications and Networking
Conference (WCNC) 2010, and IEEE VTC Spring 2006. He is a
founding organizer of the Australian Communication Theory Workshops
2000C2013. He also served as the Chair of the Joint Communications &
Signal Processing Chapter in the IEEE NSW Section (2008C2010), and
as Secretary of the IEEE NSW Section (2010).

Xin Wang (SM’09) received the B.Sc. degree
and the M.Sc. degree from Fudan University,
Shanghai, China, in 1997 and 2000, respective-
ly, and the Ph.D. degree from Auburn University,
Auburn, AL, in 2004, all in electrical engineer-
ing.

From September 2004 to August 2006, he
was a Postdoctoral Research Associate with the
Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis.
In August 2006, he joined the Department of

Computer & Electrical Engineering and Computer Science, Florida At-
lantic University, Boca Raton, as an Assistant Professor, and then an
Associate Professor from August 2010. He is now a Professor with
the Department of Communication Science and Engineering, Fudan
University, China. His research interests include stochastic network
optimization, energy-efficient communications, cross-layer design, and
signal processing for communications. He is an Associate Editor for the
IEEE Transactions on Signal Processing, and an Editor for the IEEE
Transactions on Vehicular Technology. He was an Associate Editor for
the IEEE Signal Processing Letters.

Ren Ping Liu (SM’14) is a Professor at the
School of Electrical and Data Engineering in
University of Technology Sydney, where he lead-
s the Network Security Lab in the Global Big
Data Technologies Centre. He is also the Re-
search Program Leader of the Digital Agrifood
Technologies in Food Agility CRC, a governmen-
t/research/industry initiative to empower Australi-
a’s food industry through digital transformation.
Prior to that he was a Principal Scientist at
CSIRO, where he led wireless networking re-

search activities. He specialises in protocol design and modelling, and
has delivered networking solutions to a number of government agencies
and industry customers. Professor Liu was the winner of Australian
Engineering Innovation Award and CSIRO Chairman medal. His re-
search interests include Markov analysis and QoS scheduling in WLAN,
VANET, IoT, LTE, 5G, SDN, and network security. Professor Liu has over
100 research publications, and has supervised over 30 PhD students.

Professor Liu is the founding chair of IEEE NSW VTS Chapter and a
Senior Member of IEEE. He served as Technical Program Committee
chair and Organising Committee chair in a number of IEEE Confer-
ences. Ren Ping Liu received his B.E.(Hon) and M.E. degrees from
Beijing University of Posts and Telecommunications, China, and the
Ph.D. degree from the University of Newcastle, Australia.

Georgios. B. Giannakis (Fellow’97) received
his Diploma in Electrical Engr. from the Ntl. Tech.
Univ. of Athens, Greece, 1981. From 1982 to
1986 he was with the Univ. of Southern Califor-
nia (USC), where he received his MSc. in Elec-
trical Engineering, 1983, MSc. in Mathematics,
1986, and Ph.D. in Electrical Engr., 1986. He
was with the University of Virginia from 1987 to
1998, and since 1999 he has been a professor
with the Univ. of Minnesota, where he holds an
Endowed Chair in Wireless Telecommunication-

s, a University of Minnesota McKnight Presidential Chair in ECE, and
serves as director of the Digital Technology Center.

His general interests span the areas of communications, networking
and statistical signal processing - subjects on which he has published
more than 400 journal papers, 700 conference papers, 25 book chap-
ters, two edited books and two research monographs (h-index 124).
Current research focuses on learning from Big Data, wireless cogni-
tive radios, and network science with applications to social, brain, and
power networks with renewables. He is the (co-) inventor of 30 patents
issued, and the (co-) recipient of 8 best paper awards from the IEEE
Signal Processing (SP) and Communications Societies, including the
G. Marconi Prize Paper Award in Wireless Communications. He also
received Technical Achievement Awards from the SP Society (2000),
from EURASIP (2005), a Young Faculty Teaching Award, the G. W. Tay-
lor Award for Distinguished Research from the University of Minnesota,
and the IEEE Fourier Technical Field Award (2015). He is a Fellow of
EURASIP, and has served the IEEE in a number of posts, including that
of a Distinguished Lecturer for the IEEE-SP Society.

