IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 9, MAY 1, 2019

2471

Online Graph-Adaptive Learning With
Scalability and Privacy

Yanning Shen"”, Student Member, IEEE, Geert Leus

Abstract—Graphs are widely adopted for modeling complex sys-
tems, including financial, biological, and social networks. Nodes in
networks usually entail attributes, such as the age or gender of
users in a social network. However, real-world networks can have
very large size, and nodal attributes can be unavailable to a num-
ber of nodes, e.g., due to privacy concerns. Moreover, new nodes
can emerge over time, which can necessitate real-time evaluation of
their nodal attributes. In this context, this paper deals with scalable
learning of nodal attributes by estimating a nodal function based
on noisy observations at a subset of nodes. A multikernel-based
approach is developed, which is scalable to large-size networks.
Unlike most existing methods that re-solve the function estima-
tion problem over all existing nodes whenever a new node joins
the network, the novel method is capable of providing real-time
evaluation of the function values on newly joining nodes without
resorting to a batch solver. Interestingly, the novel scheme only re-
lies on an encrypted version of each node’s connectivity in order to
learn the nodal attributes, which promotes privacy. Experiments
on both synthetic and real datasets corroborate the effectiveness of
the proposed methods.

Index Terms—Graph signal reconstruction, kernel-based learn-
ing, learning over dynamic graphs, online learning.

1. INTRODUCTION

STIMATING nodal functions/signals over networks is a
E task emerging in various domains, such as social, brain,
and power networks, to name a few. Functions of nodes can
represent certain attributes or classes of these nodes. In Facebook
for instance, each node represents a person, and the presence
of an edge indicates that two persons are friends, while nodal
attributes can be age, gender or movie ratings of each person.
In financial networks, where each node is a company, with links
denoting trade between two companies, the function of the node
can represent the category that each company belongs to, e.g.,
technology-, fashion-, or education-related.

Inreal-world networks, there are often unavailable nodal func-
tion values, due to, e.g., privacy issues. Hence, a topic of great
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practical importance is to interpolate missing nodal values (class,
ranking or function), based on the function values at a subset
of observed nodes. Interpolation of nodal function values of-
ten relies on the assumption of “smoothness” over the graphs,
which implies that neighboring nodes will have similar nodal
function values. For example, in social networks, people tend
to rate e.g., movies similar to their friends, and in financial net-
works, companies that trade with each other usually belong to
the same category. From this point of view, function estimation
over graphs based on partial observations has been investigated
extensively, [1]-[6]. Function estimation has been also pursued
in the context of semi-supervised learning, e.g., for transductive
regression or classification, see e.g., [7]-[10]. The same task has
been studied recently as signal reconstruction over graphs, see
e.g., [11]-[15], where signal values on unobserved nodes can be
estimated by properly introducing a graph-aware prior. Kernel-
based methods for learning over graphs offer a unifying frame-
work that includes linear and nonlinear function estimators [13],
[16], [17]. The nonlinear methods outperform the linear ones but
suffer from the curse of dimensionality [18], rendering them less
attractive for large-scale networks.

To alleviate this limitation, a scalable kernel-based approach
will be introduced in the present paper, which leverages the ran-
dom feature approximation to ensure scalability while also al-
lowing real-time evaluation of the functions over large-scale
dynamic networks. In addition, the novel approach incorporates
a data-driven scheme for adaptive kernel selection.

Adaptive learning over graphs has been also investigated for
tracking and learning over possibly dynamic networks, e.g.,
[19], [20]. Least mean-squares and recursive least-squares adap-
tive schemes have been developed in [19], without explicitly
accounting for evolving network topologies. In contrast, [20]
proposed a kernel-based reconstruction scheme to track time-
varying signals over time-evolving topologies, but assumed that
the kernel function is selected a priori. Node2vec [21] and Deep-
Walk [22] that can sequentially process the graph adjacency ma-
trix have been developed based on deep learning techniques. All
these prior works assume that the network size is fixed.

In certain applications however, new nodes may join the net-
work over time. For example, hundreds of new users are joining
Facebook or Netflix every day, and new companies are founded
in financial networks regularly. Real-time and scalable estima-
tion of the desired functions on these newly-joining nodes is of
great importance. While simple schemes such as averaging over
one- or multi-hop neighborhoods are scalable to network size by
predicting the value on each newly-coming node as a weighted
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combination of its multi-hop neighborhoods [23], they do not
capture global information over the network. In addition, exist-
ing rigorous approaches are in general less efficient in account-
ing for newly-joining nodes, and need to solve the problem over
all nodes, every time new nodes join the network, which incurs
complexity O(N?), where N denotes the network size [13],
[16]. As a result, these methods are not amenable to real-time
evaluation over newly-joining nodes. To this end, the present
paper develops a scalable online graph-adaptive algorithm that
can efficiently estimate nodal functions on newly-joining nodes
‘on the fly.” Note that recently GraphSAGE has been developed
to cope with possibly growing networks [24].

Besides scalability and adaptivity, nodes may have firm pri-
vacy requirements, and may therefore not be willing to reveal
who their neighbors are. However, most graph-based learning
methods require knowing the entire connectivity pattern, and
thus cannot meet the privacy requirements, e.g., [21], [22], [24].
The novel random feature based approach on the other hand,
only requires an encrypted version of each node’s connectivity
pattern, which makes it appealing for networks with stringent
privacy constraints.

In short, we put forth a novel online multikernel learning
(MKL) framework for effectively learning and tracking non-
linear functions over graphs. Our contributions are as follows.

cl) A scalable MKL approach is developed to efficiently es-
timate the nodal function values both on the observed and
un-observed nodes of a graph;
The resultant algorithm is capable of estimating the func-
tion value of newly incoming nodes with high accuracy
without having to solve the batch problem over all nodes,
making it highly scalable as the network size grows, and
suitable for nodal function estimation in dynamic net-
works;
Unlike most existing methods that rely on nodal feature
vectors in order to learn the function, the proposed scheme
simply capitalizes on the connectivity pattern of each
node, while at the same time, nodal feature vectors can
be easily incorporated if available; and,
The proposed algorithm does not require nodes to
share connectivity patterns. Instead, a privacy-preserving
scheme is developed for estimating the nodal function
values based on an encrypted version of the nodal con-
nectivity patterns, hence respecting node privacy.

The rest of this paper is organized as follows. Preliminaries are
in Section II, while Section III presents an online kernel-based
algorithm that allows sequential processing of nodal samples.
Section IV develops an online MKL scheme for sequential data-
driven kernel selection, which allows graph-adaptive selection of
kernel functions to best fit the learning task of interest. Finally,
results of corroborating numerical tests on both synthetic and
real data are presented in Section VI, while concluding remarks
along with a discussion of ongoing and future directions are
given in Section VII.

Notation: Bold uppercase (lowercase) letters denote matrices
(column vectors), while (-)" and \;(.) stand for matrix trans-
position, and the ith leading eigenvalue of the matrix argument,
respectively. The identity matrix will be represented by I, while
0 will denote the matrix of all zeros, and their dimensions will

c2)

c3)

cd)
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be clear from the context. Finally, the £,, and Frobenius norms
will be denoted by || - ||,,, and || - || , respectively.

II. KERNEL-BASED LEARNING OVER GRAPHS

Consider a graph G(V, &) of N nodes, whose topology is cap-
tured by a known adjacency matrix A € RV*N  Let a,,,, € R
denote the (n, n') entry of A, which is nonzero only if an edge is
present from node n’ to n. A real-valued function (or signal) on
a graph is a mapping f : V — R, where V is the set of vertices.
The value f(v) = x, represents an attribute of v € V, e.g., in
the context of brain networks, x,, could represent the sample
of an electroencephalogram (EEG), or functional magnetic res-
onance imaging (fMRI) measurement at region n. In a social
network, x,, could denote the age, political alignment, or an-
nual income of the nth person. Suppose that a collection of noisy
samples {y,, = @y, + €, }M_, is available, where e,,, mod-
els noise, and M < N represents the number of measurements.
Given {y,,}M_,, and with the graph topology known, the goal
is to estimate f(v), and thus reconstruct the graph signal at un-
observed vertices. Letting y := [y1,...,yar| ", the observation
vector obeys

y=¥x+e (D

where X :=[24,,...,Tyy] > €:=[e1,...,en]', and W €
{0, 1}M>N s a sampling matrix with binary entries [¥],,, ,,, =
1form=1,..., M, and 0, elsewhere.

Given ¥, y,and A, the goal is to estimate x over the entire net-
work. To tackle the under-determined system (1), consider func-
tion f belonging to a reproducing kernel Hilbert space (RKHS)
defined as [13], [16]

e oo

where x : V x V — R is a pre-selected kernel function. Here-
after, we will let n,,, = m for notational convenience, and with-
out loss of generality (wlog). Given y, the RKHS-based estimate
is formed as

Zann U, Up ), Oty € ]R} 2)

n=1

ffargmm — ZC

m=1

(Um)sym) + 2L (IF3) 3

where the cost C(-, ) can be selected depending on the learning
task, e.g., the least-squares (LS) for regression, or the logis-
tic loss for classification; || f]|3, := Y, >, nak(vn, vy ) is
the RKHS norm; €2(-) is an increasing function; and, ;¢ > 0 is a
regularization parameter that copes with overfitting. According
to the definition of graph RKHS in (2), the function estimate
can be written as f(v) = YN ay,k(v,vy,) := a k(v), where
a:=[ayg,... ,ozN]-r € RY collects the basis coefficients, and
k(v) := [k(v,v1),...,K(v,vn)]". Substituting into the RKHS
norm, we find || f]|Z, := ", >, anows(vn, vy) = &' Ka,
where the N x N kernel matrix K has entries [K],, . :=
K(Vn, Uy ); thus, the functional problem (3) boils down to

min — ZC &' k(vm), Ym) +MQ(_TI_(64). (€))

acRN M
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According to the representer theorem, the optimal solution of
(3) admits the finite-dimensional form given by [13], [16]

M
fv) = Z k(v v 1= o k(v). 3)
m=1
where v := [aq, ..., ap]" € RM and k(v) := [k(v,v1),. ..,

k(v,var)]". This means that the coefficients corresponding to
the unobserved nodes are all zero. This implies that the function
over the graph can be estimated by optimizing over the M x 1
vector a [cf. (3)]

M

min o7 2 CleTk(vm), ym) + 10 (aTKa) - ©
where K := WK W. For general kernel-based learning tasks,
K is formed using the nonlinear functions of pairwise correla-
tions £ (vp, vy ) = @, ¢, where ¢,, denotes the feature vector
of node n, which can collect, for example, the buying history of
users on Amazon, or the trading history of companies in finan-
cial networks. However, such information may not be available
in practice, due to, e.g., privacy concerns. This has motivated the
graph-kernel based approaches in [13] and [16], to reconstruct
the graph signal when only the network structure is available,
and the kernel matrix is selected as a nonlinear function of the
graph Laplacian matrix. Specifically, these works mostly con-
sider undirected networks, A = AT,

Given the normalized Laplacian matrix L:=1—-D~
AD /2, with D := diag(A1), and letting L := UAU, the
family of graphical kernels is

1/2

K := /(L) := Urf(A)UT (7)

where r(.) is anon-decreasing scalar function of the eigenvalues,
and  denotes pseudo-inverse. By selecting 7(.), different graph
properties can be accounted for, including smoothness, band-
limitedness, the random walk [16], and diffusion [2].

Although graph-kernel based methods are effective in recon-
structing signals over graphs, it can be observed from (7) that
formulating K generally requires an eigenvalue decomposition
of L, which incurs complexity O(N?) that can be prohibitive
for large-scale networks. Moreover, even though nodal feature
vectors {¢,} are not necessary to form K, the graph-kernel-
based scheme requires knowledge of the topology, meaning
A, in order to estimate the nodal function of each node. How-
ever, in networks with strict privacy requirements, nodes may
not be willing to share such information with others. In Face-
book, for example, most people do not make their friend list
public. In addition, solving (4) assumes that all sampled nodes
are available in batch, which may not be true in scenarios where
nodes are sampled in a sequential fashion.

In response to these challenges, an online scalable kernel-
based method will be developed in the ensuing section to deal
with sequentially obtained data samples, over generally dynamic
networks. The resultant algorithm only requires encrypted ver-
sions of the nodal connectivity patterns of other nodes, and hence
it offers privacy.
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III. ONLINE KERNEL-BASED LEARNING OVER GRAPHS

Instead of resorting to a graph kernel that requires an eigen-
value decomposition of L in (7), the present section advocates
treating the connectivity pattern of each node as its feature vec-

tor, which can be the nth column a'

and possibly the nth row
(agf) ) of the adjacency (if A is nonsymmetric). We will hence-
forth term this the connectivity pattern of v,,, and denote it as
a,, for brevity. Given a,,, we will interpolate unavailable nodal
function values f (v,,) using a nonparametric approach, that is
different and scalable relative to [ 16] and [13]. The kernel matrix
is now

[K]n,n’ = H(Unv Un’) = R(ana an’)~ (8)

Again, with M nodes sampled, the representer theorem asserts
that the sought function estimator has the form [18]

M
f(vn) = f(an) = Z O‘m"i(ama an) = aTk(an) )

m=1
where k(a,,) := [k(an,a;) ... k(a,,ap)] " It can be observed

from (9) that f (v, ) involves the adjacency of the entire network,
namely {a,, }»_, which leads to potentially growing complex-
ity O(M?) as the number of sampled nodes increases [18].

A. Batch RF-Based Learning Over Graphs

To bypass this growing complexity, we will resort to the
so-called random feature approximation [25] in order to re-
duce the original functional learning task in (4) to a problem
with the number of unknown parameters not growing with M.
We first approximate x in (5) using random features (RFs)
[25], [26] that are obtained from a shift-invariant kernel sat-
isfying k(a,,a, ) = k(a, — a,). For k(a, — a,) absolutely
integrable, its Fourier transform 7, (v) exists and represents
the power spectral density, which upon normalizing to ensure
k(0) = 1, can also be viewed as a probability density function
(pdf); hence,

K(a, —ay) = /W,Q(V)ej"T(an*an/)dv

= E, [V (Bnmaw)] (10)

where the last equality is due to the definition of the expected
value. Drawing a sufficient number of D independent and iden-
tically distributed samples {v;}2 , from 7, (v), the ensemble
mean (10) can be approximated by the sample average

(1)

where V :=[vy,...,vp]" € RPN and zy denotes the
2D x 1 real-valued RF vector

/%(any an’) = ZI/ (an)zv (an/)

zv(a)=D 2

x [sin(v{a),...,sin(vpa),cos(vy a),...,cos(vpa)] !
(12)

Taking expectations in (11) and using (10), one can verify that
Ey[%(an, ay)] = £(an, a,), which means £ is unbiased. Note



2474

that finding 7. (v) requires an N-dimensional Fourier trans-
form of x, which in general requires numerical integration.
Nevertheless, it has been shown that for a number of popu-
lar kernels, 7, (v) is available in closed form [25]. Taking the
Gaussian kernel as an example, where x(a,,, a,,/) = exp (||an —
a.||3/(202)), it has a Fourier transform corresponding to the
pdf (0,0 21).

Hence, the function that is optimal in the sense of (3) can
be cast to a function approximant over the 2D-dimensional RF
space (cf. (9) and (11))

M
@) =) amzy(am)zv(a) = 0 zv(a)

m=1

13)

where 0" := "M «,,2{,(a,,). While f in (5) is the superpo-
sition of nonlinear functions &, its RF approximant f RF in (13)
is a linear function of zv (a;). As a result, (3) reduces to

min

M
1
Jmin = > C(0 zv(an).yn) +u (16]7)  (14)

m=1

where [|0]|? := Y, Y. aarzy (a)zv(ar) = || f||%. A batch
solver of (14) has complexity O(M D?) that does not grow with
N. This batch RF-based approach scales linearly with the num-
ber of measured nodes M, and the number of variables is 2D,
which does not depend on M . This allows us to pursue an online
implementation as elaborated next.

B. Online RF-Based Learning Over Graphs

Here, we will further leverage RF-based learning over graphs
to enable real-time learning and reconstruction of signals evolv-
ing over possibly dynamic networks. A scalable online algo-
rithm will be introduced, which can adaptively handle sequen-
tially sampled nodal features and update the sought function
estimates.

Training sequentially. In the training phase, we are given
a network of N nodes, and the nodal function is sampled in a
sequential fashion. Letting v; denote the node sampled at the ¢th
time slot, and having available {a;, y; } at vy, the online inference
task can be written as [cf. (14)]

t
min L0 zv(a,),y,)

6cR2D
T=1

L(0"zv(ar), y:) :=C(0 zv(ar), ye) + uQ([|0]%). (15)

We will solve (15) using online gradient descent [27]. Obtaining
vy per slot ¢, the RF of its connectivity pattern zv (a;) is formed
as in (12), and 04,1 is updated ‘on the fly,” as

0t+1 = ot — ?’]tVL‘,(GZZV(at)a yf)

where {n;} is the sequence of stepsizes that can tune learning
rates. In this paper, we will adopt 1, = 7 for simplicity. Iteration
(16) provides a functional update since fR¥(a) = 0/ zy (a).
The per-iteration complexity of (16) is O(D), and O(M D) for
the entire training process, which scales better than O(M D?)
that is required for a batch solver of (14).

(16)
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Algorithm 1: Online Kernel Based Learning Over Graphs.

1: Input: step size n > 0, and number of RFs D.

2: Initialization: 6; = 0.
3: Training:
4: fort=1,2,...,M do
5: Obtain the adjacency vector a; of sampled node v;.
6: Construct z,(a;) via (12) using .
7 Update 0, via (16).
8: end for
9: Inference:
10: Construct random feature vector zv (a;) via (12)
11: Infer f(v;) = 0},,12v(v;), j € Q.
12:  Accounting for newly-coming node
13: Construct random feature vector zv (e )
via (12)
14: Estimate f(vnew) = HX/IHZV(UHGW).
15: If ynew available, Update 6 via (16).

Inferring unavailable nodal values. After the training phase,
the nodal function value over the un-sampled nodes can be read-
ily estimated by [cf. (13)]

F) =0 zv(a), Vies® 17)

where @ is the final estimate after the training phase, i.e., 0=
641, and S¢ denotes the index set of the nodes whose signal
values have not been sampled in the training phase.

Newly-joining nodes. When new nodes join the network,
batch graph-kernel based approaches must expand K in (7) by
one row and one column, and re-solve (6) in order to form sig-
nal estimates for the newly-joining nodes. Hence, each newly
joining node will incur complexity O(N?). The novel online
RF method on the other hand, can simply estimate the signal
on the newly coming node via f (Vnew) = ézv(anew), where
anew € RY denotes the connectivity pattern of the new node
with the existing nodes in the network. This leads to a complex-
ity of O(N D) per new node. If in addition, e is available,
then the function estimate can also be efficiently updated via
(16) and (13) using anew and Ynew-

The steps of our online RF-based method are summarized
in Algorithm 1. A couple of standard learning tasks where
Algorithm 1 comes handy are now in order.

Nonlinear regression over graphs: Consider first nonlinear re-
gression over graphs, where the goal is to find a nonlinear func-
tion f € H,suchthaty, = f(v,) + e, = f(a,) + e, giventhe
graph adjacency matrix A. The criterion is to minimize the reg-
ularized prediction error of y,,, typically using the online LS loss
L(f(ac) o) = [ye — f(ar)]? + ] f% in (15), whose gradient
is (cf. (16))

VL (0, zv(ar), yr) = 2(0; zv(ar) — yelzv(as) + 210,

In practice, y; can represent a noisy version of each node’s real-
valued attribute, e.g., temperature in a certain city, and the graph
can be constructed based on Euclidean distances among cities.
For a fair comparison with alternatives, only the regression task
will be tested in the numerical section of this paper.
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Nonlinear classification over graphs: We can also han-
dle kernel-based perceptron and kernel-based logistic regres-
sion, which aim at learning a nonlinear classifier that best
approximates either y,,, or, the pdf of y, conditioned on
a,. With binary labels {£1}, the perceptron solves (3) with
L(f(ar).ye) = max(0,1 — yy f(ar)) + pl f%. which equals
zero if y, = f(a;), and otherwise equals 1. In this case, the
gradient of the presented online RF-based method is (cf. (16))

\4 (Hsz(at), yt) = —2th(0thV(at), yt)zv(at) + 2/,69t

Accordingly, given x;, logistic regression postulates that
Pr(y: = 1|x¢) = 1/(1 + exp(f(x¢))). Here the gradient takes
the form (cf. (16))

2y exp(y:0, zv (ar))
1+ exp(y:0] zv (a))

VL (8] zv(ar), ) = 2,(x¢) + 210,

Classification over graphs arises in various scenarios, where y,,
may represent categorical attributes such as gender, occupation
or, nationality of users in a social network.

Remark 1 (Privacy): Note that the update in (16) does not
require access to a; directly. Instead, the only information
each node needs to reveal is zv(a;) for each a;, which in-
volves {sin(a/ v;), cos(a/ v;)}7_,. Being noninvertible, these
co-sinusoid functions involved in generating the zv (a;) can be
viewed as an encryption of the nodal connectivity pattern, which
means that given zv (a;), vector a; cannot be uniquely deci-
phered. Hence, Algorithm 1 preserves privacy.

Remark 2 (Directed graphs): It can be observed from (7)
that for K to be a valid kernel, graph-kernel based methods
require A, and henceforth L to be symmetric, which implies
they can only directly deal with symmetric/undirected graphs.
Such a requirement is not necessary for our RF-based method.

Remark 3 (Time-varying graphs): Real-world networks
may vary over time, as edges may disappear or appear. To
cope with such changing topologies, the original graph-kernel
method needs to recalculate the kernel matrix, and resolve
the batch problem whenever one edge changes. In contrast,
our online RF-based method can simply re-estimate the nodal
values on the two ends of the (dis)appeared edge using (13)
with their current {a,, }.

Evidently, the performance of Algorithm 1 depends on x that
is so far considered known. As the “best” performing « is gener-
ally unknown and application dependent, it is prudent to adap-
tively select kernels by superimposing multiple kernels from a
prescribed dictionary, as we elaborate next.

IV. ONLINE GRAPH-ADAPTIVE MKL

In the present section, we develop an online graph-adaptive
learning approach that relies on random features, and leverages
multi-kernel approximation to estimate the desired f based on
sequentially obtained nodal samples over the graph. The pro-
posed method is henceforth abbreviated as Gradraker.

The choice of « is critical for the performance of single kernel
based learning over graphs, since different kernels capture dif-
ferent properties of the graph, and thus lead to function estimates
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of variable accuracy [13]. To deal with this, combinations of ker-
nels from a preselected dictionary {Kp}f::l can be employed in
(3); see also [13], [26]. Each combination belongs to the convex
hull K 1= {& = Y0 aphip, G > 0, 30 G = 1} With H
denoting the RKHS induced by % € K, one then solves (3) with
H replaced by H := 11 @ - - @ Hp, where {H,}}_, repre-
sent the RKHSs corresponding to {r,, }[_, [28].

The candidate function f € # is expressible in a separable
form as f(a) := 327", f,(a), where f,(a) belongs to H,,, for
p € P:={1,...,P}. To add flexibility per kernel in our en-
suing online MKL scheme, we let wlog {f, = w, Sptho1. and
seek functions of the form

P
fw)=f(a):=> w,fy(a) e H (18)

where f := f/ 25:1 wy, and the normalized weights {w,, :=
wy/ Sy wyth_y satisfy @, > 0,and ¥, @, = 1. Exploit-
ing separability jointly with the RF-based function approxima-
tion per kernel, the MKL task can be reformulated, after letting

Et(ffF(at)) = E(BTZV,, (ar), yt) in (15), as

T P )
> > L (£ ()

min (19a)
{wp b {fRF} t=1 p=1
P
sito Y w,=1, w, >0, peP, (19b)
p=1

i e{foa) =0"av, ()}, peP (19%)

which can be solved efficiently ‘on-the-fly.” Relative to (14), we
replaced M by T to introduce the notion of time, and stress the
fact that the nodes are sampled sequentially.

Given the connectivity pattern a; of the ¢th sampled node vy,
an RF vector z,(a,) is generated per p from the pdf 7, (v) via
(12), where z,(a;) := zv,(a;) for notational brevity. Hence,
per kernel k,, and node sample ¢, we have [cf. (13)]

ot (ar) = 0] 2, (a,) (20)
and as in (16), 8,, ; is updated via
Opit1 = Op — NVL(O, ,2p(ar), 1) 1)

with 77 € (0, 1) chosen constant to effect the adaptation. As far
as wp, ; is concerned, since it resides on the probability simplex,
a multiplicative update is well motivated as discussed also in,
e.g., [26], [27], [29]. For the un-normalized weights, this update
is available in closed form as [26]

Wp,t4+1 = Wp,t €XP (—nﬁt (f;?f(%))) .

Having found {w,, ; } as in (22), the normalized weights in (18)
are obtained as Wy, ¢ 1= wp ¢/ 25:1 wp ¢ Note from (22) that

(22)

when f;“f has a larger loss relative to other f;}g with p’ # p
for the tth sampled node, the corresponding w,, ;41 decreases
more than the other weights. In other words, a more accurate
approximant tends to play a more important role in predicting
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Algorithm 2: Gradraker Algorithm.
1: Input: Kernels k), p=1,..., P, step size n > 0, and
number of RFs D.

2: Initialization: 6, ; = 0.

3: Training:

4: fort=1,2,...,T do

5: Obtain the adjacency vector a; of node v;.

6: Construct z,(a;) via (12) using x,, for

p=1,...,P.

7: Predict ftRF (ay) = Zf:l Wp ¢ fEtF (ay)

8: Observe loss function £y, incur £, (fRF (a,)).

9: forp=1,...,Pdo
10: Obtain loss L(O;tzp(at), yr) or Ly ;fftF(at)).
11: Update ), 11 and wy, ;41 via (21) and (22).
12: end for
13:  end for
14: Inference:
15: Construct RF vector {z,(a;)} using {x,}.
16: Infer f(v;) = 2521 wp,T+10;,T+1zp(Uj)'
17:  Accounting for newly-coming node
18: Construct RF vector {2z, (anew)} using {x,}.
19: Estimate f(vpey) = 2521 u’)ijO;TH

Zp(Unew)-
20: If Ynew available update {60, wy,} via (21)
and (22).

the ensuing sampled node. In summary, our Gradraker for online
graph MKL is listed as Algorithm 2.

Remark 4 (Comparison with batch MKL): A batch MKL
based approach for signal reconstruction over graphs was devel-
oped in [13]. It entails an iterative algorithm whose complexity
grows with NV in order to jointly estimate the nodal function,
and to adaptively select the kernel function. When new nodes
join the network, [13] re-calculates the graphical kernels and
re-solves the overall batch problem, which does not scale with
the network size. In addition, [13] is not privacy preserving in
the sense that in order to estimate the function at any node, one
needs to have access to the connectivity pattern of the entire
network.

Remark 5 (Comparison with k-NN): An intuitive yet effi-
cient way to predict function values of a newly joining node
is to simply combine the values of its & nearest neighbors (k-
NN) [23], [30]. Efficient as it is, k-NN faces several challenges:
a) At least one of the neighbors must be labeled, which does not
always hold in practice, and is not required by the Gradraker;
and b) k-NN can only account for local information, while the
Gradraker takes also into account the global information of the
graph.

A. Generalizations

So far, it is assumed that each node n only has available its
own connectivity feature vector a,,. This allows Gradraker to
be applied even when limited information is available about the
nodes, which many existing algorithms that rely on nodal fea-
tures cannot directly cope with.
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If additional feature vectors {(],’)im}{:l are actually available
per node n other than its own a,,, it is often not known a priori
which set of features is the most informative for estimating the
signal of interest on the graph. To this end, the novel Gradraker
can be adapted by treating the functions learned from different
sets of features as an ensemble of learners, and combine them
in a similar fashion as in (18), that is,

I

Flon) =" Bifi(; ) (23)
i=1

Applications to several practical scenarios are discussed in the

following.

Semi-private networks. In practice, a node may tolerate shar-
ing its links to its neighbors, e.g., users of Facebook may share
their friends-list with friends. In this scenario, each node not
only knows its own neighbors, but also has access to who are its
neighbors’ neighbors, i.e., two-hop neighbors. Specifically, node
n has access to a,,, as well as to the nth column of A® .= AA
[1], and a learner f2(¢2,n) can henceforth be introduced and
combined in (23). Moreover, when nodes are less strict about
privacy, e.g., when a node is willing to share its multi-hop neigh-
bors, more learners can be introduced and combined ‘on the fly’
by selecting ¢, ,, as the nth column of A in (23).

Multilayer networks. Despite their popularity, ordinary net-
works are often inadequate to describe increasingly complex
systems. For instance, modeling interactions between two in-
dividuals using a single edge can be a gross simplification of
reality. Generalizing their single-layer counterparts, multilayer
networks allow nodes to belong to N, groups, called layers [31],
[32]. These layers could represent different attributes or charac-
teristics of a complex system, such as temporal snapshots of the
same network, or different types of groups in social networks
(family, soccer club, or work related). Furthermore, multilayer
networks are able to model systems that typically cannot be rep-
resented by traditional graphs, such as heterogeneous informa-
tion networks [33], [34]. To this end, Gradraker can readily in-
corporate the information collected from heterogenous sources,
e.g., connectivity patterns {Ai}ivzgl from different layers, by
adopting a kernel based learner f;(a; ) on the ith layer and
combining them as in (23).

Nodal features available. In certain cases, nodes may have
nodal features [1] in addition to their {a, }. For example, in
social networks, other than the users’ connectivity patterns, we
may also have access to their shopping history on Amazon. In fi-
nancial networks, in addition to the knowledge of trade relation-
ships with other companies, there may be additional information
available per company, e.g., the number of employees, category
of products the company sales, or the annual profit. Gradraker
can also incorporate this information by introducing additional
learners based on the nodal feature vectors, and combine them
as in (23).

V. PERFORMANCE ANALYSIS

To analyze the performance of the novel Gradraker algorithm,
we assume that the following are satisfied.
(asl) For all sampled nodes {v;}1_,, the loss function
L(8"zv (ay),y;) in (15) is convex w.r.t. 6.
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(as2) For 0 belonging to a bounded set © with ||6| < C,
the loss is bounded; that is, L(0 zv(a;),y;) €
[-1,1), and has bounded gradient, meaning,
IVL(O zv(ar), yo) < L.

(as3) The kernels {r,}_| are shifi-invariant, standardized,
and bounded, that is, k,(a,,a,) <1, Ya,,a,, and
w.Lo.g. they also have bounded entries, meaning ||a, || <
1,Vn.

Convexity of the loss under (asl) is satisfied by the pop-
ular loss functions including the square loss and the logistic
loss. As far as (as2), it ensures that the losses, and their gra-
dients are bounded, meaning they are L-Lipschitz continuous.
While boundedness of the losses commonly holds since ||0||
is bounded, Lipschitz continuity is also not restrictive. Con-
sidering kernel-based regression as an example, the gradient
is (0"zv(x;) — y:)zv(x:) + \0. Since the loss is bounded,
e.g., |0 zv(x;) — y¢|| <1, and the RF vector in (12) can be
bounded as ||zv (x;)|| < 1, the constant is L := 1 + ACy using
the Cauchy-Schwartz inequality. Kernels satisfying the condi-
tions in (as3) include Gaussian, Laplacian, and Cauchy [25]. In
general, (asl)—(as3) are standard in online convex optimization
(OCO) [27], [35], and in kernel-based learning [25], [36], [37].

In order to quantify the performance of Gradraker, we resort to
the static regret metric, which quantifies the difference between
the aggregate loss of an OCO algorithm, and that of the best
fixed function approximant in hindsight, see also e.g., [27], [35].
Specifically, for asequence { f; } obtained by an online algorithm
A, its static regret is

Zﬁt ft at

where fRF will henceforth be replaced by f; for notational
brevity; and, f*(-) is defined as the batch solution

> e

Reg’ ( viva 24)

I
-
b

[ () e arg min
{f;,peP}

T

with f;(-) € arg min > Li(f(a) (29
Pot=1

where F, := H,, with H,, representing the RKHS induced by
kp. We establish the regret of our Gradraker approach in the
following lemma.

Lemma 1: Under (asl), (as2), and with f; defined as f;()

€ argmin .z S Li(f(ar), with Fpy = {f,|fp(a) =07
z,(a), V0 € R?P}, for any p, the sequences {f,} and {w,;}
generated by Gradraker satisfy the following bound

Zﬁt (pr,tfp, at) Zﬁt A;

mP 61> nL?*T
R L i 26)
U 2n 2
where 6, is associated with the best RF function approximant
fy(a) = (6,) 7, (a).

Proof: See Appendix A |
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In addition to bounding the regret in the RF space, the next
theorem compares the Gradraker loss relative to that of the best
functional estimator in the original RKHS.

Theorem 2: Under (asl)-(as3), and with f* defined as in
(25), for a fixed € > 0, the f0110w1n§ bound holds with prob-

ability at least 1 — 28(%2)? exp(4]\?j8)

> (zwmfptat) S

mP (1 L2T
P Q+9C T e
n 2n 2

27)

where C'is a constant, while o := E_ [|[v||*] is the second-
order moment of the RF vector norm. Setting 1n =¢€¢=
O(1/+/T) in (27), the static regret in (24) leads to

RegsGradraker (T) = O(\/T) (28)

Proof: See Appendix B |

Observe that the probability of (27) to hold grows as D in-
creases, and one can always find a D to ensure a positive prob-
ability for a given e. Theorem 2 establishes that with a proper
choice of parameters, the Gradraker achieves sub-linear regret
relative to the best static function approximant in (25), which
means the novel Gradraker algorithm is capable of capturing
the nonlinear relationship among nodal functions accurately, as
long as enough nodes are sampled sequentially.

In addition, it is worth noting that Theorem 2 holds true re-
gardless of the sampling order of the nodes {v1, ..., vy }. How-
ever, optimizing over the sampling pattern is possible, and con-
stitutes one of our future research directions.

VI. NUMERICAL TESTS

In this section, Gradraker is tested on both synthetic and real
datasets to corroborate its effectiveness. The tests will mainly
focus on regression tasks for a fair comparison with existing
alternatives.

A. Synthetic Data Test

Data generation. An Erdos-Rényi graph [38] with binary
adjacency matrix Ay € RV*Y was generated with probabil-
ity of edge presence m = 0.2, and its adjacency was sym-
metrizedas A = Ay + A[. This symmetrization is not required
by Gradraker, but it is necessary for alternative graph kernel
based methods. A function over this graph was then gener-
ated with each entry of the coefficient vector « € RY drawn
uniformly from [0.5, 1], and each entry of the noise e drawn
from A/(0,0.011). In each experiment, the sampling matrix ¥
is randomly generated so that M/ = 0.05N of the nodes are ran-
domly sampled, and the remaining N — M nodes are treated
as newly-joining nodes, whose function values and connectiv-
ity patterns are both unknown at the training phase, and whose
nodal function values are estimated based on their connectiv-
ity with existing nodes in the network during the testing phase.
All algorithms are carried out on the training set of M nodes,
and the obtained model is used to estimate the function value
on the newly arriving nodes. The runtime for estimating the



2478

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 9, MAY 1, 2019

10! : T r r 10° T : : r
---------- kNN - -
~—©— Gradraker ______..;g"'; -+ -
GK-DF (0°=5) | e = -
........ 2 100 F - Poa - =t
* + + + &% GKDF (0°=1) |9 e i) _
w - = * =KL (6%=5) o == e KNN
w @ GK-BL(B=10) e P A= ~—©— Gradraker
% wenndees GK-BL(B=20) 102k .‘Qf’ - GK-DF (0°=5)
S g ../,."} > ad @+ GK-DF (o2=1)
T 107 E E < S ,f"’ b KL (6725)
s = . = % =GK-BL(B=10)
o) 103% = % =GK-BL(B=20)
3
O
T e ]
10.3 L L L L L L L L 10.5 ! L L L L L L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Size of the network (N) Size of the network (N)
(a) Generalization NMSE (b) Testing runtime
Fig. 1. Inference performance versus number of nodes for synthetic dataset generated from graph diffusion kernel.
10! T T T T T T T T 10° T T T T T T T T
-------------------- kNN
S ST - ©— Gradraker el . ©— Gradraker
- GK-DF (6°=5) B ¥ GK-DF (s2=5) |
e GK-DF (02=1) 0 ”— - @ GK-DF (02=1)
w 107 mtKL(RE) | e ok T T KL (oP25)
] s @ GK-BL(B=10) oy e R A = % =~ GK-BL(B=10)
% wesedens GK-BL(B=20) 102k ‘ W . ] = + =GK-BL(B=20) | |
c [
2 £
T €
N =]
S [
5]
c
[0}
S

100 200 300 400 500 600 700 800 900
Size of the network (N)

(a) Generalization NMSE

Fig. 2.

function value on the newly-joining nodes, as well as the gener-
alization NMSE := ﬁ”fi‘s — Xs¢||2/||xs<||3 performance is
evaluated, with §¢ denoting the index set of new nodes. The
Gradraker adopts a dictionary consisting of 2 Gaussian kernels
with parameters o2 = 1,5, using D = 10 random features, and
itis compared with: a) the £ NN algorithm, with & selected as the
maximum number of neighbors a node has in a specific network,
and with the combining weights set to 1/k in unweighted graphs,
and a;;/ )¢y, aij for the Ith neighbor in weighted graphs; b)
the graph kernel (GK) based method using diffusion kernels
with different bandwidths (named as GK-DF), or band-limited
kernels with different bandwidths (GK-BL); and ¢) kernel based
learning without RF approximation (KL) with a Gaussian kernel
of 02 = 5. Results are averaged over 100 independent runs. The
regularization parameter for all algorithms is selected from the
set = {1077,107%,...,10°} via cross validation.

Testing results. Fig. 1 illustrates the performance in terms
of the average runtime and NMSE versus the number of nodes

100 200 300 400 500 600 700 800 900
Size of the network (N)

(b) Runtime

Inference performance versus number of nodes for synthetic dataset generated from Gaussian kernel.

(size) of the network. In this experiment, K in (7) is generated
from the normalized graph Laplacian L, using the diffusion ker-
nel 7(\) = exp(c2)\/2). A bandwidth of o2 = 5 was used to
generate the data. It is observed that GK attains the best gener-
alization accuracy when the ground-truth model is known, but its
computational complexity grows rapidly with the network size.
However, GK does not perform as well when a mismatched ker-
nel is applied. The Gradraker method on the other hand, is very
efficient, while at the same time it can provide reasonable esti-
mates of the signal on the newly arriving nodes, even without
knowledge about the kernels. The k-NN method is very efficient,
but does not provide as reliable performance as the Gradraker.
Figure 2 depicts the performance of competitive algorithms.
Matrix K for data generation is formed based on (8) using
the Gaussian kernel x(a; — a;) = exp(|la; — a;||*/0?), with
o2 = 5. In this case, KL exactly matches the true model, and
hence it achieves the best performance. However, it is the most
complex in terms of runtime. Meanwhile, GK-based methods



SHEN et al.: ONLINE GRAPH-ADAPTIVE LEARNING WITH SCALABILITY AND PRIVACY

---------- kNN
457 * =—©— Gradraker
Al K GK-DF (62=5) | |
s GK-DF (0%=1)
w35k = * “KL(6%5) _
%) GK-BL(B=10)
= "y sseedees GK-BL(B=20) | |
c |2 .,
s | = T,
g5y “doun,,
S L
5 2 e e 4
% L I +
)

Number of measurements (M)
(a) Generalization NMSE

Fig. 3.

suffer from model mismatch, and are also relatively more com-
plex than Graderaker. The novel Gradraker is capable of esti-
mating the nodal function on the newly joining nodes with high
accuracy at very low computational complexity. Note that in
real-world scenarios, accurate prior information about the un-
derlying model is often unavailable, in which case Gradraker
can be a more reliable and efficient choice.

B. Reconstruction of the Temperature Data

This subsection tests the performance of Gradraker on a real
temperature dataset. The dataset comprises 24 signals corre-
sponding to the average temperature per month in the intervals
1961 —1980 and 1991 —2010 measured by N, = 89 stations in
Switzerland [39]. The training set contains the first 12 signals,
corresponding to the interval 1961 — 1980, while the test set con-
tains the remaining 12. Each station is represented by a node, and
the graph was constructed using the algorithm in [40] based on
the training signals. Given the test signal on a randomly chosen
subset of N = M vertices, the values at the remaining N, — M
vertices are estimated as newly-coming nodes. The generaliza-
tion NMSE over the N, — M nodes is averaged across the test
signals.

Fig. 3 compares the performance of Gradraker with those of
competing alternatives. Gradraker adopts a dictionary consist-
ing of 3 Gaussian kernels with parameters o2 = 1, 5, 10, using
D = 100 random features. It is clear from Fig. 3 that Gradraker
outperforms GK in both generalization NMSE and runtime. On
the other hand, even though KL achieves lower generalization
NMSE, it incurs a much higher complexity.

C. Reconstruction of the Email-Eu-Core Data

The Eu-core network was generated using email data from a
large European research institution [41], where each node rep-
resents a person, and an edge (i, ) is present if person ¢ sent
person j at least one email. The e-mails only represent commu-
nication between institution members (the core), and the dataset
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does not contain incoming messages from or outgoing messages
to the rest of the world. The dataset also contains “ground-truth”
community memberships of the nodes. Each individual belongs
to one of 42 departments at the research institute. During the
experiment, the department labels are considered to be y,, that
are to be sampled and estimated. The graph consists of 1,005
nodes, and 25,571 edges. Gradraker adopts a dictionary con-
sisting of 2 Gaussian kernels with parameters o2 = 1, 10, from
which D = 10 random features are generated. The test results
were averaged over 100 independent runs with randomly sam-
pled nodes.

Fig. 4 compares the performance of Gradraker with those of
alternative algorithms when different numbers of nodal labels
are observed. It is clear that the RF-based approach outperforms
the GK-based method in both reconstruction accuracy and run-
time. While the batch KL method without RF approximation
outperforms the RF method, it incurs considerably higher com-
putational complexity.

D. Reconstruction of the Cora Data

This subsection tests the Gradraker algorithm on the Cora ci-
tation dataset [5]. Gradraker adopts a dictionary consisting of
2 Gaussian kernels with parameters o2 = 1, 10, using D = 20
random features. The results were averaged over 100 indepen-
dent runs. The Cora dataset consists of 2,708 scientific publica-
tions classified into one of seven classes. The citation network
consists of 5,429 links. The network is constructed so that a link
connects node ¢ to node j if paper ¢ cites paper j, and the category
id the paper belongs to is to be reconstructed. It can be observed
again from Fig. 5, that the Gradraker markedly outperforms the
GK algorithms in terms of generalization NMSE, and is much
more computationally efficient than all other algorithms except
the kNN method, which however does not perform as well.

It can be readily observed from our numerical results over
synthetic and real datasets, that the Gradraker provides reliable
performance in terms of NMSE in all tests, while at the same
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time, it scales much better than all kernel based alternatives.
This is because the alternative kernel-based algorithms require
re-computing the kernel matrix whenever a new node joins the
network. It is worth noting that all kernel-based alternatives re-
quire exact knowledge of the entire network topology, which
is not necessary for GradRaker that only requires {zv (a,)}.
These tests corroborate the potential of GradRaker for appli-
cation settings, where the graphs grow and nodes have privacy
constraints.

VII. CONCLUSIONS

The present paper deals with the problem of reconstructing
signals over graphs, from samples over a subset of nodes. An
online MKL based algorithm is developed, which is capable of
estimating and updating the nodal functions even when samples
are collected sequentially. The novel online scheme is highly
scalable and can estimate the unknown signals on newly join-
ing nodes. Unlike many existing approaches, it only relies on
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encrypted nodal connectivity information, which is appealing
for networks where nodes have strict privacy constraints.

This work opens up a number of interesting directions for
future research, including: a) exploring distributed implementa-
tions that are well motivated in large-scale networks; b) graph-
adaptive learning when multiple sets of features are available;
and c) developing adaptive sampling strategies for Gradraker.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we introduce two intermediate lemmata.
Lemma 3: Under (asl), (as2), and f; as in (25) with F, :=
{folfo(@) = 0" z,(a), VO € R?P}, let {f,.(a;)} denote the

sequence of estimates generated by Gradraker with a pre-
selected kernel «,,. Then the following bound holds true w.p.1

_ ley)?

. T . 2
ST Lulfpulan)) - 3 L) < 2y 22T

2n 2

(29)
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where 1) is the learning rate, L is the Lipschitz constant in (as2),
and @), is the corresponding parameter (or weight) vector sup-
porting the best estimator f;(a) = (0;)z,(a).

Proof: The proof is similar to the regret analysis of online
gradient descent, see e.g., [29]. |

In addition, we will bound the difference between the loss of
the solution obtained from Algorithm 2 and the loss of the best
single kernel-based online learning algorithm. Specifically, the
following lemma holds.

Lemma 4: Under (as1) and (as2), with { fm} generated from
Gradraker, it holds that

a In P

Zzwptﬁt fpf a;)) z fpf a)) <nl +—

t=1p=1 =1 n
(30)

where 7 is the learning rate in (22), and P is the number of
kernels in the dictionary.

Proof: Letting Wy := 25:1 wp,¢, the weight recursion in
(22) implies that

Wit = iwp,t-i-l = zp:wp,t exp (—77575 (fm(at)))
p=1 p=1
< iwm <1 —nLy (fp,t(at)> +1°Ly (fp,t(at))2>
p=1

€1V

where the last inequality holds because exp(—nz) <1 —

nx—|—7]2:z:2 for |n| < 1. Furthermore, substituting w, ,; =

Wt/ szl Wy = wp /Wy into (31) leads to

Wipr < i Wit ¢ (1 — 1L (fp,t(at)) +1°Ly (fp,t(at))2>
p=1

=W, (1 — nzp:wp,tﬁt (fp,t(at))

p=1

P
+ 7 pr,tﬁt (fp,t(at))2> . (32)

p=1

Since 1 + x < €%, Vz, it follows that

p
Ui Z Wy, L4 (fp,t(at)>

Wi < Wiexp (‘
p=1

P
+ 7 Z’@p,tﬁt (fp,t(at)>2> . (33

p=1

Telescoping (33) from ¢t = 1 to T yields

T P
n Z Z Wyt Lt (fp,t(at)>

t=1p=1

Wryr < exp (

+ XT: XP: Wyt Ly (fp,t(at))

t=1 p=1

)
. (34
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On the other hand, for any p, it holds that

Wi > wp 41

i (=t (foelan))
= w,,1 exp <_772T:Lt (f,,,t(at))) .39
t=1

Combining (34) with (35), we arrive at

T P
exp (—nzzwmﬁt (fp,t(at))

t=1p=1

T P 2
+ 72 szp’tﬁt (fp,t(at)) )

t=1 p=1

(36)

> Wp, 1 €XP <—772T:/~:t (fp,t(at)>> .
t=1

Taking the logarithm on both sides of (36), and recalling that
wp1 = 1/P, we obtain

-1 zT: zp: W+ Ly (fp,t (at)) + 772 zT: i Wy, Ly (fpx(at))z

t=1p=1 t=1 p=1
T
>y L (fp,t(at)> —InP. (37
t=1
Re-organizing the terms leads to
T P X
SN wpikes (Foalan)
t=1p=1
2 InP
< th (fpt ay ) +ﬁzzwp,t/3t (fp, at)) + T
t=1 p=1
(38)

and the proof is complete, since L;( fpyt(at))2 <1 and

Z;;:l 'lj)p,t =1 u
Since £;() is convex under (as1), Jensen’s inequality implies

P d
Ly (Z wp,tfp,t(at)> < Z’J)p,tﬁt (fp,t(at)) . 39)
p=1 p=1

Combining (39) with Lemma 4, one arrives readily at

T P A
Z Ly (Z wp,tfp,t(at)>
t=1 p=1

T In P
< Z‘Ct (fp,t(at)) + 0T + S
t=1
(a) & R P |65 LT
< * p
_t;ﬁt(,,( D)+ e+ s T o)
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where (a) follows due to Lemma 3 and because 91’; is the optimal
solution for any given r,. This proves Lemma 1.

APPENDIX B
PROOF OF THEOREM 2

To bound the performance relative to the best estimator f*(a;)
in the RKHS, the key step is to bound the approximation error.
For a given shift-invariant «,, the maximum point-wise error of
the RF kernel approximant is bounded with probability at least

1- 28(%})2 eXp(4N+g> by [25]

sup |z (a;)zp(a;) —
a;,a; el

K:p(ai,aj)| <e€ 41)
where € > 01is a given constant, D the number of features, while
M is the number of nodes already in the network, and a
E,[||v]|%] is the second-order moment of the RF vector norm
1nduced by x,. Henceforth, for the optimal function estimator
(25) in H,, denoted by fi(a) := >°,_, b ky(a,a;), and its

RF-based approximant f; =T, oz, (a)z,(ay) € Fp, we

have
. T
Zﬁt ; - Z»Ct (f (at))
t=1
T ~
Z (fy(@:)) = Le(f, ()]
) &
< Z Zap t,z (ay)zp(ar) Zap vhp(ay,ag)
t=1 t'=1 t'=1
T
< Z Z Iap t at’)zp(at) - /“Jp(atwat)’ (42)

=1

where (a) is due to the triangle inequality; (b) uses the Lipschitz
continuity of the loss, and (c) is due to the Cauchy-Schwarz
inequality. Combining with (41), yields

T
Zﬁt p(@0) =D Lol
t=1

T T
<Y Le> |aj | < eLTC, whp. (43)
t=1 t'=1

where we used that C' := max, Zt 1 |, ¢|. Under the kernel
bounds in (as3), the uniform convergence in (41) implies that
SUDy, a,cx Zp (a1)Zp(ar) < 1+ ¢ wh.p., which leads to

T
>z
t=1

2
los”

< (1+¢C?

Z Z 0y, 10, 1% (a¢)2p (ar)

t=1t'=1

(44)

where for the last inequality we used the definition of C.
Lemma 1 together with (43) and (44) lead to the regret of the
proposed Gradraker algorithm relative to the best static function
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in H,, that is given by

Z»Ct prtfpt at Zﬁt

pr,tfpt at Zﬁt

=Y Li(f(ar)
t=1

nL*T 1+¢€)C?
7_’_ ]T+¢

< + eLTC, w.h.p. (45)
2 2n

which completes the proof of Theorem 2.
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