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Abstract—Graphs are widely adopted for modeling complex sys-
tems, including financial, biological, and social networks. Nodes in
networks usually entail attributes, such as the age or gender of
users in a social network. However, real-world networks can have
very large size, and nodal attributes can be unavailable to a num-
ber of nodes, e.g., due to privacy concerns. Moreover, new nodes
can emerge over time, which can necessitate real-time evaluation of
their nodal attributes. In this context, this paper deals with scalable
learning of nodal attributes by estimating a nodal function based
on noisy observations at a subset of nodes. A multikernel-based
approach is developed, which is scalable to large-size networks.
Unlike most existing methods that re-solve the function estima-
tion problem over all existing nodes whenever a new node joins
the network, the novel method is capable of providing real-time
evaluation of the function values on newly joining nodes without
resorting to a batch solver. Interestingly, the novel scheme only re-
lies on an encrypted version of each node’s connectivity in order to
learn the nodal attributes, which promotes privacy. Experiments
on both synthetic and real datasets corroborate the effectiveness of
the proposed methods.

Index Terms—Graph signal reconstruction, kernel-based learn-
ing, learning over dynamic graphs, online learning.

I. INTRODUCTION

E
STIMATING nodal functions/signals over networks is a

task emerging in various domains, such as social, brain,

and power networks, to name a few. Functions of nodes can

represent certain attributes or classes of these nodes. In Facebook

for instance, each node represents a person, and the presence

of an edge indicates that two persons are friends, while nodal

attributes can be age, gender or movie ratings of each person.

In financial networks, where each node is a company, with links

denoting trade between two companies, the function of the node

can represent the category that each company belongs to, e.g.,

technology-, fashion-, or education-related.

In real-world networks, there are often unavailable nodal func-

tion values, due to, e.g., privacy issues. Hence, a topic of great
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practical importance is to interpolate missing nodal values (class,

ranking or function), based on the function values at a subset

of observed nodes. Interpolation of nodal function values of-

ten relies on the assumption of “smoothness” over the graphs,

which implies that neighboring nodes will have similar nodal

function values. For example, in social networks, people tend

to rate e.g., movies similar to their friends, and in financial net-

works, companies that trade with each other usually belong to

the same category. From this point of view, function estimation

over graphs based on partial observations has been investigated

extensively, [1]–[6]. Function estimation has been also pursued

in the context of semi-supervised learning, e.g., for transductive

regression or classification, see e.g., [7]–[10]. The same task has

been studied recently as signal reconstruction over graphs, see

e.g., [11]–[15], where signal values on unobserved nodes can be

estimated by properly introducing a graph-aware prior. Kernel-

based methods for learning over graphs offer a unifying frame-

work that includes linear and nonlinear function estimators [13],

[16], [17]. The nonlinear methods outperform the linear ones but

suffer from the curse of dimensionality [18], rendering them less

attractive for large-scale networks.

To alleviate this limitation, a scalable kernel-based approach

will be introduced in the present paper, which leverages the ran-

dom feature approximation to ensure scalability while also al-

lowing real-time evaluation of the functions over large-scale

dynamic networks. In addition, the novel approach incorporates

a data-driven scheme for adaptive kernel selection.

Adaptive learning over graphs has been also investigated for

tracking and learning over possibly dynamic networks, e.g.,

[19], [20]. Least mean-squares and recursive least-squares adap-

tive schemes have been developed in [19], without explicitly

accounting for evolving network topologies. In contrast, [20]

proposed a kernel-based reconstruction scheme to track time-

varying signals over time-evolving topologies, but assumed that

the kernel function is selected a priori. Node2vec [21] and Deep-

Walk [22] that can sequentially process the graph adjacency ma-

trix have been developed based on deep learning techniques. All

these prior works assume that the network size is fixed.

In certain applications however, new nodes may join the net-

work over time. For example, hundreds of new users are joining

Facebook or Netflix every day, and new companies are founded

in financial networks regularly. Real-time and scalable estima-

tion of the desired functions on these newly-joining nodes is of

great importance. While simple schemes such as averaging over

one- or multi-hop neighborhoods are scalable to network size by

predicting the value on each newly-coming node as a weighted
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combination of its multi-hop neighborhoods [23], they do not

capture global information over the network. In addition, exist-

ing rigorous approaches are in general less efficient in account-

ing for newly-joining nodes, and need to solve the problem over

all nodes, every time new nodes join the network, which incurs

complexity O(N3), where N denotes the network size [13],

[16]. As a result, these methods are not amenable to real-time

evaluation over newly-joining nodes. To this end, the present

paper develops a scalable online graph-adaptive algorithm that

can efficiently estimate nodal functions on newly-joining nodes

‘on the fly.’ Note that recently GraphSAGE has been developed

to cope with possibly growing networks [24].

Besides scalability and adaptivity, nodes may have firm pri-

vacy requirements, and may therefore not be willing to reveal

who their neighbors are. However, most graph-based learning

methods require knowing the entire connectivity pattern, and

thus cannot meet the privacy requirements, e.g., [21], [22], [24].

The novel random feature based approach on the other hand,

only requires an encrypted version of each node’s connectivity

pattern, which makes it appealing for networks with stringent

privacy constraints.

In short, we put forth a novel online multikernel learning

(MKL) framework for effectively learning and tracking non-

linear functions over graphs. Our contributions are as follows.

c1) A scalable MKL approach is developed to efficiently es-

timate the nodal function values both on the observed and

un-observed nodes of a graph;

c2) The resultant algorithm is capable of estimating the func-

tion value of newly incoming nodes with high accuracy

without having to solve the batch problem over all nodes,

making it highly scalable as the network size grows, and

suitable for nodal function estimation in dynamic net-

works;

c3) Unlike most existing methods that rely on nodal feature

vectors in order to learn the function, the proposed scheme

simply capitalizes on the connectivity pattern of each

node, while at the same time, nodal feature vectors can

be easily incorporated if available; and,

c4) The proposed algorithm does not require nodes to

share connectivity patterns. Instead, a privacy-preserving

scheme is developed for estimating the nodal function

values based on an encrypted version of the nodal con-

nectivity patterns, hence respecting node privacy.

The rest of this paper is organized as follows. Preliminaries are

in Section II, while Section III presents an online kernel-based

algorithm that allows sequential processing of nodal samples.

Section IV develops an online MKL scheme for sequential data-

driven kernel selection, which allows graph-adaptive selection of

kernel functions to best fit the learning task of interest. Finally,

results of corroborating numerical tests on both synthetic and

real data are presented in Section VI, while concluding remarks

along with a discussion of ongoing and future directions are

given in Section VII.

Notation: Bold uppercase (lowercase) letters denote matrices

(column vectors), while (·)� and λi(.) stand for matrix trans-

position, and the ith leading eigenvalue of the matrix argument,

respectively. The identity matrix will be represented by I, while

0 will denote the matrix of all zeros, and their dimensions will

be clear from the context. Finally, the �p and Frobenius norms

will be denoted by ‖ · ‖p, and ‖ · ‖F , respectively.

II. KERNEL-BASED LEARNING OVER GRAPHS

Consider a graph G(V, E) ofN nodes, whose topology is cap-

tured by a known adjacency matrix A ∈ R
N×N . Let ann′ ∈ R

denote the (n, n′) entry ofA, which is nonzero only if an edge is

present from node n′ to n. A real-valued function (or signal) on

a graph is a mapping f : V → R, where V is the set of vertices.

The value f(v) = xv represents an attribute of v ∈ V , e.g., in

the context of brain networks, xvn
could represent the sample

of an electroencephalogram (EEG), or functional magnetic res-

onance imaging (fMRI) measurement at region n. In a social

network, xvn
could denote the age, political alignment, or an-

nual income of thenth person. Suppose that a collection of noisy

samples {ym = xvnm
+ em}Mm=1 is available, where em mod-

els noise, and M ≤ N represents the number of measurements.

Given {ym}Mm=1, and with the graph topology known, the goal

is to estimate f(v), and thus reconstruct the graph signal at un-

observed vertices. Letting y := [y1, . . . , yM ]�, the observation

vector obeys

y = Ψx+ e (1)

where x := [xv1
, . . . , xvN

]�, e := [e1, . . . , eM ]�, and Ψ ∈
{0, 1}M×N is a sampling matrix with binary entries [Ψ]m,nm

=
1 for m = 1, . . . ,M , and 0, elsewhere.

GivenΨ,y, andA, the goal is to estimatex over the entire net-

work. To tackle the under-determined system (1), consider func-

tion f belonging to a reproducing kernel Hilbert space (RKHS)

defined as [13], [16]

H :=

{

f : f(v) =
N
∑

n=1

αnκ(v, vn), αn ∈ R

}

(2)

where κ : V × V → R is a pre-selected kernel function. Here-

after, we will let nm = m for notational convenience, and with-

out loss of generality (wlog). Giveny, the RKHS-based estimate

is formed as

f̂ = argmin
f∈H

1

M

M
∑

m=1

C(f(vm), ym) + µΩ
(

‖f‖2H
)

(3)

where the cost C(·, ·) can be selected depending on the learning

task, e.g., the least-squares (LS) for regression, or the logis-

tic loss for classification; ‖f‖2H :=
∑

n

∑

n′ αnαn′κ(vn, vn′) is

the RKHS norm; Ω(·) is an increasing function; and, µ > 0 is a

regularization parameter that copes with overfitting. According

to the definition of graph RKHS in (2), the function estimate

can be written as f̂(v) =
∑N

n=1 αnκ(v, vn) := ᾱ�k̄(v), where

ᾱ := [α1, . . . , αN ]� ∈ R
N collects the basis coefficients, and

k̄(v) := [κ(v, v1), . . . , κ(v, vN )]�. Substituting into the RKHS

norm, we find ‖f‖2H :=
∑

n

∑

n′ αnαn′κ(vn, vn′) = ᾱ�K̄ᾱ,

where the N ×N kernel matrix K̄ has entries [K̄]n,n′ :=
κ(vn, vn′); thus, the functional problem (3) boils down to

min
ᾱ∈RN

1

M

M
∑

m=1

C(ᾱ�k̄(vm), ym) + µΩ
(

ᾱ�K̄ᾱ
)

. (4)
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According to the representer theorem, the optimal solution of

(3) admits the finite-dimensional form given by [13], [16]

f̂(v) =
M
∑

m=1

αmκ(v, vm) := α�k(v). (5)

where α := [α1, . . . , αM ]� ∈ R
M , and k(v) := [κ(v, v1), . . . ,

κ(v, vM )]�. This means that the coefficients corresponding to

the unobserved nodes are all zero. This implies that the function

over the graph can be estimated by optimizing over the M × 1
vector α [cf. (3)]

min
α∈RM

1

M

M
∑

m=1

C(α�k(vm), ym) + µΩ
(

α�Kα
)

(6)

where K := Ψ�K̄Ψ. For general kernel-based learning tasks,

K̄ is formed using the nonlinear functions of pairwise correla-

tions κ(vn, vn′) = φ�
nφn′ , where φn denotes the feature vector

of node n, which can collect, for example, the buying history of

users on Amazon, or the trading history of companies in finan-

cial networks. However, such information may not be available

in practice, due to, e.g., privacy concerns. This has motivated the

graph-kernel based approaches in [13] and [16], to reconstruct

the graph signal when only the network structure is available,

and the kernel matrix is selected as a nonlinear function of the

graph Laplacian matrix. Specifically, these works mostly con-

sider undirected networks, A = A�.

Given the normalized Laplacian matrix L := I−D−1/2

AD−1/2, with D := diag(A1), and letting L := UΛU�, the

family of graphical kernels is

K̄ := r†(L) := Ur†(Λ)U� (7)

where r(.) is a non-decreasing scalar function of the eigenvalues,

and † denotes pseudo-inverse. By selecting r(.), different graph

properties can be accounted for, including smoothness, band-

limitedness, the random walk [16], and diffusion [2].

Although graph-kernel based methods are effective in recon-

structing signals over graphs, it can be observed from (7) that

formulating K̄ generally requires an eigenvalue decomposition

of L, which incurs complexity O(N3) that can be prohibitive

for large-scale networks. Moreover, even though nodal feature

vectors {φn} are not necessary to form K̄, the graph-kernel-

based scheme requires knowledge of the topology, meaning

A, in order to estimate the nodal function of each node. How-

ever, in networks with strict privacy requirements, nodes may

not be willing to share such information with others. In Face-

book, for example, most people do not make their friend list

public. In addition, solving (4) assumes that all sampled nodes

are available in batch, which may not be true in scenarios where

nodes are sampled in a sequential fashion.

In response to these challenges, an online scalable kernel-

based method will be developed in the ensuing section to deal

with sequentially obtained data samples, over generally dynamic

networks. The resultant algorithm only requires encrypted ver-

sions of the nodal connectivity patterns of other nodes, and hence

it offers privacy.

III. ONLINE KERNEL-BASED LEARNING OVER GRAPHS

Instead of resorting to a graph kernel that requires an eigen-

value decomposition of L in (7), the present section advocates

treating the connectivity pattern of each node as its feature vec-

tor, which can be the nth column a
(c)
n and possibly the nth row

(a
(r)
n )� of the adjacency (ifA is nonsymmetric). We will hence-

forth term this the connectivity pattern of vn, and denote it as

an, for brevity. Given an, we will interpolate unavailable nodal

function values f̂(vn) using a nonparametric approach, that is

different and scalable relative to [16] and [13]. The kernel matrix

is now

[K̄]n,n′ = κ(vn, vn′) = κ(an,an′). (8)

Again, with M nodes sampled, the representer theorem asserts

that the sought function estimator has the form [18]

f̂(vn) = f̂(an) =
M
∑

m=1

αmκ(am,an) := α�k(an) (9)

where k(an) := [κ(an,a1) . . . κ(an,aM )]�. It can be observed

from (9) that f̂(vn) involves the adjacency of the entire network,

namely {am}Mm=1, which leads to potentially growing complex-

ity O(M3) as the number of sampled nodes increases [18].

A. Batch RF-Based Learning Over Graphs

To bypass this growing complexity, we will resort to the

so-called random feature approximation [25] in order to re-

duce the original functional learning task in (4) to a problem

with the number of unknown parameters not growing with M .

We first approximate κ in (5) using random features (RFs)

[25], [26] that are obtained from a shift-invariant kernel sat-

isfying κ(an,an′) = κ(an − an′). For κ(an − an′) absolutely

integrable, its Fourier transform πκ(v) exists and represents

the power spectral density, which upon normalizing to ensure

κ(0) = 1, can also be viewed as a probability density function

(pdf); hence,

κ(an − an′) =

∫

πκ(v)e
jv�(an−an′ )dv

:= Ev

[

ejv
�(an−an′ )

]

(10)

where the last equality is due to the definition of the expected

value. Drawing a sufficient number of D independent and iden-

tically distributed samples {vi}Di=1 from πκ(v), the ensemble

mean (10) can be approximated by the sample average

κ̂(an,an′) = z�
V
(an)zV(an′) (11)

where V := [v1, . . . ,vD]� ∈ R
D×N , and zV denotes the

2D × 1 real-valued RF vector

zV(a) = D− 1

2

×
[

sin(v�
1 a), . . . , sin(v

�
Da), cos(v�

1 a), . . . , cos(v
�
Da)

]�
.

(12)

Taking expectations in (11) and using (10), one can verify that

Ev[κ̂(an,an′)] = κ(an,an′), which means κ̂ is unbiased. Note
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that finding πκ(v) requires an N -dimensional Fourier trans-

form of κ, which in general requires numerical integration.

Nevertheless, it has been shown that for a number of popu-

lar kernels, πκ(v) is available in closed form [25]. Taking the

Gaussian kernel as an example, whereκ(an,an′) = exp
(

‖an −
an′‖22/(2σ2)

)

, it has a Fourier transform corresponding to the

pdf N (0, σ−2I).
Hence, the function that is optimal in the sense of (3) can

be cast to a function approximant over the 2D-dimensional RF

space (cf. (9) and (11))

f̂RF(a) =

M
∑

m=1

αmz�
V
(am)zV(a) := θ�zV(a) (13)

where θ� :=
∑M

m=1 αmz�
V
(am). While f̂ in (5) is the superpo-

sition of nonlinear functions κ, its RF approximant f̂RF in (13)

is a linear function of zV(ai). As a result, (3) reduces to

min
θ∈R2D

1

M

M
∑

m=1

C(θ�zV(am), ym) + µΩ
(

‖θ‖2
)

(14)

where ‖θ‖2 :=
∑

t

∑

τ αtατz
�
V
(at)zV(aτ ) � ‖f‖2H. A batch

solver of (14) has complexity O(MD3) that does not grow with

N . This batch RF-based approach scales linearly with the num-

ber of measured nodes M , and the number of variables is 2D,

which does not depend on M . This allows us to pursue an online

implementation as elaborated next.

B. Online RF-Based Learning Over Graphs

Here, we will further leverage RF-based learning over graphs

to enable real-time learning and reconstruction of signals evolv-

ing over possibly dynamic networks. A scalable online algo-

rithm will be introduced, which can adaptively handle sequen-

tially sampled nodal features and update the sought function

estimates.

Training sequentially. In the training phase, we are given

a network of N nodes, and the nodal function is sampled in a

sequential fashion. Letting vt denote the node sampled at the tth
time slot, and having available {at, yt} at vt, the online inference

task can be written as [cf. (14)]

min
θ∈R2D

t
∑

τ=1

L
(

θ�zV(aτ ), yτ
)

L
(

θ�zV(at), yt
)

:= C
(

θ�zV(at), yt
)

+ µΩ
(

‖θ‖2
)

. (15)

We will solve (15) using online gradient descent [27]. Obtaining

vt per slot t, the RF of its connectivity pattern zV(at) is formed

as in (12), and θt+1 is updated ‘on the fly,’ as

θt+1 = θt − ηt∇L(θ�
t zV(at), yt) (16)

where {ηt} is the sequence of stepsizes that can tune learning

rates. In this paper, we will adopt ηt = η for simplicity. Iteration

(16) provides a functional update since f̂RF
t (a) = θ�

t zV(a).
The per-iteration complexity of (16) is O(D), and O(MD) for

the entire training process, which scales better than O(MD3)
that is required for a batch solver of (14).

Algorithm 1: Online Kernel Based Learning Over Graphs.

1: Input: step size η > 0, and number of RFs D.

2: Initialization: θ1 = 0.

3: Training:

4: for t = 1, 2, . . . ,M do

5: Obtain the adjacency vector at of sampled node vt.
6: Construct zp(at) via (12) using κ.

7: Update θt+1 via (16).

8: end for

9: Inference:

10: Construct random feature vector zV(aj) via (12)

11: Infer f̂(vj) = θ�
M+1zV(vj), j ∈ Ω.

12: Accounting for newly-coming node

13: Construct random feature vector zV(anew)
via (12)

14: Estimate f̂(vnew) = θ�
M+1zV(vnew).

15: If ynew available, Update θ via (16).

Inferring unavailable nodal values. After the training phase,

the nodal function value over the un-sampled nodes can be read-

ily estimated by [cf. (13)]

f̂(vi) = θ̂
�
zV(ai), ∀i ∈ Sc (17)

where θ̂ is the final estimate after the training phase, i.e., θ̂ =
θM+1, and Sc denotes the index set of the nodes whose signal

values have not been sampled in the training phase.

Newly-joining nodes. When new nodes join the network,

batch graph-kernel based approaches must expand K̄ in (7) by

one row and one column, and re-solve (6) in order to form sig-

nal estimates for the newly-joining nodes. Hence, each newly

joining node will incur complexity O(N3). The novel online

RF method on the other hand, can simply estimate the signal

on the newly coming node via f̂(vnew) = θ̂zV(anew), where

anew ∈ R
N denotes the connectivity pattern of the new node

with the existing nodes in the network. This leads to a complex-

ity of O(ND) per new node. If in addition, ynew is available,

then the function estimate can also be efficiently updated via

(16) and (13) using anew and ynew.

The steps of our online RF-based method are summarized

in Algorithm 1. A couple of standard learning tasks where

Algorithm 1 comes handy are now in order.

Nonlinear regression over graphs: Consider first nonlinear re-

gression over graphs, where the goal is to find a nonlinear func-

tion f ∈ H, such that yn = f(vn) + en = f(an) + en given the

graph adjacency matrix A. The criterion is to minimize the reg-

ularized prediction error of yn, typically using the online LS loss

L(f(at), yt) := [yt − f(at)]
2 + µ‖f‖2H in (15), whose gradient

is (cf. (16))

∇L
(

θ�
t zV(at), yt

)

= 2[θ�
t zV(at)− yt]zV(at) + 2µθt.

In practice, yt can represent a noisy version of each node’s real-

valued attribute, e.g., temperature in a certain city, and the graph

can be constructed based on Euclidean distances among cities.

For a fair comparison with alternatives, only the regression task

will be tested in the numerical section of this paper.
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Nonlinear classification over graphs: We can also han-

dle kernel-based perceptron and kernel-based logistic regres-

sion, which aim at learning a nonlinear classifier that best

approximates either yn, or, the pdf of yn conditioned on

an. With binary labels {±1}, the perceptron solves (3) with

L(f(at), yt) = max(0, 1− ytf(at)) + µ‖f‖2H, which equals

zero if yt = f(at), and otherwise equals 1. In this case, the

gradient of the presented online RF-based method is (cf. (16))

∇L
(

θ�
t zV(at), yt

)

= −2ytC(θ�
t zV(at), yt)zV(at) + 2µθt.

Accordingly, given xt, logistic regression postulates that

Pr(yt = 1|xt) = 1/(1 + exp(f(xt))). Here the gradient takes

the form (cf. (16))

∇L
(

θ�
t zV(at), yt

)

=
2yt exp(ytθ

�
t zV(at))

1 + exp(ytθ
�
t zV(at))

zp(xt) + 2µθt.

Classification over graphs arises in various scenarios, where yn
may represent categorical attributes such as gender, occupation

or, nationality of users in a social network.

Remark 1 (Privacy): Note that the update in (16) does not

require access to at directly. Instead, the only information

each node needs to reveal is zV(at) for each at, which in-

volves {sin(a�t vj), cos(a
�
t vj)}Dj=1. Being noninvertible, these

co-sinusoid functions involved in generating the zV(at) can be

viewed as an encryption of the nodal connectivity pattern, which

means that given zV(at), vector at cannot be uniquely deci-

phered. Hence, Algorithm 1 preserves privacy.

Remark 2 (Directed graphs): It can be observed from (7)

that for K̄ to be a valid kernel, graph-kernel based methods

require A, and henceforth L to be symmetric, which implies

they can only directly deal with symmetric/undirected graphs.

Such a requirement is not necessary for our RF-based method.

Remark 3 (Time-varying graphs): Real-world networks

may vary over time, as edges may disappear or appear. To

cope with such changing topologies, the original graph-kernel

method needs to recalculate the kernel matrix, and resolve

the batch problem whenever one edge changes. In contrast,

our online RF-based method can simply re-estimate the nodal

values on the two ends of the (dis)appeared edge using (13)

with their current {an}.

Evidently, the performance of Algorithm 1 depends on κ that

is so far considered known. As the “best” performing κ is gener-

ally unknown and application dependent, it is prudent to adap-

tively select kernels by superimposing multiple kernels from a

prescribed dictionary, as we elaborate next.

IV. ONLINE GRAPH-ADAPTIVE MKL

In the present section, we develop an online graph-adaptive

learning approach that relies on random features, and leverages

multi-kernel approximation to estimate the desired f based on

sequentially obtained nodal samples over the graph. The pro-

posed method is henceforth abbreviated as Gradraker.

The choice of κ is critical for the performance of single kernel

based learning over graphs, since different kernels capture dif-

ferent properties of the graph, and thus lead to function estimates

of variable accuracy [13]. To deal with this, combinations of ker-

nels from a preselected dictionary {κp}Pp=1 can be employed in

(3); see also [13], [26]. Each combination belongs to the convex

hull K̄ := {κ̄ =
∑P

p=1 ᾱpκp, ᾱp ≥ 0,
∑P

p=1 ᾱp = 1}. With H̄
denoting the RKHS induced by κ̄ ∈ K̄, one then solves (3) with

H replaced by H̄ := H1

⊕ · · ·⊕HP , where {Hp}Pp=1 repre-

sent the RKHSs corresponding to {κp}Pp=1 [28].

The candidate function f̄ ∈ H̄ is expressible in a separable

form as f̄(a) :=
∑P

p=1 f̄p(a), where f̄p(a) belongs to Hp, for

p ∈ P := {1, . . . , P}. To add flexibility per kernel in our en-

suing online MKL scheme, we let wlog {f̄p = wpfp}Pp=1, and

seek functions of the form

f(v) = f(a) :=

P
∑

p=1

w̄pfp(a) ∈ H̄ (18)

where f := f̄/
∑P

p=1 wp, and the normalized weights {w̄p :=

wp/
∑P

p=1 wp}Pp=1 satisfy w̄p ≥ 0, and
∑P

p=1 w̄p = 1. Exploit-

ing separability jointly with the RF-based function approxima-

tion per kernel, the MKL task can be reformulated, after letting

Lt(f̂
RF
p (at)) := L

(

θ�zVp
(at), yt

)

in (15), as

min
{w̄p},{f̂RF

p }

T
∑

t=1

P
∑

p=1

w̄p Lt

(

f̂RF
p (at)

)

(19a)

s. to

P
∑

p=1

w̄p = 1, w̄p ≥ 0, p ∈ P, (19b)

f̂RF
p ∈

{

f̂p(at) = θ�zVp
(at)

}

, p ∈ P (19c)

which can be solved efficiently ‘on-the-fly.’ Relative to (14), we

replaced M by T to introduce the notion of time, and stress the

fact that the nodes are sampled sequentially.

Given the connectivity pattern at of the tth sampled node vt,
an RF vector zp(at) is generated per p from the pdf πκp

(v) via

(12), where zp(at) := zVp
(at) for notational brevity. Hence,

per kernel κp and node sample t, we have [cf. (13)]

f̂RF
p,t (at) = θ�

p,tzp(at) (20)

and as in (16), θp,t is updated via

θp,t+1 = θp,t − η∇L(θ�
p,tzp(at), yt) (21)

with η ∈ (0, 1) chosen constant to effect the adaptation. As far

as w̄p,t is concerned, since it resides on the probability simplex,

a multiplicative update is well motivated as discussed also in,

e.g., [26], [27], [29]. For the un-normalized weights, this update

is available in closed form as [26]

wp,t+1 = wp,t exp
(

−ηLt

(

f̂RF
p,t (at)

))

. (22)

Having found {wp,t} as in (22), the normalized weights in (18)

are obtained as w̄p,t := wp,t/
∑P

p=1 wp,t. Note from (22) that

when f̂RF
p,t has a larger loss relative to other f̂RF

p′,t with p′ �= p
for the tth sampled node, the corresponding wp,t+1 decreases

more than the other weights. In other words, a more accurate

approximant tends to play a more important role in predicting
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Algorithm 2: Gradraker Algorithm.

1: Input: Kernels κp, p = 1, . . . , P , step size η > 0, and

number of RFs D.

2: Initialization: θp,1 = 0.

3: Training:

4: for t = 1, 2, . . . , T do

5: Obtain the adjacency vector at of node vt.
6: Construct zp(at) via (12) using κp for

p = 1, . . . , P .

7: Predict f̂RF
t (at) =

∑P
p=1 w̄p,tf̂

RF
p,t (at)

8: Observe loss function Lt, incur Lt(f̂
RF
t (at)).

9: for p = 1, . . . , P do

10: Obtain loss L(θ�
p,tzp(at), yt) or Lt(f̂

RF
p,t (at)).

11: Update θp,t+1 and wp,t+1 via (21) and (22).

12: end for

13: end for

14: Inference:

15: Construct RF vector {zp(aj)} using {κp}.

16: Infer f̂(vj) =
∑P

p=1 w̄p,T+1θ
�
p,T+1zp(vj).

17: Accounting for newly-coming node

18: Construct RF vector {zp(anew)} using {κp}.

19: Estimate f̂(vnew) =
∑P

p=1 w̄p,T+1θ
�
p,T+1

zp(vnew).
20: If ynew available update {θp, wp} via (21)

and (22).

the ensuing sampled node. In summary, our Gradraker for online

graph MKL is listed as Algorithm 2.

Remark 4 (Comparison with batch MKL): A batch MKL

based approach for signal reconstruction over graphs was devel-

oped in [13]. It entails an iterative algorithm whose complexity

grows with N in order to jointly estimate the nodal function,

and to adaptively select the kernel function. When new nodes

join the network, [13] re-calculates the graphical kernels and

re-solves the overall batch problem, which does not scale with

the network size. In addition, [13] is not privacy preserving in

the sense that in order to estimate the function at any node, one

needs to have access to the connectivity pattern of the entire

network.

Remark 5 (Comparison with k-NN): An intuitive yet effi-

cient way to predict function values of a newly joining node

is to simply combine the values of its k nearest neighbors (k-

NN) [23], [30]. Efficient as it is, k-NN faces several challenges:

a) At least one of the neighbors must be labeled, which does not

always hold in practice, and is not required by the Gradraker;

and b) k-NN can only account for local information, while the

Gradraker takes also into account the global information of the

graph.

A. Generalizations

So far, it is assumed that each node n only has available its

own connectivity feature vector an. This allows Gradraker to

be applied even when limited information is available about the

nodes, which many existing algorithms that rely on nodal fea-

tures cannot directly cope with.

If additional feature vectors {φi,n}Ii=1 are actually available

per node n other than its own an, it is often not known a priori

which set of features is the most informative for estimating the

signal of interest on the graph. To this end, the novel Gradraker

can be adapted by treating the functions learned from different

sets of features as an ensemble of learners, and combine them

in a similar fashion as in (18), that is,

f(vn) =

I
∑

i=1

βifi(φi,n) (23)

Applications to several practical scenarios are discussed in the

following.

Semi-private networks. In practice, a node may tolerate shar-

ing its links to its neighbors, e.g., users of Facebook may share

their friends-list with friends. In this scenario, each node not

only knows its own neighbors, but also has access to who are its

neighbors’ neighbors, i.e., two-hop neighbors. Specifically, node

n has access to an, as well as to the nth column of A(2) := AA

[1], and a learner f2(φ2,n) can henceforth be introduced and

combined in (23). Moreover, when nodes are less strict about

privacy, e.g., when a node is willing to share its multi-hop neigh-

bors, more learners can be introduced and combined ‘on the fly’

by selecting φi,n as the nth column of A(i) in (23).

Multilayer networks. Despite their popularity, ordinary net-

works are often inadequate to describe increasingly complex

systems. For instance, modeling interactions between two in-

dividuals using a single edge can be a gross simplification of

reality. Generalizing their single-layer counterparts, multilayer

networks allow nodes to belong toNg groups, called layers [31],

[32]. These layers could represent different attributes or charac-

teristics of a complex system, such as temporal snapshots of the

same network, or different types of groups in social networks

(family, soccer club, or work related). Furthermore, multilayer

networks are able to model systems that typically cannot be rep-

resented by traditional graphs, such as heterogeneous informa-

tion networks [33], [34]. To this end, Gradraker can readily in-

corporate the information collected from heterogenous sources,

e.g., connectivity patterns {Ai}Ng

i=1 from different layers, by

adopting a kernel based learner fi(ai,n) on the ith layer and

combining them as in (23).

Nodal features available. In certain cases, nodes may have

nodal features [1] in addition to their {an}. For example, in

social networks, other than the users’ connectivity patterns, we

may also have access to their shopping history on Amazon. In fi-

nancial networks, in addition to the knowledge of trade relation-

ships with other companies, there may be additional information

available per company, e.g., the number of employees, category

of products the company sales, or the annual profit. Gradraker

can also incorporate this information by introducing additional

learners based on the nodal feature vectors, and combine them

as in (23).

V. PERFORMANCE ANALYSIS

To analyze the performance of the novel Gradraker algorithm,

we assume that the following are satisfied.

(as1) For all sampled nodes {vt}Tt=1, the loss function

L(θ�zV(at), yt) in (15) is convex w.r.t. θ.
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(as2) For θ belonging to a bounded set Θ with ‖θ‖ ≤ Cθ,

the loss is bounded; that is, L(θ�zV(at), yt) ∈
[−1, 1], and has bounded gradient, meaning,

‖∇L(θ�zV(at), yt)‖ ≤ L.

(as3) The kernels {κp}Pp=1 are shift-invariant, standardized,

and bounded, that is, κp(an,an′) ≤ 1, ∀an,an′ ; and

w.l.o.g. they also have bounded entries, meaning ‖an‖ ≤
1, ∀n.

Convexity of the loss under (as1) is satisfied by the pop-

ular loss functions including the square loss and the logistic

loss. As far as (as2), it ensures that the losses, and their gra-

dients are bounded, meaning they are L-Lipschitz continuous.

While boundedness of the losses commonly holds since ‖θ‖
is bounded, Lipschitz continuity is also not restrictive. Con-

sidering kernel-based regression as an example, the gradient

is (θ�zV(xt)− yt)zV(xt) + λθ. Since the loss is bounded,

e.g., ‖θ�zV(xt)− yt‖ ≤ 1, and the RF vector in (12) can be

bounded as ‖zV(xt)‖ ≤ 1, the constant is L := 1 + λCθ using

the Cauchy-Schwartz inequality. Kernels satisfying the condi-

tions in (as3) include Gaussian, Laplacian, and Cauchy [25]. In

general, (as1)–(as3) are standard in online convex optimization

(OCO) [27], [35], and in kernel-based learning [25], [36], [37].

In order to quantify the performance of Gradraker, we resort to

the static regret metric, which quantifies the difference between

the aggregate loss of an OCO algorithm, and that of the best

fixed function approximant in hindsight, see also e.g., [27], [35].

Specifically, for a sequence {f̂t} obtained by an online algorithm

A, its static regret is

RegsA(T ) :=
T
∑

t=1

Lt(f̂t(at))−
T
∑

t=1

Lt(f
∗(at)) (24)

where f̂RF
t will henceforth be replaced by f̂t for notational

brevity; and, f ∗(·) is defined as the batch solution

f ∗(·) ∈ arg min
{f ∗

p, p∈P}

T
∑

t=1

Lt(f
∗
p(at))

with f ∗
p(·) ∈ arg min

f∈Fp

T
∑

t=1

Lt(f(at)) (25)

where Fp := Hp, with Hp representing the RKHS induced by

κp. We establish the regret of our Gradraker approach in the

following lemma.

Lemma 1: Under (as1), (as2), and with f̂ ∗
p defined as f̂ ∗

p(·)
∈ argminf∈F̂p

∑T
t=1 Lt(f(at)), with F̂p := {f̂p|f̂p(a) = θ�

zp(a), ∀θ ∈ R
2D}, for any p, the sequences {f̂p,t} and {w̄p,t}

generated by Gradraker satisfy the following bound

T
∑

t=1

Lt

(

P
∑

p=1

w̄p,tf̂p,t(at)

)

−
T
∑

t=1

Lt(f̂
∗
p(at))

≤ lnP

η
+

‖θ∗
p‖2
2η

+
ηL2T

2
+ ηT (26)

where θ∗
p is associated with the best RF function approximant

f̂ ∗
p(a) = (θ∗

p)
�zp(a).

Proof: See Appendix A �

In addition to bounding the regret in the RF space, the next

theorem compares the Gradraker loss relative to that of the best

functional estimator in the original RKHS.

Theorem 2: Under (as1)–(as3), and with f ∗ defined as in

(25), for a fixed ε > 0, the following bound holds with prob-

ability at least 1− 28(
σp

ε )2 exp( −Dε2

4N+8 )

T
∑

t=1

Lt

(

P
∑

p=1

w̄p,tf̂p,t(at)

)

−
T
∑

t=1

Lt (f
∗(at))

≤ lnP

η
+

(1 + ε)C2

2η
+

ηL2T

2
+ ηT + εLTC (27)

where C is a constant, while σ2
p := Eπκp

[‖v‖2] is the second-

order moment of the RF vector norm. Setting η = ε =
O(1/

√
T ) in (27), the static regret in (24) leads to

RegsGradraker(T ) = O(
√
T ). (28)

Proof: See Appendix B �

Observe that the probability of (27) to hold grows as D in-

creases, and one can always find a D to ensure a positive prob-

ability for a given ε. Theorem 2 establishes that with a proper

choice of parameters, the Gradraker achieves sub-linear regret

relative to the best static function approximant in (25), which

means the novel Gradraker algorithm is capable of capturing

the nonlinear relationship among nodal functions accurately, as

long as enough nodes are sampled sequentially.

In addition, it is worth noting that Theorem 2 holds true re-

gardless of the sampling order of the nodes {v1, . . . , vT }. How-

ever, optimizing over the sampling pattern is possible, and con-

stitutes one of our future research directions.

VI. NUMERICAL TESTS

In this section, Gradraker is tested on both synthetic and real

datasets to corroborate its effectiveness. The tests will mainly

focus on regression tasks for a fair comparison with existing

alternatives.

A. Synthetic Data Test

Data generation. An Erdös-Rényi graph [38] with binary

adjacency matrix A0 ∈ RN×N was generated with probabil-

ity of edge presence π = 0.2, and its adjacency was sym-

metrized asA = A0 +A�
0 . This symmetrization is not required

by Gradraker, but it is necessary for alternative graph kernel

based methods. A function over this graph was then gener-

ated with each entry of the coefficient vector α ∈ R
N drawn

uniformly from [0.5, 1], and each entry of the noise e drawn

from N (0, 0.01I). In each experiment, the sampling matrix Ψ

is randomly generated so that M = 0.05N of the nodes are ran-

domly sampled, and the remaining N −M nodes are treated

as newly-joining nodes, whose function values and connectiv-

ity patterns are both unknown at the training phase, and whose

nodal function values are estimated based on their connectiv-

ity with existing nodes in the network during the testing phase.

All algorithms are carried out on the training set of M nodes,

and the obtained model is used to estimate the function value

on the newly arriving nodes. The runtime for estimating the
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Fig. 1. Inference performance versus number of nodes for synthetic dataset generated from graph diffusion kernel.

Fig. 2. Inference performance versus number of nodes for synthetic dataset generated from Gaussian kernel.

function value on the newly-joining nodes, as well as the gener-

alization NMSE := 1
|Sc|‖x̂Sc − xSc‖22/‖xSc‖22 performance is

evaluated, with Sc denoting the index set of new nodes. The

Gradraker adopts a dictionary consisting of 2 Gaussian kernels

with parameters σ2 = 1, 5, using D = 10 random features, and

it is compared with: a) the k NN algorithm, with k selected as the

maximum number of neighbors a node has in a specific network,

and with the combining weights set to 1/k in unweighted graphs,

and ail/
∑

j∈Ni
aij for the lth neighbor in weighted graphs; b)

the graph kernel (GK) based method using diffusion kernels

with different bandwidths (named as GK-DF), or band-limited

kernels with different bandwidths (GK-BL); and c) kernel based

learning without RF approximation (KL) with a Gaussian kernel

of σ2 = 5. Results are averaged over 100 independent runs. The

regularization parameter for all algorithms is selected from the

set µ = {10−7, 10−6, . . . , 100} via cross validation.

Testing results. Fig. 1 illustrates the performance in terms

of the average runtime and NMSE versus the number of nodes

(size) of the network. In this experiment, K̄ in (7) is generated

from the normalized graph Laplacian L, using the diffusion ker-

nel r(λ) = exp(σ2λ/2). A bandwidth of σ2 = 5 was used to

generate the data. It is observed that GK attains the best gener-

alization accuracy when the ground-truth model is known, but its

computational complexity grows rapidly with the network size.

However, GK does not perform as well when a mismatched ker-

nel is applied. The Gradraker method on the other hand, is very

efficient, while at the same time it can provide reasonable esti-

mates of the signal on the newly arriving nodes, even without

knowledge about the kernels. The k-NN method is very efficient,

but does not provide as reliable performance as the Gradraker.

Figure 2 depicts the performance of competitive algorithms.

Matrix K̄ for data generation is formed based on (8) using

the Gaussian kernel κ(ai − aj) = exp(‖ai − aj‖2/σ2), with

σ2 = 5. In this case, KL exactly matches the true model, and

hence it achieves the best performance. However, it is the most

complex in terms of runtime. Meanwhile, GK-based methods
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Fig. 3. Inference performance versus number of sampled nodes in temperature dataset.

suffer from model mismatch, and are also relatively more com-

plex than Graderaker. The novel Gradraker is capable of esti-

mating the nodal function on the newly joining nodes with high

accuracy at very low computational complexity. Note that in

real-world scenarios, accurate prior information about the un-

derlying model is often unavailable, in which case Gradraker

can be a more reliable and efficient choice.

B. Reconstruction of the Temperature Data

This subsection tests the performance of Gradraker on a real

temperature dataset. The dataset comprises 24 signals corre-

sponding to the average temperature per month in the intervals

1961−1980 and 1991−2010 measured by Na = 89 stations in

Switzerland [39]. The training set contains the first 12 signals,

corresponding to the interval 1961−1980, while the test set con-

tains the remaining 12. Each station is represented by a node, and

the graph was constructed using the algorithm in [40] based on

the training signals. Given the test signal on a randomly chosen

subset of N = M vertices, the values at the remaining Na −M
vertices are estimated as newly-coming nodes. The generaliza-

tion NMSE over the Na −M nodes is averaged across the test

signals.

Fig. 3 compares the performance of Gradraker with those of

competing alternatives. Gradraker adopts a dictionary consist-

ing of 3 Gaussian kernels with parameters σ2 = 1, 5, 10, using

D = 100 random features. It is clear from Fig. 3 that Gradraker

outperforms GK in both generalization NMSE and runtime. On

the other hand, even though KL achieves lower generalization

NMSE, it incurs a much higher complexity.

C. Reconstruction of the Email-Eu-Core Data

The Eu-core network was generated using email data from a

large European research institution [41], where each node rep-

resents a person, and an edge (i, j) is present if person i sent

person j at least one email. The e-mails only represent commu-

nication between institution members (the core), and the dataset

does not contain incoming messages from or outgoing messages

to the rest of the world. The dataset also contains “ground-truth”

community memberships of the nodes. Each individual belongs

to one of 42 departments at the research institute. During the

experiment, the department labels are considered to be yn that

are to be sampled and estimated. The graph consists of 1, 005
nodes, and 25,571 edges. Gradraker adopts a dictionary con-

sisting of 2 Gaussian kernels with parameters σ2 = 1, 10, from

which D = 10 random features are generated. The test results

were averaged over 100 independent runs with randomly sam-

pled nodes.

Fig. 4 compares the performance of Gradraker with those of

alternative algorithms when different numbers of nodal labels

are observed. It is clear that the RF-based approach outperforms

the GK-based method in both reconstruction accuracy and run-

time. While the batch KL method without RF approximation

outperforms the RF method, it incurs considerably higher com-

putational complexity.

D. Reconstruction of the Cora Data

This subsection tests the Gradraker algorithm on the Cora ci-

tation dataset [5]. Gradraker adopts a dictionary consisting of

2 Gaussian kernels with parameters σ2 = 1, 10, using D = 20
random features. The results were averaged over 100 indepen-

dent runs. The Cora dataset consists of 2,708 scientific publica-

tions classified into one of seven classes. The citation network

consists of 5,429 links. The network is constructed so that a link

connects node i to node j if paper i cites paper j, and the category

id the paper belongs to is to be reconstructed. It can be observed

again from Fig. 5, that the Gradraker markedly outperforms the

GK algorithms in terms of generalization NMSE, and is much

more computationally efficient than all other algorithms except

the kNN method, which however does not perform as well.

It can be readily observed from our numerical results over

synthetic and real datasets, that the Gradraker provides reliable

performance in terms of NMSE in all tests, while at the same
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Fig. 4. Inference performance versus number of sampled nodes in email dataset.

Fig. 5. Inference performance versus number of sampled nodes in Cora dataset.

time, it scales much better than all kernel based alternatives.

This is because the alternative kernel-based algorithms require

re-computing the kernel matrix whenever a new node joins the

network. It is worth noting that all kernel-based alternatives re-

quire exact knowledge of the entire network topology, which

is not necessary for GradRaker that only requires {zV(an)}.

These tests corroborate the potential of GradRaker for appli-

cation settings, where the graphs grow and nodes have privacy

constraints.

VII. CONCLUSIONS

The present paper deals with the problem of reconstructing

signals over graphs, from samples over a subset of nodes. An

online MKL based algorithm is developed, which is capable of

estimating and updating the nodal functions even when samples

are collected sequentially. The novel online scheme is highly

scalable and can estimate the unknown signals on newly join-

ing nodes. Unlike many existing approaches, it only relies on

encrypted nodal connectivity information, which is appealing

for networks where nodes have strict privacy constraints.

This work opens up a number of interesting directions for

future research, including: a) exploring distributed implementa-

tions that are well motivated in large-scale networks; b) graph-

adaptive learning when multiple sets of features are available;

and c) developing adaptive sampling strategies for Gradraker.

APPENDIX A

PROOF OF LEMMA 1

To prove Lemma 1, we introduce two intermediate lemmata.

Lemma 3: Under (as1), (as2), and f̂ ∗
p as in (25) with Fp :=

{f̂p|f̂p(a) = θ�zp(a), ∀θ ∈ R
2D}, let {f̂p,t(at)} denote the

sequence of estimates generated by Gradraker with a pre-

selected kernel κp. Then the following bound holds true w.p.1

T
∑

t=1

Lt(f̂p,t(at))−
T
∑

t=1

Lt(f̂
∗
p(at)) ≤

‖θ∗
p‖2
2η

+
ηL2T

2
(29)
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where η is the learning rate, L is the Lipschitz constant in (as2),

and θ∗
p is the corresponding parameter (or weight) vector sup-

porting the best estimator f̂ ∗
p(a) = (θ∗

p)
�zp(a).

Proof: The proof is similar to the regret analysis of online

gradient descent, see e.g., [29]. �

In addition, we will bound the difference between the loss of

the solution obtained from Algorithm 2 and the loss of the best

single kernel-based online learning algorithm. Specifically, the

following lemma holds.

Lemma 4: Under (as1) and (as2), with {f̂p,t} generated from

Gradraker, it holds that

T
∑

t=1

P
∑

p=1

w̄p,tLt(f̂p,t(at))−
T
∑

t=1

Lt(f̂p,t(at)) ≤ ηT +
lnP

η

(30)

where η is the learning rate in (22), and P is the number of

kernels in the dictionary.

Proof: Letting Wt :=
∑P

p=1 wp,t, the weight recursion in

(22) implies that

Wt+1 =

P
∑

p=1

wp,t+1 =

P
∑

p=1

wp,t exp
(

−ηLt

(

f̂p,t(at)
))

≤
P
∑

p=1

wp,t

(

1− ηLt

(

f̂p,t(at)
)

+ η2Lt

(

f̂p,t(at)
)2

)

(31)

where the last inequality holds because exp(−ηx) ≤ 1−
ηx+ η2x2, for |η| ≤ 1. Furthermore, substituting w̄p,t :=

wp,t/
∑P

p=1 wp,t = wp,t/Wt into (31) leads to

Wt+1 ≤
P
∑

p=1

Wtw̄p,t

(

1− ηLt

(

f̂p,t(at)
)

+ η2Lt

(

f̂p,t(at)
)2
)

= Wt

(

1− η

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

+ η2
P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)2

)

. (32)

Since 1 + x ≤ ex, ∀x, it follows that

Wt+1 ≤ Wt exp

(

−η
P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

+ η2
P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)2

)

. (33)

Telescoping (33) from t = 1 to T yields

WT+1 ≤ exp

(

−η
T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

+ η2
T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)2

)

. (34)

On the other hand, for any p, it holds that

WT+1 ≥ wp,T+1

= wp,1

T
∏

t=1

exp
(

−ηLt

(

f̂p,t(at)
))

= wp,1 exp

(

−η
T
∑

t=1

Lt

(

f̂p,t(at)
)

)

. (35)

Combining (34) with (35), we arrive at

exp

(

−η

T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

+ η2
T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)2

)

≥ wp,1 exp

(

−η

T
∑

t=1

Lt

(

f̂p,t(at)
)

)

. (36)

Taking the logarithm on both sides of (36), and recalling that

wp,1 = 1/P , we obtain

−η

T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

+ η2
T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)2

≥ −η

T
∑

t=1

Lt

(

f̂p,t(at)
)

− lnP. (37)

Re-organizing the terms leads to

T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

≤
T
∑

t=1

Lt

(

f̂p,t(at)
)

+ η
T
∑

t=1

P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)2

+
lnP

η

(38)

and the proof is complete, since Lt(f̂p,t(at))
2 ≤ 1 and

∑P
p=1 w̄p,t = 1. �

Since Lt(·) is convex under (as1), Jensen’s inequality implies

Lt

(

P
∑

p=1

w̄p,tf̂p,t(at)

)

≤
P
∑

p=1

w̄p,tLt

(

f̂p,t(at)
)

. (39)

Combining (39) with Lemma 4, one arrives readily at

T
∑

t=1

Lt

(

P
∑

p=1

w̄p,tf̂p,t(at)

)

≤
T
∑

t=1

Lt

(

f̂p,t(at)
)

+ ηT +
lnP

η

(a)

≤
T
∑

t=1

Lt

(

f̂ ∗
p(at)

)

+
lnP

η
+

‖θ∗
p‖2
2η

+
ηL2T

2
+ ηT (40)
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where (a) follows due to Lemma 3 and because θ∗
p is the optimal

solution for any given κp. This proves Lemma 1.

APPENDIX B

PROOF OF THEOREM 2

To bound the performance relative to the best estimator f ∗(at)
in the RKHS, the key step is to bound the approximation error.

For a given shift-invariant κp, the maximum point-wise error of

the RF kernel approximant is bounded with probability at least

1− 28(
σp

ε )2 exp( −Dε2

4N+8 ), by [25]

sup
ai,aj∈X

∣

∣z�p (ai)zp(aj)− κp(ai,aj)
∣

∣ < ε (41)

where ε > 0 is a given constant,D the number of features, while

M is the number of nodes already in the network, and σ2
p :=

Ep[‖v‖2] is the second-order moment of the RF vector norm

induced by κp. Henceforth, for the optimal function estimator

(25) in Hp denoted by f ∗
p(a) :=

∑T
t=1 α

∗
p,tκp(a,at), and its

RF-based approximant f̌ ∗
p :=

∑T
t=1 α

∗
p,tz

�
p (a)zp(at) ∈ Fp, we

have
∣

∣

∣

∣

∣

T
∑

t=1

Lt

(

f̌ ∗
p(at)

)

−
T
∑

t=1

Lt

(

f ∗
p(at)

)

∣

∣

∣

∣

∣

(a)

≤
T
∑

t=1

∣

∣Lt

(

f̌ ∗
p(at)

)

− Lt(f
∗
p(at))

∣

∣

(b)

≤
T
∑

t=1

L

∣

∣

∣

∣

∣

T
∑

t′=1

α∗
p,t′z

�
p (at′)zp(at)−

T
∑

t′=1

α∗
p,t′κp(at′ ,at)

∣

∣

∣

∣

∣

(c)

≤
T
∑

t=1

L
T
∑

t′=1

|α∗
p,t′ |

∣

∣z�p (at′)zp(at)− κp(at′ ,at)
∣

∣ (42)

where (a) is due to the triangle inequality; (b) uses the Lipschitz

continuity of the loss, and (c) is due to the Cauchy-Schwarz

inequality. Combining with (41), yields
∣

∣

∣

∣

∣

T
∑

t=1

Lt(f̌
∗
p(at))−

T
∑

t=1

Lt(f
∗
p(at))

∣

∣

∣

∣

∣

≤
T
∑

t=1

Lε

T
∑

t′=1

|α∗
p,t′ | ≤ εLTC, w.h.p. (43)

where we used that C := maxp
∑T

t=1 |α∗
p,t|. Under the kernel

bounds in (as3), the uniform convergence in (41) implies that

supat,at′∈X z�p (at)zp(at′) ≤ 1 + ε, w.h.p., which leads to

∥

∥θ∗
p

∥

∥

2
:=

∥

∥

∥

∥

∥

T
∑

t=1

α∗
p,tzp(at)

∥

∥

∥

∥

∥

2

=

∣

∣

∣

∣

∣

T
∑

t=1

T
∑

t′=1

α∗
p,tα

∗
p,t′z

�
p (at)zp(at′)

∣

∣

∣

∣

∣

≤ (1 + ε)C2

(44)

where for the last inequality we used the definition of C.

Lemma 1 together with (43) and (44) lead to the regret of the

proposed Gradraker algorithm relative to the best static function

in Hp, that is given by

T
∑

t=1

Lt

(

P
∑

p=1

wp,tf̂p,t(at)

)

−
T
∑

t=1

Lt(f
∗
p(at))

=
T
∑

t=1

Lt

(

P
∑

p=1

wp,tf̂p,t(at)

)

−
T
∑

t=1

Lt

(

f̌ ∗
p(at)

)

+
T
∑

t=1

Lt

(

f̌ ∗
p(at)

)

−
T
∑

t=1

Lt(f
∗
p(at))

≤ lnP

η
+

ηL2T

2
+ ηT +

(1 + ε)C2

2η
+ εLTC, w.h.p. (45)

which completes the proof of Theorem 2.
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