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In the context of online learning and management policies, this article illustrates ways
of dealing with extreme heterogeneity, massive number of devices, and unpredictable
dynamics in the context of the Internet of Things.
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ABSTRACT | Internet of Things (loT) envisions an intelli-
gent infrastructure of networked smart devices offering task-
specific monitoring and control services. The unique features
of IoT include extreme heterogeneity, massive number of
devices, and unpredictable dynamics partially due to human
interaction. These call for foundational innovations in network
design and management. Ideally, it should allow efficient adap-
tation to changing environments, and low-cost implementation
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scalable to a massive number of devices, subject to stringent
latency constraints. To this end, the overarching goal of this
paper is to outline a unified framework for online learning
and management policies in loT through joint advances in
communication, networking, learning, and optimization. From
the network architecture vantage point, the unified framework
leverages a promising fog architecture that enables smart
devices to have proximity access to cloud functionalities at
the network edge, along the cloud-to-things continuum. From
the algorithmic perspective, key innovations target online
approaches adaptive to different degrees of nonstationarity
in 10T dynamics, and their scalable model-free implementa-
tion under limited feedback that motivates blind or bandit
approaches. The proposed framework aspires to offer a step-
ping stone that leads to systematic designs and analysis of
task-specific learning and management schemes for loT, along
with a host of new research directions to build on.

KEYWORDS | Internet of Things (loT); mobile edge computing
(MEC); network resource allocation; online learning; stochastic
optimization

I. INTRODUCTION

The past decade has witnessed a proliferation of con-
nected devices and objects, where the notion of Internet
of Things (IoT) plays a central role in the envisioned
technological advances. Conceptually speaking, IoT fore-
sees an intelligent network infrastructure with ubiquitous
smart devices—home automation, interactive healthcare,
and self-driving connected vehicles—that are typical in
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IoT [2], [3] (see Fig. 1). Today, a number of IoT applica-
tions have already brought major benefits to many aspects
of our daily life. The current generation of IoT can already
afford an increasing amount of real-time automation,
and thus intelligence toward the vision of real-time IoT.
However, despite the popularity of IoT, several critical
challenges must be addressed before embracing its full
potential [4], [5]. To this end, we highlight three key
challenges that are arguably expected to be at the epicenter
of emerging IoT research fields.

A. Extreme Heterogeneity

The computational and communication capacities of
devices differ due to differences in hardware (e.g., CPU
frequency), communication protocol (e.g., ZigBee), and
energy availability (e.g., battery level) [6]. The tasks car-
ried out on various devices are often considerably diverse,
e.g., motion sensors monitor human behavior in a smart
home [7], while cameras are responsible for recognizing a
suspicious behavior in a crowded environment, or vehicle
plates in a parking garage.

B. Unpredictable Dynamics

Unlike many existing communication, computing, and
networking platforms, the IoT dynamics can stem from
multiple sources, where adaptivity is not only critical
but also essential in designing hardware and manage-
ment protocols. Such sources entail human-in-the-loop
dynamics in addition to physical objects [7], demand
response in energy systems [8], and intelligent automotive
applications [9]. In these applications, IoT dynamics are
intertwined with or even partially determined by human
behavior [10]-[12] as such a high degree of adaptivity in
the algorithm and hardware design is needed.

C. Scalability at the Core

IoT entails an intelligent network infrastructure with a
massive number of devices. It is estimated that by 2020,
there will be more than 50 billion devices connected
through the Internet [13], which highlights scalability as
a key challenge for IoT [2], [4]. Scalability is not only

Fig. 1. Internet of Things [1].

about computational efficiency but also about lower com-
munication overhead (e.g., how often a device needs to
communicate with the remote cloud center), as well as
reduced information needed (e.g., what type of informa-
tion a device needs before making sensible decisions).

Faced with these major IoT challenges, innovations in
network design and management are desired to enable
efficient online operations and seamless coexistence of
humans with things [14]. Consequently, it is imperative
to develop new tools for IoT management that tap into
diverse inference, signal processing, communications, and
networking techniques, by drawing from fields such as
machine learning, optimization, and applied statistics. The
novel expertise gleaned from these research areas, coupled
with the solid analytical approach, are the best credentials
for succeeding in IoT research [4].

From a network architecture perspective, to ensure the
desired user experience and meet heterogeneous service
requirements, IoT tasks are no longer only supported
by the cloud data centers nowadays but also through a
promising new architecture termed edge computing or in
a broader sense fog computing. This architecture distrib-
utes computation, communication, and storage closer to
the end IoT devices and users, along the cloud-to-things
continuum [14]-[19]. This shift of computing paradigms
is further promoted by the advanced communication tech-
niques emerging with standards such as narrowband IoT
(NB-IoT) [20], [21].

Given the huge volume of data in various IoT setups and
the proliferation of learning and large-scale optimization
advances, a pertinent direction is prompted by asking the
following question: can we learn from historical data to
improve the quality of network management policies in
IoT? The rationale is that historical data contain statistics
of the IoT environments [22], and learning from them can
mitigate the uncertainty of future management tasks. Fur-
ther armed with online adaptation capability to reinforce
the current policies, it is envisioned that learn-and-adapt
network management schemes can markedly improve IoT
user experience in terms of low service delay, high system
resilience, and adaptivity [23], [24]. Toward this goal, this
paper will outline an offline-aided online approach with
markedly improved performance by leveraging statistical
learning from historical samples.

Taking a step further, online learning, with online con-
vex optimization (OCO) as a special case, is an emerg-
ing methodology for sequential decision making with
lightweight implementation and well-documented merits,
especially when the environment (e.g., a sequence of con-
vex costs) varies in an unknown and possibly adversarial
manner [25], [26]. Targeting a scalable solution in a
prohibitively complex IoT environment, this paper will also
overview a new OCO framework designed for IoT, which
further incorporates various forms of feedback, physi-
cal constraints, and performance metrics driven by IoT
applications, relative to the standard settings [25]-[27].
Novel schemes tailored for this setting can lay a
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solid analytical foundation to delineate the trade-
offs among algorithm scalability, performance guaran-
tees, and degree of (non)stationarity present in the
IoT environment [28], [29].

The rest of this paper is organized as follows.
Section II deals with the heterogeneity in IoT
demand and quality of service (QoS), along with
a unified formulation for dynamic IoT tasks.
Section III introduces methods for optimizing IoT
performance under different levels of nonstationarity in
IoT dynamics. Section IV summarizes scalable OCO-
based schemes with different feedback options. Finally,
concluding remarks and possible future research directions
are highlighted in Section V.

Notation: Bold uppercase (lowercase) letters denote
matrices (column vectors), while (~)-r stands for transpo-
sition, and ||x|| denotes the ¢;-norm of a vector x. The
projection [a]" := max{a, 0} are defined entrywise. The
indicator function 1(A) takes value 1 when the event A
happens, and 0 otherwise. O(z) denotes big order of z,
ie, O(z)/z — 1 as z — 0; O neglects the lower order
terms with a polynomial log x rate; and o(x) denotes small
order of z, i.e., o(z)/z — 0 as z — 0.

II. HETEROGENEITY IN IoT DEMAND
AND QoS

Heterogeneity is inherent in IoT, and it manifests itself
across different aspects, from application requirements and
constraints to sensing and communication technologies.

A. Heterogeneous Applications

The range of IoT applications already spans several
fields, and it is rapidly increasing. A few examples of
applications are as follows [3], [5], [21]: 1) lifestyles
(wearable gadgets, gaming, augmented/virtual reality, and
wellness); 2) smart environments (homes, offices, and
cities); 3) automotive (self-driving, traffic monitoring,
intelligent transportation systems, and vehicle-to-vehicle
communications); 4) industrial (full automation and con-
trol, structure monitoring, and logistic); 5) environmen-
tal monitoring (pollution, global warming, and waste
management); and 6) healthcare (patient monitoring,
body area networks, smart health, and elderly care); and
7) security and surveillance. These applications are char-
acterized by highly diverse requirements in terms of data
rate, latency, reliability, security, connectivity, mobility, and
so on. To illustrate the extreme variability of require-
ments, we note that virtual reality require latencies in the
order of a few milliseconds and data rates in the order
of 25 Mb/s, while automated driving or certain industrial
control applications require latencies in the order of mil-
liseconds and high packet transmission reliability (in the
order of 99.999%). Conversely, for environmental moni-
toring applications such as waste management, an update
frequency of one packet/hour is sufficient, with a tolerable
delay of 30 min.
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A few paradigms are useful to outline the challenges
facing IoT and the potential of our approaches to address
them.

1) Automated Driving: The goal of this application is
to enhance perception of an individual vehicle and, thus,
improve safety. A common approach is to set up a coopera-
tive perception system building on the information sharing
between vehicles and roadside units (RSUs) [30]. The
scope is to widen the visibility of the individual vehicle to
prevent that an object unseen by a single vehicle might
cause an accident [31], [32]. The signals to be exchanged
go from (low data rate) range measurements to (high data
rate) high-definition maps generated by sensors mounted
on each vehicle. The communication channels between
vehicles are highly dynamic and hard to predict, while the
information available at each time slot can be outdated.
Nevertheless, communication among vehicles and RSUs
should be performed in a reliable and timely manner to
ensure that emergency operations can take place in the due
time.

2) Intelligent Transportation: A typical task in this appli-
cation is to navigate a set of electric vehicles to their
destination by collecting along the way data about traffic,
state of the battery, and availability of parking slots. The
objective here is to minimize fuel consumption and the
time needed to reach a certain destination while ensuring
that all vehicles find a proper refueling station for their
batteries along the way. The remaining time to destination
is updated online, depending on the time-varying traffic
state, which is generally unpredictable.

B. Heterogeneous Technologies

The IoT ecosystem is composed of various compo-
nents, whose functionality falls within the following
categories [5]: identification, sensing, communication,
computation, and services. Identification is crucial to
assign a clear identity to each object in the network. The
role of sensing elements is to gather data from the real
world. Typically, sensors are integrated with single-board
computers and Transmission Control Protocol/IP function-
alities to create IoT devices such as Arduino or Raspberry
PI, which are able to sense and send data to a decision
entity. The role of communication is to propagate informa-
tion from the sensing elements to a decision entity, possibly
distributed, and back to actuators. There is a plethora of
very heterogeneous communication technologies that are
in use in IoT. As a broad classification, we can list: 1) short-
range technologies to support machine-to-machine com-
munications, like Bluetooth, IEEE 802.15.4, and ZigBee;
2) long-range networks, like LoRa supporting data rates of
around 50 kb/s over ranges up to 15 km, or SigFox using
ultranarrowband technologies to support ultralow power
consumption and long ranges (up to 30-50 km in rural
areas and 3-10 km in urban areas), at the expenses of
limited data rates; 3) low-power Wi-Fi, also called IEEE
802.11ah supporting data rates up to 347 Mb/s; and
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4) cellular networks. Current 4G cellular technologies,
more specifically the third-generation partnership project
long-term evolution (3GPP LTE), represent the state of
the art in mobile communications. However, LTE has been
primarily designed for broadband communications and,
thus, not optimized for the machine-type communications
(MTC) envisioned in IoT.

To partially overcome this discrepancy, 3GPP has intro-
duced some modifications to the standards to enable
the deployment of massive smart connected devices and
services such as those in smart cities or smart grids:
eMTC [33] and NB-IoT [20]. However, a truly disruptive
framework enabling an effective deployment of IoT is 5G
communication networks, thanks to increased data rate,
reduced end-to-end (E2E) latency, and improved cover-
age relative to 4G [34]. The key features of 5G that
are particularly suitable for IoT are: 1) the integration
of heterogeneous access technologies; 2) virtualization of
network functionalities; and 3) bringing cloud function-
alities close to the end user by introducing mobile edge
computing (MEC). While earlier network generations have
been designed as general-purpose connectivity platforms,
the vision underlying 5G is to create an ecosystem for tech-
nical and business innovations involving vertical markets
such as automotive, energy, agriculture, city management,
healthcare, manufacturing, and transportation. Since these
services have very different requirements and constraints,
the key challenge of 5G is to design a single platform being
able to serve different purposes in an efficient way. The
solution to tackle such a challenging question is network
slicing. At the basis of network slicing, there is network
function virtualization, which makes it possible to partition
a single physical network into multiple virtual networks,
each matched to its specific requirements and constraints.
This enables operators to provide networks on an as-a-
service basis while meeting a wide range of use cases in
parallel. Virtualization is going to play a key role also in I[oT
to cope with high heterogeneity of requirements as well as
the capabilities of devices. However, being able to meet
the stringent latency requirements of IoT applications,
virtualization needs to be coupled with a new architectural
vision enabled by MEC.

C. Embedding IoT in the Edge Cloud

Even within the sophisticated architecture of 5G net-
works, meeting the stringent latency constraints required
in some IoT applications over a wide area network can
be still challenging, if not impossible. To guarantee low
latencies, a popular solution is to bring cloud functionali-
ties close to the end users through mobile (or multiaccess)
edge computing [35], [36].

With MEC, computation and storage resources are
brought at the edge of the network, represented by the
network access points (APs). In this way, delay-sensitive
applications launched by a mobile device can be offloaded
to the nearest mobile edge host (MEH), and the most

popular contents can also be cached in MEHs to minimize
downloading time [37], [38]. Bringing computation and
storage resources at the edge of the network makes it
possible to guarantee low and stable delays. In prac-
tice, the applications launched by the user are exe-
cuted by virtual machines running on nearby edge nodes,
either cloudlets, exploiting a Wi-Fi connection [39], [40],
or MEHs, using cellular communication technologies [16].
The further extension of MEC is fog computing, where
the edge of the network can include devices as well, thus
creating a continuum of devices able to sense, commu-
nicate, and compute [14], [41]. A critical aspect in this
scenario is mobility management [42]. To handle mobility
while offering seamless service continuity, it is necessary
to migrate virtual machines quickly across MEH. This is
a critical step because instantiating a conventional virtual
machine can take times well beyond the latencies required
in some IoT applications.

In MEC or fog computing settings, communication,
computation, and storage resources can be seen as three
aspects of a single system. From a user-centric perspec-
tive, what actually matters is the time needed to launch
an application and receive the result back. The over-
all delay depends on communication time, computation
time, and the distribution of contents across the net-
work. This holistic vision calls for a joint dynamic opti-
mization of communication, computation, and caching
resources [15]. An application where communication and
computation resources are closely mingled is computation
offloading. This is a fundamental mechanism to enable
simple devices to run sophisticated applications or to
allow battery-powered devices to run their applications
remotely to save energy and, thus, prolong battery life-
time. Computation offloading has gained growing popu-
larity recently. For single-user MEC, it has been studied
in [19] and [43]-[45]. The multiuser case was addressed
in [46] and [47] and later extended to the dynamic case,
using stochastic optimization in [48] and [49]. See recent
surveys [15], [16], [50] and references therein.

D. Taming Heterogeneity via a Unified
Formulation

With various applications and technologies in mind,
the goal of this section is to put forth a unified model
for IoT tasks that will guide subsequent algorithmic
development.

1) Unifying Models: Consider discrete time ¢ € N, and
a time horizon of T slots. Per slot ¢, an IoT state variable
st € R? is defined, which characterizes all the critical para-
meters of the IoT environment. Assuming certain amount
of knowledge about the environment, the IoT operator will
make a decision x; € R?, aiming to optimize task-specific
performance, subject to different types of constraints. The
decision x; can, in turn, drive the next state s;,1. To model
such decision-making processes, we consider a generic
problem (1), shown at the top of the next page. The model
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T
optimize Zf(xt;st) /IoT performance metrics (1a)
{x¢,Vt} t=1
T
s.t. Zg(xt;st) <0 /IoT long-term requirements (1b)
t=1
x¢ € X(s¢), Vi /IoT short-term requirements (Ic)
Per slot t, IoT state dynamics sey1 = d(s¢,X¢, &) (1d)
Per slot t, find x; given information oracle O (le)
here is general. The slot duration can vary from tens E2E latency of each UE should be less than [, that is
of microseconds in wireless networks, a few milliseconds
in automated driving, and tens of seconds in intelligent T L @)

transportation to minutes or even hours in smart power
networks; the state s; can represent the channel gain in
wireless networks, the congestion level in data networks
as well as transportation networks, and the renewable
generation, and energy prices in power networks; and the
decision x; can include the transmitted power in com-
munication, the size of data workloads, the number of
vehicles, or the amount of energy. Regarding the objectives,
constraints, and dynamics in (1), we will highlight their
IoT relevance, especially of interest to communication and
networking communities.

2) Performance Metrics: Given the state s; and the deci-
sion x¢, we consider the IoT performance as a generic
time-invariant function f(x¢;s:) (use f:(x:) interchange-
ably) depending on the time-varying quantities s; and x;.
For MEC problem in Section II-C, f(x:;s:) often repre-
sents the power consumption aggregating over all devices,
the aggregated delay, or the system throughput [16], [18],
[29]. Another line of recent research studies a new perfor-
mance metric in MEC—age of information or age—which
measures the timeliness of system status using the elapsed
time since the most recently received packet was generated
at its source [51]. Age of information is pertinent to
mission-critical IoT applications [52], [53]. Furthermore,
for traffic assignment tasks in intelligent transportation,
f+(x¢) can capture the overall fuel consumption and the
travel time of vehicles on the road [54]; for demand
response in smart grids, it is related to user utility and
power balancing cost depending on the real-time energy
prices [55]-[58]; and for applications related to wireless
communications, throughput or achievable rate also plays
a critical role in the objective.

3) Short-Term Constraints: The heterogeneous require-
ments in IoT are modeled via short-term and long-term
constraints in (1). The short-term constraints are imposed
to regulate x; in accordance to short-term requirements,
which can be collected in a compact set X(s;)—that is
either continuous or discrete and possibly depends on the
IoT state s;. As an example, consider an MEC system
composed of APs, MEC servers, and mobile user equip-
ment (UE). To meet the stringent latency requirement, the
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where 1) [f* is the time spent to send the program
state and input (encoded with b; bits) from UE to AB
e.g., If* = b:/r, with r, being the data rate (in bits/s);
2) I?* is the backhaul latency between AP and MEC server,
which appears when the computations are performed in
a server that is not colocated with the AP; 3) [$*¢ is the
server execution time defined as I§*° = c¢;/u:, where ¢; is
the number of CPU cycles to be executed, and wu; is
the number of CPU cycles/second allocated by the MEC
server to UE; and 4) I;* is the time for the MEC server
to send back the result to UE. With x; := {u,r:} and
s = {IP*,17%, ct, b} thus (2) included in X (s;), selecting
x¢ € X(s:) guarantees the E2E latency requirement
in MEC. Short-term constraints also arise due to the
physical limits of transmission lines and generators in
power networks [8], transceivers in wireless commu-
nication [59], as well as vehicles in transportation
networks [54].

4) Long-Term Constraints: In some IoT applications,
the short-term constraints cannot accurately characterize
the demand and requirements. For the latency require-
ment in MEC, the short-term constraint (2) makes implicit
assumptions as follows: 1) no new task is generated before
the old tasks are completed and 2) every single task
is carried out within an established time frame. These
assumptions may be restrictive in some cases. Also, con-
sider a vehicle in the intelligent transportation application
that must arrive at its destination within a certain inter-
val. To guarantee on-time arrival, its long-term average
speed instead of the instantaneous speed needs to be
lower bounded. The long-term constraints are, thus, well-
motivated to allow flexible adaptation of x; to temporal
variations of service requirements. Given the state s; and
the decision X, they are modeled as a set of penalty
functions g(x:;s:) = [g'(x¢;8¢),...,9" (X;8¢)]" in (1b).
Ideally, we want the accumulated penalty over the entire
horizon below a certain threshold. For convenience, we let
the threshold to be 0 in (1b), which is without loss of
generality subject to a constant shift. Long-term constraints
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Table 1 Overview of Heterogeneous loT Settings Considered

Section State dynamics s; — S¢41

Information oracle O,

Section III-A
Section III-B
Section III-C

1.i.d. or Markovian
Partially controlled Markovian
Controlled Markovian

fl(xl)vgl(xl), 000

fag7X and {Sl.“ 7St}
f,8, X and {Sl--- ,St}
7ft*1(xt*1)7gt—l(xt71) and {sl .. ,st}

Section IV-A
Section IV-B
Section IV-C

Generally nonstationary
Generally nonstationary
Generally nonstationary

f17g17--~ 7ft*17gt*17X
fi(x1), 81, fim1(xe—1), 81, X
fi(xa),g1(x1), ..., fe—1(Xe—1), e—1(Xe—1), X

also appear in wireless networks where often the average
transmit power and link capacity are confined [59]. The
challenge in dealing with long-term constraints is that the
future states s;y1,--- ,S7 are not known at slot ¢, which
calls for adaptive optimization.

5) State Dynamics: One of the key challenges in IoT is its
unpredictable dynamics. In (1), IoT dynamics are encoded
by a state transition function d which generates the next
state s;y1 = d(st, X, &,) given s; and x; as well as an
exogenous variable ¢,. In most of the cases, the exogenous
variable ¢, can be a random disturbance. For wireless
communication applications where the state s; represents
the fading channel state, then s;;; often does not depend
on s; and x;; that is, s;41 = d(&,) := s + &,, where s is
the mean channel state, and &, ..., &, are independent,
identically distributed (i.i.d.) zero-mean random variables
(see [59] and [60]). Markovian dynamics are also com-
mon in modeling energy prices, renewable generation
processes [61], in which case s;;1 = d(s¢,&,) depends
on the current state s; and an i.i.d. noise &, but not x;.
We refer to both s;41 = d(¢,) and s¢11 = d(s, &),
as noninteractive dynamics. The decision x; can also play
an important role in state transitions. Taking MEC as an
example, a queueing model is usually incorporated to keep
trace of the relevant quantities such as the amount of
remaining tasks that need to be offloaded or processed.
With {b¢, ct,r¢,us} defined in the following (2), we con-
sider a transmission queue ¢i* that quantifies the number
of bits to be transmitted at slot ¢ from UE, and a computa-
tion queue ¢;*° that quantifies the amount of computation
that needs to be completed for UE. If At denotes the slot
duration, the transmission queue evolves as

¢it1 = max [q — reAt, 0] + by 3)

exe

and the computation queue evolves as follows ¢ =
max [qf*° — utAt,0] + ¢:. In this case, the IoT state is

s: = {q*, ¢}, the decision is x; := {us,r:}, and the
exogenous variable is &, := {b:,c:}. It then follows that
Siy1 = d(s¢,x¢,&,)—what we term interactive dynam-

ics, or more precisely, controlled Markovian dynamics if &,
is i.i.d. If the communication and computation resources
are sufficient, an ideal policy should guarantee the queue
stability [62], [63]. According to Little’s law [64], the aver-
age execution delay experienced by each UE is propor-
tional to the average queue lengths. Hence, a meaningful

problem can be minimizing the average power, subject
to the average delay constraints, which will be discussed
in Section III-B. State variables of this type also include
the location of a vehicle in the intelligent transporta-
tion or an unmanned aerial vehicle (UAV) that depends on
their previous location and the current movement [65]-
[67], and the energy level of a battery that depends on
their instantaneous (dis)charging amounts. More complex
dynamics are also possible in IoT due to, e.g., strategic
human interactions and malicious attack [68]. In those
cases, &, can be a function of all the statessi, ..., s; or even
completely arbitrary.

6) Accessible Information: While various objectives, con-
straints, and state dynamics have been adopted to model
heterogeneous problems in IoT, the level of accessible
information directly affects how to solve the resultant
problem given limited communication and computation
resources—the epicenter of scalability barriers in IoT. Let
the information oracle O collect all the information avail-
able to the IoT operator before making decision x;. For
cases where the objectives and the constraints are easy-
to-measure formulas (e.g., aggregated power, throughput,
and distance), we consider O, := {f, g, X,s1...,8:} that
includes the explicit form of functions {f, g}, set X and
one-slot-ahead prediction s;. In some IoT settings, how-
ever, 1) the objective capturing user-centric quantities, e.g.,
service latency or reliability, security risk, and customer
ratings, is hard to model; 2) the objective involving fast-
varying quantities is hard to predict, e.g., the millimeter-
wave links in 5G are prone to blocking events, thus hard to
predict; and 3) even if modeling and predicting are possi-
ble in theory, the low-power smart devices may not afford
the complexity of running statistical learning tools “on the
fly.” In such cases, we consider a fully causal information
oracle O; = {fi1(x1), 8 (X1),..., fri-1(Xe-1), 8,1 (Xe-1)}
that includes only the observed objective function “val-
ues” and constraint “penalties” at previous slots. IoT sce-
narios between these two extreme cases will also be
discussed.

In Table 1, we summarize the heterogeneous settings
that one may encounter in IoT. Targeting these settings,
a set of suitable solvers will be discussed in the subse-
quent sections. While the methodologies presented in this
paper mainly focus on stochastic optimization and online
learning, approaches based on other methodologies such
as game theory and robust optimization can be also applied
to solve similar problems.
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III. ADAPTIVITY TO DYNAMIC
IoT ENVIRONMENTS

This section introduces methods for optimizing IoT perfor-
mance under the (asymptotically) stationary assumption
on IoT dynamics relative to control decisions in the fast
timescale. Corresponding to different types of state dynam-
ics in Table 1, we outline three classes of management
schemes (see Fig. 2).

A. Leveraging Statistical Learning for
IoT Management

As the generic problem (1), consider the IoT operator
makes a per-slot decision x;, subject to the short-term
constraints that are collected in a compact set X(s:)
parameterized by the IoT state s; € S, as well as the
long-term constraints that are expressed as a time-varying
penalty function g(x;;s:) € R”. With the IoT cost f(x:;s:),
we wish to find a sequence of decisions {x;} that minimize
the expected limiting-average cost subject to the long-term
and short-term constraints, that is

T
1
= i lim — E ; 4
! {Xte«'gl(ls?),w} T ; [F (x5 0)] (4a)

(4b)

where E is taken over the random state s;, and possible
randomness we may opt to introduce in the decision x;.
Comparing with (1), the infinite time horizon and the
limiting average cost are used in (4) and throughout this
section for mathematical simplicity. Indeed, assuming s;
is i.i.d. or generally stationary, the dynamic problem (4)

4 N\
Nature: 81 —> S —> e Sy
N\ N\ N\
\Learner: X1 Xo e X )
A non-interactive loT setting
(Nature: q1 Q2 e qar h
N/ \/ \
Learner: X1 Xo e Xt
/ / /
\Nature: S — S — ... St /
A semi-interactive loT setting
~N
Nature: S1 S St
N/ N\ / /" \
Learner: X1 X9 e Xt )

An interactive loT setting

Fig. 2.
and nature corresponding to the three assumptions in Table 1.

Three levels of interaction between IoT operator (learner)
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shares the same optimal objective value as the following
static problem [63]:

= eomin Ly B (r(s)ise)] (5a)
s.t. E[g(m(s¢);s:)] <O. (5b)

To this end, our goal is to determine a possibly randomized
policy = that, given an IoT state s;, generates x; = 7 (S;) SO
as to minimize the average cost subject to both long- and
short-term constraints in (5). The infinite-dimension func-
tional optimization problem (5) is more tractable in its dual
form, which entails a finite number of variables [24], [69].
With A € RY denoting the multipliers, the Lagrangian
of (5)is L(m,X) := E[L(w(st), A;s:)] where the instan-
taneous (per state) Lagrangian is L(mw(s:),A;s¢) :=
f(m(st);s:) + X' g(m(se);s:). Correspondingly, the dual
problem of (5) is

max D(A) := E[D(A;s:)] (6)

A>0

where D(X;s:) := minge x(s,) £(X, A; 5¢). With the optimal
A" obtained for the dual problem (6), the optimal policy
for the problem (5) could be retrieved as

" (s¢) ;== arg min L(X,\";s;). )
XEX(S¢)

The ensemble problem (6) is difficult to solve since the
probability density distribution of s; is usually unknown.
To find the optimal multipliers A* in an efficient man-
ner, existing methods mainly rely on the stochastic
subgradient-based [stochastic gradient descent (SGD)]
methods [59], [60], [63]. However, SGD is known to suffer
from slow convergence, which implies that the IoT network
needs to implement sufficient many suboptimal decisions
generated during the transient stage of SGD.

From a different viewpoint, given the huge volume of
historical data generated by IoT networks, (6) was first
formulated in [24] as a statistical learning task involving
both offline training and online operational phases. The
rationale is that historical data contain statistics of the
IoT states, and learning from them can aid coping with
the uncertainty of future management tasks, leading to
reduced transient time of adaptive algorithms.

Specifically, with a training set of Ny historical IoT state
samples Sp := {sn,1 < n < Ny} available offline, (6) can
be recast in an empirical form via sample averaging as

No
A . ~ L 1 - € 2
max Dg, (), with Dg,(A) = 7= > Du(A) = 5|
(®)

n=1

where D,,(A) := D(A;s,), and € > 0 is a regularization
constant typically used in statistical learning to boost
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generalization capability [22]. Note that while an ¢2-norm
regularizer is adopted in (8), other forms of regulariza-
tion (e.g., £1 and total-variation norm) are also possible
depending on a priori knowledge. Note that here ¢ has been
replaced by n to differentiate historical data from data in
online phases.

Viewing (8) as a (negated) empirical risk minimization
(ERM) task, we can resort to the state-of-the-art optimiza-
tion methods for ERM, e.g., SAGA [70], which enjoys
fast convergence and low complexity. Using SAGA, per
iteration k, we evaluate a single summand of the empirical
gradient, i.e., Vﬁu(k)(Ak) at the iterate Ay, with sample
index v(k) € {1,...,No} selected uniformly at random.
Thus, the computational complexity of SAGA is that of an
SGD iteration for (8). Furthermore, SAGA stores a collec-
tion of the outdated gradients {V.aD,} for all samples,
where VoD, was evaluated by Ajpn—the most recent
iteration k[n] that s,, was drawn, i.e., k[n] = sup{k’ :
v(k') = n,k’ < k}. SAGA combines the fresh gradient with
the stored ones as

Api1 = [)\k + a(Vﬁu(k)(Ak) — Voa Doy + Voldﬁgo)] "
©

where « is the predefined stepsize, and the stored gradi-
ents are Voldﬁgo = (1/N) 22721 VoiaDn — €.

The merits of SAGA lie in the fact that its gradi-
ent estimator in (9) is still unbiased as that with SGD.
In addition to the unbiasedness, however, SAGAs gradient
estimator attains considerably lower variance than SGD,
thanks to the contribution of the stored previous gradients,
which is now termed the variance reduction technique
prevalent in large-scale machine learning tasks. Needless
to mention the encouraging empirical results, the SAGA
in (9) is provably convergent to the optimum of (8) with
the linear convergence rate [24], [70]

E, [D5, - Ds,(A)] = 0(p") (10)

where D* is the optimal objective of (8), and p € (0,1) is
the llnear rate depending on the objective function of (8).

Hence, in the offline phase, we run KNy, SAGA itera-
tions (9) on set Sp—on average K iterations per sample.
In the online phase, initialized with the offline output,
SAGA (we term online SAGA) keeps acquiring data s; with
a growing training set S, := S, ; U s;. At slot ¢, online
SAGA is initialized with the last iterate of slot ¢ — 1 and
updates A; by running K iterations (9) (see Fig. 3). The
IoT decision is generated using the current A: by m:(s¢) =
arg minye x(s,) £(X, At;8¢). This is the key idea of offline-
aided online IoT operations.

The offline-aided online scheme is not simply heuristic.
In fact, the learning performance can be rigorously quan-
tified via several concentration results in the learning the-
ory [22], which uniformly bound the discrepancy between
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Aii At At+1
| A1 AK”1| A Akl |
t—1 t t+1 Time
Fig. 3. Timescale splitting for offline-aided online SAGA

operations. Iterates {\;} generate actual IoT decision, while
DS TTIEEE k|t are K virtual iterates updated via (9) at slot t;
and Agyg = Age-

the empirical loss (8) and the loss (6) with high probability
(whp), that is

sup[D(A) -

A>0

Ds,(A)| < Hs(Nit), whp an

where H,(V;) bounds the statistical error induced by the
finite size N, of the training set S;. Under proper (so-
termed mixing) conditions, the law of large numbers guar-
antees that M, (V;) is generally in the order of O(y/1/N¢)
[22, Sec. 3.4]. On the other hand, let H,(KN;) upper
bound the optimization error of solving (8) with S; due to
running on average only finite (K) iterations per sample;
ie, D, — Dg, () < Ho(KNy).

Online SAGA aims at a “sweet spot” between afford-
able complexity (controlled by K) and desirable overall
learning error, which accounts for both the optimization
and statistical errors H(N;) +Ho (K N¢). Specifically, if we
select No > 3x/4 with « denoting the condition number
of (8), and K > 6, the optimization error is bounded by
Ho(K Nt) < Hs(N:) [24]. In fact, even with K = 1, online
SAGA can still guarantee that H,(KN;) = O (Hs(Ny)).
With the link between the optimal policy and the optimal
multiplier (7) in mind, the key message here is that with
sufficient historical samples, online SAGA only requires
running a small number of iterations per slot to bring
the optimization error close to the statistical accuracy
provided by the current training set. Recent works along
this line also include [71] and [72] that focused on algo-
rithms for piecewise stationary environments. Learning
more complex policies for noninteractive settings has been
also studied by leveraging deep neural networks [73].
Possible future research along this line also includes devel-
oping algorithms under the assumption of stationarity in
high-order moments, which is also pertinent in practice.
Algorithms tailored for fully nonstationary settings will be
presented in Section IV.

B. Learn-and-Adapt Approaches in
Semi-Interactive Settings

The IoT environment in Section III-A is noninteractive,
meaning that the dynamic of s;;1 in (5) does not change
according to x;. The IoT states can be also driven by
decisions, which include the job queue length in a data cen-
ter [74], the lane length in a transportation network [65],
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as well as the battery level in a smart grid [56], [75]. This
section considers the case where such IoT states appear in
the constraints but not in the objectives, which we call the
semi-interactive settings.

Consider an IoT network represented as a directed graph
G = (W, &) with nodes N := {1,...,N} and edges
€ :={1,..., E}. The node-incidence matrix is formed with
(n,e) entry A, .y = 1(—1) if link e enters (leaves) node n,
and A,y = 0, otherwise. With ¢, € RY collecting the
exogenous resources of all nodes per slot ¢, x; € R” for the
endogenous resources across edges, the aggregate resource
is Ax; + ¢;. Connecting with (5), ¢; is included in the IoT
state s;, and the constraint becomes g(x¢;s:) = AX; + c;.
With q, collecting all buffered resources at slot ¢, we wish
to solve (4) with the additional state dynamics and the
long-term constraints as

Q=9 +Ax +c]T, Vi (12a)
Jim (1/7)327 Ellq,[l] < co. (12b)

Due to the extra constraints in (12), the optimal objective
of this new problem is at least f* in (4). Furthermore,
the dynamic of the interactive state q, (a.k.a. queues)
in (12a) also accounts for the transient performance of an
adaptive algorithm. To see this, suppose that under =*,
it holds that An*(s;) + ¢, = 0, Vs;; and consider the
convergence path of policy =, induced by \; as =1 —

Ty > M3=...=T7T = 71'*, along with A7T1(S1) +c¢; =10
and Ama(s2) 4+ c2 = 5. In this case, if q; = 0, then we have
q,=10andq; =... =q; = 15.

The simple example entails two variable insights:
1) constraint violations incurred by the suboptimal deci-
sions during the transient stage (e.g., w1, w2) accumulate
via q, and 2) once accumulated in the transient stage,
q, will not decrease in the steady state (e.g., m:, t > 3).
This explains the suboptimal performance tradeoff of SGD
for (4) with (12) (see also [23]).

To better control the interactive state q,, it suffices to:

S1) reduce the transient time of the adaptive algorithm;
S2) diminish q, accumulated during the transient stage.

Following these two guidelines, we adopt a procedure
in the online phase that we term online learning and
adaptation (named LA-SAGA henceforth) (see Fig. 4).
Regarding S1), LA-SAGA performs the offline-aided online
learning as that in Fig. 3 by growing the training
set S; based on which it better learns A¢; and for S2),
LA-SAGA superimposes A: to the instantaneous state
(buffered resources) q, and comes up with an effective
multiplier as

0 = At +
———

effective multiplier

pg, —b  (13)

statistical learning system interaction

where p tunes emphasis to statistical versus interactive
state information, and b is a constant that corrects the
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qt
Add current S, Adapt A, to Qi
Sy and update )\, by and generate X;
Learning Adaptation X,
t=1,2,... -3
:
Monitor loT state i m loT operation
st and dy @ o@ =

Fig. 4. Learn-and-adapt diagram for loT management.

possible bias in the steady state—the intuition will become
transparent soon. Based on 6., the real-time IoT decision
x; is obtained by minimizing the Lagrangian over X'(s;),
that is

7(S¢) = X¢ := arg min )E(X, 0:;8¢). (14)

XEX (s¢

Note that different from stochastic allocation that is solely
based on the system feedback 6. = pnq, [63], and sta-
tistical learning that only relies on 68: = A, LA-SAGA
can take advantage of both through the use of effective
multiplier ;.

To grasp how the effective multiplier accounts for S2),
suppose that after sufficient learning processes, A ~ A\*,
and q, is large so that uq, — b >> 0. In this case, we have
the “shadow price” 6; > A", and thus, x; obtained
through (14) would ensure that Ax; + ¢; < O so that
4., < q, via (12a). Intuitively speaking, 8; will eventually
oscillate around A*, and thus, q, will oscillate around
b/u—this also suggests a positive b, otherwise it leads to a
biased 6; > A\* since q, > 0.

Rigorous analysis demonstrates that through a
proper selection of the bias b = @(\/ﬁ), 0. will converge
to the O(,/p)-neighborhood of A* for (6); formally,
we have [24]

Jim (1/T) 3 B[ (k80)] = f* = O(p) (15a)
(/)Y Ellq, )l = O(1/y/m) (15b)

lim
T— o0

which asserts that LA-SAGA is O(u)-optimal with an aver-
age queue length O(1/,/m)—an elegant [O(u), O(1//R)]
tradeoff. Comparing with the tradeoff [O(u), O(1/u)]
under Lyapunov optimization in [63], LA-SAGA [23], [24]
improves the performance in terms of constraint violations
(queue lengths).

The idea of incorporating learning into network opti-
mization is pioneered in [76]. However, the devel-
oped learning mechanism therein suffers from the curse
of dimensionality. Targeting large-scale IoT networks,
LA-SAGA can tackle settings with continuous S and X
with possibly infinite elements and still be amenable
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to efficient and scalable online operations. The impor-
tant implication of the learn-and-adapt scheme is that it
can perform the optimal IoT management, with reduced
resources and improved QoS, namely, reduced queueing
delay in data centers [23], faster virtual network function
placement [77], and lower congestion in transportation
networks, or smaller battery capacity in power grids [57].

As a closing remark of this section, note that while
the problem considered in the semiinteractive setting here
explicitly contains queueing-type constraints, the semiin-
teractive settings, in fact, cover a broader class of prob-
lems in IoT. For instance, throughput maximization in
UAV-enabled wireless networks under trajectory con-
straints also belongs to the class of semiinteractive
IoT settings [66], [78].

C. Reinforcement Learning for Interactive
IoT Environments

The IoT environment considered in Section III-B is semi-
interactive in the sense that only the dynamic of q,,,
(but not s;+1) changes according to x; through (12a).
To broaden the scope of the unified framework, this section
introduces methods tailored for the fully interactive setups,
where the dynamic of IoT state s; that can appear both in
the objectives and the constraints is driven by the deci-
sion x;. This setting captures the trajectory optimization
in UAV-aided mobile communications (see [66], [78]),
the dynamic caching with limited storage units (see [79]),
and the route planning in intelligent transportation
(see [54]).

For simplicity, consider an IoT environment with a finite
state space S and a finite action space X'. The interaction
between the operator and the IoT environment is uniquely
captured by the transition probability of going from the
current state s to the subsequent state s’ under action
X € X(s) C X, given by [P*|ss := P(st+1 = s|s: = §,
x¢ = X). Similar to (5), the goal is to determine a possibly
randomized policy =, that given a state s;, generates
X; = =(s;) so as to minimize the total discounted cost,’
that is

t— 1
1
I ] SRR T

where v € (0, 1) is a discounting factor, and E is taken over
the sample path of {s;}, as well as the random policy .

For a fixed policy =, the state value function is defined
as

Vz(s) :=

Jim E[Zyt Lt (7 (se): st)‘sl—s:| 17

'For simplicity, the infinite horizon discounted formulation is
considered—a slight mismatch with the generic one (1). Other formu-
lations with constraints or average costs can be also considered with
additional assumptions [80].
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and the state-action value function (so-termed Q-function)
is Qx(s,X) := f(%;8) + YEg|sx [Va(s')], where E is taken
over the one-step transition from the current state s to s’
under action x. With the optimal policy 7*, we have that?

7" (s) := arg min Q" (s,X) (18)

XEX(S)

and V*(s) = Q*(s,7"(s)). Furthermore, the optimality
condition of (16) that is termed the Bellman optimality
equation can be written as (see [81])

/ /
S.,X
o Q" (s',x')

Q*(Sv X) =f (X; S) + 'YIES’\S,X VX, s

19)

which is a system of nonlinear equations of Q* € RISIXI*I,
Switching the goal from (16) to the fixed point of the
Bellman optimality equation (19), a classical yet popular
approach is the so-termed Q-learning algorithm [82].
S1) At slot ¢, select the decision x; by
min Q¢ (S¢,X) w.p. 1 — &

arg
mi(8e) = X = XEX (st)
random x € X(s;)

(20)
w.p. €t

where ¢; > 0 is a predefined exploration constant, and s¢11
is generated according to P(s;+1 = §) = [P*]s,s.
S2) Update the state-action value function as

Qt(Su Xt)

- (f (X¢;8¢) + ’yxexrrgil

Qi+1(8t,%X¢) =

Qt(St+1, X))
21

where a; is a predefined stepsize. Note that different
from Sections III-A and III-B, the explicit form of the
objective function f (-;s:) does not need to be known per
slot . Instead, only the functions values {f (X,;s,)}:_;
along the trajectory (si,Xi),..., (St X¢) are assumed to
be known. With properly selected {e;,a:}, the simple
Q-learning algorithm is provably convergent under the
finite state and action spaces (a.k.a. tabular case) [81].
To date, the convergence of Q-learning and its variants are
mostly asserted for the tabular case.

To scale up Q-learning in the large-scale settings, recent
efforts have been devoted to infer Q by minimizing the
residual of the Bellman optimality equation (19), that is

min Q(s’,x )])2.

x'eX(s)

m&n Z <Q(57 X) — f(%8) — VEs s x [

(22)

2We interchangeably use Q*(s,X) = Qr=x(s,x) and V*(s) =
Vﬂ-*(s).
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Albeit its simple expression, several fundamental chal-
lenges arise when solving this fitting problem (22).

C1) The optimization scale can be prohibitively huge due
to the possibly large state and action spaces.
The unknown conditional expectation Eg/ s inside
the square loss prevents an easy unbiased gradient
estimator.
The max operator inside the square loss introduces
nonsmoothness and nonconvexity when performing
optimization.

To tackle C1), function approximation methods have
been studied using linear or nonlinear (random) basis
functions [83], [84]. Roughly speaking, given a state-
action pair (x,s) along with its predefined feature vec-
tor ¢y € R¢, existing approaches will approximate the
Q-function by Q(s,x) := z' (¢ )0, where z(¢, ;) € R*”
is a lifted feature vector (e.g., random features or outputs
of deep neural networks) generated from ¢, ; and 6 € R*”
is the wanted parameter vector. To this end, the task of
finding the |S|x | A| function (matrix) Q reduces to find the
2-D vector 6. Along this line, several recent works based
on primal-dual solvers have made significant progress on
simultaneously resolving C1) and C2) [85], [86]. Regard-
ing C3), while it is still an active research area, approaches
leveraging smoothing techniques for nonsmooth functions
in convex optimization have shed light on promising reme-
dies [87], [88].

In addition to value iteration-based methods such as
Q-learning, approaches based on direct policy search such
as policy gradients and actor-critic methods are also preva-
lent nowadays (see [89]-[91]). This key idea behind policy
gradient is to update the #-parametrized policy wg using
the gradient of the discounted objective (16) with respect
to the policy parameters [89]. Convergence of the pol-
icy gradient with deep neural networks or kernel-based
function approximators is now better understood than
Q-learning, along with the limitations of policy gradient-
based methods that arise from their high variance.

We conclude this section by remarking that approaches
in light of the offline-aided-online learning have also been
studied for (16) under the name of experience replay,
which achieves tremendous success in various artificial
intelligence tasks [92].

C2)

C3)

IV. SCALABILITY IN ONLINE LEARNING
FOR IoT

The IoT settings considered in Section III involve slow-
varying IoT dynamics that are (asymptotically) stationary
relative to the timescale of making decisions. However,
in large-scale IoT, real-time control and communications
entail slow and fast time scales that prompt scalable online
solvers for generally nonstationary settings—the topics of
this section.

In addition to the general nonstationarity, special atten-
tion will be given to approaches designed under lim-
ited information about the environment, or equivalently,
solvers requiring limited computation, and communication
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Fig. 5. Three forms of feedback in IoT environments (termed
nature) correspond to three different types of information oracle
in Table 1.

resources to sense the environment. Corresponding to
different information that may be available in IoT, we out-
line three classes of scalable online learning approaches
(see Fig. 5 for a comparison).

A. Constrained Online Learning for IoT
Management

Consider a finite-time horizon 7. Per slot ¢, the IoT oper-
ator selects an action x; from a known and fixed convex set
X C R? and the IoT environment (a.k.a. nature in OCO)
then reveals a loss f; : R? — R, along with a time-varying
(possibly adversarial) penalty function g, : RY — R™. The
latter leads to a time-varying constraint g,(x) < 0, which
is driven by the unknown IoT dynamics. As in (1), the goal
here is to generate a sequence of decisions that minimize
the aggregate loss and ensure that the constraints are
satisfied in the long term on average. Specifically, we wish
to solve

th(xt)

t=1

(23)

min
{xteX, vt}

T
sty g,(x) <0.
t=1

Comparing with the generic problem (1), we keep the time-
varying IoT state s; implicit in (23), e.g., f:(X¢) := f(X¢;St)
and g, (x¢) := g(x¢;S¢), since the algorithms introduced in
this section may not need to directly sense the state s;.
For (23), if {f:,9,} are known and T is not prohibitively
large, the optimal decisions can be found using any off-
the-shelf batch solver. Along with the potentially high
complexity of batch solvers, a key challenge is that loss
and constraint functions in dynamic IoT setups are often
unknown before allocating resources, due to unpredictable
channel blocking, in millimeter-wave links, due to the
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unpredictable routing, network congestion, device mal-
functions, and malicious attacks nowadays.

Consider an edge layer with low-power sensors, a fog
with N nodes in N, and a cloud with multiple comput-
ing centers [14]. Per slot ¢, each node n collects data
requests d; from nearby sensors and has to decide among
three options:

1) offloading an amount x}* (from dy') to the cloud;

2) offloading =™ to node m for collaborative comput-

ng;
3) processing an amount z}" using the in situ fog
servers.
Variable x; consists of all the decisions in 1)-3)
(see Fig. 6).

Supposing that each fog node has a local queue to buffer
unserved workloads, a long-term constraint is imposed to
ensure that the cumulative amount of served workloads is
no less than the arrived amount over T slots, that is

T
D gr(x) <0, Vn
t=1
gi(x) = df + Y @ = Y el - el

i t
meNin meENSH

24

where NV* (N2') is the set of fog nodes with in-coming
(out-going) links to (from) node n. Clearly, amounts x7,
™, and 27" have caps depending on the communication
protocols and computing cores in use. With x collecting all
these caps, the feasible set is X' := {0 < x; < X}.

Among candidate figures of merit in optimizing x; is
network delay of the online edge processing and offloading
decisions [15], [93]. Specifically, the latency associated
with x7 is mainly due to the communication delay, which
can be modeled as a time-varying convex function ' (xt').
Likewise, the communication delay related to z}™ is
denoted by 7™ (x}™). In addition, latency pertaining to
zy™ comes from its limited computation capability, which
can be modeled as a function hf (z}") capturing dynamics
during the computing processes.

2 Edges
J:ﬁz g» X/ Cloud center @ /y@
=’ N -

z

o~ Rl o -

R . @]@ J »':?> *

‘%{,\ @ Xt \_,\/\_/

Edges P N@ |

o D .

Fog clusters

Fig. 6. Diagram for mobile computation offloading: IoT devices at
the edge layer, fog clusters contain locally connected fog nodes, and
the data center in the cloud layer.

The overall performance in allocating x; is quantified
by aggregate latency metrics. Those include computational
(l+) and communication delays (&), namely

folxe) = 3 (IO + S g 17 @) + B (7))
neN
(25)

While the aggregate delay in some cases cannot directly
reflect user experience, a viable alternative is the
maximum of computational and communication delays
(see [93]). While the average-delay objective presumed
in (23) may not be the optimal performance metric in
some mission critical applications, our formulation can
also cover the probabilistic delay requirements. The per-
slot objective of the latter is an indicator function of the
delay given by

ft(xt)::Zn{(z;L(X?)+ > l?m(x?7”)+h?(x?"))<l_}

neN meNgut

(26)

where [ is a predefined upper bound of user delay.
The price paid is that the resultant problem is non-
convex, which can be tackled by, e.g., the approach
in Section IV-C.

With f:(x;) as in (25) and constraints as in (24), the solu-
tion of (23) aims to minimize the aggregate delay while
serving all IoT demands in the long term. Looking forward,
more intriguing is to find such an optimal strategy in a
fully causal setting, where { f:(x:), d}'} are unknown when
deciding x; but are revealed at the end of slot ¢ after
deciding x;.

To gauge the performance of online decisions, static
regret is adopted by OCO to measure how far the aggre-
gate loss of an OCO algorithm is from the best fixed
solution in hindsight [25]. Since a static regret relies
on a rather coarse benchmark, which is less useful in
dynamic IoT [28], we are motivated to pursue the so-
termed dynamic regret given by

T T

Regf =Y fe(x:) = D fi(X}) (27a)
t=1 t=1
with X; € arg H(l:_l;I\/l f1(x), st.g8,(x)<0 (27b)

where the benchmark is now formed using the best
sequence {x;} for the instantaneous problem, subject to
the instantaneous constraint. The metric in (5) is more
suitable for assessing the performance of dynamic IoT
networks than its static counterpart in [25] because a
sublinear dynamic regret implies a sublinear static one, but
the converse is not true.

Regarding feasibility of online decisions, the dyna-
mic fit is also useful to quantify the accumulated
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violations, that is

(28)

T +
Fit§ := H [th(xt)] .

The long-term constraint implicitly assumes that the
instantaneous constraint violations can be compensated
by subsequent strictly feasible decisions, thus allowing
adaptation of fog decisions to the unknown dynamics of
IoT user demands.

Under the metrics in (27) and (28), an ideal algo-
rithm will be one that achieves both sublinear dynamic
regret and sublinear dynamic fit. A sublinear dynamic
regret implies “no regret” relative to the clairvoyant
dynamic solution on the long-term average, i.e., lim7_
Regd/T = 0, while a sublinear dynamic fit indicates
that the online strategy is also feasible on average,
i.e., limr_ o Fit:/T = 0.

With A € RY denoting the Lagrange multiplier vector,
the Lagrangian of (23) is

Li(x,A) = fu(X) + A" g,(x). (29)

Building on (29), an online scheme termed modified
saddle point (MOSP) approach has been developed first
in [28] and later in [94]. We use the low-complexity
variant in [94] for the subsequent illustration. Given x;
and )\, the decision X; is

Xi+1 = Pr (Xt — aVxLi(Xt, At)) (30)

where Px(y) := argming y [|Xx — y||?, « is a predefined
constant, and VxL¢(X¢, Ae) = Vfi(x¢) + V' g, (x¢) A is the
gradient of £, (x, A;) with respect to x. In addition, the dual
update takes the modified online gradient ascent form

T +
Aevr = [ A+ (g, (6) + Vg (%) (ke — %)) G

where p is the stepsize, and g,(x:) is the gradient of
L:(x¢, X) with respect to A. Note that (31) is a modified
gradient update since the dual variable is updated along
the first-order approximation of g,(x¢+1) at x; rather than
the commonly used g, (x:).

With properly chosen stepsizes, MOSP enjoys dynamic
regret and fit bounded by [28]

Regl = O(V(x;T)T%) and Fit} = O(T?) (32)
where V(x}.7) is the accumulated variation of the per-slot
minimizers x; in (27) given by V(xi.p) = >, , [|Ixi —
X;_1||. In words, MOSP’s dynamic fit is sublinear, and its
dynamic regret is also sublinear, so long as the variation of
the minimizers is slow enough, i.e., V(x}.7) = o(\/T).

790 PROCEEDINGS OF THE IEEE | Vol. 107, No. 4, April 2019

Relevant approaches developed in similar settings also
include those in [95]-[97]. Specifically, OCO with switch-
ing cost has been studied in [95], and feedback-based
tracking algorithms have been developed in [96] and [97].

Remark 1 Learningvia Task-Adaptive Stepsizes: The pri-
mal update (30) can be refined by adjusting each entry of
the gradient using a per-entry stepsize in accordance with
“each thing” in IoT applications [93]. Such an adaptive
stepsize can be regarded as an inexpensive approximation
of the Hessian used in the online Newton iteration [98].
Using edge computing as a paradigm, [93] showed that
task-adaptive stepsizes can markedly reduce the network
delay when the underlying IoT tasks are heterogeneous,
where the resultant gradients could have distinct orders of
magnitude over different coordinates.

B. Constrained Convex Bandit Learning for IoT
Management

The online recursions (30) and (31) remain opera-
tional under the premise that the loss functions are
known or their gradients are readily available. Clearly,
none of these assumptions is always satisfied in IoT,
because: 1) the loss function capturing user dissatisfaction,
e.g., service latency or reliability, can be hard to model
in dynamic settings and 2) even if modeling is possible,
the low-power devices may not afford the complexity
of running statistical learning tools such as deep neural
networks online. These considerations motivate online
bandit saddle point (BanSP) methods to broaden the scope
of MOSP to IoT settings where the gradient is unavail-
able or computationally costly [29].

The key idea behind bandit learning is to construct
(preferably stochastic) gradient estimates using limited
function value information [99], [100]. Consider first a
learner only observing the value of fi(x) at a single
point x per slot t. The crux is to construct a (possibly
unbiased) estimate of the gradient using this single piece
of feedback—what is interestingly possible by one random
function evaluation [99]. The intuition is easy to grasp
in the 1-D case: for a binary variable u taking values
{—1,1} equiprobably, and a small § > 0, the difference
approximation of the derivative f; at z yields

flz) ~ fr(z +5)2—5ft(l’ =9)

—E, [% folz+ 5u)] (33)

where the equality follows from the definition of expec-
tation. Dropping E,, the scaled single-value evaluation
fi(x + du)u/d is a nearly unbiased estimator of f{(x). Gen-
eralizing this approximation to higher dimensions, with a
random vector u drawn from the surface of a unit sphere,
the scaled function evaluation at a perturbed point x + ju
yields an estimate of the gradient V f;(x), given by [99]

V(%) ~ Eu {g fx+ 6u)u] =B [VH] 64
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where we define one-point gradient Vf;(x) :=
fe(x+ du)u.
Building upon (34), consider the primal update [cf. (30)]

(d/d)

%ie1 = Pa e (%= o (V) + Vg GN ) G9)

where (1 — v)X := {(1 — v)x : x € X} is a subset of X,
and v € [0,1) is a preselected constant dependent on .
In the full-information case, x; in (30) is the learner’s
action, whereas in the bandit case the learner’s action is
X; := X + duy, which is the point for function evaluation
instead of X; in (35). Projection in (35) is on a smaller
convex set (1 — )X in (35), which ensures feasibility of
the perturbed x; € X. Similar to (31), the dual update of
BanSP is given by

N T a s N
v = [ Ao+ (8, (%) + Vg () (kea — %)) 36)

where X; rather than x; is used in this update. Compared
with (30)-(31), the updates (35)—(36) with one-point bandit
feedback do not increase computation or memory require-
ments; hence, they provide a lightweight surrogate for
MOSP to enable gradient-free online bandit IoT network
optimization.

If the mild conditions in [29] are satisfied, the online
decisions generated by BanSP yield

E [Reng] - O(V(x;T)T%) and B [Fitf}] =o(r?) 37

where E is taken over the sequence of the random actions
x; with randomness induced by {u;} perturbations.

Depending on the wunderlying dynamics, BanSP
can afford one or multiple loss function evaluations
(bandit feedback) per slot. If BanSP is endowed with
M > 2 function evaluations, the gradient estimate
will be more accurate by querying the function values
over M points in the neighborhood of X:. Intuitively,
the performance of BanSP will improve if multiple
evaluations are available per slot. Indeed, the dynamic
regret is provably O(V(x}.r)T"/?), and the dynamic fit
Fit = O(T"/?) [29], which markedly improve upon
their single-point counterparts, and reduce to MOSP
bounds in the full-information case [cf. (32)].

C. Constrained Multiarmed Bandit Learning

The salient assumption so far is that IoT decisions belong
to a time-invariant convex set X. However, IoT devices
usually exhibit time-varying connectivity to the backbone
due to mobility and cyber attacks, while network con-
figurations are often selected from predetermined proto-
cols. In this context, multiarmed bandit (MAB) methods
can be employed to extend BanSP when X is time-varying
and discrete [101], [102].

Consider the discrete feasible set X := {x!,...,x*}
with total K possible actions (a.k.a. arms in MAB).

To account for dynamics, only the actions in X} C X
are available per slot ¢, e.g., x; € X;. The availability of
actions could be stochastic, following a certain probability
distribution or even adversarial, in which case nature can
arbitrarily choose X;.

Per slot ¢, collect the objective values of all actions into
vector f; := [fu(x'),..., f:(x*)]7, and likewise the con-
straints into matrix G; := [g,(x'),...,g,(x)] € RN*X_ 1If
the learner’s strategy is to select an action x; = x* with &
from a distribution k ~ p, € R¥, then (23) can be reformu-
lated as an optimization problem over distributions {p,},
namely

T T
. T
.t <
min ;ft p, st » Gp, <0 (38)

{p, =1

where the X;-supported “probability simplex” is defined as

A(Xt):—{ > p(x") =15 p(x") > 0; p(x") = 0,x" ¢ Xt}-

xkex, 39)

It is worth mentioning that f;(x*) and g,(x*) are well
defined even when the action x* ¢ A; is not available,
and the values f;(x") and g,(x") are not revealed.

In order to employ an MOSP solver for (38), the gra-
dient of the associated Lagrangian is needed, meaning f;
and G; must be known. The challenge is that such infor-
mation is hardly available in large-scale IoT settings,
where one only knows f(x,) and g,(x) given that x; is
implemented. The time-varying action set also prevents a
direct implementation of BanSP to solve (38). To tackle
such a challenging setting, a novel EXP3SP algorithm was
developed in the recent work [101] that builds on the
elegant exponential-weight algorithm for exploration and
exploitation (EXP3) [103].

Per slot t, the learner observes the action set X;
and selects x; according to the current distribution p,
given by

pr(x")L(x" € X1)

- , vex
Poxrex Pr(XF)L(xF € Xy)

pe(x") = (40)

where $,(x") is the unnormalized weight of x* at slot ¢,
the value of which will be specified later. Once f(x;) and
g,(x:) become available, unbiased estimates of f; and G
are

k

Fxhy = fe(x I)DIL(());;)— )7 vt € X @1a)
k _ vk

g,(x") = g(x)I(x =x7) ), vx* € X.  (41b)

Adopting the gradient estimators in (41), the pri-
mal update uses the exponential gradient recursion,
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Fig. 7. Summary of learning approaches corresponding to Fig. 5.

namely, Vx* € X
B () = 5 (x") exp [ fi(x") + A g,() ] @2)

The weight p,, is, in turn, used to generate the action
distribution in the next slot [cf. (40)]. The dual update
is

N +
At41 = [)\t + H(tht — 5,LL)\t)] (43)

where § is a tuned constant to ensure a bounded
multiplier.

If X, is stochastic, EXP3SP achieves both sublinear regret
and fit [101]. A robust modification of EXP3SP has been
also developed recently to cope with adversaries blocking
access of IoT devices to their edge servers [102] while
further securing edge computing and ensuring sublinear
regret and fit.

Our scalable online learning schemes are recapped

in Fig. 7.

V. LESSONS LEARNED AND THE
ROAD AHEAD

We have presented a unified framework for deriv-
ing and analyzing adaptive and scalable network
design and resource allocation schemes for IoT. Lever-
aging the contemporary communication, networking,
and optimization advances, the resultant online learn-
ing and management policies not only facilitate low-
complexity and scalable implementations with lim-
ited feedback but also enjoy efficient adaptation to
changing environments with analytical performance
guarantees.

The proposed framework lays a solid analytical
foundation to delineate the tradeoffs among performance
guarantees, degree of (non)stationarity in modeling IoT
dynamics, algorithm scalability, and levels of accessible
information (see Fig. 8).
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A. Modeling Assumptions Versus Optimality
Guarantees

While both deal with IoT management with unknown
dynamics, the modeling assumptions in Sections III and IV
differ considerably. Specifically, those in Section III assume
a generally stationary IoT environment that corresponds
to either the simplest i.i.d. case or to the Markovian
case eventually converging to a stationary distribution.
In contrast, the approaches in Section IV can afford arbi-
trary dynamics even those manipulated by adversaries.
However, such minimal assumption does not come for free.
As a matter of fact, the performance guarantee in terms
of the sublinear regret in Section IV is weaker than the
optimality gap in Section IIl—see an analytical comparison
in [28]. Nevertheless, as the effectiveness of the optimal
solution in Section III also depends on the discrepancy
between the real IoT settings and the modeled stationary
ones, the actual online performance of these approaches
requires further evaluation.

The vantage point of this overview opens up a number
of exciting directions for future research.

B. Distributed Machine Learning

Considering the massive amount of mobile devices
in IoT, centralized learning becomes computationally
intractable and also rises serious privacy concerns. To date,
the widespread consensus is that besides data centers at
the cloud, future machine learning and artificial intel-
ligence tasks have to be performed starting from the
network edge, namely, mobile devices. This is the over-
arching goal of the emerging federated learning para-
digm [104], [105]. Toward this goal, future challenges
and opportunities include reducing the communication
overhead during the distributed learning processes and
enhancing the robustness of learning algorithms under
adversarial attacks. Recent advances in the direction
of communication-efficient learning include the adaptive
communication mechanism in [106] that enjoys the first
provably bound on the reduced number of communica-
tion rounds. Challenges of distributed learning also lie in
asynchrony and delay introduced by, e.g., IoT mobility and
heterogeneity. Asynchronous parallel learning schemes
are, thus, worth investigating by leveraging advances in
static optimization settings [107], [108]. From distributed
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machine learning to distributed control, multiagent rein-
forcement learning will play a critical role in distributed
control for IoT [109]. Decentralized actor-critic algorithms
have been recently developed in [91] and [110] for
multiagent reinforcement learning, while communication-
efficient schemes can be found in [111].

C. Communication, Computation, and Control
Codesign

The past decade has witnessed the convergence of the
communication and computing processes [16]. The cur-
rent brief is that next-generation communication networks
should support emerging large-scale control applications
in IoT with millions of diverse devices over a large geo-
graphical area. This calls for codesigning communication,
computing, and control mechanisms. The challenges natu-

the role of different network entities, pertinent perfor-
mance metrics, and the corresponding policies to simulta-
neously satisfy the timeliness, reliability, and efficiency of
all three intertwined systems.

Over the decades, the focus of wireless communica-
tions has been anytime, anywhere, anyone connection of
the humans, whereas the emerging IoT paradigm largely
extends the scope of wireless networking to connect-
ing everything, along the humans-to-things and things-
to-things continuum. The IoT challenges such as extreme
heterogeneity, unpredictable dynamics, and massive scale
call for game-changing innovations in network design and
management. We hope that the proposed unified frame-
work can serve as a stepping stone that leads to systematic
designs and rigorous analysis of adaptive and scalable
learning and management schemes for IoT, and a host of

rally arise in developing the desired network architecture,
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