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ABSTRACT | Internet of Things (IoT) envisions an intelli-

gent infrastructure of networked smart devices offering task-

specific monitoring and control services. The unique features

of IoT include extreme heterogeneity, massive number of

devices, and unpredictable dynamics partially due to human

interaction. These call for foundational innovations in network

design and management. Ideally, it should allow efficient adap-

tation to changing environments, and low-cost implementation
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scalable to a massive number of devices, subject to stringent

latency constraints. To this end, the overarching goal of this

paper is to outline a unified framework for online learning

and management policies in IoT through joint advances in

communication, networking, learning, and optimization. From

the network architecture vantage point, the unified framework

leverages a promising fog architecture that enables smart

devices to have proximity access to cloud functionalities at

the network edge, along the cloud-to-things continuum. From

the algorithmic perspective, key innovations target online

approaches adaptive to different degrees of nonstationarity

in IoT dynamics, and their scalable model-free implementa-

tion under limited feedback that motivates blind or bandit

approaches. The proposed framework aspires to offer a step-

ping stone that leads to systematic designs and analysis of

task-specific learning and management schemes for IoT, along

with a host of new research directions to build on.

KEYWORDS | Internet of Things (IoT); mobile edge computing

(MEC); network resource allocation; online learning; stochastic

optimization

I. I N T R O D U C T I O N

The past decade has witnessed a proliferation of con-

nected devices and objects, where the notion of Internet

of Things (IoT) plays a central role in the envisioned

technological advances. Conceptually speaking, IoT fore-

sees an intelligent network infrastructure with ubiquitous

smart devices—home automation, interactive healthcare,

and self-driving connected vehicles—that are typical in
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IoT [2], [3] (see Fig. 1). Today, a number of IoT applica-

tions have already brought major benefits to many aspects

of our daily life. The current generation of IoT can already

afford an increasing amount of real-time automation,

and thus intelligence toward the vision of real-time IoT.

However, despite the popularity of IoT, several critical

challenges must be addressed before embracing its full

potential [4], [5]. To this end, we highlight three key

challenges that are arguably expected to be at the epicenter

of emerging IoT research fields.

A. Extreme Heterogeneity

The computational and communication capacities of

devices differ due to differences in hardware (e.g., CPU

frequency), communication protocol (e.g., ZigBee), and

energy availability (e.g., battery level) [6]. The tasks car-

ried out on various devices are often considerably diverse,

e.g., motion sensors monitor human behavior in a smart

home [7], while cameras are responsible for recognizing a

suspicious behavior in a crowded environment, or vehicle

plates in a parking garage.

B. Unpredictable Dynamics

Unlike many existing communication, computing, and

networking platforms, the IoT dynamics can stem from

multiple sources, where adaptivity is not only critical

but also essential in designing hardware and manage-

ment protocols. Such sources entail human-in-the-loop

dynamics in addition to physical objects [7], demand

response in energy systems [8], and intelligent automotive

applications [9]. In these applications, IoT dynamics are

intertwined with or even partially determined by human

behavior [10]–[12] as such a high degree of adaptivity in

the algorithm and hardware design is needed.

C. Scalability at the Core

IoT entails an intelligent network infrastructure with a

massive number of devices. It is estimated that by 2020,

there will be more than 50 billion devices connected

through the Internet [13], which highlights scalability as

a key challenge for IoT [2], [4]. Scalability is not only

Fig. 1. Internet of Things [1].

about computational efficiency but also about lower com-

munication overhead (e.g., how often a device needs to

communicate with the remote cloud center), as well as

reduced information needed (e.g., what type of informa-

tion a device needs before making sensible decisions).

Faced with these major IoT challenges, innovations in

network design and management are desired to enable

efficient online operations and seamless coexistence of

humans with things [14]. Consequently, it is imperative

to develop new tools for IoT management that tap into

diverse inference, signal processing, communications, and

networking techniques, by drawing from fields such as

machine learning, optimization, and applied statistics. The

novel expertise gleaned from these research areas, coupled

with the solid analytical approach, are the best credentials

for succeeding in IoT research [4].

From a network architecture perspective, to ensure the

desired user experience and meet heterogeneous service

requirements, IoT tasks are no longer only supported

by the cloud data centers nowadays but also through a

promising new architecture termed edge computing or in

a broader sense fog computing. This architecture distrib-

utes computation, communication, and storage closer to

the end IoT devices and users, along the cloud-to-things

continuum [14]–[19]. This shift of computing paradigms

is further promoted by the advanced communication tech-

niques emerging with standards such as narrowband IoT

(NB-IoT) [20], [21].

Given the huge volume of data in various IoT setups and

the proliferation of learning and large-scale optimization

advances, a pertinent direction is prompted by asking the

following question: can we learn from historical data to

improve the quality of network management policies in

IoT? The rationale is that historical data contain statistics

of the IoT environments [22], and learning from them can

mitigate the uncertainty of future management tasks. Fur-

ther armed with online adaptation capability to reinforce

the current policies, it is envisioned that learn-and-adapt

network management schemes can markedly improve IoT

user experience in terms of low service delay, high system

resilience, and adaptivity [23], [24]. Toward this goal, this

paper will outline an offline-aided online approach with

markedly improved performance by leveraging statistical

learning from historical samples.

Taking a step further, online learning, with online con-

vex optimization (OCO) as a special case, is an emerg-

ing methodology for sequential decision making with

lightweight implementation and well-documented merits,

especially when the environment (e.g., a sequence of con-

vex costs) varies in an unknown and possibly adversarial

manner [25], [26]. Targeting a scalable solution in a

prohibitively complex IoT environment, this paper will also

overview a new OCO framework designed for IoT, which

further incorporates various forms of feedback, physi-

cal constraints, and performance metrics driven by IoT

applications, relative to the standard settings [25]–[27].

Novel schemes tailored for this setting can lay a
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solid analytical foundation to delineate the trade-

offs among algorithm scalability, performance guaran-

tees, and degree of (non)stationarity present in the

IoT environment [28], [29].

The rest of this paper is organized as follows.

Section II deals with the heterogeneity in IoT

demand and quality of service (QoS), along with

a unified formulation for dynamic IoT tasks.

Section III introduces methods for optimizing IoT

performance under different levels of nonstationarity in

IoT dynamics. Section IV summarizes scalable OCO-

based schemes with different feedback options. Finally,

concluding remarks and possible future research directions

are highlighted in Section V.

Notation: Bold uppercase (lowercase) letters denote

matrices (column vectors), while (·)� stands for transpo-

sition, and ‖x‖ denotes the �2-norm of a vector x. The

projection [a]+ := max{a, 0} are defined entrywise. The

indicator function 1(A) takes value 1 when the event A

happens, and 0 otherwise. O(x) denotes big order of x,

i.e., O(x)/x → 1 as x → 0; Õ neglects the lower order

terms with a polynomial log x rate; and o(x) denotes small

order of x, i.e., o(x)/x → 0 as x → 0.

II. H E T E R O G E N E I T Y I N I o T D E M A N D

A N D Q o S

Heterogeneity is inherent in IoT, and it manifests itself

across different aspects, from application requirements and

constraints to sensing and communication technologies.

A. Heterogeneous Applications

The range of IoT applications already spans several

fields, and it is rapidly increasing. A few examples of

applications are as follows [3], [5], [21]: 1) lifestyles

(wearable gadgets, gaming, augmented/virtual reality, and

wellness); 2) smart environments (homes, offices, and

cities); 3) automotive (self-driving, traffic monitoring,

intelligent transportation systems, and vehicle-to-vehicle

communications); 4) industrial (full automation and con-

trol, structure monitoring, and logistic); 5) environmen-

tal monitoring (pollution, global warming, and waste

management); and 6) healthcare (patient monitoring,

body area networks, smart health, and elderly care); and

7) security and surveillance. These applications are char-

acterized by highly diverse requirements in terms of data

rate, latency, reliability, security, connectivity, mobility, and

so on. To illustrate the extreme variability of require-

ments, we note that virtual reality require latencies in the

order of a few milliseconds and data rates in the order

of 25 Mb/s, while automated driving or certain industrial

control applications require latencies in the order of mil-

liseconds and high packet transmission reliability (in the

order of 99.999%). Conversely, for environmental moni-

toring applications such as waste management, an update

frequency of one packet/hour is sufficient, with a tolerable

delay of 30 min.

A few paradigms are useful to outline the challenges

facing IoT and the potential of our approaches to address

them.

1) Automated Driving: The goal of this application is

to enhance perception of an individual vehicle and, thus,

improve safety. A common approach is to set up a coopera-

tive perception system building on the information sharing

between vehicles and roadside units (RSUs) [30]. The

scope is to widen the visibility of the individual vehicle to

prevent that an object unseen by a single vehicle might

cause an accident [31], [32]. The signals to be exchanged

go from (low data rate) range measurements to (high data

rate) high-definition maps generated by sensors mounted

on each vehicle. The communication channels between

vehicles are highly dynamic and hard to predict, while the

information available at each time slot can be outdated.

Nevertheless, communication among vehicles and RSUs

should be performed in a reliable and timely manner to

ensure that emergency operations can take place in the due

time.

2) Intelligent Transportation: A typical task in this appli-

cation is to navigate a set of electric vehicles to their

destination by collecting along the way data about traffic,

state of the battery, and availability of parking slots. The

objective here is to minimize fuel consumption and the

time needed to reach a certain destination while ensuring

that all vehicles find a proper refueling station for their

batteries along the way. The remaining time to destination

is updated online, depending on the time-varying traffic

state, which is generally unpredictable.

B. Heterogeneous Technologies

The IoT ecosystem is composed of various compo-

nents, whose functionality falls within the following

categories [5]: identification, sensing, communication,

computation, and services. Identification is crucial to

assign a clear identity to each object in the network. The

role of sensing elements is to gather data from the real

world. Typically, sensors are integrated with single-board

computers and Transmission Control Protocol/IP function-

alities to create IoT devices such as Arduino or Raspberry

PI, which are able to sense and send data to a decision

entity. The role of communication is to propagate informa-

tion from the sensing elements to a decision entity, possibly

distributed, and back to actuators. There is a plethora of

very heterogeneous communication technologies that are

in use in IoT. As a broad classification, we can list: 1) short-

range technologies to support machine-to-machine com-

munications, like Bluetooth, IEEE 802.15.4, and ZigBee;

2) long-range networks, like LoRa supporting data rates of

around 50 kb/s over ranges up to 15 km, or SigFox using

ultranarrowband technologies to support ultralow power

consumption and long ranges (up to 30–50 km in rural

areas and 3–10 km in urban areas), at the expenses of

limited data rates; 3) low-power Wi-Fi, also called IEEE

802.11ah supporting data rates up to 347 Mb/s; and
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4) cellular networks. Current 4G cellular technologies,

more specifically the third-generation partnership project

long-term evolution (3GPP LTE), represent the state of

the art in mobile communications. However, LTE has been

primarily designed for broadband communications and,

thus, not optimized for the machine-type communications

(MTC) envisioned in IoT.

To partially overcome this discrepancy, 3GPP has intro-

duced some modifications to the standards to enable

the deployment of massive smart connected devices and

services such as those in smart cities or smart grids:

eMTC [33] and NB-IoT [20]. However, a truly disruptive

framework enabling an effective deployment of IoT is 5G

communication networks, thanks to increased data rate,

reduced end-to-end (E2E) latency, and improved cover-

age relative to 4G [34]. The key features of 5G that

are particularly suitable for IoT are: 1) the integration

of heterogeneous access technologies; 2) virtualization of

network functionalities; and 3) bringing cloud function-

alities close to the end user by introducing mobile edge

computing (MEC). While earlier network generations have

been designed as general-purpose connectivity platforms,

the vision underlying 5G is to create an ecosystem for tech-

nical and business innovations involving vertical markets

such as automotive, energy, agriculture, city management,

healthcare, manufacturing, and transportation. Since these

services have very different requirements and constraints,

the key challenge of 5G is to design a single platform being

able to serve different purposes in an efficient way. The

solution to tackle such a challenging question is network

slicing. At the basis of network slicing, there is network

function virtualization, which makes it possible to partition

a single physical network into multiple virtual networks,

each matched to its specific requirements and constraints.

This enables operators to provide networks on an as-a-

service basis while meeting a wide range of use cases in

parallel. Virtualization is going to play a key role also in IoT

to cope with high heterogeneity of requirements as well as

the capabilities of devices. However, being able to meet

the stringent latency requirements of IoT applications,

virtualization needs to be coupled with a new architectural

vision enabled by MEC.

C. Embedding IoT in the Edge Cloud

Even within the sophisticated architecture of 5G net-

works, meeting the stringent latency constraints required

in some IoT applications over a wide area network can

be still challenging, if not impossible. To guarantee low

latencies, a popular solution is to bring cloud functionali-

ties close to the end users through mobile (or multiaccess)

edge computing [35], [36].

With MEC, computation and storage resources are

brought at the edge of the network, represented by the

network access points (APs). In this way, delay-sensitive

applications launched by a mobile device can be offloaded

to the nearest mobile edge host (MEH), and the most

popular contents can also be cached in MEHs to minimize

downloading time [37], [38]. Bringing computation and

storage resources at the edge of the network makes it

possible to guarantee low and stable delays. In prac-

tice, the applications launched by the user are exe-

cuted by virtual machines running on nearby edge nodes,

either cloudlets, exploiting a Wi-Fi connection [39], [40],

or MEHs, using cellular communication technologies [16].

The further extension of MEC is fog computing, where

the edge of the network can include devices as well, thus

creating a continuum of devices able to sense, commu-

nicate, and compute [14], [41]. A critical aspect in this

scenario is mobility management [42]. To handle mobility

while offering seamless service continuity, it is necessary

to migrate virtual machines quickly across MEH. This is

a critical step because instantiating a conventional virtual

machine can take times well beyond the latencies required

in some IoT applications.

In MEC or fog computing settings, communication,

computation, and storage resources can be seen as three

aspects of a single system. From a user-centric perspec-

tive, what actually matters is the time needed to launch

an application and receive the result back. The over-

all delay depends on communication time, computation

time, and the distribution of contents across the net-

work. This holistic vision calls for a joint dynamic opti-

mization of communication, computation, and caching

resources [15]. An application where communication and

computation resources are closely mingled is computation

offloading. This is a fundamental mechanism to enable

simple devices to run sophisticated applications or to

allow battery-powered devices to run their applications

remotely to save energy and, thus, prolong battery life-

time. Computation offloading has gained growing popu-

larity recently. For single-user MEC, it has been studied

in [19] and [43]–[45]. The multiuser case was addressed

in [46] and [47] and later extended to the dynamic case,

using stochastic optimization in [48] and [49]. See recent

surveys [15], [16], [50] and references therein.

D. Taming Heterogeneity via a Unified
Formulation

With various applications and technologies in mind,

the goal of this section is to put forth a unified model

for IoT tasks that will guide subsequent algorithmic

development.

1) Unifying Models: Consider discrete time t ∈ N, and

a time horizon of T slots. Per slot t, an IoT state variable

st ∈ R
p is defined, which characterizes all the critical para-

meters of the IoT environment. Assuming certain amount

of knowledge about the environment, the IoT operator will

make a decision xt ∈ R
d, aiming to optimize task-specific

performance, subject to different types of constraints. The

decision xt can, in turn, drive the next state st+1. To model

such decision-making processes, we consider a generic

problem (1), shown at the top of the next page. The model
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optimize
{xt,∀t}

T�
t=1

f(xt; st) /IoT performance metrics

s.t.

T�
t=1

g(xt; st) ≤ 0 /IoT long-term requirements

xt ∈ X (st), ∀t /IoT short-term requirements

Per slot t, IoT state dynamics st+1 = d(st, xt, ξt)

Per slot t, find xt given information oracle Ot

(1a)

(1b)

(1c)

(1d)

(1e)

here is general. The slot duration can vary from tens

of microseconds in wireless networks, a few milliseconds

in automated driving, and tens of seconds in intelligent

transportation to minutes or even hours in smart power

networks; the state st can represent the channel gain in

wireless networks, the congestion level in data networks

as well as transportation networks, and the renewable

generation, and energy prices in power networks; and the

decision xt can include the transmitted power in com-

munication, the size of data workloads, the number of

vehicles, or the amount of energy. Regarding the objectives,

constraints, and dynamics in (1), we will highlight their

IoT relevance, especially of interest to communication and

networking communities.

2) Performance Metrics: Given the state st and the deci-

sion xt, we consider the IoT performance as a generic

time-invariant function f(xt; st) (use ft(xt) interchange-

ably) depending on the time-varying quantities st and xt.

For MEC problem in Section II-C, f(xt; st) often repre-

sents the power consumption aggregating over all devices,

the aggregated delay, or the system throughput [16], [18],

[29]. Another line of recent research studies a new perfor-

mance metric in MEC—age of information or age—which

measures the timeliness of system status using the elapsed

time since the most recently received packet was generated

at its source [51]. Age of information is pertinent to

mission-critical IoT applications [52], [53]. Furthermore,

for traffic assignment tasks in intelligent transportation,

ft(xt) can capture the overall fuel consumption and the

travel time of vehicles on the road [54]; for demand

response in smart grids, it is related to user utility and

power balancing cost depending on the real-time energy

prices [55]–[58]; and for applications related to wireless

communications, throughput or achievable rate also plays

a critical role in the objective.

3) Short-Term Constraints: The heterogeneous require-

ments in IoT are modeled via short-term and long-term

constraints in (1). The short-term constraints are imposed

to regulate xt in accordance to short-term requirements,

which can be collected in a compact set X (st)—that is

either continuous or discrete and possibly depends on the

IoT state st. As an example, consider an MEC system

composed of APs, MEC servers, and mobile user equip-

ment (UE). To meet the stringent latency requirement, the

E2E latency of each UE should be less than l̄, that is

ltxt + lbk
t + lexet + lrxt ≤ l̄ (2)

where 1) ltxt is the time spent to send the program

state and input (encoded with bt bits) from UE to AP,

e.g., ltxt = bt/rt, with rt being the data rate (in bits/s);

2) lbk
t is the backhaul latency between AP and MEC server,

which appears when the computations are performed in

a server that is not colocated with the AP; 3) lexet is the

server execution time defined as lexet = ct/ut, where ct is

the number of CPU cycles to be executed, and ut is

the number of CPU cycles/second allocated by the MEC

server to UE; and 4) lrxt is the time for the MEC server

to send back the result to UE. With xt := {ut, rt} and

st := {lbk
t , lrxt , ct, bt} thus (2) included in X (st), selecting

xt ∈ X (st) guarantees the E2E latency requirement

in MEC. Short-term constraints also arise due to the

physical limits of transmission lines and generators in

power networks [8], transceivers in wireless commu-

nication [59], as well as vehicles in transportation

networks [54].

4) Long-Term Constraints: In some IoT applications,

the short-term constraints cannot accurately characterize

the demand and requirements. For the latency require-

ment in MEC, the short-term constraint (2) makes implicit

assumptions as follows: 1) no new task is generated before

the old tasks are completed and 2) every single task

is carried out within an established time frame. These

assumptions may be restrictive in some cases. Also, con-

sider a vehicle in the intelligent transportation application

that must arrive at its destination within a certain inter-

val. To guarantee on-time arrival, its long-term average

speed instead of the instantaneous speed needs to be

lower bounded. The long-term constraints are, thus, well-

motivated to allow flexible adaptation of xt to temporal

variations of service requirements. Given the state st and

the decision xt, they are modeled as a set of penalty

functions g(xt; st) := [g1(xt; st), . . . , g
N(xt; st)]

� in (1b).

Ideally, we want the accumulated penalty over the entire

horizon below a certain threshold. For convenience, we let

the threshold to be 0 in (1b), which is without loss of

generality subject to a constant shift. Long-term constraints
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Table 1 Overview of Heterogeneous IoT Settings Considered

also appear in wireless networks where often the average

transmit power and link capacity are confined [59]. The

challenge in dealing with long-term constraints is that the

future states st+1, · · · , sT are not known at slot t, which

calls for adaptive optimization.

5) State Dynamics: One of the key challenges in IoT is its

unpredictable dynamics. In (1), IoT dynamics are encoded

by a state transition function d which generates the next

state st+1 = d(st, xt, ξt) given st and xt as well as an

exogenous variable ξt. In most of the cases, the exogenous

variable ξt can be a random disturbance. For wireless

communication applications where the state st represents

the fading channel state, then st+1 often does not depend

on st and xt; that is, st+1 = d(ξt) := s̄ + ξt, where s̄ is

the mean channel state, and ξ1, . . . , ξT are independent,

identically distributed (i.i.d.) zero-mean random variables

(see [59] and [60]). Markovian dynamics are also com-

mon in modeling energy prices, renewable generation

processes [61], in which case st+1 = d(st, ξt) depends

on the current state st and an i.i.d. noise ξt but not xt.

We refer to both st+1 = d(ξt) and st+1 = d(st, ξt),

as noninteractive dynamics. The decision xt can also play

an important role in state transitions. Taking MEC as an

example, a queueing model is usually incorporated to keep

trace of the relevant quantities such as the amount of

remaining tasks that need to be offloaded or processed.

With {bt, ct, rt, ut} defined in the following (2), we con-

sider a transmission queue qtx
t that quantifies the number

of bits to be transmitted at slot t from UE, and a computa-

tion queue qexe
t that quantifies the amount of computation

that needs to be completed for UE. If ∆t denotes the slot

duration, the transmission queue evolves as

qtx
t+1 = max

�
qtx

t − rt∆t, 0
�
+ bt (3)

and the computation queue evolves as follows qexe
t+1 =

max [qexe
t − ut∆t, 0] + ct. In this case, the IoT state is

st := {qtx
t , qexe

t }, the decision is xt := {ut, rt}, and the

exogenous variable is ξt := {bt, ct}. It then follows that

st+1 = d(st, xt, ξt)—what we term interactive dynam-

ics, or more precisely, controlled Markovian dynamics if ξt

is i.i.d. If the communication and computation resources

are sufficient, an ideal policy should guarantee the queue

stability [62], [63]. According to Little’s law [64], the aver-

age execution delay experienced by each UE is propor-

tional to the average queue lengths. Hence, a meaningful

problem can be minimizing the average power, subject

to the average delay constraints, which will be discussed

in Section III-B. State variables of this type also include

the location of a vehicle in the intelligent transporta-

tion or an unmanned aerial vehicle (UAV) that depends on

their previous location and the current movement [65]–

[67], and the energy level of a battery that depends on

their instantaneous (dis)charging amounts. More complex

dynamics are also possible in IoT due to, e.g., strategic

human interactions and malicious attack [68]. In those

cases, ξt can be a function of all the states s1, . . . , st or even

completely arbitrary.

6) Accessible Information: While various objectives, con-

straints, and state dynamics have been adopted to model

heterogeneous problems in IoT, the level of accessible

information directly affects how to solve the resultant

problem given limited communication and computation

resources—the epicenter of scalability barriers in IoT. Let

the information oracle Ot collect all the information avail-

able to the IoT operator before making decision xt. For

cases where the objectives and the constraints are easy-

to-measure formulas (e.g., aggregated power, throughput,

and distance), we consider Ot := {f, g,X , s1 . . . , st} that

includes the explicit form of functions {f, g}, set X and

one-slot-ahead prediction st. In some IoT settings, how-

ever, 1) the objective capturing user-centric quantities, e.g.,

service latency or reliability, security risk, and customer

ratings, is hard to model; 2) the objective involving fast-

varying quantities is hard to predict, e.g., the millimeter-

wave links in 5G are prone to blocking events, thus hard to

predict; and 3) even if modeling and predicting are possi-

ble in theory, the low-power smart devices may not afford

the complexity of running statistical learning tools “on the

fly.” In such cases, we consider a fully causal information

oracle Ot := {f1(x1), g1(x1), . . . , ft−1(xt−1), gt−1(xt−1)}
that includes only the observed objective function “val-

ues” and constraint “penalties” at previous slots. IoT sce-

narios between these two extreme cases will also be

discussed.

In Table 1, we summarize the heterogeneous settings

that one may encounter in IoT. Targeting these settings,

a set of suitable solvers will be discussed in the subse-

quent sections. While the methodologies presented in this

paper mainly focus on stochastic optimization and online

learning, approaches based on other methodologies such

as game theory and robust optimization can be also applied

to solve similar problems.
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III. A D A P T I V I T Y T O D Y N A M I C

I o T E N V I R O N M E N T S

This section introduces methods for optimizing IoT perfor-

mance under the (asymptotically) stationary assumption

on IoT dynamics relative to control decisions in the fast

timescale. Corresponding to different types of state dynam-

ics in Table 1, we outline three classes of management

schemes (see Fig. 2).

A. Leveraging Statistical Learning for
IoT Management

As the generic problem (1), consider the IoT operator

makes a per-slot decision xt, subject to the short-term

constraints that are collected in a compact set X (st)

parameterized by the IoT state st ∈ S , as well as the

long-term constraints that are expressed as a time-varying

penalty function g(xt; st) ∈ R
N . With the IoT cost f(xt; st),

we wish to find a sequence of decisions {xt} that minimize

the expected limiting-average cost subject to the long-term

and short-term constraints, that is

f∗ := min
{xt∈X(st), ∀t}

lim
T→∞

1

T

T�
t=1

E [f(xt; st)] (4a)

s.t. lim
T→∞

1

T

T�
t=1

E [g(xt; st)] ≤ 0 (4b)

where E is taken over the random state st, and possible

randomness we may opt to introduce in the decision xt.

Comparing with (1), the infinite time horizon and the

limiting average cost are used in (4) and throughout this

section for mathematical simplicity. Indeed, assuming st

is i.i.d. or generally stationary, the dynamic problem (4)

Fig. 2. Three levels of interaction between IoT operator (learner)

and nature corresponding to the three assumptions in Table 1.

shares the same optimal objective value as the following

static problem [63]:

f∗ := min
{π(st)∈X(st), st}

E [f(π(st); st)]

s.t. E [g(π(st); st)] ≤ 0.

(5a)

(5b)

To this end, our goal is to determine a possibly randomized

policy π that, given an IoT state st, generates xt = π(st) so

as to minimize the average cost subject to both long- and

short-term constraints in (5). The infinite-dimension func-

tional optimization problem (5) is more tractable in its dual

form, which entails a finite number of variables [24], [69].

With λ ∈ R
N
+ denoting the multipliers, the Lagrangian

of (5) is L(π, λ) := E
�
L(π(st), λ; st)

�
where the instan-

taneous (per state) Lagrangian is L(π(st), λ; st) :=

f(π(st); st) + λ�g(π(st); st). Correspondingly, the dual

problem of (5) is

max
λ≥0

D(λ) := E [D(λ; st)] (6)

where D(λ; st) := minx∈X(st) L(x, λ; st). With the optimal

λ∗ obtained for the dual problem (6), the optimal policy

for the problem (5) could be retrieved as

π
∗(st) := arg min

x∈X(st)
L(x, λ∗; st). (7)

The ensemble problem (6) is difficult to solve since the

probability density distribution of st is usually unknown.

To find the optimal multipliers λ∗ in an efficient man-

ner, existing methods mainly rely on the stochastic

subgradient-based [stochastic gradient descent (SGD)]

methods [59], [60], [63]. However, SGD is known to suffer

from slow convergence, which implies that the IoT network

needs to implement sufficient many suboptimal decisions

generated during the transient stage of SGD.

From a different viewpoint, given the huge volume of

historical data generated by IoT networks, (6) was first

formulated in [24] as a statistical learning task involving

both offline training and online operational phases. The

rationale is that historical data contain statistics of the

IoT states, and learning from them can aid coping with

the uncertainty of future management tasks, leading to

reduced transient time of adaptive algorithms.

Specifically, with a training set of N0 historical IoT state

samples Ŝ0 := {sn, 1 ≤ n ≤ N0} available offline, (6) can

be recast in an empirical form via sample averaging as

max
λ≥0

D̂Ŝ0
(λ), with D̂Ŝ0

(λ) :=
1

N0

N0�
n=1

D̂n(λ) − ε

2
‖λ‖2

(8)

where D̂n(λ) := D(λ; sn), and ε > 0 is a regularization

constant typically used in statistical learning to boost
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generalization capability [22]. Note that while an �2-norm

regularizer is adopted in (8), other forms of regulariza-

tion (e.g., �1 and total-variation norm) are also possible

depending on a priori knowledge. Note that here t has been

replaced by n to differentiate historical data from data in

online phases.

Viewing (8) as a (negated) empirical risk minimization

(ERM) task, we can resort to the state-of-the-art optimiza-

tion methods for ERM, e.g., SAGA [70], which enjoys

fast convergence and low complexity. Using SAGA, per

iteration k, we evaluate a single summand of the empirical

gradient, i.e., ∇D̂ν(k)(λk) at the iterate λk, with sample

index ν(k) ∈ {1, . . . , N0} selected uniformly at random.

Thus, the computational complexity of SAGA is that of an

SGD iteration for (8). Furthermore, SAGA stores a collec-

tion of the outdated gradients {∇oldD̂n} for all samples,

where ∇oldD̂n was evaluated by λk[n]—the most recent

iteration k[n] that sn was drawn, i.e., k[n] := sup{k′ :

ν(k′) = n, k′ < k}. SAGA combines the fresh gradient with

the stored ones as

λk+1 =
�
λk + α

�
∇D̂ν(k)(λk) −∇oldD̂ν(k) + ∇oldD̂Ŝ0

��+
(9)

where α is the predefined stepsize, and the stored gradi-

ents are ∇oldD̂Ŝ0
:= (1/N)

�N
n=1 ∇oldD̂n − ελk.

The merits of SAGA lie in the fact that its gradi-

ent estimator in (9) is still unbiased as that with SGD.

In addition to the unbiasedness, however, SAGA’s gradient

estimator attains considerably lower variance than SGD,

thanks to the contribution of the stored previous gradients,

which is now termed the variance reduction technique

prevalent in large-scale machine learning tasks. Needless

to mention the encouraging empirical results, the SAGA

in (9) is provably convergent to the optimum of (8) with

the linear convergence rate [24], [70]

Eν

�
D̂∗

Ŝ0
− D̂Ŝ0

(λk)
�

= O
	
ρk


(10)

where D̂∗
Ŝ0

is the optimal objective of (8), and ρ ∈ (0, 1) is

the linear rate depending on the objective function of (8).

Hence, in the offline phase, we run KN0 SAGA itera-

tions (9) on set Ŝ0—on average K iterations per sample.

In the online phase, initialized with the offline output,

SAGA (we term online SAGA) keeps acquiring data st with

a growing training set Ŝt := Ŝt−1 ∪ st. At slot t, online

SAGA is initialized with the last iterate of slot t − 1 and

updates λt by running K iterations (9) (see Fig. 3). The

IoT decision is generated using the current λt by πt(st) =

arg minx∈X(st) L(x, λt; st). This is the key idea of offline-

aided online IoT operations.

The offline-aided online scheme is not simply heuristic.

In fact, the learning performance can be rigorously quan-

tified via several concentration results in the learning the-

ory [22], which uniformly bound the discrepancy between

Fig. 3. Timescale splitting for offline-aided online SAGA

operations. Iterates {λt} generate actual IoT decision, while

λ1|t , . . . ,λK|t are K virtual iterates updated via (9) at slot t;

and λt�1 �� λK|t.

the empirical loss (8) and the loss (6) with high probability

(whp), that is

sup
λ≥0

|D(λ) − D̂Ŝt
(λ)| ≤ Hs(Nt), whp (11)

where Hs(Nt) bounds the statistical error induced by the

finite size Nt of the training set Ŝt. Under proper (so-

termed mixing) conditions, the law of large numbers guar-

antees that Hs(Nt) is generally in the order of O(
�

1/Nt)

[22, Sec. 3.4]. On the other hand, let Ho(KNt) upper

bound the optimization error of solving (8) with Ŝt due to

running on average only finite (K) iterations per sample;

i.e., D̂∗
Ŝt

− D̂Ŝt
(λt) ≤ Ho(KNt).

Online SAGA aims at a “sweet spot” between afford-

able complexity (controlled by K) and desirable overall

learning error, which accounts for both the optimization

and statistical errors Hs(Nt)+Ho(KNt). Specifically, if we

select N0 ≥ 3κ/4 with κ denoting the condition number

of (8), and K ≥ 6, the optimization error is bounded by

Ho(KNt) ≤ Hs(Nt) [24]. In fact, even with K = 1, online

SAGA can still guarantee that Ho(KNt) = O (Hs(Nt)).

With the link between the optimal policy and the optimal

multiplier (7) in mind, the key message here is that with

sufficient historical samples, online SAGA only requires

running a small number of iterations per slot to bring

the optimization error close to the statistical accuracy

provided by the current training set. Recent works along

this line also include [71] and [72] that focused on algo-

rithms for piecewise stationary environments. Learning

more complex policies for noninteractive settings has been

also studied by leveraging deep neural networks [73].

Possible future research along this line also includes devel-

oping algorithms under the assumption of stationarity in

high-order moments, which is also pertinent in practice.

Algorithms tailored for fully nonstationary settings will be

presented in Section IV.

B. Learn-and-Adapt Approaches in
Semi-Interactive Settings

The IoT environment in Section III-A is noninteractive,

meaning that the dynamic of st+1 in (5) does not change

according to xt. The IoT states can be also driven by

decisions, which include the job queue length in a data cen-

ter [74], the lane length in a transportation network [65],
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as well as the battery level in a smart grid [56], [75]. This

section considers the case where such IoT states appear in

the constraints but not in the objectives, which we call the

semi-interactive settings.

Consider an IoT network represented as a directed graph

G = (N , E) with nodes N := {1, . . . , N} and edges

E := {1, . . . , E}. The node-incidence matrix is formed with

(n, e) entry A(n,e) = 1(−1) if link e enters (leaves) node n,

and A(n,e) = 0, otherwise. With ct ∈ R
N
+ collecting the

exogenous resources of all nodes per slot t, xt ∈ R
E for the

endogenous resources across edges, the aggregate resource

is Axt + ct. Connecting with (5), ct is included in the IoT

state st, and the constraint becomes g(xt; st) = Axt + ct.

With qt collecting all buffered resources at slot t, we wish

to solve (4) with the additional state dynamics and the

long-term constraints as

qt+1 = [qt + Axt + ct]
+ , ∀t (12a)

lim
T→∞

(1/T )
�T

t=1E [‖qt‖] < ∞. (12b)

Due to the extra constraints in (12), the optimal objective

of this new problem is at least f∗ in (4). Furthermore,

the dynamic of the interactive state qt (a.k.a. queues)

in (12a) also accounts for the transient performance of an

adaptive algorithm. To see this, suppose that under π∗,

it holds that Aπ∗(st) + ct = 0, ∀st; and consider the

convergence path of policy πt induced by λt as π1 →
π2 → π3 = . . . = πT = π∗, along with Aπ1(s1) + c1 = 10

and Aπ2(s2) + c2 = 5. In this case, if q1 = 0, then we have

q2 = 10 and q3 = . . . = qT = 15.

The simple example entails two variable insights:

1) constraint violations incurred by the suboptimal deci-

sions during the transient stage (e.g., π1, π2) accumulate

via qt and 2) once accumulated in the transient stage,

qt will not decrease in the steady state (e.g., πt, t ≥ 3).

This explains the suboptimal performance tradeoff of SGD

for (4) with (12) (see also [23]).

To better control the interactive state qt, it suffices to:

S1) reduce the transient time of the adaptive algorithm;

S2) diminish qt accumulated during the transient stage.

Following these two guidelines, we adopt a procedure

in the online phase that we term online learning and

adaptation (named LA-SAGA henceforth) (see Fig. 4).

Regarding S1), LA-SAGA performs the offline-aided online

learning as that in Fig. 3 by growing the training

set Ŝt based on which it better learns λt; and for S2),

LA-SAGA superimposes λt to the instantaneous state

(buffered resources) qt and comes up with an effective

multiplier as

θt� 
� �
effective multiplier

= λt� 
� �
statistical learning

+ µqt − b� 
� �
system interaction

(13)

where µ tunes emphasis to statistical versus interactive

state information, and b is a constant that corrects the

Fig. 4. Learn-and-adapt diagram for IoT management.

possible bias in the steady state—the intuition will become

transparent soon. Based on θt, the real-time IoT decision

xt is obtained by minimizing the Lagrangian over X (st),

that is

πt(st) = xt := arg min
x∈X(st)

L(x, θt; st). (14)

Note that different from stochastic allocation that is solely

based on the system feedback θt = µqt [63], and sta-

tistical learning that only relies on θt = λt, LA-SAGA

can take advantage of both through the use of effective

multiplier θt.

To grasp how the effective multiplier accounts for S2),

suppose that after sufficient learning processes, λt ≈ λ∗,

and qt is large so that µqt − b � 0. In this case, we have

the “shadow price” θt � λ∗, and thus, xt obtained

through (14) would ensure that Axt + ct < 0 so that

qt+1 < qt via (12a). Intuitively speaking, θt will eventually

oscillate around λ∗, and thus, qt will oscillate around

b/µ—this also suggests a positive b, otherwise it leads to a

biased θt ≥ λ∗ since qt ≥ 0.

Rigorous analysis demonstrates that through a

proper selection of the bias b = Õ(
√

µ), θt will converge

to the O(
√

µ)-neighborhood of λ∗ for (6); formally,

we have [24]

lim
T→∞

(1/T )
�T

t=1E [f (xt; st)] − f∗ = O(µ) (15a)

lim
T→∞

(1/T )
�T

t=1E [‖qt‖] = Õ (1/
√

µ) (15b)

which asserts that LA-SAGA is O(µ)-optimal with an aver-

age queue length Õ(1/
√

µ)—an elegant [O(µ), Õ(1/
√

µ)]

tradeoff. Comparing with the tradeoff [O(µ),O(1/µ)]

under Lyapunov optimization in [63], LA-SAGA [23], [24]

improves the performance in terms of constraint violations

(queue lengths).

The idea of incorporating learning into network opti-

mization is pioneered in [76]. However, the devel-

oped learning mechanism therein suffers from the curse

of dimensionality. Targeting large-scale IoT networks,

LA-SAGA can tackle settings with continuous S and X

with possibly infinite elements and still be amenable
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to efficient and scalable online operations. The impor-

tant implication of the learn-and-adapt scheme is that it

can perform the optimal IoT management, with reduced

resources and improved QoS, namely, reduced queueing

delay in data centers [23], faster virtual network function

placement [77], and lower congestion in transportation

networks, or smaller battery capacity in power grids [57].

As a closing remark of this section, note that while

the problem considered in the semiinteractive setting here

explicitly contains queueing-type constraints, the semiin-

teractive settings, in fact, cover a broader class of prob-

lems in IoT. For instance, throughput maximization in

UAV-enabled wireless networks under trajectory con-

straints also belongs to the class of semiinteractive

IoT settings [66], [78].

C. Reinforcement Learning for Interactive
IoT Environments

The IoT environment considered in Section III-B is semi-

interactive in the sense that only the dynamic of qt+1

(but not st+1) changes according to xt through (12a).

To broaden the scope of the unified framework, this section

introduces methods tailored for the fully interactive setups,

where the dynamic of IoT state st that can appear both in

the objectives and the constraints is driven by the deci-

sion xt. This setting captures the trajectory optimization

in UAV-aided mobile communications (see [66], [78]),

the dynamic caching with limited storage units (see [79]),

and the route planning in intelligent transportation

(see [54]).

For simplicity, consider an IoT environment with a finite

state space S and a finite action space X . The interaction

between the operator and the IoT environment is uniquely

captured by the transition probability of going from the

current state s to the subsequent state s′ under action

x ∈ X (s) ⊆ X , given by [Px]ss′ := P(st+1 = s|st = s′,

xt = x). Similar to (5), the goal is to determine a possibly

randomized policy π, that given a state st, generates

xt = π(st) so as to minimize the total discounted cost,1

that is

min
{π(st)∈X(st), st}

lim
T→∞

E

�
T�

t=1

γt−1f (π(st); st)

�
(16)

where γ ∈ (0, 1) is a discounting factor, and E is taken over

the sample path of {st}, as well as the random policy π.

For a fixed policy π, the state value function is defined

as

Vπ (s) := lim
T→∞

E

�
T�

t=1

γt−1f (π(st); st)
���s1 = s

�
(17)

1For simplicity, the infinite horizon discounted formulation is
considered—a slight mismatch with the generic one (1). Other formu-
lations with constraints or average costs can be also considered with
additional assumptions [80].

and the state-action value function (so-termed Q-function)

is Qπ(s, x) := f (x; s) + γEs′|s,x [Vπ (s′)], where E is taken

over the one-step transition from the current state s to s′

under action x. With the optimal policy π∗, we have that2

π
∗(s) := arg min

x∈X(s)
Q∗(s, x) (18)

and V ∗(s) = Q∗(s, π∗(s)). Furthermore, the optimality

condition of (16) that is termed the Bellman optimality

equation can be written as (see [81])

Q∗(s, x) = f (x; s) + γEs′|s,x

�
min

x′∈X(s)
Q∗(s′, x′)

�
, ∀x, s

(19)

which is a system of nonlinear equations of Q∗ ∈ R
|S|×|X|.

Switching the goal from (16) to the fixed point of the

Bellman optimality equation (19), a classical yet popular

approach is the so-termed Q-learning algorithm [82].

S1) At slot t, select the decision xt by

πt(st) = xt :=

�
arg min

x∈X(st)
Qt (st, x) w.p. 1 − εt

random x ∈ X (st) w.p. εt

(20)

where εt > 0 is a predefined exploration constant, and st+1

is generated according to P(st+1 = s) = [Pxt ]sts.

S2) Update the state-action value function as

Qt+1(st, xt) = Qt(st, xt)

−αt

�
f (xt; st) + γ min

x∈X(st+1)
Qt(st+1, x)

�
(21)

where αt is a predefined stepsize. Note that different

from Sections III-A and III-B, the explicit form of the

objective function f ( · ; st) does not need to be known per

slot t. Instead, only the functions values {f (xτ ; sτ )}t
τ=1

along the trajectory (s1, x1), . . . , (st, xt) are assumed to

be known. With properly selected {εt, αt}, the simple

Q-learning algorithm is provably convergent under the

finite state and action spaces (a.k.a. tabular case) [81].

To date, the convergence of Q-learning and its variants are

mostly asserted for the tabular case.

To scale up Q-learning in the large-scale settings, recent

efforts have been devoted to infer Q by minimizing the

residual of the Bellman optimality equation (19), that is

min
Q

�
x,s

�
Q(s, x) − f (x; s) − γEs′|s,x

�
min

x′∈X(s)
Q(s′, x′)

��2

.

(22)

2We interchangeably use Q∗(s, x) = Qπ∗(s, x) and V ∗(s) =
Vπ∗ (s).
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Albeit its simple expression, several fundamental chal-

lenges arise when solving this fitting problem (22).
C1) The optimization scale can be prohibitively huge due

to the possibly large state and action spaces.

C2) The unknown conditional expectation Es′|s,x inside

the square loss prevents an easy unbiased gradient

estimator.

C3) The max operator inside the square loss introduces

nonsmoothness and nonconvexity when performing

optimization.
To tackle C1), function approximation methods have

been studied using linear or nonlinear (random) basis

functions [83], [84]. Roughly speaking, given a state-

action pair (x, s) along with its predefined feature vec-

tor φx,s ∈ R
d, existing approaches will approximate the

Q-function by Q(s, x) := z�(φx,s)θ, where z(φx,s) ∈ R
2D

is a lifted feature vector (e.g., random features or outputs

of deep neural networks) generated from φx,s and θ ∈ R
2D

is the wanted parameter vector. To this end, the task of

finding the |S|×|A| function (matrix) Q reduces to find the

2-D vector θ. Along this line, several recent works based

on primal-dual solvers have made significant progress on

simultaneously resolving C1) and C2) [85], [86]. Regard-

ing C3), while it is still an active research area, approaches

leveraging smoothing techniques for nonsmooth functions

in convex optimization have shed light on promising reme-

dies [87], [88].

In addition to value iteration-based methods such as

Q-learning, approaches based on direct policy search such

as policy gradients and actor-critic methods are also preva-

lent nowadays (see [89]–[91]). This key idea behind policy

gradient is to update the θ-parametrized policy πθ using

the gradient of the discounted objective (16) with respect

to the policy parameters [89]. Convergence of the pol-

icy gradient with deep neural networks or kernel-based

function approximators is now better understood than

Q-learning, along with the limitations of policy gradient-

based methods that arise from their high variance.

We conclude this section by remarking that approaches

in light of the offline-aided-online learning have also been

studied for (16) under the name of experience replay,

which achieves tremendous success in various artificial

intelligence tasks [92].

IV. S C A L A B I L I T Y I N O N L I N E L E A R N I N G

F O R I o T

The IoT settings considered in Section III involve slow-

varying IoT dynamics that are (asymptotically) stationary

relative to the timescale of making decisions. However,

in large-scale IoT, real-time control and communications

entail slow and fast time scales that prompt scalable online

solvers for generally nonstationary settings—the topics of

this section.

In addition to the general nonstationarity, special atten-

tion will be given to approaches designed under lim-

ited information about the environment, or equivalently,

solvers requiring limited computation, and communication

Fig. 5. Three forms of feedback in IoT environments (termed

nature) correspond to three different types of information oracle

in Table 1.

resources to sense the environment. Corresponding to

different information that may be available in IoT, we out-

line three classes of scalable online learning approaches

(see Fig. 5 for a comparison).

A. Constrained Online Learning for IoT
Management

Consider a finite-time horizon T . Per slot t, the IoT oper-

ator selects an action xt from a known and fixed convex set

X ⊆ R
d, and the IoT environment (a.k.a. nature in OCO)

then reveals a loss ft : R
d → R, along with a time-varying

(possibly adversarial) penalty function gt : R
d → R

N . The

latter leads to a time-varying constraint gt(x) ≤ 0, which

is driven by the unknown IoT dynamics. As in (1), the goal

here is to generate a sequence of decisions that minimize

the aggregate loss and ensure that the constraints are

satisfied in the long term on average. Specifically, we wish

to solve

min
{xt∈X ,∀t}

T�
t=1

ft(xt) s.t.
T�

t=1

gt(xt) ≤ 0. (23)

Comparing with the generic problem (1), we keep the time-

varying IoT state st implicit in (23), e.g., ft(xt) := f(xt; st)

and gt(xt) := g(xt; st), since the algorithms introduced in

this section may not need to directly sense the state st.

For (23), if {ft, gt} are known and T is not prohibitively

large, the optimal decisions can be found using any off-

the-shelf batch solver. Along with the potentially high

complexity of batch solvers, a key challenge is that loss

and constraint functions in dynamic IoT setups are often

unknown before allocating resources, due to unpredictable

channel blocking, in millimeter-wave links, due to the
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unpredictable routing, network congestion, device mal-

functions, and malicious attacks nowadays.

Consider an edge layer with low-power sensors, a fog

with N nodes in N , and a cloud with multiple comput-

ing centers [14]. Per slot t, each node n collects data

requests dn
t from nearby sensors and has to decide among

three options:

1) offloading an amount χn
t (from dn

t ) to the cloud;

2) offloading xnm
t to node m for collaborative comput-

ing;

3) processing an amount xnn
t using the in situ fog

servers.

Variable xt consists of all the decisions in 1)–3)

(see Fig. 6).

Supposing that each fog node has a local queue to buffer

unserved workloads, a long-term constraint is imposed to

ensure that the cumulative amount of served workloads is

no less than the arrived amount over T slots, that is

T�
t=1

gn
t (xt) ≤ 0, ∀n

gn
t (xt) := dn

t +
�

m∈N in
n

xmn
t −

�
m∈Nout

n

xnm
t − χn

t − xnn
t

(24)

where N in
n (N out

n ) is the set of fog nodes with in-coming

(out-going) links to (from) node n. Clearly, amounts χn
t ,

xnm
t , and xnn

t have caps depending on the communication

protocols and computing cores in use. With x̄ collecting all

these caps, the feasible set is X := {0 ≤ xt ≤ x̄}.

Among candidate figures of merit in optimizing xt is

network delay of the online edge processing and offloading

decisions [15], [93]. Specifically, the latency associated

with χn
t is mainly due to the communication delay, which

can be modeled as a time-varying convex function lnt (χn
t ).

Likewise, the communication delay related to xnm
t is

denoted by lnm
t (xnm

t ). In addition, latency pertaining to

xnn
t comes from its limited computation capability, which

can be modeled as a function hn
t (xnn

t ) capturing dynamics

during the computing processes.

Fig. 6. Diagram for mobile computation offloading: IoT devices at

the edge layer, fog clusters contain locally connected fog nodes, and

the data center in the cloud layer.

The overall performance in allocating xt is quantified

by aggregate latency metrics. Those include computational

(lt) and communication delays (ht), namely

ft(xt) :=
�
n∈N

�
lnt (χn

t ) +
�

m∈Nout
n

lnm
t (xnm

t ) + hn
t (xnn

t )
�
.

(25)

While the aggregate delay in some cases cannot directly

reflect user experience, a viable alternative is the

maximum of computational and communication delays

(see [93]). While the average-delay objective presumed

in (23) may not be the optimal performance metric in

some mission critical applications, our formulation can

also cover the probabilistic delay requirements. The per-

slot objective of the latter is an indicator function of the

delay given by

ft(xt) :=
�
n∈N

1

��
lnt (χn

t )+
�

m∈Nout
n

lnm
t (xnm

t )+hn
t (xnn

t )
�
≤ l̄

�

(26)

where l̄ is a predefined upper bound of user delay.

The price paid is that the resultant problem is non-

convex, which can be tackled by, e.g., the approach

in Section IV-C.

With ft(xt) as in (25) and constraints as in (24), the solu-

tion of (23) aims to minimize the aggregate delay while

serving all IoT demands in the long term. Looking forward,

more intriguing is to find such an optimal strategy in a

fully causal setting, where {ft(xt), d
n
t } are unknown when

deciding xt but are revealed at the end of slot t after

deciding xt.

To gauge the performance of online decisions, static

regret is adopted by OCO to measure how far the aggre-

gate loss of an OCO algorithm is from the best fixed

solution in hindsight [25]. Since a static regret relies

on a rather coarse benchmark, which is less useful in

dynamic IoT [28], we are motivated to pursue the so-

termed dynamic regret given by

Regd
T :=

T�
t=1

ft(xt) −
T�

t=1

ft(x
∗
t ) (27a)

with x∗
t ∈ arg min

x∈X
ft(x), s.t. gt(x) ≤ 0 (27b)

where the benchmark is now formed using the best

sequence {x∗
t } for the instantaneous problem, subject to

the instantaneous constraint. The metric in (5) is more

suitable for assessing the performance of dynamic IoT

networks than its static counterpart in [25] because a

sublinear dynamic regret implies a sublinear static one, but

the converse is not true.

Regarding feasibility of online decisions, the dyna-

mic fit is also useful to quantify the accumulated
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violations, that is

FitdT :=

�����
�

T�
t=1

gt(xt)

�+�����. (28)

The long-term constraint implicitly assumes that the

instantaneous constraint violations can be compensated

by subsequent strictly feasible decisions, thus allowing

adaptation of fog decisions to the unknown dynamics of

IoT user demands.

Under the metrics in (27) and (28), an ideal algo-

rithm will be one that achieves both sublinear dynamic

regret and sublinear dynamic fit. A sublinear dynamic

regret implies “no regret” relative to the clairvoyant

dynamic solution on the long-term average, i.e., limT→∞

Regd
T /T = 0, while a sublinear dynamic fit indicates

that the online strategy is also feasible on average,

i.e., limT→∞ FitdT /T = 0.

With λ ∈ R
N
+ denoting the Lagrange multiplier vector,

the Lagrangian of (23) is

Lt(x, λ) := ft(x) + λ
�gt(x). (29)

Building on (29), an online scheme termed modified

saddle point (MOSP) approach has been developed first

in [28] and later in [94]. We use the low-complexity

variant in [94] for the subsequent illustration. Given xt

and λt, the decision xt+1 is

xt+1 = PX (xt − α∇xLt(xt, λt)) (30)

where PX (y) := arg minx∈X ‖x − y‖2, α is a predefined

constant, and ∇xLt(xt, λt) = ∇ft(xt) + ∇�gt(xt)λt is the

gradient of Lt(x, λt) with respect to x. In addition, the dual

update takes the modified online gradient ascent form

λt+1 =
�
λt + µ(gt(xt) + ∇�gt(xt)(xt+1 − xt))

�+
(31)

where µ is the stepsize, and gt(xt) is the gradient of

Lt(xt, λ) with respect to λ. Note that (31) is a modified

gradient update since the dual variable is updated along

the first-order approximation of gt(xt+1) at xt rather than

the commonly used gt(xt).

With properly chosen stepsizes, MOSP enjoys dynamic

regret and fit bounded by [28]

Regd
T = O

�
V(x∗

1:T )T
1
2

�
and FitdT = O

	
T

1
2



(32)

where V(x∗
1:T ) is the accumulated variation of the per-slot

minimizers x∗
t in (27) given by V(x∗

1:T ) :=
�T

t=1 ‖x∗
t −

x∗
t−1‖. In words, MOSP’s dynamic fit is sublinear, and its

dynamic regret is also sublinear, so long as the variation of

the minimizers is slow enough, i.e., V(x∗
1:T ) = o(

√
T ).

Relevant approaches developed in similar settings also

include those in [95]–[97]. Specifically, OCO with switch-

ing cost has been studied in [95], and feedback-based

tracking algorithms have been developed in [96] and [97].

Remark 1 Learning via Task-Adaptive Stepsizes: The pri-

mal update (30) can be refined by adjusting each entry of

the gradient using a per-entry stepsize in accordance with

“each thing” in IoT applications [93]. Such an adaptive

stepsize can be regarded as an inexpensive approximation

of the Hessian used in the online Newton iteration [98].

Using edge computing as a paradigm, [93] showed that

task-adaptive stepsizes can markedly reduce the network

delay when the underlying IoT tasks are heterogeneous,

where the resultant gradients could have distinct orders of

magnitude over different coordinates.

B. Constrained Convex Bandit Learning for IoT
Management

The online recursions (30) and (31) remain opera-

tional under the premise that the loss functions are

known or their gradients are readily available. Clearly,

none of these assumptions is always satisfied in IoT,

because: 1) the loss function capturing user dissatisfaction,

e.g., service latency or reliability, can be hard to model

in dynamic settings and 2) even if modeling is possible,

the low-power devices may not afford the complexity

of running statistical learning tools such as deep neural

networks online. These considerations motivate online

bandit saddle point (BanSP) methods to broaden the scope

of MOSP to IoT settings where the gradient is unavail-

able or computationally costly [29].

The key idea behind bandit learning is to construct

(preferably stochastic) gradient estimates using limited

function value information [99], [100]. Consider first a

learner only observing the value of ft(x) at a single

point x per slot t. The crux is to construct a (possibly

unbiased) estimate of the gradient using this single piece

of feedback—what is interestingly possible by one random

function evaluation [99]. The intuition is easy to grasp

in the 1-D case: for a binary variable u taking values

{−1, 1} equiprobably, and a small δ > 0, the difference

approximation of the derivative f ′
t at x yields

f ′
t(x) ≈ ft(x + δ) − ft(x − δ)

2δ
= Eu

�u

δ
ft(x + δu)

�
(33)

where the equality follows from the definition of expec-

tation. Dropping Eu, the scaled single-value evaluation

ft(x+ δu)u/δ is a nearly unbiased estimator of f ′
t(x). Gen-

eralizing this approximation to higher dimensions, with a

random vector u drawn from the surface of a unit sphere,

the scaled function evaluation at a perturbed point x + δu

yields an estimate of the gradient ∇ft(x), given by [99]

∇ft(x) ≈ Eu

�
d

δ
ft(x + δu)u

�
:= Eu

�
∇̂ft(x)

�
(34)
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where we define one-point gradient ∇̂ft(x) := (d/δ)

ft(x + δu)u.

Building upon (34), consider the primal update [cf. (30)]

x̂t+1 = P(1−γ)X

�
x̂t − α

�
∇̂ft(x̂t) + ∇�gt(x̂t)λt

��
(35)

where (1 − γ)X := {(1 − γ)x : x ∈ X} is a subset of X ,

and γ ∈ [0, 1) is a preselected constant dependent on δ.

In the full-information case, xt in (30) is the learner’s

action, whereas in the bandit case the learner’s action is

xt := x̂t + δut, which is the point for function evaluation

instead of x̂t in (35). Projection in (35) is on a smaller

convex set (1 − γ)X in (35), which ensures feasibility of

the perturbed xt ∈ X . Similar to (31), the dual update of

BanSP is given by

λt+1 =
�
λt + µ(gt(x̂t) + ∇�gt(x̂t)(x̂t+1 − x̂t))

�+
(36)

where x̂t rather than xt is used in this update. Compared

with (30)–(31), the updates (35)–(36) with one-point bandit

feedback do not increase computation or memory require-

ments; hence, they provide a lightweight surrogate for

MOSP to enable gradient-free online bandit IoT network

optimization.

If the mild conditions in [29] are satisfied, the online

decisions generated by BanSP yield

E

�
Regd

T

�
= O

�
V(x∗

1:T )T
3
4

�
and E

�
FitdT

�
= O

	
T

3
4



(37)

where E is taken over the sequence of the random actions

xt with randomness induced by {ut} perturbations.

Depending on the underlying dynamics, BanSP

can afford one or multiple loss function evaluations

(bandit feedback) per slot. If BanSP is endowed with

M > 2 function evaluations, the gradient estimate

will be more accurate by querying the function values

over M points in the neighborhood of x̂t. Intuitively,

the performance of BanSP will improve if multiple

evaluations are available per slot. Indeed, the dynamic

regret is provably O
	
V(x∗

1:T )T (1/2)


, and the dynamic fit

FitdT = O
	
T (1/2)



[29], which markedly improve upon

their single-point counterparts, and reduce to MOSP

bounds in the full-information case [cf. (32)].

C. Constrained Multiarmed Bandit Learning
The salient assumption so far is that IoT decisions belong

to a time-invariant convex set X . However, IoT devices

usually exhibit time-varying connectivity to the backbone

due to mobility and cyber attacks, while network con-

figurations are often selected from predetermined proto-

cols. In this context, multiarmed bandit (MAB) methods

can be employed to extend BanSP when X is time-varying

and discrete [101], [102].

Consider the discrete feasible set X := {x1, . . . , xK}
with total K possible actions (a.k.a. arms in MAB).

To account for dynamics, only the actions in Xt ⊆ X
are available per slot t, e.g., xt ∈ Xt. The availability of

actions could be stochastic, following a certain probability

distribution or even adversarial, in which case nature can

arbitrarily choose Xt.

Per slot t, collect the objective values of all actions into

vector ft := [ft(x
1), . . . , ft(x

K)]�, and likewise the con-

straints into matrix Gt := [gt(x
1), . . . , gt(x

K)] ∈ R
N×K . If

the learner’s strategy is to select an action xt = xk with k

from a distribution k ∼ pt ∈ R
K , then (23) can be reformu-

lated as an optimization problem over distributions {pt},

namely

min
{p

t
∈∆(Xt),∀t}

T�
t=1

f
�
t pt s.t.

T�
t=1

Gtpt ≤ 0 (38)

where the Xt-supported “probability simplex” is defined as

∆(Xt) :=

� �
xk∈Xt

p(xk) = 1; p(xk)≥0; p(xk) = 0, xk /∈ Xt

�
.

(39)

It is worth mentioning that ft(x
k) and gt(x

k) are well

defined even when the action xk /∈ Xt is not available,

and the values ft(x
k) and gt(x

k) are not revealed.

In order to employ an MOSP solver for (38), the gra-

dient of the associated Lagrangian is needed, meaning ft
and Gt must be known. The challenge is that such infor-

mation is hardly available in large-scale IoT settings,

where one only knows ft(xt) and gt(xt) given that xt is

implemented. The time-varying action set also prevents a

direct implementation of BanSP to solve (38). To tackle

such a challenging setting, a novel EXP3SP algorithm was

developed in the recent work [101] that builds on the

elegant exponential-weight algorithm for exploration and

exploitation (EXP3) [103].

Per slot t, the learner observes the action set Xt

and selects xt according to the current distribution pt

given by

pt(x
k) =

p̃t(x
k)1(xk ∈ Xt)�

xk∈X p̃t(xk)1(xk ∈ Xt)
, ∀xk ∈ X (40)

where p̃t(x
k) is the unnormalized weight of xk at slot t,

the value of which will be specified later. Once ft(xt) and

gt(xt) become available, unbiased estimates of ft and Gt

are

f̂t(x
k) =

ft(x
k)1(xt = xk)

pt(xk)
, ∀xk ∈ X (41a)

ĝt(x
k) =

gt(x
k)1(xt = xk)

pt(xk)
, ∀xk ∈ X . (41b)

Adopting the gradient estimators in (41), the pri-

mal update uses the exponential gradient recursion,
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Fig. 7. Summary of learning approaches corresponding to Fig. 5.

namely, ∀xk ∈ X

p̃t+1(x
k) = p̃t(x

k) exp
�
−µ

�
f̂t(x

k) + λ
�
t ĝt(x

k)
��

. (42)

The weight p̃t+1 is, in turn, used to generate the action

distribution in the next slot [cf. (40)]. The dual update

is

λt+1 =
�
λt + µ

	
Ĝtpt − δµλt


�+

(43)

where δ is a tuned constant to ensure a bounded

multiplier.

If Xt is stochastic, EXP3SP achieves both sublinear regret

and fit [101]. A robust modification of EXP3SP has been

also developed recently to cope with adversaries blocking

access of IoT devices to their edge servers [102] while

further securing edge computing and ensuring sublinear

regret and fit.

Our scalable online learning schemes are recapped

in Fig. 7.

V. L E S S O N S L E A R N E D A N D T H E

R O A D A H E A D

We have presented a unified framework for deriv-

ing and analyzing adaptive and scalable network

design and resource allocation schemes for IoT. Lever-

aging the contemporary communication, networking,

and optimization advances, the resultant online learn-

ing and management policies not only facilitate low-

complexity and scalable implementations with lim-

ited feedback but also enjoy efficient adaptation to

changing environments with analytical performance

guarantees.

The proposed framework lays a solid analytical

foundation to delineate the tradeoffs among performance

guarantees, degree of (non)stationarity in modeling IoT

dynamics, algorithm scalability, and levels of accessible

information (see Fig. 8).

Fig. 8. Tradeoff among modeling assumptions, accessible

information, algorithm adaptivity, scalability, and optimality

guarantees.

A. Modeling Assumptions Versus Optimality
Guarantees

While both deal with IoT management with unknown

dynamics, the modeling assumptions in Sections III and IV

differ considerably. Specifically, those in Section III assume

a generally stationary IoT environment that corresponds

to either the simplest i.i.d. case or to the Markovian

case eventually converging to a stationary distribution.

In contrast, the approaches in Section IV can afford arbi-

trary dynamics even those manipulated by adversaries.

However, such minimal assumption does not come for free.

As a matter of fact, the performance guarantee in terms

of the sublinear regret in Section IV is weaker than the

optimality gap in Section III—see an analytical comparison

in [28]. Nevertheless, as the effectiveness of the optimal

solution in Section III also depends on the discrepancy

between the real IoT settings and the modeled stationary

ones, the actual online performance of these approaches

requires further evaluation.

The vantage point of this overview opens up a number

of exciting directions for future research.

B. Distributed Machine Learning

Considering the massive amount of mobile devices

in IoT, centralized learning becomes computationally

intractable and also rises serious privacy concerns. To date,

the widespread consensus is that besides data centers at

the cloud, future machine learning and artificial intel-

ligence tasks have to be performed starting from the

network edge, namely, mobile devices. This is the over-

arching goal of the emerging federated learning para-

digm [104], [105]. Toward this goal, future challenges

and opportunities include reducing the communication

overhead during the distributed learning processes and

enhancing the robustness of learning algorithms under

adversarial attacks. Recent advances in the direction

of communication-efficient learning include the adaptive

communication mechanism in [106] that enjoys the first

provably bound on the reduced number of communica-

tion rounds. Challenges of distributed learning also lie in

asynchrony and delay introduced by, e.g., IoT mobility and

heterogeneity. Asynchronous parallel learning schemes

are, thus, worth investigating by leveraging advances in

static optimization settings [107], [108]. From distributed
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machine learning to distributed control, multiagent rein-

forcement learning will play a critical role in distributed

control for IoT [109]. Decentralized actor-critic algorithms

have been recently developed in [91] and [110] for

multiagent reinforcement learning, while communication-

efficient schemes can be found in [111].

C. Communication, Computation, and Control
Codesign

The past decade has witnessed the convergence of the

communication and computing processes [16]. The cur-

rent brief is that next-generation communication networks

should support emerging large-scale control applications

in IoT with millions of diverse devices over a large geo-

graphical area. This calls for codesigning communication,

computing, and control mechanisms. The challenges natu-

rally arise in developing the desired network architecture,

the role of different network entities, pertinent perfor-

mance metrics, and the corresponding policies to simulta-

neously satisfy the timeliness, reliability, and efficiency of

all three intertwined systems.

Over the decades, the focus of wireless communica-

tions has been anytime, anywhere, anyone connection of

the humans, whereas the emerging IoT paradigm largely

extends the scope of wireless networking to connect-

ing everything, along the humans-to-things and things-

to-things continuum. The IoT challenges such as extreme

heterogeneity, unpredictable dynamics, and massive scale

call for game-changing innovations in network design and

management. We hope that the proposed unified frame-

work can serve as a stepping stone that leads to systematic

designs and rigorous analysis of adaptive and scalable

learning and management schemes for IoT, and a host of

new research venues to pursue.
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