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Adaptive Diffusions for Scalable Learning
Over Graphs

Dimitris Berberidis

Abstract—Diffusion-based classifiers such as those relying on
the Personalized PageRank and the heat kernel enjoy remark-
able classification accuracy at modest computational requirements.
Their performance however is affected by the extent to which the
chosen diffusion captures a typically unknown label propagation
mechanism, which can be specific to the underlying graph, and
potentially different for each class. This paper introduces a disci-
plined, data-efficient approach to learning class-specific diffusion
Jfunctions adapted to the underlying network topology. The novel
learning approach leverages the notion of “landing probabilities”
of class-specific random walks, which can be computed efficiently,
thereby ensuring scalability to large graphs. This is supported by
rigorous analysis of the properties of the model as well as the
proposed algorithms. Furthermore, a robust version of the classi-
fier facilitates learning even in noisy environments. Classification
tests on real networks demonstrate that adapting the diffusion
function to the given graph and observed labels significantly im-
proves the performance over fixed diffusions, reaching—and many
times surpassing—the classification accuracy of computationally
heavier state-of-the-art competing methods, which rely on node
embeddings and deep neural networks.

Index Terms—Semi-supervised classification, random walks,
diffusions.

1. INTRODUCTION

HE task of classifying nodes of a graph arises frequently
T in several applications on real-world networks, such as
the ones derived from social interactions and biological depen-
dencies. Graph-based semi-supervised learning (SSL) methods
tackle this task building on the premise that the true labels
are distributed “smoothly” with respect to the underlying net-
work, which then motivates leveraging the network structure
to increase the classification accuracy [11]. Graph-based SSL
has been pursued by various intertwined methods, including
iterative label propagation [6], [25], [29], [43], kernels on graphs
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[31], manifold regularization [5], graph partitioning [19], [40],
transductive learning [39], competitive infection models [36],
and bootstrapped label propagation [10]. SSL based on graph
filters was discussed in [37], and further developed in [12]
for bridge monitoring. Recently, approaches based on node-
embeddings [18], [34], [42], as well as deep-learning architec-
tures [2], [21] have gained popularity, and were reported to have
state-of-the-art performance.

Many of the aforementioned methods are challenged by com-
putational complexity and scalability issues that limit their
applicability to large-scale networks. Random-walk-based dif-
fusions present an efficient and effective alternative. Methods
of this family diffuse probabilistically the known labels through
the graph, thereby ranking nodes according to weighted sums
of variable-length landing probabilities. Celebrated representa-
tives include those based on the Personalized PageRank (PPR)
and the Heat Kernel that were found to perform remarkably well
in certain application domains [22], and have been nicely linked
to particular network models [3], [23], [24]. Spectral diffusions
have been used for community detection [45], [47], where local
diffusion patterns are produced to approximate low-conductance
communities, and adaptive PPR has been applied for prediction
on a heterogeneous protein-function network [46].

The effectiveness of diffusion-based classifiers can vary con-
siderably depending on whether the chosen diffusion conforms
with the latent label propagation mechanism that might be, (i)
particular to the target application or underlying network topol-
ogy; and, (ii) different for each class. The present contribution'
alleviates these shortcomings and markedly improves the per-
formance of random-walk-based classifiers by adapting the dif-
fusion functions of every class to both the network and the
observed labels. The resultant novel classifier relies on the
notion of landing probabilities of short-length random walks
rooted at the observed nodes of each class. The small number
of these landing probabilities can be extracted efficiently with
a small number of sparse matrix-vector products, thus ensuring
applicability to large-scale networks. Theoretical analysis estab-
lishes that short random walks are in most cases sufficient for
reliable classification. Furthermore, an algorithm is developed
to identify (and potentially remove) outlying or anomalous sam-
ples jointly with adapting the diffusions. We test our methods in
terms of multiclass and multilabel classification accuracy, and
confirm that it can achieve results competitive to state-of-the-art
methods, while also being considerably faster.

'A preliminary version of the work has appeared in [8].
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The rest of the paper is organized as follows. Section II intro-
duces random-walk based diffusions. Our novel approach along
with relevant analytical results are the subjects of Section III.
Section IV presents a robust version of our algorithm, and
Section V places our work in the context of related methods.
Finally, Section VI presents experiments, while Section VII
concludes the paper and discusses future directions.

Notation: Bold lower-case letters denote column vectors (e.g.,
v); bold upper-case letters denote matrices (e.g., Q). Vectors q;
and qiT denote the jth column and the :th row of Q, respectively;
whereas @;; (or sometimes for clarity [Q];;) denotes the ijth
entry of Q. Vector e denotes the K'th canonical column vector;
and || - || denotes the Euclidean norm, unless stated otherwise.

II. PROBLEM STATEMENT AND MODELING

Consider a graph G := {V, £}, where V is the set of NV nodes,
and & the set of edges. Connectivity is captured by the weight
matrix W having entries W;; > 0if (4, j) € £. Associated with
each node ¢ € V there is a discrete label y; € ). In SSL clas-
sification over graphs, a subset £ C V of nodes has available
labels y ., and the goal is to infer the labels of the unlabeled
setU := V\ L. Given a measure of influence, a node most influ-
enced by labeled nodes of a certain class is deemed to also belong
to the same class. Thus, label-propagation on graphs boils down
to quantifying the influence of £ on/, see, e.g., [11], [25], [41].
An intuitive yet simple measure of node-to-node influence relies
on the notion of random walks on graphs.

A simple random walk on a graph is a discrete-time Markov
chain defined over the nodes, meaning with state space ). The
transition probabilities are

Pr{X; = i|X;_1 = j} = Wi;/d; = [WD™'];; := [H];;
where X, € V denotes the position of the random walker (state)
at the kth step; d; := > keN, Wi is the degree of node j; and,
N its neighborhood. Since we consider undirected graphs the
limiting distribution of {X}} always exists and it is unique if
it is connected and non-bipartite. It is given by the dominant
right eigenvector of the column-stochastic transition probability
matrix H := WD™!, where D := diag (dy, da, ..., dy) [27].
The steady-state distribution 7 can be shown to have entries

d;
m; = lim ;Pr{xk =ilXo = j}Pr{Xo = j} = 37
J

that are clearly not dependent on the initial “seeding” distribu-
tion Pr{ X, }; and 7 is thus unsuitable for measuring influence
among nodes. Instead, for graph-based SSL, we will utilize the
k—step landing probability per node ¢ given by

=Y Pr{X =ilXo =} Pr{Xe =4} (D)

jev
that in vector form p*) := [p(lk) p%)]T satisfies p(#) =
Hp(©), where pg()) := Pr{X, = i}. In words, pgk) is the prob-

ability that a random walker with initial distribution p(*) is

located at node ¢ after k steps. Therefore, py(;k) is a valid measure
of the influence that p() has on any node in V.

The landing probabilities per class ¢ € Y are (cf. (1))

pl") = Hfv, )
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where for L. := {i € L : y; = ¢}, we select as v, the normal-
ized class-indicator vector with i—th entry

/L],
[Vel; = { 0,

acts as initial distribution. Using (2), we model diffusions per
class ¢ over the graph driven by {pf;m MK as

i€ L.
3)

else

K
£.(0) =) 6ipl") )
k=0

where 60, denotes the importance assigned to the kth hop neigh-
borhood. By setting 6y = 0 (since it is not useful for classifi-
cation purposes) and constraining 8 € S% | where S¥ := {x €
R% :x >0,1Tx = 1} is the K —dimensional probability sim-
plex, f.(0) can be compactly expressed as

K
£.(0) = 6ip") =P)g )

k=1
where P%) .= [pt) ... plf)]. Note that f, (@) denotes a valid

nodal probability mass function (pmf) for class c.
Given 6 and upon obtaining {f.(0)}.cy, our diffusion-based
classifiers will predict labels over U as

0:(0) := argmax [£.(0)], (6)
cey

where [f.(0)]; is the ith entry of £.(0).

The upshot of (4) is a unifying form of superimposed diffu-
sions allowing tunable simplex weights, taking up to K steps
per class to come up with an influence metric for the semi-
supervised classifier (6) over graphs. Next, we outline two no-
table members of the family of diffusion-based classifiers that
can be viewed as special cases of (4).

A. Personalized PageRank Classifier

Inspired by its celebrated network centrality metric [9], the
Personalized PageRank (PPR) algorithm has well-documented
merits for label propagation; see, e.g., [28]. PPR is a special
case of (4) corresponding to @ppr = (1 — a)[a’ a! - of }T
where 0 < a < 1, and 1 — «v can be interpreted as the “restart”
probability of random walks with restarts.

The PPR-based classifier relies on (cf. (5))

k)

K
f.(0ppr) = (1—a) Y _a*pl (7)
k=0

satisfying asymptotically in the number of random walk steps
lim f.(6ppr) = (1 —a)I—aH) v,
K—o0

which implies that f. (@ppr ) approximates the solution of a lin-
ear system. Indeed, as shown in [3], PPR amounts to solving
a weighted regularized least-squares problem over V; see also
[23] for a PPR interpretation as an approximate geometric dis-
criminant function defined in the space of landing probabilities.

B. Heat Kernel Classifier

The heat kernel (HK) is another popular diffusion that has
recently been employed for SSL [31] and community detection
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Fig. 1. High-level illustration of adaptive diffusions. The nodes belong to
two classes (red and green). The per-class diffusions are learned by exploiting
the landing probability spaces produced by random walks rooted at the sample
nodes (second layer: up for red; down for green).

on graphs [22]. HK is also a special case of (4) with Oy =

1t % . % ]T, yielding class distributions (cf. (4))

o Z e, ®)

Furthermore, it can be readily shown that

[}lm f((OHK) = e_t(I_H)Vc

f.(0ux) =

allowing HK to be interpreted as an approximation of a heat dif-
fusion process, where heat is flowing from L. to the rest of the
graph; and f.(@yk) is a snapshot of the temperature after time
t has elapsed. HK provably yields low conductance communi-
ties, while also converging faster to its asymptotic closed-form
expression than PPR (depending on the value of ¢) [15].

III. ADAPTIVE DIFFUSIONS

Besides the unifying view of (4), the main contribution here
is on efficiently designing £, (6. ) in (5), by learning the corre-
sponding 8, per class. Thus, unlike PPR and HK, the methods
introduced here can afford class-specific label propagation that
is adaptive to the graph structure, and also adaptive to the labeled
nodes. Figure 1 gives a high-level illustration of the proposed
adaptive diffusion framework, where two classes (red and green)
are to be diffused over the graph (cf. (2)), with class-specific dif-
fusion coefficients adapted as will be described next. Diffusions
are then built (cf. (5)), and employed for class prediction (cf.
(6)).

Consider for generality a goodness-of-fit loss /(+), and a reg-
ularizer R(-) promoting e.g., smoothness over the graph. Using
these, the sought class distribution will be

f, = arg min £(y,, ,f) + AR(f) )
feRN !
where )\ tunes the degree of regularization, and
yel 1, 1€l
Yholt = 0, else

is the indicator vector of the nodes belonging to class c. Using
our diffusion model in (5), the /N—dimensional optimization
problem (9) reduces to solving for the K —dimensional vector
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(K< N)

0. = arg min ((yr,,£.(0)) + AR(f.(9)- (1)

Although many choices of ¢(-) may be of interest, we will focus
for simplicity on the quadratic loss, namely

1,
U(ye £) =Y E([Yﬁph — fi)?
ieL
= (yz, —)'Dp(yz, ~ 1) (11)
where y. := (1/|L£|)yc, is the class indicator vector after nor-
malization to bring target variables (entries of y ., ) and entries

of f to the same scale, and D}, = diag(d([w) with entries

[d([UL _ {1{;@,, i€l .

else
For a smoothness-promoting regularization, we will employ
the following (normalized) Laplacian-based metric

Yy (4ny

zeV JEN;
= f'D'LD'f. (12)

where L := D — W is the Laplacian matrix of the graph. Intu-
itively speaking, (11) favors vectors f having non-zero (|1/|L|)
values on nodes that are known to belong to class ¢, and zero val-
ues on nodes that are known to belong to other classes (£\ L),
while (12) promotes similarity of the entries of f that corre-
spond to neighboring nodes. In (11) and (12), each entry f;

is normalized by d; > and d; ' respectively. This normalization
counterbalances the tendency of random walks to concentrate on
high-degree nodes, thus placing equal importance to all nodes.

Substituting (11) and (12) into (10), and recalling from (5)

that f.(0) = pXg, yields the convex quadratic program

6. = arg min 0TA.0+0"b, (13)
0cSK
with b, and A. given by
2
b, = —E(PE:K))TDTEYA (14)
A, = (PUNYTDLPE) L A\(PI)TD LD P (15)

= (PI)T[(DL+AD) PIF) — D 'HPF)|

= (PI))T (DR 4 AD 1Y) (16)
where
HP(") = {Hpﬁl) Hp.” HpiK)}
_ {p(@) pgs) p((:K+1)}
(K) (k)

is a “shifted” version of P,
one step, and

P .— {f,g}) 5 ... f)gK)]

, where each p, ’ is advanced by

Cc Cc

with f)((f) = pg) — pgﬂ) containing the “differential” landing

probabilities. The complexity of ‘naively’ finding the K x K
matrix A (and thus also b..) is O(K? N) for computing the first
summand, and O(|€|K) for the second summand in (15), after
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leveraging the sparsity of L, which means |£| < N2. But since
columns of ].55;]() are obtained as differences of consecutive
columns of P{*", this load of O(|E|K) is saved.

In a nutshell, the solver in (13)—(16) that we term adaptive-
diffusion (AdaDIF), incurs complexity of order O(K2N).

Remark 1: The problem in (13) is a quadratic program (QP)
of dimension K (or the dictionary size D to be discussed in
Section III-C when in dictionary mode). In general, solving a
QP with K variables to a given precision requires a O(K?)
worst-case complexity. Although this may appear heavy, K in
our setting is 10-30 and thus negligibly small compared to the
quantities that depend on the graph dimensions. For instance,
the graphs that we tested have O(10*) nodes (V) and O(10°)
edges (|€]). Therefore, since K < N and K < |€| by many
orders of magnitude, the complexity for QP is dominated by the
O(|€|K) (same as PPR and HK) performing the random walks
and O(N K?) for computing A...

A. Limiting Behavior and Computational Complexity

In this section, we offer further insights on the model (5),
along with complexity analysis of the parametric solution in
(13). To start, the next proposition establishes the limiting be-
havior of AdaDIF as the regularization parameter grows.

Proposition 1: 1If the second largest eigenvalue of H has
multiplicity 1, then for K sufficiently large but finite, the solution
to (13) as A — oo satisfies

VL CV. a7

Our experience with solving (13) reveal that the sufficiently
large K required for (17) to hold, can be as small as 10°.

As A — oo, the effect of the loss in (10) vanishes. According
to Proposition 1, this causes AdaDIF to boost smoothness by
concentrating the simplex weights (entries of 6.) on landing
probabilities of the late steps (k close to K). If on the other
extreme, smoothness-over-the-graph is not promoted (cf. A =
0), the sole objective of AdaDIF is to construct diffusions that
best fit the available labeled data. Since short-length random
walks from a given node typically lead to nodes of the same
class, while longer walks to other classes, AdaDIF with A = 0
tends to leverage only a few landing probabilities of early steps
(k close to 1). For moderate values of \, AdaDIF effectively
adapts per-class diffusions by balancing the emphasis on initial
versus final landing probabilities.

Fig. 2 depicts an example of how AdaDIF places weights
{6 }5_ | on landing probabilities after a maximum of K = 20
steps, generated from few samples belonging to one of 7 classes
of the Cora citation network. Note that the learnt coefficients
may follow radically different patterns than those dictated by
standard non-adaptive diffusions such as PPR or HK. It is worth
noting that the simplex constraint induces sparsity of the solution
in (13), thus ‘pushing’ {6}, } entries to zero.

The computational core of the proposed method is to build the

0(; = €ex,

landing probability matrix PgK) , Whose columns are computed
fast using power iterations leveraging the sparsity of H (cf. (2)).
This endows AdaDIF with high computational efficiency, espe-
cially for small K. Specifically, since for solving (13) adaDIF
incurs complexity O(K?2N) per class, if K < |£|/N, this be-
comes O(|E]K); and for |Y| classes, the overall complexity

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019
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04 [~ PPR a
—s— AdaDIF
-2
<
0.2 - -
0 n n n
0 5 10 15 20
k
Fig. 2. Tllustration of K = 20 landing probability coefficients for PPR with

o = 0.9, HK with ¢ = 10, and AdaDIF (A = 15).

of AdaDIF is O(|Y||€|K), which is in the same order as that
of non-adaptive diffusions such as PPR and HK. For larger K
however, an additional O(K?N) is required per class, mainly
to obtain A, in (16).

Overall, if O(K N) memory requirements are met, the run-
time of AdaDIF scales linearly with |E|, provided that K re-
mains small. Thankfully, small values of K are usually suffi-
cient to achieve high learning performance. As will be shown
in the next section, this observation is in par with the analytical
properties of diffusion based classifiers, where it turns out that
K large does not improve classification accuracy.

B. On the Choice of K

Here we elaborate on how the selection of K influences the
classification task at hand. As expected, the effect of K is in-
timately linked to the topology of the underlying graph, the
labeled nodes, and their properties. For simplicity, we will fo-
cus on binary classification with the two classes denoted by
“+4+” and “—.” Central to our subsequent analysis is a concrete
measure of the effect an extra landing probability vector pgk)
can have on the outcome of a diffusion-based classifier. In-
tuitively, this effect is diminishing as the number of steps K
grows, as both random walks eventually converge to the same
stationary distribution. Motivated by this, we introduce next the
~-distinguishability threshold.

Definition 1 (vy-distinguishability threshold): Let p, and
p-_denote respectively the seed vectors for nodes of class “+”
and “—” initializing the landing probability vectors in matri-
ces X, 1= PE,K>, and X, := [pg1> -~-p£Kﬁl)p§3K“)}, where
ce{+,—}. Withy:=X,0-X Qandy:=X,0—-X_6,
the ~-distinguishability threshold of the diffusion-based classi-
fier is the smallest integer K, satisfying

ly =yl <~-

The following theorem establishes an upper bound on K,
expressed in terms of fundamental quantities of the graph, as
well as basic properties of the labeled nodes per class; see the
Appendix B for a proof.

Theorem 1: For any diffusion-based classifier with coef-
ficients @ constrained to a probability simplex of appropriate
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Fig. 3. Experimental evaluation K, for different values of ~-

distinguishability threshold, and proportions of sampled nodes on BlogCat -
alog graph.

dimensions, the y-distinguishability threshold is upper-bounded

as
1 2V T i
KW S ; log |: Y ‘ (\/(l‘1111,7‘£7| + \/dminJr ‘£+‘):|

where

dmin + = mln dia dmin - = mln dja Amax = max d;
€Ly jeL. 1%

and

p = min{p2,2 — pn }
where {11, }V_, denote the eigenvalues of the normalized graph
Laplacian in ascending order.

The ~-distinguishability threshold can guide the choice of
the dimension K of the landing probability space. Indeed, using
class-specific landing probability steps K > K, does not help
distinguishing between the corresponding classes, in the sense
that the classifier output is not perturbed by more than . In-
tuitively, the information contained in the landing probabilities
K, +1,K, +2,... isessentially the same for both classes and
thus, using them as features unnecessarily increases the overall
complexity of the classifier, and also “opens the door” to curse
of dimensionality related concerns. Note also that in settings
where one can freely choose the nodes to sample, this result
could be used to guide such choice in a disciplined way.

Theorem 1 makes no assumptions on the diffusion coef-
ficients, so long they belong to a probability simplex. Of
course, specifying the diffusion function can specialize and fur-
ther tighten the corresponding y-distinguishability threshold. In
Appendix VII-C we give a tighter threshold for PPR.

Conveniently, our experiments suggest that K € [10,20] is
usually sufficient to achieve high performance for most real
graphs ; see also Fig. 3 where K, is found numerically for dif-
ferent values of y-distinguishability threshold, and proportions
of sampled nodes on the BlogCatalog graph. Nevertheless,
longer random walks may be necessary in e.g., graphs with small
1/, especially when the number of labeled nodes is scarce. To
deal with such challenges, the ensuing modification of AdaDIF
that scales linearly with K is nicely motivated.

Remark 2: While PPR and HK in theory rely on infinitely
long random walks, the coefficients decay rapidly (6 = o*
for PPR and 6, = t* /k! for HK). This means that not only
0. — 0 as k — oo in both cases, but the convergence rate is
also very fast (especially for HK). This agrees with our in-
tuition on random walks, as well as our result in Theorem 1
suggesting that, to guarantee a level of distinguishability (which
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is necessary for accuracy) between classes, classifiers should
rely on relatively short-length random walks. Moreover, when
operating in an adaptive framework such as the one proposed
here, using finite-step (preferably short-length) landing proba-
bilities is much more practical, since it restricts the number of
free variables (0;’s) which mitigates overfitting and results in
optimization problems that scale well with the network size.

C. Dictionary of Diffusions

The present section deals with a modified version of AdaDIF,
where the number of parameters (dimension of 0) is restricted
to D < K, meaning the “degrees of freedom” of each class-
specific distribution are fewer than the number of landing prob-
abilities. Specifically, consider (cf. (5))

K
£.(0) =" ar(6)pr) = PX)a(9)
k=1

where a (0) := 3% | 0,Crg,and C :=[c; --- c¢p] € RE*P
is a dictionary of D coefficient vectors, the ith forming the
column ¢; € S¥. Since a(8) = C8, it follows that

D
£.(0) =PICO = 0,£"
d=1

where £ := 3K C,p!") is the dth diffusion.
To find the optimal 6, the optimization problem in (13) is
solved with

2
b. = fm(F?fDLyo (18)
A, = (FA)TDLF2 + A\(FY)TD'LD'F2 (19)
where F2 := [ffgl) féD)] effectively replaces PE;K) as the

basis of the space on which each f, is constructed. The descrip-
tion of AdaDIF in dictionary mode is given as a special case
of Algorithm 1, together with the subroutine in Algorithm 2 for
memory-efficient generation of F(A

The motivation behind this dictionary-based variant of
AdaDIF is two-fold. First, it leverages the properties of a judi-
ciously selected basis of known diffusions, e.g., by constructing
C = [Oppr Ouk ---]. In that sense, our approach is related
to multi-kernel methods, e.g., [1], although significantly more
scalable than the latter. Second, the complexity of AdaDIF in
dictionary mode is O(|€|(K + D)), where D can be arbitrarily
smaller than K, leading to complexity that is linear with respect
to both K and |£].

D. Unconstrained Diffusions

Thus far, the diffusion coefficients @ have been constrained on
the K —dimensional probability simplex S*, resulting in sparse
solutions 8., as well as f. (ép) € SV. The latter also allows
each f.(0) to be interpreted as a pmf over V. Nevertheless, the
simplex constraint imposes a limitation to the model: landing
probabilities may only have non-negative contribution on the
resulting class distribution. Upon relaxing this non-negativity
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Algorithm 1: ADAPTIVE DIFFUSIONS.

Algorithm 3: DICTIONARY.

Input: Adjacency matrix: W, Labeled nodes: {y; }icr
parameters: Regularization parameter: A\, # of landing
probabilities: K, Dictionary mode € {True, False},
Unconstrained € {True, False}
Output: Predictions: {§; }iey
Extract ) = { Set of unique labels in: {y; };cr }
forc € Y do
L.={ieLl:y =c}
if Dictionary mode then
F2 = DICTIONARY (W, L., K, C)
Obtain b, and A as in (18) and (19)

(P Py = LANDPROB(W, L., K)
Obtain b, and A, as in (14) and (16)
Fc = PE:K)
end if
if Unconstrained then
Obtain 6, as in (20) and (21)

else .
Obtain 8. by solving (13)
end if R
f.(6.) =F.0.
end for

Obtain §; = arg max,cy|f. (@)],, Viel

Algorithm 2: LANDPROB.

Input: W, L., K
Output: P/, p%)
H=WD!

0) _
Pc ' = Ve

for k=1: K +1do
_ (k—1)

end for

constraint, (13) can afford a closed-form solution as

6. =A.'(b, — \"1) (20)
1TA7 b, — 1

* — C C 21

A bTA b, @D

Retaining the hyperplane constraint 176 = 1 forces at least one
entry of 8 to be positive. Note that for K > |£|, (20) may
become ill-conditioned, and yield inaccurate solutions. This can
be mitigated by imposing ¢> —norm regularization on @, which
is equivalent to adding €I to A ., with € > 0 sufficiently large to
stabilize the linear system.

A step-by-step description of the proposed AdaDIF ap-
proach is given by Algorithm 1, along with the subroutine in
Algorithm 2. Determining the limiting behavior of uncon-
strained AdaDIF, as well as exploring the effectiveness of differ-
ent regularizers (e.g., sparsity inducing ¢; —norm) is part of our
ongoing research. Towards the goal of developing more robust
methods to design diffusions, the ensuing section presents our

Input: W, L., K,C
Output: F2
H=WD"!
(0) _
Pc ' = Ve
{ffd)}g:l =0
for k:k: 1: K kd({
pt") = Hp{" !
for d=1:Ddo
£ = £ 4 Crp
end for
end for

proposed approach that relies on minimizing the leave-one-out
loss of the resulting classifier.

IV. ADAPTIVE DIFFUSIONS ROBUST TO ANOMALIES

Although the loss function in (11) is simple and easy to im-
plement, it may lack robustness against nodes with labels that
do not comply with a diffusion-based information propagation
model. In real-world graphs, such ‘difficult’ nodes may arise due
to model limitations, observation noise, or even deliberate mis-
labeling by adversaries. For such setups, this section introduces
anovel adaptive diffusion classifier with: i) robustness in finding
0 by ignoring errors that arise due to outlying/anomalous nodes;
as well as, ii) capability to identify and remove such ‘difficult’
nodes.

Let us begin by defining the following per-class ¢ € ) loss

Gy, 0) = 3 7 (el — [6.(6:£10)])°
iel

where £, (0; £\1) is the class-c diffusion after removing the ith
node from the set of all labels. Intuitively, (22) evaluates the
ability of a propagation mechanism effected by 6 to predict the
presence of class clabel on each node i € £, using the remaining
labeled nodes £\ i. Since each class-specific distribution f.(0)
is constructed by random walks that are rooted in £, C L, it
follows that

(22)

f.(0),
£.(8; L\i) = {f,(aﬁ\i)

since £, (0) is not directly affected by the removal of a label that
belongs to other classes, and it is not used as a class-c seed. The
class-c diffusion upon removing the ith node from the seeds L.
is given as (cf. (5))

i ¢ L,

23
1€ L, 3)

K

where p(ﬁkit :=H"v,,;, and

1/|LN\i|, j€Le\i
[vﬁr:\i]j = .

(24)
0, else

The robust loss in (22) can be expressed more compactly as

_ 1 . 2
e o (ye.,0) = HDLZ (yﬁp _ R((:[‘)H)H2 (25)
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where Dzé : (DT )"z, and
[pgu L, ite L,
R o (26)
ik [pﬁk)} , else
Since p."’ = L™ Yier, p%ﬁ{i, evaluating (25) only requires

the rows of R\ and entries of yr, that correspond to £, since
the rest of the diagonal entries of DTL are 0. Having defined
¢, (), per-class diffusion coefficients .. can be obtained by
solving

00 = arg Hlln Ef()b (YC[, s 0) =+ A(‘? ||0||§ (27)
6eSk

where /o regularization with parameter )y is introduced in or-
der to prevent overfitting and numerical instabilities. Note that
smoothness regularization in (12) is less appropriate in the con-
text of robustness, since it promotes “spreading” of the random
walks (cf. Prop. 1), thus making class-diffusions more similar
and increasing the difficulty of detecting outliers. Similar to
(13), quadratic programming can be adopted to solve (27).

Towards mitigating the effects of outliers, and inspired by the
robust estimators introduced in [20], we further enhance ¢¢,, (-)
by explicitly modeling the effect of outliers with a sparse vector
o cRY, leading to the modified cost

2
b (ye.,0.0) = [D.7 (0432 ~RM6)| . @8)
The non-zero entries of o can capture large residuals (predic-
tion errors |[y ., |; — [f.(0; £\i)];]) which may be the result of
outlying, anomalous or mislabeled nodes. Thus, when operating
in the presence of anomalies, the robust classifier aims at iden-
tifying both diffusion parameters {9( teey as well as per class

outlier vectors {0, }.cy. The two tasks can be performed jointly
by solving the following optimization problem

(29)

where O := [0y 0|y| ] concatenates the outlier vectors o,

and || X[z = 1 ,/Z] | X7, for any X € R/, The

term A, ||DZ%O||2-,1 in (29) acts as a regularizer that promotes
sparsity over the rows of O; it can also be interpreted as an
{1-norm regularizer over a vector that contains the ¢, norms of
the rows of O. The reason for using such block-sparse regular-
ization is to force outlier vectors o, of different classes to have
the same support (pattern of non-zero entries). In other words,
the | )| different diffusion/outlier detectors are forced to consent
on which nodes are outliers.

Since (29) is non-convex, convergence of gradient-descent-
type methods to the global optimum is not guaranteed. Never-
theless, since (29) is biconvex (i.e., convex with respect to each
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variable) the following alternating minimization scheme
A . . A (t—1) A (t—1) 12
S R
arg min Z oy | ¥, , 00,0, + Ao ||0. ,
cey
L
OH (30)
2,1
A o)
00 = arg HllIl Elob(yﬂ yO¢ s ) + )‘9”0H2
Ol 31)
2,1

with O(®) := [0... 0] converges to a partial optimum [17].
By further simplifying (31) and solving (30) in closed form,
we obtain

A1)

0, = arg mln Lo (ygc + 65}"1),0) + )\9||0H§ (32)

o = SoftThres), (Y(t)) (33)

where

Y () — |y, () (t)

Y'Y = [yl ,...,y‘yd
is the matrix that concatenates the per class residual vec-
tors 5}((}) =¥ — REK)é( ) and Z = SoftThres), (X) is a

c

row-wise soft-thresholding operator such that

zi = [|xill2[1 — Ao /(2% [[2)]+
where z; and x; are the ith rows of Z and X respectively, see
e.g., [35]. Intuitively, the soft-thresholding operation in (33)
extracts the outliers by scaling down residuals and “trimming”
them wherever their across-classes /5 norm is below a certain
threshold.
The alternating minimization between (32) and (33) termi-

nates when ||éf,f - 1)||oo <€ Vee) where e >0 is a
prescribed tolerance. Having obtained the tuples {@m Oc}eeys
one may remove the anomalous samples that correspond to non-
zero rows of O and perform the diffusion with the remaining
samples. The robust (r) AdaDIF is summarized as Algorithm 4,
and has O(K |L||€|) computational complexity.

V. CONTRIBUTIONS IN CONTEXT OF PRIOR WORKS

Following the seminal contribution in [9] that introduced
PageRank as a network centrality measure, there has been a
vast body of works studying its theoretical properties, computa-
tional aspects, as well as applications beyond Web ranking [16],
[26]. Most formal approaches to generalize PageRank focus ei-
ther on the feleportation component (see e.g., [32], [33] as well
as [7] for an application to semi-supervised classification), or, on
the so-termed damping mechanism [4], [13]. Perhaps the most
general setting can be found in [4], where a family of functional
rankings was introduced by the choice of a parametric damp-
ing function that assigns weights to successive steps of a walk
initialized according to the teleportation distribution. The per
class distributions produced by AdaDIF are in fact members of
this family of functional rankings. However, instead of choosing
a fixed damping function as in the aforementioned approaches,
AdaDIF learns a class-specific and graph-aware damping mech-
anism. In this sense, AdaDIF undertakes statistical learning in
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Algorithm 4: ROBUST ADAPTIVE DIFFUSIONS.

Input: Adjacency matrix: W, Labeled nodes: {y; }icr
parameters: Regularization parameters: Ay, \,, # of
landing probabilities: K
Output: Predictions: {§; }icy

Outliers: gyﬁz

Extract Y = { Set of unique labels in: {y; };c.}
for c € Y do
L.={ieLl:y =c}

fori c L. do
{p(ﬁljii }K_| = LANDPROB(W, L, \i, K)
end for
Obtain RﬁK) as in (26)
end for

0 =Jo,...,0],t=0
while 8" — 8! V||.. < e do

t—t+1

Obtain {0\ 1,cy as in (32)

Obtain O as in (33)
end while R
Set of outliers: S := {i € L : ||[O];..]|2 > 0}
forc e )Y do

L=L.NS
Le— L, \EZ
end for

Obtain §; = arg max.cy [£.(0.)]., VielU

[

the space of functional rankings, tailored to the underlying
semi-supervised classification task. A related method termed
AptRank was recently proposed in [46] specifically for protein
function prediction. Differently from AdaDIF the method ex-
ploits meta-information regarding the hierarchical organization
of functional roles of proteins and it performs random walks
on the heterogeneous protein-function network. AptRank splits
the data into training and validation sets of predetermined pro-
portions and adopt as cross-validation approach for obtaining
diffusion coefficients. Furthermore al) AptRank trains a sin-
gle diffusion for all classes whereas AdaDIF identifies different
diffusions, and a2) the proposed robust leave-one-out method
(r-AdaDIF) gathers residuals from all leave-one-out splits into
one cost function (cf. (22)) and then optimizes the (per class)
diffusion.

Recently, community detection (CD) methods were proposed
in [47] and [45], that search the Krylov subspace of landing prob-
abilities of a given community’s seeds, to identify a diffusion
that satisfies locality of non-zero entries over the nodes of the
graph. In CD, the problem definition is: “given certain mem-
bers of a community, identify the remaining (latent) members.”
There is a subtle but important distinction between CD and semi-
supervised classification (SSC): CD focuses on the retrieval of
communities (that is nodes of a given class), whereas SSC fo-
cuses on the predicting the labels/attributes of every node. While
CD treats the detection of various overlapping communities of
the graph as independent tasks, SSC classifies nodes by taking
all information from labeled nodes into account. More specif-
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TABLE I
NETWORK CHARACTERISTICS

Graph V| |€] |Y|  Multilabel
Citeseer 3,233 9,464 6 No
Cora 2,708 10,858 7 No
PubMed 19,717 88,676 3 No
PPI (H. Sapiens) 3,890 76,584 50 Yes
Wikipedia 4,733 184,182 40 Yes
BlogCatalog 10,312 333,983 39 Yes

ically, the proposed AdaDIF trains the diffusion of each class
by actively avoiding the assignment of large diffusion values to
nodes that are known (they have been labeled) to belong to a dif-
ferent class. Another important difference of AdaDIF with [47]
and [45]—which again arises from the different contexts—is the
length of the walk compared to the size of the graph. Since [47]
and [45] aim at identifying small and local communities, they
perform local walks of length smaller than the diameter of the
graph. In contrast, SSC typically demands a certain degree of
globality in information exchange, achieved by longer random
walks that surpass the graph diameter.

AdaDIF also shares links with SSL. methods based on graph
signal processing proposed in [37], and further pursued in [12]
for bridge monitoring; see also [38] and [14] for recent ad-
vances on graph filters. Similar to our approach, these graph
filter based techniques are parametrized via assigning different
weights to a number of consecutive powers of a matrix related to
the structure of the graph. Our contribution however, introduces
different loss and regularization functions for adapting the dif-
fusions, including a novel approach for training the model in
an anomaly/outlier-resilient manner. Furthermore, while [37]
focuses on binary classification and [12] identifies a single
model for all classes, our approach allows for different classes
to have different propagation mechanisms. This feature can ac-
commodate differences in the label distribution of each class
over the nodes, while also making AdaDIF readily applicable
to multi-label graphs. Moreover, while in [37] the weighting
parameters remain unconstrained and in [12] belong to a hy-
perplane, AdaDIF constrains the diffusion parameters on the
probability simplex, which allows the random-walk-based diffu-
sion vectors to denote valid probability mass functions over the
nodes of the network. This certainly enhances interpretability
of the method, improves the numerical stability of the involved
computations, and also reduces the search-space of the model
is beneficial under data scarcity. Finally, imposing the simplex
constraint makes the model amenable to a rigorous analysis that
relates the dimensionality of the feature space to basic graph
properties, as well as to a disciplined exploration of its limiting
behavior.

VI. EXPERIMENTAL EVALUATION

Our experiments compare the classification accuracy of the
novel AdaDIF approach with state-of-the-art alternatives. For
the comparisons, we use 6 benchmark labeled graphs whose di-
mensions and basic attributes are summarized in Table I. All 6
graphs have nodes that belong to multiple classes, while the last
3 are multilabeled (each node has one or more labels). We eval-
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TABLE I
MICRO F1 AND MACRO F1 SCORES ON MULTICLASS NETWORKS (CLASS-BALANCED SAMPLING)
Graph Cora Citeseer PubMed
|Lc]| 5 10 20 5 10 20 5 10 20
AdaDIF 675+22 71.0+20 732+12 423+44 495430 535+1.2 620+£6.0 68.5+45 T41+1.7
z PR 671423 702421 728415 41.1+52 487+25 525409 63.1+1.1 695+38 741418
5 HK 67.0+2.5 70.5+2.5 729+1.2 40.0 £ 5.6 48.0+ 2.4 51.8+1.1 62.0 £ 0.6 68.31+4.7 T740£1.8
5 LP 61.8+35 663+42 71.04£27 40.7+25 480437 519413 562+11.0 680+61 693424
= Node2vec 68.94+19 702+16 724+1.2 392437 465+24 51.0+14 61.7+13.0 664446 TL.1+24
Deepwalk 684+20 700+16 72.0+14 384+39 455+20 504415 61.5+13 658+50 705422
Planetoid-G ~ 63.5+4.7 65.6+2.7 69.0+1.5 37.844.0 449433 498+14 607420 634+23 68.0+1.5
GCN 60.1+3.7 655425 68.6+19 383+32 442422 480418 600+19 63.6+25 T05+15
AdaDIF 655+25 706+22 720+11 36.1+39 440+28 481+12 604+06 67.0+44 72.6+1.8
_ PPR 65.0+23 700+23 719415 347450 435+23 476406 61.7+06 681+3.6 726+18
= HK 65.0+25 70.0+26 72.0+1.1 33.9+54 428+22 470406 60.5+0.6 66.8+47 72.7+18
g Lp 60.1+3.2 665+41 T706+23 348+46 41.8+39 51.54+1.2 51.5+123 662466 67.8+20
S Nodedvec 624420 647+17 692412 346+27 41.6+19 453415 595+12 64.0+38 723414
Deepwalk 61.8422 645+20 685+14 340+25 41.0+2.0 4474+1.8 593+1.2 63.8+40 T721+13
Planetoid-G ~ 59.9+4.5 63.0+3.0 687+1.9 333425 402+22 436+20 577415 61.9+35 66.1+1.8
GCN 53.846.6 61.9+26 63.8+1.5 328+20 391+1.8 43.0+1.7 544+41 572452  60.5+24
A = 5.0 and even shorter walks of K = 10 to perform well.
For the dictionary mode of AdaDIF, we preselected D = 10,
—~ 70 with the first five collumns of C being HK coefficients with
&) .
s parameters ¢ € [5,8,12,15,20], and the other five polynomial
g coefficients ¢; = k” with 8 € [2,4,6,8,10].
Q . .
%2 For multiclass experiments, we evaluated the performance of
65 all algorith he three benchmark citati k 1
, gorithms on the three benchmark citation networks, namely
o . .
5 Cora, Citeseer, and PubMed. We obtained the labels of an
= :l;R increasing number of nodes via uniform, class-balanced sam-
60 I AdaDIF pling, and predicted the labels of the remaining nodes. Thus,
—B— a . . .
‘ ‘ ‘ ‘ ‘ instead of sampling nodes over the graph uniformly at random,
5 10 15 20 25 30 we randomly sample a given number of nodes per class. For each
# of landing probabilities (K) graph, we performed 20 experlments,.each time s.ampl.mg 5,10,
and 20 nodes per class. For each experiment, classification accu-
Fig.4. Micro-F1 score for AdaDIF and non-adaptive diffusions on 5% labeled =~ racy was measured on the unlabeled nodes in terms of Micro-F1

Cora graph as a function of the length of underline random walks.

uate performance of AdaDIF and the following: i) PPR and HK,
which are special cases of AdaDIF as discussed in Section II; ii)
Label propagation (LP) [43]; iii) Node2vec [18]; iv) Deepwalk
[34]; v) Planetoid-G [42]; and, vi) graph convolutional networks
(GCNs) [21]. We note here that AptRank [46] was not consid-
ered in our experiments since it relies on meta-information that
is not available for the benchmark datasets used here.

We performed 10-fold cross-validation to select parameters
needed by i) - v). For HK, we performed grid search over
t €[1.0,5.0,10.0,15.0]. For PPR, we fixed o = 0.98 since it is
well documented that « close to 1 yields reliable performance;
seee.g., [28]. Both HK and PPR were run for 50 steps for conver-
gence to be in effect; see Fig 4; LP was also run for 50 steps. For
Node2vec, we fixed most parameters to the values suggested in
[18], and performed grid search for p, ¢ € [0.25,1.0,2.0,4.0].
Since Deepwalk can be seen as Node2vec with p = ¢ = 1.0,
we used the Node2vec Python implementation for both. As in
[18], [34], we used the embeded node-features to train a super-
vised logistic regression classifier with /5 regularization. For
AdaDIF, we fixed A = 15.0, while K = 15 was sufficient to
attain desirable accuracy (cf. Fig. 4); only the values of Boolean
variables Unconstained and Dictionary Mode (see Algorithm 1)
were tuned by validation. For the multilabel graphs, we found

and Macro-F1 scores; see e.g., [30]. The results were averaged
over 20 experiments, with mean and standard deviation reported
in Table II. Evidently, AdaDIF achieves state of the art perfor-
mance for all graphs. For Cora and PubMed, AdaDIF was
switched to dictionary mode, while for Citeseer, where the
gain in accuracy is more significant, unconstrained diffusions
were employed. In the multiclass setting, diffusion-based clas-
sifiers (AdaDIF, PPR, and HK) outperformed the embedding-
based methods by a small margin, and GCNs by a larger margin.
It should be noted however that GCNs were mainly designed
to combine the graph with node features. In our “featureless”
setting, we used the identity matrix columns as input features,
as suggested in [21, Appendix].

The scalabilty of AdaDIF is reflected on the runtime com-
parisons listed in Fig. 7. All experiments were run on a ma-
chine with 15 @3.50 Mhz CPU, and 16GB of RAM. We used
the Python implementations provided by the authors of the
compared algorithms. The Python implementation of AdaDIF,
uses only tools provided by scipy, numpy, and CVX-OPT li-
braries. We also developped an efficient implementation that
exploits parallelism, which is straightforward since each class
can be treated separately. While AdaDIF incurs (as expected) a
relatively small computational overhead over fixed diffusions, it
is faster than GCNs that use Tensorflow, and orders of magnitude
faster than embedding-based approaches.



1316 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019
TABLE III
MICRO F1 AND MACRO F1 SCORES OF VARIOUS ALGORITHMS ON MULTILABEL NETWORKS
Graph PPI BlogCatalog Wikipedia
|L]/V| 10% 20% 30% 10% 20% 30% 10% 20% 30%
AdaDIF 15.4+0.5 1794+ 0.7 19.2+0.6 31.5+£0.6 34.4+£0.5 36.3+0.4 28.2+£0.9 30.0£0.5 31.2+£0.7
E. PPR 13.8+0.5 15.8 £ 0.6 17.0+04 21.1£0.8 23.6 £0.6 25.2+£0.6 10.5+ 1.5 8.1+0.7 7.2+£0.5
g HK 14.5+ 0.5 16.7 £ 0.6 18.1+0.5 22.2+1.0 24.7+£0.7 26.6 0.7 9.3+1.4 7.3£0.7 6.0+ 0.7
= Node2vec 16.5+0.6 18.2+0.3 19.14+0.3 350+03 363+03 372+02 423+09 440+06 451+04
Deepwalk  16.0 £ 0.6 17.9+0.5 188+04 342+04 357+03 364+04 41.04+0.8 43.5+05 44.1+£05
_ AdaDIF 134+06 154+07 165+07 230+06 253+04 27.0+£04 7.7+£03 83+0.3 9.0+0.2
~  PPR 12.94+0.4 14.7+0.5 15.8 £ 0.4 17.3+0.5 19.5+0.4 20.8£0.3 4.4+0.3 3.8+ 0.6 3.6+0.2
g HK 134+06 154+05 16.5+04 18.4 +0.6 20.7£0.4 22.3+£04 4.2+04 3.7+0.5 3.5+0.2
§ Node2vec 13.1+£0.6 15.2+0.5 16.0 £ 0.5 16.8 £ 0.5 19.0 £0.3 20.1£04 7.6+0.3 8.2+0.3 8.5+0.3
Deepwalk 12.7+0.7 15.1 £ 0.6 16.0 £ 0.5 16.6 £ 0.5 18.74+0.5 19.6 £ 0.4 7.3+0.3 8.1+0.2 8.2+0.2
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Fig. 5. Classification accuracy of AdaDIF, PPR, and HK compared to the accuracy of k—step landing probability classifier. (Top Left) Cora Micro-F1 score.

(Bottom Left) Cora Macro-F1 score. (Top Middle) Citeseer Micro-F1 score.

score. (Bottom Right) PubMed Macro-F1 score.

Finally, Table III presents the results on multilabel graphs,
where we compare with Deepwalk and Node2vec, since the
rest of the methods are designed for multiclass problems. Since
these graphs entail a large number of classes, we increased the
number of training samples. Similar to [18] and [34], during
evaluation of accuracy the number of labels per sampled node is
known, and check how many of them are in the top predictions.
First, we observe that AdaDIF markedly outperforms PPR and
HK across graphs and metrics. Furthermore, for the PPT and
BlogCatalog graphs the Micro-F1 score of AdaDIF comes
close to that of the much heavier state-of-the-art Node2vec. Fi-
nally, AdaDIF outperforms the competing alternatives in terms
of Macro-F1 score. It is worth noting that for multilabel graphs
with many classes, the performance boost over fixed diffusions
can be largely attributed to AdaDif’s flexibility to treat each
class differently. To demonstrate that different classes are in-

(Bottom Middle) Citeseer Macro-F1 score. (Top Right) PubMed Micro-F1

deed diffused in a markedly different manner, Fig. 6 plots all
50 diffusion coefficient vectors {0, }.c¢ yielded by AdaDIF on
the PPT graph with 30% of nodes labeled. Each line in the plot
corresponds to the values of .. for a different c; evidently, while
the overall “form” of the corresponding diffusion coefficients
adheres to the general pattern observed in Fig. 2 there is indeed
large diversity among classes.

A. Analysis/Interpretation of Results

Here we will follow an experimental approach that is aimed
at understanding and interpreting our results. We will focus
on diffusion-based classifiers, along with a simple benchmark
for diffusion-based classification: the k—step landing probabil-
ities. Specifically, we compare the classification accuracy on
the three multiclass datasets of AdaDIF, PPR, and HK, with
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Fig. 6. AdaDIF diffusion coefficients for the 50 different classes of PPI graph
(30% sampled). Each line corresponds to a different ... Diffusion is character-
ized by high diversity among classes.

10° | mmm PPR/HK/LP EEm AdaDIF  C—1GCN

I Node2vec/Deepwalk ] Planetoid-G

10° 8

Relative Runtime

10t a

1071 [ 5
Cora PubMed

Citeseer

Fig. 7. Relative runtime comparisons for multiclass graphs.

the accuracy of the classifier that uses only the £—th landing
probability vectors {pgfk)}cey,ke[l, ] The setting is similar to
the one in the previous section, and with class-balanced sam-
pling of 20 nodes per class, while the k—step classifiers were
examined for a wide range of steps k € [1,100]. The k—step
classifier reveals the predictive power of individual landing
probabilities, resulting in curves (see Fig. 5) that appear to be
different for each network, characterizing the graph-label dis-
tribution relationship of the latter. For the Cora graph (left two
plots), performance of the k—step classifier improves sharply
after the first few steps, peaks for k = 20, and then quickly
degrades, suggesting that using the landing probabilities of
k > 40 or 50 would most likely degrade the performance of a
diffusion-based classifier. Interestingly, AdaDIF relying on
combinations of the first 15 steps, and PPR and HK of the first
50, all achieve higher accuracy than that of the best single step.
On the other hand, the Citeseer graph (middle two plots)
behaves in a significantly different manner, with the k—step
classifier requiring longer walks to reach high accuracy that
was retained for much longer. Furthermore, accumulating land-
ing probabilities the way PPR or HK does yields lower Micro-F1
accuracy than that of the single best step. On the other hand,
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by smartly combining the first 15 steps that are of lower qual-
ity, AdaDIF surpasses the Micro-F1 scores of the longer walks.
Interestingly, the Macro-F1 metric for the Citeseer behaves
differently than the Micro-F1, and quickly decreases after ~25
steps. The disagreement between the two metrics can be ex-
plained as the diffusions of one or more of the larger classes
gradually “overwhelms” those of one or more smaller classes,
thus lowering the Macro-F1 score, since the latter is a met-
ric that averages per-class. In contrast, the Micro-F1 metric
averages per-node and takes much less of an impact if a few
nodes from the smaller classes are mislabeled. Finally, for the
PubMed graph (right two plots), steps in the range [20, 40] yield
consistently high accuracy both in terms of Micro- as well as
Macro-averaged F1-score. Since HK and mostly PPR largely
accumulate steps in that range, it seems reasonable that both
fixed diffusions are fairly accurate in the PubMed graph.

B. Tests on Simulated Label-Corruption Setup

Here we outline experimental results performed to evaluate
the performance of different diffusion-based classifiers in
the presence of anomalous nodes. The main goal is to evaluate
whether r-AdaDIF (Algorithm 4) yields improved performance
over AdaDIF, HK and PPR, as well as the ability of r-AdaDIF
to detect anomalous nodes. We also tested a different type of
rounding from class-diffusions to class labels that was shown
in [44] to be robust in the presence of erroneous labels on a
graph constructed by images of handwritten digits. The idea is
to first normalize diffusions with node degrees, sort each dif-
fusion vector, and assign to each node the class for which the
corresponding rank is higher. We applied this type of rounding
on PPR diffusions (denoted as PPR w. ranking). Since a ground
truth set of anomalous nodes is not available in real graphs, we
chose to infuse the true labels with artificial anomalies gener-
ated by the following simulated label corruption process: Go
through y, and for each entry [y ], = ¢ draw with probability
Peor @ label ¢ ~ Unif{Y\c}; and replace [y,];, < ¢. In other
words, anomalies are created by corrupting some of the true
labels by randomly and uniformly “flipping” them to a dif-
ferent label. Increasing the corruption probability peo of the
training labels y is expected to have increasingly negative im-
pact on classification accuracy over y,. Indeed, as depicted in
Fig. 8, the accuracy of all diffusion-based classifiers on Cora
graph degrades as p.o increases. All diffusions were run for
K = 50, while for r-AdaDIF we found )\, = 14.6 x 1073 and
X = 67.5%x107° to perform well for moderate values of pco.
Results were averaged over 50 Monte Carlo experiments, and
for each experiment 5% of the nodes were sampled uniformly
at random. While tuning A, for a specific peor generally yields
improved results, we use the same ), across the range of pco
values, since the true value of the latter is generally not avail-
able in practice. In this setup, r-AdaDIF demonstrates higher
accuracy compared to non-robust classifiers. Moreover, the per-
formance gap increases as more labels become corrupted, until it
reaches a “break point” at p.o, ~ 0.35. Interestingly, r-AdaDIF
performs worse in the absence of anomalies (p.o; = 0) that can
be attributed to the fact that it only removes useful samples and
thus reduces the training set. Although PPR w. ranking displays



1318

S e
()
g
Q
%)
— 65 | r-AdaDIF
g —8— AdaDIF
= PPR
—e— HK
60 |- —0—‘ PPR w. ranking | |

\ \ \ \
0.1 015 0.2 0.25

0 0.05 0.3 035
Label corruption rate peor
Fig. 8.
1 B
0.8 |- -
0.6 - -
a
)
0.4 -
7 —— Peor = 0.35
0.2} Peor = 0.15 |
g -7 Peor = 0.05
0 r- I I I I
0 0.2 0.4 0.6 0.8 1
Dra
Fig. 9. Anomaly detection performance of r-AdaDIF for different label cor-

ruption probabilities. The horizontal axis corresponds to the frequency with
which r-AdaDIF returns a true positive (probability of detection) and the ver-
tical axis corresponds to the frequency of false positives (probability of false
alarm).

relative robustness as p.,, increases, overall it performs worse
than PPR with value based rounding, at least on the Cora graph.

As mentioned earlier, the performance of r-AdaDIF in terms
of outlier detection depends on parameter \,. Specifically, for
Ao — 0 the regularizer in (29) is effectively removed and all
samples are characterized as outliers. On the other hand, for
Ao > 1 (29) yields O = [0,...,0], meaning that no outliers
are unveiled. For intermediate values of \,, r-AdaDIF trades off
falsely identifying nominal samples as outliers (false alarm) with
correctly identifying anomalies (correct detection). This tradeoff
of r-AdaDIF’s anomaly detection behavior was experimentally
evaluated over 50 Monte Carlo runs by sweeping over a large
range of values of \,, and for different values of p.; see the
probability of detection (p,) versus probability of false alarms
(pra) depicted in Fig. 9. Evidently, r-AdaDIF performs much
better than a random guess (“coin toss”) detector whose curve is
given by the grey dotted line, while the detection performance
improves as the corruption rate decreases.

VII. CONCLUSIONS

The present work, introduces a principled, data-efficient ap-
proach to learning class-specific diffusion functions tailored for
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the underlying network topology. Experiments on real networks
confirm that adapting the diffusion function to the given graph
and observed labels, significantly improves the performance
over fixed diffusions; reaching — and many times surpassing —
the classification accuracy of computationally heavier state-of-
the-art competing methods.

Emerging from this work are many exciting directions to
explore. First, one can investigate different cost functions with
respect to which the diffusions are adapted, e.g., by taking into
account robustness of the resulting classifier in the presence of
adversarial data. Furthermore, it is worth investigating the space
of nonlinear functions of the landing probabilities to determine
the degree to which accuracy can be boosted further. Last but
not least, it will be interesting to develop adaptive diffusion
methods, where learning and adaptation are performed on-the-
fly, without any memory and computational overhead.

APPENDIX
A. Proof of Proposition 1

For A — oo, the effect of £(-) in (10) vanishes, and the opti-
mization problem becomes equivalent to solving
min 6" A0
OcSk
where A := (PS;K))TD‘lLD‘lPSJK) has (4, j) entry given by
Ay = (pﬁ” )TD’lLD*1p£‘7); and p'X) is the vector of K-step
landing probabilities with initial distribution v. and transition
matrix H = Zﬁf:l )\nunvl, where Ay > Ay > .-+ > Ay are
its eigenvalues. Since H is a column-stochastic transition prob-
ability matrix, it holds that Ay = 1, v = 1, and u; = 7, where
7 = limy pgk) is the steady-state distribution that can be
also expressed as w = d/(2|€|) [27]. The landing probability

vector for class c¢ is thus

N
1
—d1" + Z Mou, v v,

(34)

plf) = HK vy, =

2|8| n=2
= id+ iAKu Yo A id+AKum (35)
2|5| —~ n Yn /n 2|€| 2

Where Vn 1= vl v, and the approximation in (35) holds because
M > \E forn € [3, N], and K large enough but finite. Using
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(35), A;; can be rewritten as

Aij = |:dT + )\1211-2[-’)/2:| ])7ILD71 |:

d+ N\
2| * “”2}

2l

1 1

2/€|
1 T )\2’72 T -1 /\%W T -1
— 111 D'L1 1'LD
BT ER T T e
+ AW DILD
= O\ (36)

where C :=~ZulD'LD 'uy, the second equality uses
D~'d = 1, and the last equality follows because L1 = 0. Using

(36), one obtains A = C’/\g)\;, where Ay := [Ay )\g )\f]T,
while (34) reduces to
2
min (,\;e) (37)
0eSK

Since )\;0 > 0 VO € S¥, it can be shown that the KKT opti-
mality conditions for (37) are identical to those of

min AJ6.
6ecSK

Therefore, (37) admits minimizer(s) identical to (38). Finally,
we will show that the minimizer of (38) is e . Since the problem
is convex, it suffices to show that V(A10)g—c, (0 —ex) >
0 VO € S&, or, equivalently

(38)

K
AL (0 —ex)>0e > 0:M -2 >0
k=1

K
@Zam’f K>

k=1
K K
Y 0N =D 6
k=1 k=1
K
ey (M -1 >0
k=1

which holds since @ > 0 and Ay > 1 Vk € [1, K], and com-
pletes the proof of the proposition.
B. Proof of Theorem 1

We need to find the smallest integer K such that maxycgx
ly =¥l < ~. We have

ly =yl =1X:6-X6-X.0+X_6|

||+H9 KDy —O0gp-

_ HI(-‘rl

— 0 p™~
—H*p ||+ |H*"'p,

§H9KP(+ (K+1) _ g (K+1)||

< |[H"p. p-||
(39
since @ € SX . Therefore, to determine an upper bound for the -
distinguishability threshold it suffices to find the smallest integer
K for which (39) is upper bounded by 7.
Let qi,...,qy be the eigenvectors corresponding to the
eigenvalues 0 = p; < g < --- < uy < 2 of the normalized
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Laplacian L. The transition probability matrix is then

H=D:(I-L)D=. (40)
For the first term of the RHS of (39), we have
H p, —H p | < [H p, — [+ |H "p_ -7
1 ~ - 1
= [[D2(I-L)*Dz
jpra-irote. - 2
1 ~ 1
D>(I-L TIp_
#pra-gro e - Bl
41)
. _ D}
Since q; = e [27], we have for ¢ € {+, —} that

D:q, <Q1;D7%Pc> = D>

D1 (1,p. D1
(L,pe) _ 42)
T 2IE VRlE 20E
Upon defining M := (I — L)X — q;q], and taking into ac-

count (42), inequality (41) can be written as

|H*p, —H"p_||
1 _L _L
IDEIM (1D [+ D Fp ). 43)
The factors in (43) can be bounded as
D p. | = L
| p: || = Zie& ]
di' € ———=, (‘4%
\'/ZZE£Jr |‘C+ ‘2 dminJr ‘,C+ |
D 5p_f = /> it —L @)
ieL- |‘c ‘2 \V dmin, |£—|
M .
v = sup B it 5, )
||Dj|| = dmax (47)

where (46) follows from the properties of the normalized Lapla-
cian. Therefore, (43) becomes

||HKP+ —HKPfH < (

1 1
+
\/dmin, |,C,| \/dmilur |£+ ‘ )

: mflx |1 - ,Uf13|K vV dmax- (48)
Letting ¢/ := min{py, 2 — py }, and using the fact that
(1—p)E <eBr (49)
we obtain
IH* p, —H"p_|

< dmax +
o dmin, |£_|

dmax —Ku'
e K1 (50)
dlnin+ |[,+ | )
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Likewise, we can bound the second term in (39) as

||HK+1p o HK+1p_H
d d ,
< max max *(KJFl)N 51
o dmin,|'c7| * dmin+ |£+| ¢ ( )

In addition, we note that for all ¢/ > 0, K € Z it holds that
e K1 4 e (KAl « go=Ku', (52)

Upon substituting (50) and (51) into (39), and also using (52),
we arrive at

dm ax dm ax

+
dmin, |£7| dmirur |£'+ |

To determine an upper bound on the ~y-distinguishability thresh-
old, it suffices to find the smallest integer K for which (53)
becomes less than ~; that is,

ly —yll<2 (33)

dnnx Ku'
+ - e <.
dmirbr |£+ ‘

dHl ax
2

4
dmin,|£7| (5 )

Multiplying both sides of (54) by the positive number e%#'/~,
and taking logarithms yields

2y I :
IOg[ (\/dmi“,\c,\ +\/dmn+\c+\>} < Ky

Therefore, using as landing probabilities

L e [25 ([T + )|

the ¢ distance between any two diffusion-based classifiers will
be at most ; and the proof is complete.

C. Bound for PageRank

Substituting PageRank’s diffusion coefficients in the proof of
Theorem 1, inequality (54) becomes

dmax Ku'
+ e <.
dmin+ |['+ |

K dmax
dmin, |£—|

2(1 — o)«
Multiplying both sides by the positive number e #'a~% /~ and
taking logarithms yields

2\/ max 1 1
log |:’y/(1 ) (\/dmh_\z,\ + \/d,,,h.+ \L+|)} < K(i —loga)

which results in the y-distinguishability threshold bound

PR 1 2/ d 2 x 1 1
K, g [ (\/dm;._w + \/d w” :

— p'—loga v/ (1-a)
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