
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019 1307

Adaptive Diffusions for Scalable Learning

Over Graphs
Dimitris Berberidis , Student Member, IEEE, Athanasios N. Nikolakopoulos , Member, IEEE,

and Georgios B. Giannakis , Fellow, IEEE

Abstract—Diffusion-based classifiers such as those relying on
the Personalized PageRank and the heat kernel enjoy remark-
able classification accuracy at modest computational requirements.
Their performance however is affected by the extent to which the
chosen diffusion captures a typically unknown label propagation
mechanism, which can be specific to the underlying graph, and
potentially different for each class. This paper introduces a disci-
plined, data-efficient approach to learning class-specific diffusion
functions adapted to the underlying network topology. The novel
learning approach leverages the notion of “landing probabilities”
of class-specific random walks, which can be computed efficiently,
thereby ensuring scalability to large graphs. This is supported by
rigorous analysis of the properties of the model as well as the
proposed algorithms. Furthermore, a robust version of the classi-
fier facilitates learning even in noisy environments. Classification
tests on real networks demonstrate that adapting the diffusion
function to the given graph and observed labels significantly im-
proves the performance over fixed diffusions, reaching—and many
times surpassing—the classification accuracy of computationally
heavier state-of-the-art competing methods, which rely on node
embeddings and deep neural networks.

Index Terms—Semi-supervised classification, random walks,
diffusions.

I. INTRODUCTION

T
HE task of classifying nodes of a graph arises frequently

in several applications on real-world networks, such as

the ones derived from social interactions and biological depen-

dencies. Graph-based semi-supervised learning (SSL) methods

tackle this task building on the premise that the true labels

are distributed “smoothly” with respect to the underlying net-

work, which then motivates leveraging the network structure

to increase the classification accuracy [11]. Graph-based SSL

has been pursued by various intertwined methods, including

iterative label propagation [6], [25], [29], [43], kernels on graphs

Manuscript received April 5, 2018; revised September 10, 2018 and Decem-
ber 6, 2018; accepted December 12, 2018. Date of publication December 27,
2018; date of current version January 15, 2019. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Dr.
Alexander Bertrand. This work was supported by the National Science Foun-
dation under Grants 171141, 1514056, 1500713, and 1442686. (Corresponding

author: Georgios B. Giannakis.)

D. Berberidis is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:,
bermp001@umn.edu).

A. N. Nikolakopoulos is with the Digital Technology Center, University of
Minnesota, Minneapolis, MN 55455 USA (e-mail:,anikolak@umn.edu).

G. B. Giannakis is with the Department of Electrical and Computer Engineer-
ing and the Digital Technology Center, University of Minnesota, Minneapolis,
MN 55455 USA (e-mail:,georgios@umn.edu).

Digital Object Identifier 10.1109/TSP.2018.2889984

[31], manifold regularization [5], graph partitioning [19], [40],

transductive learning [39], competitive infection models [36],

and bootstrapped label propagation [10]. SSL based on graph

filters was discussed in [37], and further developed in [12]

for bridge monitoring. Recently, approaches based on node-

embeddings [18], [34], [42], as well as deep-learning architec-

tures [2], [21] have gained popularity, and were reported to have

state-of-the-art performance.

Many of the aforementioned methods are challenged by com-

putational complexity and scalability issues that limit their

applicability to large-scale networks. Random-walk-based dif-

fusions present an efficient and effective alternative. Methods

of this family diffuse probabilistically the known labels through

the graph, thereby ranking nodes according to weighted sums

of variable-length landing probabilities. Celebrated representa-

tives include those based on the Personalized PageRank (PPR)

and the Heat Kernel that were found to perform remarkably well

in certain application domains [22], and have been nicely linked

to particular network models [3], [23], [24]. Spectral diffusions

have been used for community detection [45], [47], where local

diffusion patterns are produced to approximate low-conductance

communities, and adaptive PPR has been applied for prediction

on a heterogeneous protein-function network [46].

The effectiveness of diffusion-based classifiers can vary con-

siderably depending on whether the chosen diffusion conforms

with the latent label propagation mechanism that might be, (i)

particular to the target application or underlying network topol-

ogy; and, (ii) different for each class. The present contribution1

alleviates these shortcomings and markedly improves the per-

formance of random-walk-based classifiers by adapting the dif-

fusion functions of every class to both the network and the

observed labels. The resultant novel classifier relies on the

notion of landing probabilities of short-length random walks

rooted at the observed nodes of each class. The small number

of these landing probabilities can be extracted efficiently with

a small number of sparse matrix-vector products, thus ensuring

applicability to large-scale networks. Theoretical analysis estab-

lishes that short random walks are in most cases sufficient for

reliable classification. Furthermore, an algorithm is developed

to identify (and potentially remove) outlying or anomalous sam-

ples jointly with adapting the diffusions. We test our methods in

terms of multiclass and multilabel classification accuracy, and

confirm that it can achieve results competitive to state-of-the-art

methods, while also being considerably faster.

1A preliminary version of the work has appeared in [8].

1053-587X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1308 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

The rest of the paper is organized as follows. Section II intro-

duces random-walk based diffusions. Our novel approach along

with relevant analytical results are the subjects of Section III.

Section IV presents a robust version of our algorithm, and

Section V places our work in the context of related methods.

Finally, Section VI presents experiments, while Section VII

concludes the paper and discusses future directions.

Notation: Bold lower-case letters denote column vectors (e.g.,

v); bold upper-case letters denote matrices (e.g., Q). Vectors qj

and qT
i denote the jth column and the ith row of Q, respectively;

whereas Qij (or sometimes for clarity [Q]ij) denotes the ijth

entry of Q. Vector eK denotes the Kth canonical column vector;

and ‖ · ‖ denotes the Euclidean norm, unless stated otherwise.

II. PROBLEM STATEMENT AND MODELING

Consider a graph G := {V, E}, where V is the set of N nodes,

and E the set of edges. Connectivity is captured by the weight

matrix W having entries Wij > 0 if (i, j) ∈ E . Associated with

each node i ∈ V there is a discrete label yi ∈ Y . In SSL clas-

sification over graphs, a subset L ⊂ V of nodes has available

labels yL, and the goal is to infer the labels of the unlabeled

set U := V\L. Given a measure of influence, a node most influ-

enced by labeled nodes of a certain class is deemed to also belong

to the same class. Thus, label-propagation on graphs boils down

to quantifying the influence of L on U , see, e.g., [11], [25], [41].

An intuitive yet simple measure of node-to-node influence relies

on the notion of random walks on graphs.

A simple random walk on a graph is a discrete-time Markov

chain defined over the nodes, meaning with state space V . The

transition probabilities are

Pr{Xk = i|Xk−1 = j} = Wij/dj = [WD−1]ij := [H]ij

where Xk ∈ V denotes the position of the random walker (state)

at the kth step; dj :=
∑

k∈Nj
Wkj is the degree of node j; and,

Nj its neighborhood. Since we consider undirected graphs the

limiting distribution of {Xk} always exists and it is unique if

it is connected and non-bipartite. It is given by the dominant

right eigenvector of the column-stochastic transition probability

matrix H := WD−1 , where D := diag (d1 , d2 , . . . , dN) [27].

The steady-state distribution π can be shown to have entries

πi := lim
k→∞

∑

j∈V
Pr{Xk = i|X0 = j}Pr{X0 = j} =

di

2|E|
that are clearly not dependent on the initial “seeding” distribu-

tion Pr{X0}; and π is thus unsuitable for measuring influence

among nodes. Instead, for graph-based SSL, we will utilize the

k−step landing probability per node i given by

p
(k)
i :=

∑

j∈V
Pr{Xk = i|X0 = j}Pr{X0 = j} (1)

that in vector form p(k) := [p
(k)
1 . . . p

(k)
N]T satisfies p(k) =

Hkp(0) , where p
(0)
i := Pr{X0 = i}. In words, p

(k)
i is the prob-

ability that a random walker with initial distribution p(0) is

located at node i after k steps. Therefore, p
(k)
i is a valid measure

of the influence that p(0) has on any node in V .

The landing probabilities per class c ∈ Y are (cf. (1))

p(k)
c = Hkvc (2)

where for Lc := {i ∈ L : yi = c}, we select as vc the normal-

ized class-indicator vector with i−th entry

[vc]i =

{

1/|Lc |, i ∈ Lc

0, else
(3)

acts as initial distribution. Using (2), we model diffusions per

class c over the graph driven by {p(k)
c }K

k=0 as

fc(θ) =

K
∑

k=0

θkp
(k)
c (4)

where θk denotes the importance assigned to the kth hop neigh-

borhood. By setting θ0 = 0 (since it is not useful for classifi-

cation purposes) and constraining θ ∈ SK , where SK := {x ∈
R

K : x ≥ 0,1Tx = 1} is the K−dimensional probability sim-

plex, fc(θ) can be compactly expressed as

fc(θ) =

K
∑

k=1

θkp
(k)
c = P(K)

c θ (5)

where P
(K)
c := [p

(1)
c · · · p

(K)
c]. Note that fc(θ) denotes a valid

nodal probability mass function (pmf) for class c.

Given θ and upon obtaining {fc(θ)}c∈Y , our diffusion-based

classifiers will predict labels over U as

ŷi(θ) := arg max
c∈Y

[fc(θ)]i (6)

where [fc(θ)]i is the ith entry of fc(θ).
The upshot of (4) is a unifying form of superimposed diffu-

sions allowing tunable simplex weights, taking up to K steps

per class to come up with an influence metric for the semi-

supervised classifier (6) over graphs. Next, we outline two no-

table members of the family of diffusion-based classifiers that

can be viewed as special cases of (4).

A. Personalized PageRank Classifier

Inspired by its celebrated network centrality metric [9], the

Personalized PageRank (PPR) algorithm has well-documented

merits for label propagation; see, e.g., [28]. PPR is a special

case of (4) corresponding to θPPR = (1 − α)[α0 α1 · · · αK]
T
,

where 0 < α < 1, and 1 − α can be interpreted as the “restart”

probability of random walks with restarts.

The PPR-based classifier relies on (cf. (5))

fc(θPPR) = (1 − α)

K
∑

k=0

αkp(k)
c (7)

satisfying asymptotically in the number of random walk steps

lim
K→∞

fc(θPPR) = (1 − α)(I − αH)−1vc

which implies that fc(θPPR) approximates the solution of a lin-

ear system. Indeed, as shown in [3], PPR amounts to solving

a weighted regularized least-squares problem over V; see also

[23] for a PPR interpretation as an approximate geometric dis-

criminant function defined in the space of landing probabilities.

B. Heat Kernel Classifier

The heat kernel (HK) is another popular diffusion that has

recently been employed for SSL [31] and community detection

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1309

Fig. 1. High-level illustration of adaptive diffusions. The nodes belong to
two classes (red and green). The per-class diffusions are learned by exploiting
the landing probability spaces produced by random walks rooted at the sample
nodes (second layer: up for red; down for green).

on graphs [22]. HK is also a special case of (4) with θHK =

e−t [1 t t2

2 · · · tK

K !
]
T

, yielding class distributions (cf. (4))

fc(θHK) = e−t
K
∑

k=0

tk

k!
p(k)

c . (8)

Furthermore, it can be readily shown that

lim
K→∞

fc(θHK) = e−t(I−H)vc

allowing HK to be interpreted as an approximation of a heat dif-

fusion process, where heat is flowing from Lc to the rest of the

graph; and fc(θHK) is a snapshot of the temperature after time

t has elapsed. HK provably yields low conductance communi-

ties, while also converging faster to its asymptotic closed-form

expression than PPR (depending on the value of t) [15].

III. ADAPTIVE DIFFUSIONS

Besides the unifying view of (4), the main contribution here

is on efficiently designing fc(θc) in (5), by learning the corre-

sponding θc per class. Thus, unlike PPR and HK, the methods

introduced here can afford class-specific label propagation that

is adaptive to the graph structure, and also adaptive to the labeled

nodes. Figure 1 gives a high-level illustration of the proposed

adaptive diffusion framework, where two classes (red and green)

are to be diffused over the graph (cf. (2)), with class-specific dif-

fusion coefficients adapted as will be described next. Diffusions

are then built (cf. (5)), and employed for class prediction (cf.

(6)).

Consider for generality a goodness-of-fit loss �(·), and a reg-

ularizer R(·) promoting e.g., smoothness over the graph. Using

these, the sought class distribution will be

f̂c = arg min
f∈RN

�(yLc
, f) + λR(f) (9)

where λ tunes the degree of regularization, and

[yLc
]i =

{

1, i ∈ Lc

0, else

is the indicator vector of the nodes belonging to class c. Using

our diffusion model in (5), the N−dimensional optimization

problem (9) reduces to solving for the K−dimensional vector

(K � N)

θ̂c = arg min
θ∈SK

�(yLc
, fc(θ)) + λR(fc(θ)). (10)

Although many choices of �(·) may be of interest, we will focus

for simplicity on the quadratic loss, namely

�(yLc
, f) :=

∑

i∈L

1

di
([ȳLc

]i − fi)
2

= (ȳLc
− f)TD

†
L(ȳLc

− f) (11)

where ȳLc
:= (1/|L|)yLc

is the class indicator vector after nor-

malization to bring target variables (entries of ȳLc
) and entries

of f to the same scale, and D
†
L = diag(d

(−1)
L) with entries

[

d
(−1)
L

]

i
=

{

1/di , i ∈ L
0, else

.

For a smoothness-promoting regularization, we will employ

the following (normalized) Laplacian-based metric

R(f) =
1

2

∑

i∈V

∑

j∈Ni

(

fi

di
− fj

dj

)2

= fTD−1LD−1f . (12)

where L := D − W is the Laplacian matrix of the graph. Intu-

itively speaking, (11) favors vectors f having non-zero (|1/|L|)
values on nodes that are known to belong to class c, and zero val-

ues on nodes that are known to belong to other classes (L\Lc),

while (12) promotes similarity of the entries of f that corre-

spond to neighboring nodes. In (11) and (12), each entry fi

is normalized by d
− 1

2
i and d−1

i respectively. This normalization

counterbalances the tendency of random walks to concentrate on

high-degree nodes, thus placing equal importance to all nodes.

Substituting (11) and (12) into (10), and recalling from (5)

that fc(θ) = P
(K)
c θ, yields the convex quadratic program

θ̂c = arg min
θ∈SK

θTAcθ + θTbc (13)

with bc and Ac given by

bc = − 2

|L| (P
(K)
c)TD

†
LyLc

(14)

Ac = (P(K)
c)TD

†
LP

(K)
c + λ(P(K)

c)TD−1LD−1P(K)
c (15)

= (P(K)
c)T

[(

D
†
L + λD−1

)

P(K)
c − λD−1HP(K)

c

]

= (P(K)
c)T

(

D
†
LP

(K)
c + λD−1P̃(K)

c

)

(16)

where

HP(K)
c =

[

Hp
(1)
c Hp

(2)
c · · · Hp

(K)
c

]

=
[

p
(2)
c p

(3)
c · · · p

(K +1)
c

]

is a “shifted” version of P
(K)
c , where each p

(k)
c is advanced by

one step, and

P̃(K)
c :=

[

p̃
(1)
c p̃

(2)
c · · · p̃

(K)
c

]

with p̃
(i)
c := p

(i)
c − p

(i+1)
c containing the “differential” landing

probabilities. The complexity of ‘naively’ finding the K × K
matrix Ac (and thus also bc) is O(K2N) for computing the first

summand, and O(|E|K) for the second summand in (15), after

1310 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

leveraging the sparsity of L, which means |E| � N 2 . But since

columns of P̃
(K)
c are obtained as differences of consecutive

columns of P
(K)
c , this load of O(|E|K) is saved.

In a nutshell, the solver in (13)–(16) that we term adaptive-

diffusion (AdaDIF), incurs complexity of order O(K2N).
Remark 1: The problem in (13) is a quadratic program (QP)

of dimension K (or the dictionary size D to be discussed in

Section III-C when in dictionary mode). In general, solving a

QP with K variables to a given precision requires a O(K3)
worst-case complexity. Although this may appear heavy, K in

our setting is 10–30 and thus negligibly small compared to the

quantities that depend on the graph dimensions. For instance,

the graphs that we tested have O(104) nodes (N) and O(105)
edges (|E|). Therefore, since K � N and K � |E| by many

orders of magnitude, the complexity for QP is dominated by the

O(|E|K) (same as PPR and HK) performing the random walks

and O(NK2) for computing Ac .

A. Limiting Behavior and Computational Complexity

In this section, we offer further insights on the model (5),

along with complexity analysis of the parametric solution in

(13). To start, the next proposition establishes the limiting be-

havior of AdaDIF as the regularization parameter grows.

Proposition 1: If the second largest eigenvalue of H has

multiplicity 1, then for K sufficiently large but finite, the solution

to (13) as λ → ∞ satisfies

θ̂c = eK , ∀ Lc ⊆ V. (17)

Our experience with solving (13) reveal that the sufficiently

large K required for (17) to hold, can be as small as 102 .

As λ → ∞, the effect of the loss in (10) vanishes. According

to Proposition 1, this causes AdaDIF to boost smoothness by

concentrating the simplex weights (entries of θ̂c) on landing

probabilities of the late steps (k close to K). If on the other

extreme, smoothness-over-the-graph is not promoted (cf. λ =
0), the sole objective of AdaDIF is to construct diffusions that

best fit the available labeled data. Since short-length random

walks from a given node typically lead to nodes of the same

class, while longer walks to other classes, AdaDIF with λ = 0
tends to leverage only a few landing probabilities of early steps

(k close to 1). For moderate values of λ, AdaDIF effectively

adapts per-class diffusions by balancing the emphasis on initial

versus final landing probabilities.

Fig. 2 depicts an example of how AdaDIF places weights

{θk}K
k=1 on landing probabilities after a maximum of K = 20

steps, generated from few samples belonging to one of 7 classes

of the Cora citation network. Note that the learnt coefficients

may follow radically different patterns than those dictated by

standard non-adaptive diffusions such as PPR or HK. It is worth

noting that the simplex constraint induces sparsity of the solution

in (13), thus ‘pushing’ {θk} entries to zero.

The computational core of the proposed method is to build the

landing probability matrix P
(K)
c , whose columns are computed

fast using power iterations leveraging the sparsity of H (cf. (2)).

This endows AdaDIF with high computational efficiency, espe-

cially for small K. Specifically, since for solving (13) adaDIF

incurs complexity O(K2N) per class, if K < |E|/N , this be-

comes O(|E|K); and for |Y| classes, the overall complexity

Fig. 2. Illustration of K = 20 landing probability coefficients for PPR with
α = 0.9, HK with t = 10, and AdaDIF (λ = 15).

of AdaDIF is O(|Y||E|K), which is in the same order as that

of non-adaptive diffusions such as PPR and HK. For larger K
however, an additional O(K2N) is required per class, mainly

to obtain Ac in (16).

Overall, if O(KN) memory requirements are met, the run-

time of AdaDIF scales linearly with |E|, provided that K re-

mains small. Thankfully, small values of K are usually suffi-

cient to achieve high learning performance. As will be shown

in the next section, this observation is in par with the analytical

properties of diffusion based classifiers, where it turns out that

K large does not improve classification accuracy.

B. On the Choice of K

Here we elaborate on how the selection of K influences the

classification task at hand. As expected, the effect of K is in-

timately linked to the topology of the underlying graph, the

labeled nodes, and their properties. For simplicity, we will fo-

cus on binary classification with the two classes denoted by

“+” and “−.” Central to our subsequent analysis is a concrete

measure of the effect an extra landing probability vector p
(k)
c

can have on the outcome of a diffusion-based classifier. In-

tuitively, this effect is diminishing as the number of steps K
grows, as both random walks eventually converge to the same

stationary distribution. Motivated by this, we introduce next the

γ-distinguishability threshold.

Definition 1 (γ-distinguishability threshold): Let p+ and

p−denote respectively the seed vectors for nodes of class “+”

and “−,” initializing the landing probability vectors in matri-

ces Xc := P
(K)
c , and X̌c := [p

(1)
c · · ·p(K−1)

c p
(K +1)
c], where

c ∈ {+,−}. With y := X+θ − X−θ and y̌ := X̌+θ − X̌−θ,

the γ-distinguishability threshold of the diffusion-based classi-

fier is the smallest integer Kγ satisfying

‖y − y̌‖ ≤ γ .

The following theorem establishes an upper bound on Kγ

expressed in terms of fundamental quantities of the graph, as

well as basic properties of the labeled nodes per class; see the

Appendix B for a proof.

Theorem 1: For any diffusion-based classifier with coef-

ficients θ constrained to a probability simplex of appropriate

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1311

Fig. 3. Experimental evaluation Kγ for different values of γ-
distinguishability threshold, and proportions of sampled nodes on BlogCat-
alog graph.

dimensions, the γ-distinguishability threshold is upper-bounded

as

Kγ ≤ 1

µ′ log
[

2
√

dm a x

γ

(√

1
dm in− |L−| +

√

1
dm in +

|L+ |

)]

where

dmin + := min
i∈L+

di , dmin − := min
j∈L−

dj , dmax := max
i∈V

di

and

µ′ := min{µ2 , 2 − µN }
where {µn}N

n=1 denote the eigenvalues of the normalized graph

Laplacian in ascending order.

The γ-distinguishability threshold can guide the choice of

the dimension K of the landing probability space. Indeed, using

class-specific landing probability steps K ≥ Kγ , does not help

distinguishing between the corresponding classes, in the sense

that the classifier output is not perturbed by more than γ. In-

tuitively, the information contained in the landing probabilities

Kγ + 1,Kγ + 2, . . . is essentially the same for both classes and

thus, using them as features unnecessarily increases the overall

complexity of the classifier, and also “opens the door” to curse

of dimensionality related concerns. Note also that in settings

where one can freely choose the nodes to sample, this result

could be used to guide such choice in a disciplined way.

Theorem 1 makes no assumptions on the diffusion coef-

ficients, so long they belong to a probability simplex. Of

course, specifying the diffusion function can specialize and fur-

ther tighten the corresponding γ-distinguishability threshold. In

Appendix VII-C we give a tighter threshold for PPR.

Conveniently, our experiments suggest that K ∈ [10, 20] is

usually sufficient to achieve high performance for most real

graphs ; see also Fig. 3 where Kγ is found numerically for dif-

ferent values of γ-distinguishability threshold, and proportions

of sampled nodes on the BlogCatalog graph. Nevertheless,

longer random walks may be necessary in e.g., graphs with small

µ′, especially when the number of labeled nodes is scarce. To

deal with such challenges, the ensuing modification of AdaDIF

that scales linearly with K is nicely motivated.

Remark 2: While PPR and HK in theory rely on infinitely

long random walks, the coefficients decay rapidly (θk = αk

for PPR and θk = tk/k! for HK). This means that not only

θk → 0 as k → ∞ in both cases, but the convergence rate is

also very fast (especially for HK). This agrees with our in-

tuition on random walks, as well as our result in Theorem 1

suggesting that, to guarantee a level of distinguishability (which

is necessary for accuracy) between classes, classifiers should

rely on relatively short-length random walks. Moreover, when

operating in an adaptive framework such as the one proposed

here, using finite-step (preferably short-length) landing proba-

bilities is much more practical, since it restricts the number of

free variables (θk ’s) which mitigates overfitting and results in

optimization problems that scale well with the network size.

C. Dictionary of Diffusions

The present section deals with a modified version of AdaDIF,

where the number of parameters (dimension of θ) is restricted

to D < K, meaning the “degrees of freedom” of each class-

specific distribution are fewer than the number of landing prob-

abilities. Specifically, consider (cf. (5))

fc(θ) =
K
∑

k=1

ak (θ)p(k)
c = P(K)

c a(θ)

where ak (θ) :=
∑D

d=1 θdCkd , and C := [c1 · · · cD] ∈ R
K×D

is a dictionary of D coefficient vectors, the ith forming the

column ci ∈ SK . Since a(θ) = Cθ, it follows that

fc(θ) = P(K)
c Cθ =

D
∑

d=1

θdf
(d)
c

where f
(d)
c :=

∑K
k=1 Ckdp

(k)
c is the dth diffusion.

To find the optimal θ, the optimization problem in (13) is

solved with

bc = − 2

|L| (F
∆
c)TD

†
LyLc (18)

Ac = (F∆
c)TD

†
LF

∆
c + λ(F∆

c)TD−1LD−1F∆
c (19)

where F∆
c := [f

(1)
c · · · f

(D)
c] effectively replaces P

(K)
c as the

basis of the space on which each fc is constructed. The descrip-

tion of AdaDIF in dictionary mode is given as a special case

of Algorithm 1, together with the subroutine in Algorithm 2 for

memory-efficient generation of F∆
c .

The motivation behind this dictionary-based variant of

AdaDIF is two-fold. First, it leverages the properties of a judi-

ciously selected basis of known diffusions, e.g., by constructing

C = [θPPR θHK · · ·]. In that sense, our approach is related

to multi-kernel methods, e.g., [1], although significantly more

scalable than the latter. Second, the complexity of AdaDIF in

dictionary mode is O(|E|(K + D)), where D can be arbitrarily

smaller than K, leading to complexity that is linear with respect

to both K and |E|.

D. Unconstrained Diffusions

Thus far, the diffusion coefficients θ have been constrained on

the K−dimensional probability simplex SK , resulting in sparse

solutions θ̂c , as well as fc(θ̂c) ∈ SN . The latter also allows

each fc(θ) to be interpreted as a pmf over V . Nevertheless, the

simplex constraint imposes a limitation to the model: landing

probabilities may only have non-negative contribution on the

resulting class distribution. Upon relaxing this non-negativity

1312 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

Algorithm 1: ADAPTIVE DIFFUSIONS.

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameter: λ, # of landing

probabilities: K, Dictionary mode ∈ {True,False},

Unconstrained ∈ {True,False}
Output: Predictions: {ŷi}i∈U
Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do

Lc = {i ∈ L : yi = c}
if Dictionary mode then

F∆
c = DICTIONARY (W,Lc ,K,C)

Obtain bc and Ac as in (18) and (19)

Fc = F∆
c

else

{P(K)
c , P̃

(K)
c } = LANDPROB(W,Lc ,K)

Obtain bc and Ac as in (14) and (16)

Fc = P
(K)
c

end if

if Unconstrained then

Obtain θ̂c as in (20) and (21)

else

Obtain θ̂c by solving (13)

end if

fc(θ̂c) = Fc θ̂c

end for

Obtain ŷi = arg maxc∈Y [fc(θ̂c)]i , ∀i ∈ U

Algorithm 2: LANDPROB.

Input: W,Lc ,K

Output: P
(K)
c , P̃

(K)
c

H = WD−1

p
(0)
c = vc

for k = 1 : K + 1 do

p
(k)
c = Hp

(k−1)
c

p̃
(k)
c = p

(k−1)
c − p

(k)
c

end for

constraint, (13) can afford a closed-form solution as

θ̂c = A−1
c (bc − λ∗1) (20)

λ∗ =
1TA−1

c bc − 1

bTA−1
c bc

. (21)

Retaining the hyperplane constraint 1Tθ = 1 forces at least one

entry of θ to be positive. Note that for K > |L|, (20) may

become ill-conditioned, and yield inaccurate solutions. This can

be mitigated by imposing �2−norm regularization on θ, which

is equivalent to adding εI to Ac , with ε > 0 sufficiently large to

stabilize the linear system.

A step-by-step description of the proposed AdaDIF ap-

proach is given by Algorithm 1, along with the subroutine in

Algorithm 2. Determining the limiting behavior of uncon-

strained AdaDIF, as well as exploring the effectiveness of differ-

ent regularizers (e.g., sparsity inducing �1−norm) is part of our

ongoing research. Towards the goal of developing more robust

methods to design diffusions, the ensuing section presents our

Algorithm 3: DICTIONARY.

Input: W,Lc ,K,C
Output: F∆

c

H = WD−1

p
(0)
c = vc

{f (d)
c }D

d=1 = 0

for k = 1 : K do

p
(k)
c = Hp

(k−1)
c

for d = 1 : D do

f
(d)
c = f

(d)
c + Ckdp

(k)
c

end for

end for

proposed approach that relies on minimizing the leave-one-out

loss of the resulting classifier.

IV. ADAPTIVE DIFFUSIONS ROBUST TO ANOMALIES

Although the loss function in (11) is simple and easy to im-

plement, it may lack robustness against nodes with labels that

do not comply with a diffusion-based information propagation

model. In real-world graphs, such ‘difficult’ nodes may arise due

to model limitations, observation noise, or even deliberate mis-

labeling by adversaries. For such setups, this section introduces

a novel adaptive diffusion classifier with: i) robustness in finding

θ by ignoring errors that arise due to outlying/anomalous nodes;

as well as, ii) capability to identify and remove such ‘difficult’

nodes.

Let us begin by defining the following per-class c ∈ Y loss

�c
rob(yLc

,θ) :=
∑

i∈L

1

di
([ȳLc

]i − [fc(θ;L\i)]i)
2

(22)

where fc(θ;L\i) is the class-c diffusion after removing the ith
node from the set of all labels. Intuitively, (22) evaluates the

ability of a propagation mechanism effected by θ to predict the

presence of class c label on each node i ∈ L, using the remaining

labeled nodes L\i. Since each class-specific distribution fc(θ)
is constructed by random walks that are rooted in Lc ⊆ L, it

follows that

fc(θ;L\i) =

{

fc(θ), i /∈ Lc

fc(θ;Lc \i), i ∈ Lc

(23)

since fc(θ) is not directly affected by the removal of a label that

belongs to other classes, and it is not used as a class-c seed. The

class-c diffusion upon removing the ith node from the seeds Lc

is given as (cf. (5))

fc(θ;Lc \i) =

K
∑

k=1

θkp
(k)
Lc\i

where p
(k)
Lc\i := HkvLc\i , and

[

vLc\i
]

j
=

{

1/|Lc \i|, j ∈ Lc \i

0, else
. (24)

The robust loss in (22) can be expressed more compactly as

�c
rob(yLc

,θ) :=
∥

∥

∥
D

− 1
2

L

(

ȳLc
− R(K)

c θ
)∥

∥

∥

2

2
(25)

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1313

where D
− 1

2

L := (D†
L)−

1
2 , and

[

R(K)
c

]

ik
:=

⎧

⎪

⎨

⎪

⎩

[

p
(k)
Lc\i

]

i
, i ∈ Lc

[

p
(k)
c

]

i
, else

. (26)

Since p
(k)
c = |Lc |−1

∑

i∈Lc
p

(k)
Lc\i , evaluating (25) only requires

the rows of R
(K)
c and entries of yLc

that correspond to L, since

the rest of the diagonal entries of D
†
L are 0. Having defined

�c
rob(·), per-class diffusion coefficients θ̂c can be obtained by

solving

θ̂c = arg min
θ∈SK

�c
rob(yLc

,θ) + λθ‖θ‖2
2 (27)

where �2 regularization with parameter λθ is introduced in or-

der to prevent overfitting and numerical instabilities. Note that

smoothness regularization in (12) is less appropriate in the con-

text of robustness, since it promotes “spreading” of the random

walks (cf. Prop. 1), thus making class-diffusions more similar

and increasing the difficulty of detecting outliers. Similar to

(13), quadratic programming can be adopted to solve (27).

Towards mitigating the effects of outliers, and inspired by the

robust estimators introduced in [20], we further enhance �c
rob(·)

by explicitly modeling the effect of outliers with a sparse vector

o ∈ R
N , leading to the modified cost

�c
rob(yLc

,o,θ) :=
∥

∥

∥
D

− 1
2

L

(

o + ȳLc
− R(K)

c θ
)∥

∥

∥

2

2
. (28)

The non-zero entries of o can capture large residuals (predic-

tion errors |[ȳLc
]i − [fc(θ;L\i)]i |) which may be the result of

outlying, anomalous or mislabeled nodes. Thus, when operating

in the presence of anomalies, the robust classifier aims at iden-

tifying both diffusion parameters {θ̂c}c∈Y as well as per class

outlier vectors {ôc}c∈Y . The two tasks can be performed jointly

by solving the following optimization problem

{θ̂c , ôc}c∈Y = arg min
θc ∈SK

oc ∈RN

∑

c∈Y

[

�c
rob(yLc

,oc ,θc) + λθ‖θc‖2
2

]

+ λo

∥

∥

∥
D

− 1
2

L O

∥

∥

∥

2,1
(29)

where O := [o1 · · · o|Y|] concatenates the outlier vectors oc ,

and ‖X‖2,1 :=
∑I

i=1

√

∑J
j=1 X2

i,j for any X ∈ R
I×J . The

term λo‖D− 1
2

L O‖2,1 in (29) acts as a regularizer that promotes

sparsity over the rows of O; it can also be interpreted as an

�1-norm regularizer over a vector that contains the �2 norms of

the rows of O. The reason for using such block-sparse regular-

ization is to force outlier vectors oc of different classes to have

the same support (pattern of non-zero entries). In other words,

the |Y| different diffusion/outlier detectors are forced to consent

on which nodes are outliers.

Since (29) is non-convex, convergence of gradient-descent-

type methods to the global optimum is not guaranteed. Never-

theless, since (29) is biconvex (i.e., convex with respect to each

variable) the following alternating minimization scheme

Ô(t) = arg min
O

∑

c∈Y

[

�c
rob

(

yLc
,oc , θ̂

(t−1)

c

)

+ λθ

∥

∥

∥
θ̂

(t−1)

c

∥

∥

∥

2

2

]

+ λo

∥

∥

∥
D

− 1
2

L O

∥

∥

∥

2,1
(30)

θ̂
(t)

c = arg min
θ∈SK

�c
rob(yLc

, ô(t)
c ,θ) + λθ‖θ‖2

2

+ λo

∥

∥

∥
D

− 1
2

L Ô(t)
∥

∥

∥

2,1
(31)

with Ô(0) := [0 . . .0] converges to a partial optimum [17].

By further simplifying (31) and solving (30) in closed form,

we obtain

θ̂
(t)

c = arg min
θ∈SK

�c
rob

(

ȳLc
+ ô(t−1)

c ,θ
)

+ λθ‖θ‖2
2 (32)

Ô(t) = SoftThresλo

(

Ỹ(t)
)

(33)

where

Ỹ(t) :=
[

ỹ1
(t) , . . . ,y

(t)
|Y|

]

is the matrix that concatenates the per class residual vec-

tors ỹ
(t)
c := ȳLc

− R
(K)
c θ̂

(t)

c , and Z = SoftThresλo
(X) is a

row-wise soft-thresholding operator such that

zi = ‖xi‖2 [1 − λo/(2‖xi‖2)]+

where zi and xi are the ith rows of Z and X respectively, see

e.g., [35]. Intuitively, the soft-thresholding operation in (33)

extracts the outliers by scaling down residuals and “trimming”

them wherever their across-classes �2 norm is below a certain

threshold.

The alternating minimization between (32) and (33) termi-

nates when ‖θ̂(t)

c − θ̂
(t−1)

c ‖∞ ≤ ε, ∀c ∈ Y where ε ≥ 0 is a

prescribed tolerance. Having obtained the tuples {θ̂c , ôc}c∈Y ,

one may remove the anomalous samples that correspond to non-

zero rows of Ô and perform the diffusion with the remaining

samples. The robust (r) AdaDIF is summarized as Algorithm 4,

and has O(K|L||E|) computational complexity.

V. CONTRIBUTIONS IN CONTEXT OF PRIOR WORKS

Following the seminal contribution in [9] that introduced

PageRank as a network centrality measure, there has been a

vast body of works studying its theoretical properties, computa-

tional aspects, as well as applications beyond Web ranking [16],

[26]. Most formal approaches to generalize PageRank focus ei-

ther on the teleportation component (see e.g., [32], [33] as well

as [7] for an application to semi-supervised classification), or, on

the so-termed damping mechanism [4], [13]. Perhaps the most

general setting can be found in [4], where a family of functional

rankings was introduced by the choice of a parametric damp-

ing function that assigns weights to successive steps of a walk

initialized according to the teleportation distribution. The per

class distributions produced by AdaDIF are in fact members of

this family of functional rankings. However, instead of choosing

a fixed damping function as in the aforementioned approaches,

AdaDIF learns a class-specific and graph-aware damping mech-

anism. In this sense, AdaDIF undertakes statistical learning in

1314 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

Algorithm 4: ROBUST ADAPTIVE DIFFUSIONS.

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameters: λθ , λo , # of

landing probabilities: K
Output: Predictions: {ŷi}i∈U

Outliers: ∪
c∈Y

Lo
c

Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do

Lc = {i ∈ L : yi = c}
for i ∈ Lc do

{p(k)
Lc\i}

K
k=1 = LANDPROB(W,Lc \i,K)

end for

Obtain R
(K)
c as in (26)

end for

Ô(0) = [0, . . . ,0] , t = 0

while ‖θ̂(t)

c − θ̂
(t−1)

c ‖∞ ≤ ε do

t ← t + 1

Obtain {θ̂(t)

c }c∈Y as in (32)

Obtain Ô(t) as in (33)

end while

Set of outliers: S := {i ∈ L : ‖[Ô]i,:‖2 > 0}
for c ∈ Y do

Lo
c = Lc ∩ S

Lc ← Lc \Lo
c

end for

Obtain ŷi = arg maxc∈Y
[

fc(θ̂c)
]

i
, ∀i ∈ U

the space of functional rankings, tailored to the underlying

semi-supervised classification task. A related method termed

AptRank was recently proposed in [46] specifically for protein

function prediction. Differently from AdaDIF the method ex-

ploits meta-information regarding the hierarchical organization

of functional roles of proteins and it performs random walks

on the heterogeneous protein-function network. AptRank splits

the data into training and validation sets of predetermined pro-

portions and adopt as cross-validation approach for obtaining

diffusion coefficients. Furthermore a1) AptRank trains a sin-

gle diffusion for all classes whereas AdaDIF identifies different

diffusions, and a2) the proposed robust leave-one-out method

(r-AdaDIF) gathers residuals from all leave-one-out splits into

one cost function (cf. (22)) and then optimizes the (per class)

diffusion.

Recently, community detection (CD) methods were proposed

in [47] and [45], that search the Krylov subspace of landing prob-

abilities of a given community’s seeds, to identify a diffusion

that satisfies locality of non-zero entries over the nodes of the

graph. In CD, the problem definition is: “given certain mem-

bers of a community, identify the remaining (latent) members.”

There is a subtle but important distinction between CD and semi-

supervised classification (SSC): CD focuses on the retrieval of

communities (that is nodes of a given class), whereas SSC fo-

cuses on the predicting the labels/attributes of every node. While

CD treats the detection of various overlapping communities of

the graph as independent tasks, SSC classifies nodes by taking

all information from labeled nodes into account. More specif-

TABLE I
NETWORK CHARACTERISTICS

ically, the proposed AdaDIF trains the diffusion of each class

by actively avoiding the assignment of large diffusion values to

nodes that are known (they have been labeled) to belong to a dif-

ferent class. Another important difference of AdaDIF with [47]

and [45]—which again arises from the different contexts—is the

length of the walk compared to the size of the graph. Since [47]

and [45] aim at identifying small and local communities, they

perform local walks of length smaller than the diameter of the

graph. In contrast, SSC typically demands a certain degree of

globality in information exchange, achieved by longer random

walks that surpass the graph diameter.

AdaDIF also shares links with SSL methods based on graph

signal processing proposed in [37], and further pursued in [12]

for bridge monitoring; see also [38] and [14] for recent ad-

vances on graph filters. Similar to our approach, these graph

filter based techniques are parametrized via assigning different

weights to a number of consecutive powers of a matrix related to

the structure of the graph. Our contribution however, introduces

different loss and regularization functions for adapting the dif-

fusions, including a novel approach for training the model in

an anomaly/outlier-resilient manner. Furthermore, while [37]

focuses on binary classification and [12] identifies a single

model for all classes, our approach allows for different classes

to have different propagation mechanisms. This feature can ac-

commodate differences in the label distribution of each class

over the nodes, while also making AdaDIF readily applicable

to multi-label graphs. Moreover, while in [37] the weighting

parameters remain unconstrained and in [12] belong to a hy-

perplane, AdaDIF constrains the diffusion parameters on the

probability simplex, which allows the random-walk-based diffu-

sion vectors to denote valid probability mass functions over the

nodes of the network. This certainly enhances interpretability

of the method, improves the numerical stability of the involved

computations, and also reduces the search-space of the model

is beneficial under data scarcity. Finally, imposing the simplex

constraint makes the model amenable to a rigorous analysis that

relates the dimensionality of the feature space to basic graph

properties, as well as to a disciplined exploration of its limiting

behavior.

VI. EXPERIMENTAL EVALUATION

Our experiments compare the classification accuracy of the

novel AdaDIF approach with state-of-the-art alternatives. For

the comparisons, we use 6 benchmark labeled graphs whose di-

mensions and basic attributes are summarized in Table I. All 6

graphs have nodes that belong to multiple classes, while the last

3 are multilabeled (each node has one or more labels). We eval-

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1315

TABLE II
MICRO F1 AND MACRO F1 SCORES ON MULTICLASS NETWORKS (CLASS-BALANCED SAMPLING)

Fig. 4. Micro-F1 score for AdaDIF and non-adaptive diffusions on 5% labeled
Cora graph as a function of the length of underline random walks.

uate performance of AdaDIF and the following: i) PPR and HK,

which are special cases of AdaDIF as discussed in Section II; ii)

Label propagation (LP) [43]; iii) Node2vec [18]; iv) Deepwalk

[34]; v) Planetoid-G [42]; and, vi) graph convolutional networks

(GCNs) [21]. We note here that AptRank [46] was not consid-

ered in our experiments since it relies on meta-information that

is not available for the benchmark datasets used here.

We performed 10-fold cross-validation to select parameters

needed by i) - v). For HK, we performed grid search over

t ∈ [1.0, 5.0, 10.0, 15.0]. For PPR, we fixed α = 0.98 since it is

well documented that α close to 1 yields reliable performance;

see e.g., [28]. Both HK and PPR were run for 50 steps for conver-

gence to be in effect; see Fig 4; LP was also run for 50 steps. For

Node2vec, we fixed most parameters to the values suggested in

[18], and performed grid search for p, q ∈ [0.25, 1.0, 2.0, 4.0].
Since Deepwalk can be seen as Node2vec with p = q = 1.0,

we used the Node2vec Python implementation for both. As in

[18], [34], we used the embeded node-features to train a super-

vised logistic regression classifier with �2 regularization. For

AdaDIF, we fixed λ = 15.0, while K = 15 was sufficient to

attain desirable accuracy (cf. Fig. 4); only the values of Boolean

variables Unconstained and Dictionary Mode (see Algorithm 1)

were tuned by validation. For the multilabel graphs, we found

λ = 5.0 and even shorter walks of K = 10 to perform well.

For the dictionary mode of AdaDIF, we preselected D = 10,

with the first five collumns of C being HK coefficients with

parameters t ∈ [5, 8, 12, 15, 20], and the other five polynomial

coefficients ci = kβ with β ∈ [2, 4, 6, 8, 10].
For multiclass experiments, we evaluated the performance of

all algorithms on the three benchmark citation networks, namely

Cora, Citeseer, and PubMed. We obtained the labels of an

increasing number of nodes via uniform, class-balanced sam-

pling, and predicted the labels of the remaining nodes. Thus,

instead of sampling nodes over the graph uniformly at random,

we randomly sample a given number of nodes per class. For each

graph, we performed 20 experiments, each time sampling 5,10,

and 20 nodes per class. For each experiment, classification accu-

racy was measured on the unlabeled nodes in terms of Micro-F1

and Macro-F1 scores; see e.g., [30]. The results were averaged

over 20 experiments, with mean and standard deviation reported

in Table II. Evidently, AdaDIF achieves state of the art perfor-

mance for all graphs. For Cora and PubMed, AdaDIF was

switched to dictionary mode, while for Citeseer, where the

gain in accuracy is more significant, unconstrained diffusions

were employed. In the multiclass setting, diffusion-based clas-

sifiers (AdaDIF, PPR, and HK) outperformed the embedding-

based methods by a small margin, and GCNs by a larger margin.

It should be noted however that GCNs were mainly designed

to combine the graph with node features. In our “featureless”

setting, we used the identity matrix columns as input features,

as suggested in [21, Appendix].

The scalabilty of AdaDIF is reflected on the runtime com-

parisons listed in Fig. 7. All experiments were run on a ma-

chine with i5 @3.50 Mhz CPU, and 16GB of RAM. We used

the Python implementations provided by the authors of the

compared algorithms. The Python implementation of AdaDIF,

uses only tools provided by scipy, numpy, and CVX-OPT li-

braries. We also developped an efficient implementation that

exploits parallelism, which is straightforward since each class

can be treated separately. While AdaDIF incurs (as expected) a

relatively small computational overhead over fixed diffusions, it

is faster than GCNs that use Tensorflow, and orders of magnitude

faster than embedding-based approaches.

1316 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

TABLE III
MICRO F1 AND MACRO F1 SCORES OF VARIOUS ALGORITHMS ON MULTILABEL NETWORKS

Fig. 5. Classification accuracy of AdaDIF, PPR, and HK compared to the accuracy of k−step landing probability classifier. (Top Left) Cora Micro-F1 score.
(Bottom Left) CoraMacro-F1 score. (Top Middle) CiteseerMicro-F1 score. (Bottom Middle) CiteseerMacro-F1 score. (Top Right) PubMedMicro-F1
score. (Bottom Right) PubMed Macro-F1 score.

Finally, Table III presents the results on multilabel graphs,

where we compare with Deepwalk and Node2vec, since the

rest of the methods are designed for multiclass problems. Since

these graphs entail a large number of classes, we increased the

number of training samples. Similar to [18] and [34], during

evaluation of accuracy the number of labels per sampled node is

known, and check how many of them are in the top predictions.

First, we observe that AdaDIF markedly outperforms PPR and

HK across graphs and metrics. Furthermore, for the PPI and

BlogCatalog graphs the Micro-F1 score of AdaDIF comes

close to that of the much heavier state-of-the-art Node2vec. Fi-

nally, AdaDIF outperforms the competing alternatives in terms

of Macro-F1 score. It is worth noting that for multilabel graphs

with many classes, the performance boost over fixed diffusions

can be largely attributed to AdaDif’s flexibility to treat each

class differently. To demonstrate that different classes are in-

deed diffused in a markedly different manner, Fig. 6 plots all

50 diffusion coefficient vectors {θc}c∈C yielded by AdaDIF on

the PPI graph with 30% of nodes labeled. Each line in the plot

corresponds to the values of θc for a different c; evidently, while

the overall “form” of the corresponding diffusion coefficients

adheres to the general pattern observed in Fig. 2 there is indeed

large diversity among classes.

A. Analysis/Interpretation of Results

Here we will follow an experimental approach that is aimed

at understanding and interpreting our results. We will focus

on diffusion-based classifiers, along with a simple benchmark

for diffusion-based classification: the k−step landing probabil-

ities. Specifically, we compare the classification accuracy on

the three multiclass datasets of AdaDIF, PPR, and HK, with

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1317

Fig. 6. AdaDIF diffusion coefficients for the 50 different classes of PPI graph
(30% sampled). Each line corresponds to a different θc . Diffusion is character-
ized by high diversity among classes.

Fig. 7. Relative runtime comparisons for multiclass graphs.

the accuracy of the classifier that uses only the k−th landing

probability vectors {p(k)
c }c∈Y,k∈[1,K] . The setting is similar to

the one in the previous section, and with class-balanced sam-

pling of 20 nodes per class, while the k−step classifiers were

examined for a wide range of steps k ∈ [1, 100]. The k−step

classifier reveals the predictive power of individual landing

probabilities, resulting in curves (see Fig. 5) that appear to be

different for each network, characterizing the graph-label dis-

tribution relationship of the latter. For the Cora graph (left two

plots), performance of the k−step classifier improves sharply

after the first few steps, peaks for k ≈ 20, and then quickly

degrades, suggesting that using the landing probabilities of

k > 40 or 50 would most likely degrade the performance of a

diffusion-based classifier. Interestingly, AdaDIF relying on

combinations of the first 15 steps, and PPR and HK of the first

50, all achieve higher accuracy than that of the best single step.

On the other hand, the Citeseer graph (middle two plots)

behaves in a significantly different manner, with the k−step

classifier requiring longer walks to reach high accuracy that

was retained for much longer. Furthermore, accumulating land-

ing probabilities the way PPR or HK does yields lower Micro-F1

accuracy than that of the single best step. On the other hand,

by smartly combining the first 15 steps that are of lower qual-

ity, AdaDIF surpasses the Micro-F1 scores of the longer walks.

Interestingly, the Macro-F1 metric for the Citeseer behaves

differently than the Micro-F1, and quickly decreases after ∼25
steps. The disagreement between the two metrics can be ex-

plained as the diffusions of one or more of the larger classes

gradually “overwhelms” those of one or more smaller classes,

thus lowering the Macro-F1 score, since the latter is a met-

ric that averages per-class. In contrast, the Micro-F1 metric

averages per-node and takes much less of an impact if a few

nodes from the smaller classes are mislabeled. Finally, for the

PubMed graph (right two plots), steps in the range [20, 40] yield

consistently high accuracy both in terms of Micro- as well as

Macro-averaged F1-score. Since HK and mostly PPR largely

accumulate steps in that range, it seems reasonable that both

fixed diffusions are fairly accurate in the PubMed graph.

B. Tests on Simulated Label-Corruption Setup

Here we outline experimental results performed to evaluate

the performance of different diffusion-based classifiers in

the presence of anomalous nodes. The main goal is to evaluate

whether r-AdaDIF (Algorithm 4) yields improved performance

over AdaDIF, HK and PPR, as well as the ability of r-AdaDIF

to detect anomalous nodes. We also tested a different type of

rounding from class-diffusions to class labels that was shown

in [44] to be robust in the presence of erroneous labels on a

graph constructed by images of handwritten digits. The idea is

to first normalize diffusions with node degrees, sort each dif-

fusion vector, and assign to each node the class for which the

corresponding rank is higher. We applied this type of rounding

on PPR diffusions (denoted as PPR w. ranking). Since a ground

truth set of anomalous nodes is not available in real graphs, we

chose to infuse the true labels with artificial anomalies gener-

ated by the following simulated label corruption process: Go

through yL and for each entry [yL]i = c draw with probability

pcor a label c′ ∼ Unif{Y\c}; and replace [yL]i ← c′. In other

words, anomalies are created by corrupting some of the true

labels by randomly and uniformly “flipping” them to a dif-

ferent label. Increasing the corruption probability pcor of the

training labels yL is expected to have increasingly negative im-

pact on classification accuracy over yU . Indeed, as depicted in

Fig. 8, the accuracy of all diffusion-based classifiers on Cora

graph degrades as pcor increases. All diffusions were run for

K = 50, while for r-AdaDIF we found λo = 14.6 × 10−3 and

λθ = 67.5 × 10−5 to perform well for moderate values of pcor.

Results were averaged over 50 Monte Carlo experiments, and

for each experiment 5% of the nodes were sampled uniformly

at random. While tuning λo for a specific pcor generally yields

improved results, we use the same λo across the range of pcor

values, since the true value of the latter is generally not avail-

able in practice. In this setup, r-AdaDIF demonstrates higher

accuracy compared to non-robust classifiers. Moreover, the per-

formance gap increases as more labels become corrupted, until it

reaches a “break point” at pcor ≈ 0.35. Interestingly, r-AdaDIF

performs worse in the absence of anomalies (pcor = 0) that can

be attributed to the fact that it only removes useful samples and

thus reduces the training set. Although PPR w. ranking displays

1318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

Fig. 8. Classification accuracy of various diffusion-based classifiers on Cora, as a function of the probability of label corruption.

Fig. 9. Anomaly detection performance of r-AdaDIF for different label cor-
ruption probabilities. The horizontal axis corresponds to the frequency with
which r-AdaDIF returns a true positive (probability of detection) and the ver-
tical axis corresponds to the frequency of false positives (probability of false
alarm).

relative robustness as pcor increases, overall it performs worse

than PPR with value based rounding, at least on theCora graph.

As mentioned earlier, the performance of r-AdaDIF in terms

of outlier detection depends on parameter λo . Specifically, for

λo → 0 the regularizer in (29) is effectively removed and all

samples are characterized as outliers. On the other hand, for

λo � 1 (29) yields Ô = [0, . . . ,0], meaning that no outliers

are unveiled. For intermediate values of λo , r-AdaDIF trades off

falsely identifying nominal samples as outliers (false alarm) with

correctly identifying anomalies (correct detection). This tradeoff

of r-AdaDIF’s anomaly detection behavior was experimentally

evaluated over 50 Monte Carlo runs by sweeping over a large

range of values of λo , and for different values of pcor; see the

probability of detection (pD) versus probability of false alarms

(pFA) depicted in Fig. 9. Evidently, r-AdaDIF performs much

better than a random guess (“coin toss”) detector whose curve is

given by the grey dotted line, while the detection performance

improves as the corruption rate decreases.

VII. CONCLUSIONS

The present work, introduces a principled, data-efficient ap-

proach to learning class-specific diffusion functions tailored for

the underlying network topology. Experiments on real networks

confirm that adapting the diffusion function to the given graph

and observed labels, significantly improves the performance

over fixed diffusions; reaching – and many times surpassing –

the classification accuracy of computationally heavier state-of-

the-art competing methods.

Emerging from this work are many exciting directions to

explore. First, one can investigate different cost functions with

respect to which the diffusions are adapted, e.g., by taking into

account robustness of the resulting classifier in the presence of

adversarial data. Furthermore, it is worth investigating the space

of nonlinear functions of the landing probabilities to determine

the degree to which accuracy can be boosted further. Last but

not least, it will be interesting to develop adaptive diffusion

methods, where learning and adaptation are performed on-the-

fly, without any memory and computational overhead.

APPENDIX

A. Proof of Proposition 1

For λ → ∞, the effect of �(·) in (10) vanishes, and the opti-

mization problem becomes equivalent to solving

min
θ∈SK

θTAθ (34)

where A := (P
(K)
c)TD−1LD−1P

(K)
c has (i, j) entry given by

Aij = (p
(i)
c)TD−1LD−1p

(j)
c ; and p

(K)
c is the vector of K-step

landing probabilities with initial distribution vc and transition

matrix H =
∑N

n=1 λnunvT
n , where λ1 > λ2 > · · · > λN are

its eigenvalues. Since H is a column-stochastic transition prob-

ability matrix, it holds that λ1 = 1, v = 1, and u1 = π, where

π = limk→∞ p
(k)
c is the steady-state distribution that can be

also expressed as π = d/(2|E|) [27]. The landing probability

vector for class c is thus

p(K)
c = HK vc =

[

1

2|E|d1T +
N
∑

n=2

λK
n unvT

n

]

vc

=
1

2|E|d +
N
∑

n=2

λK
n unγn ≈ 1

2|E|d + λK
2 u2γ2 (35)

where γn := vT
nvc , and the approximation in (35) holds because

λK
2 � λK

n , for n ∈ [3, N], and K large enough but finite. Using

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1319

(35), Aij can be rewritten as

Aij =

[

1

2|E|d
T + λi

2u
T

2γ2

]

D−1LD−1

[

1

2|E|d + λj
2u2γ2

]

=

[

1

2|E|1
T + λi

2u
T

2D
−1γ2

]

L

[

1

2|E|1 + λj
2D

−1u2γ2

]

=
1

4|E|2 1TL1 +
λi

2γ2

2|E| u
T

2D
−1L1 +

λj
2γ2

2|E| 1
TLD−1u2

+ γ2
2 λi+j

2 uT

2D
−1LD−1u2

= Cλi+j
2 (36)

where C := γ2
2 u

T
2D

−1LD−1u2 , the second equality uses

D−1d = 1, and the last equality follows because L1 = 0. Using

(36), one obtains A = Cλ2λ
T

2 , where λ2 := [λ2 λ2
2 · · · λK

2]T,

while (34) reduces to

min
θ∈SK

(

λT

2θ
)2

. (37)

Since λT

2θ > 0 ∀θ ∈ SK , it can be shown that the KKT opti-

mality conditions for (37) are identical to those of

min
θ∈SK

λT

2θ. (38)

Therefore, (37) admits minimizer(s) identical to (38). Finally,

we will show that the minimizer of (38) is eK . Since the problem

is convex, it suffices to show that ∇T

θ
(λT

2θ)θ=eK
(θ − eK) ≥

0 ∀θ ∈ SK , or, equivalently

λT

2 (θ − eK) ≥ 0 ⇔
K
∑

k=1

θkλk
2 − λK

2 ≥ 0

⇔
K
∑

k=1

θkλk−K
2 ≥ 1

⇔
K
∑

k=1

θkλk−K
2 ≥

K
∑

k=1

θk

⇔
K
∑

k=1

θk

(

λk−K
2 − 1

)

≥ 0

which holds since θ ≥ 0 and λk−K
2 ≥ 1 ∀k ∈ [1,K], and com-

pletes the proof of the proposition.

B. Proof of Theorem 1

We need to find the smallest integer K such that maxθ∈SK

‖y − y̌‖ ≤ γ. We have

‖y − y̌‖ = ‖X+θ − X−θ − X̌+θ + X̌−θ‖

≤‖θK p
(K)
+ − θK p

(K)
− ‖+‖θK p

(K +1)
+ − θK p

(K +1)
− ‖

≤ ‖HK p+ − HK p−‖ + ‖HK +1p+ − HK +1p−‖
(39)

since θ ∈ SK . Therefore, to determine an upper bound for the γ-

distinguishability threshold it suffices to find the smallest integer

K for which (39) is upper bounded by γ.

Let q1 , . . . ,qN be the eigenvectors corresponding to the

eigenvalues 0 = µ1 < µ2 ≤ · · · ≤ µN < 2 of the normalized

Laplacian L̃. The transition probability matrix is then

H = D
1
2 (I − L̃)D− 1

2 . (40)

For the first term of the RHS of (39), we have

‖HK p+ − HK p−‖ ≤ ‖HK p+ − π‖ + ‖HK p− − π‖

=

∥

∥

∥

∥

D
1
2 (I − L̃)K D− 1

2 p+ − D1

2|E|

∥

∥

∥

∥

+

∥

∥

∥

∥

D
1
2 (I − L̃)K D− 1

2 p− − D1

2|E|

∥

∥

∥

∥

.

(41)

Since q1 = D
1
2 1√
2|E|

[27], we have for c ∈ {+,−} that

D
1
2 q1

〈

q1 ,D
− 1

2 pc

〉

= D
1
2

D
1
2 1

√

2|E|

〈

D
1
2 1

√

2|E|
,D− 1

2 pc

〉

=
D1
√

2|E|
〈1,pc〉
√

2|E|
=

D1

2|E| . (42)

Upon defining M := (I − L̃)K − q1q
T
1 , and taking into ac-

count (42), inequality (41) can be written as

‖HK p+ − HK p−‖

‖D 1
2 ‖‖M‖

(

‖D− 1
2 p+‖ + ‖D− 1

2 p−‖
)

. (43)

The factors in (43) can be bounded as

∥

∥D− 1
2 p+

∥

∥ =

√

∑

i∈L+

(

1

|L+ |
d
− 1

2
i

)2

=

√

∑

i∈L+

1

|L+ |2
d−1

i ≤ 1
√

dmin+
|L+ |

, (44)

‖D− 1
2 p−‖ =

√

∑

i∈L−

1

|L−|2
d−1

i ≤ 1
√

dmin− |L−|
, (45)

∥

∥M
∥

∥ = sup
v

〈Mv,v〉
Mv

= max
i �=1

|1 − µi |K , (46)

‖D 1
2 ‖ =

√

dmax (47)

where (46) follows from the properties of the normalized Lapla-

cian. Therefore, (43) becomes

‖HK p+ − HK p−‖ ≤
(

1
√

dmin− |L−|
+

1
√

dmin+
|L+ |

)

· max
i �=1

|1 − µi |K ·
√

dmax . (48)

Letting µ′ := min{µ2 , 2 − µN }, and using the fact that

(1 − µ′)K ≤ e−K µ ′
(49)

we obtain

‖HK p+ − HK p−‖

≤
(√

dmax

dmin− |L−|
+

√

dmax

dmin+
|L+ |

)

e−K µ ′
. (50)

1320 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

Likewise, we can bound the second term in (39) as

‖HK +1p+ − HK +1p−‖

≤
(√

dmax

dmin− |L−|
+

√

dmax

dmin+
|L+ |

)

e−(K +1)µ ′
. (51)

In addition, we note that for all µ′ > 0,K ∈ Z it holds that

e−K µ ′
+ e−(K +1)µ ′

< 2e−K µ ′
. (52)

Upon substituting (50) and (51) into (39), and also using (52),

we arrive at

‖y − y̌‖ ≤ 2

(√

dmax

dmin− |L−|
+

√

dmax

dmin+
|L+ |

)

e−K µ ′
. (53)

To determine an upper bound on the γ-distinguishability thresh-

old, it suffices to find the smallest integer K for which (53)

becomes less than γ; that is,

2

(√

dmax

dmin− |L−|
+

√

dmax

dmin+
|L+ |

)

e−K µ ′ ≤ γ. (54)

Multiplying both sides of (54) by the positive number eK µ ′
/γ,

and taking logarithms yields

log
[

2
√

dm a x

γ

(√

1
dm in− |L−| +

√

1
dm in +

|L+ |

)]

≤ Kµ′.

Therefore, using as landing probabilities
⌈

1

µ′ log
[

2
√

dm a x

γ

(√

1
dm in− |L−| +

√

1
dm in +

|L+ |

)]

⌉

the �2 distance between any two diffusion-based classifiers will

be at most γ; and the proof is complete.

C. Bound for PageRank

Substituting PageRank’s diffusion coefficients in the proof of

Theorem 1, inequality (54) becomes

2(1 − α)αK

(√

dmax

dmin− |L−|
+

√

dmax

dmin+
|L+ |

)

e−K µ ′ ≤ γ.

Multiplying both sides by the positive number eK µ ′
α−K /γ and

taking logarithms yields

log
[

2
√

dm a x

γ/(1−α)

(√

1
dm in− |L−| +

√

1
dm in +

|L+ |

)]

≤ K(µ′ − log α)

which results in the γ-distinguishability threshold bound

KPR
γ ≤ 1

µ ′−log α log
[

2
√

dm a x

γ/(1−α)

(√

1
dm in− |L−| +

√

1
dm in +

|L+ |

)]

.

REFERENCES

[1] A. Argyriou, M. Herbster, and M. Pontil, “Combining graph Laplacians
for semi-supervised learning,” in Proc. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2006, pp. 67–74.

[2] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., Barcelona, Spain, 2016,
pp. 1993–2001.

[3] K. Avrachenkov, A. Mishenin, P. Gonçalves, and M. Sokol, “Gener-
alized optimization framework for graph-based semi-supervised learn-
ing,” in Proc. SIAM Int. Conf. Data Mining, Anaheim, CA, USA, 2012,
pp. 966–974.

[4] R. Baeza-Yates, P. Boldi, and C. Castillo, “Generic damping functions
for propagating importance in link-based ranking,” Internet Math., vol. 3,
no. 4, pp. 445–478, 2006.

[5] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Mach. Learn. Res., vol. 7, pp. 2399–2434, Nov. 2006.

[6] Y. Bengio, O. Delalleau, and N. Le Roux, “Label propagation, and
quadratic criterion, ” in Semi-Supervised Learning. Cambridge, MA, USA:
MIT Press, 2006.

[7] D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, “Random
walks with restarts for graph-based classification: Teleportation tuning
and sampling design,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., Calgary, AB, Canada, Apr. 2018, pp. 2811–2815.
[8] D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, “AdaDIF:

Adaptive diffusions for efficient semi-supervised learning over graphs,”
in Proc. IEEE Int. Conf. Big Data, Seattle, WA, USA, Dec. 10–13, 2018,
pp. 92–99.

[9] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual
web search engine,” Comput. Netw., vol. 56, no. 18, pp. 3825–3833, 2012.

[10] E. Buchnik and E. Cohen, “Bootstrapped graph diffusions: Exposing the
power of nonlinearity,” vol. 2, no. 1, p. 10, 2018.

[11] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning.
Cambridge, MA, USA: MIT Press, 2006.

[12] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovacevic,
“Semi-supervised multiresolution classification using adaptive graph fil-
tering with application to indirect bridge structural health monitoring,”
IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2879–2893, Jun. 2014.

[13] P. G. Constantine and D. F. Gleich, “Random alpha pagerank,” Internet

Math., vol. 6, no. 2, pp. 189–236, 2009.
[14] M. Contino, E. Isufi, and G. Leus, “Distributed edge-variant graph fil-

ters,” in Proc. Int. Workshop Comput. Adv. Multi-Sensor Adapt. Process.,
Curacao, Dutch Antilles, Dec. 2017, pp. 1–5.

[15] F. Chung, “The heat kernel as the pagerank of a graph,” Proc. Nat. Acad.

Sci. USA, vol. 104, no. 50, pp. 19735–19740, 2007.
[16] D. F. Gleich, “PageRank beyond the web,” SIAM Rev., vol. 57, no. 3,

pp. 321–363, 2015.
[17] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization

with biconvex functions: A survey and extensions,” Math. Methods Oper.

Res., vol. 66, no. 3, pp. 373–407, Dec. 2007.
[18] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for net-

works,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Francisco, CA, USA, 2016, pp. 855–864.

[19] T. Joachims, “Transductive learning via spectral graph partitioning,”
in Proc. Int. Conf. Mach. Learn., Washington, DC, USA, 2003,
pp. 290–297.

[20] V. Kekatos and G. B. Giannakis, “From sparse signals to sparse residuals
for robust sensing,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3355–
3368, Jul. 2011.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[22] K. Kloster and D. F. Gleich, “Heat kernel based community detection,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New
York, NY, USA, 2014, pp. 1386–1395.

[23] I. M. Kloumann, J. Ugander, and J. Kleinberg, “Block models and person-
alized pagerank,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 1, pp. 33–38,
2017.

[24] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other
discrete input spaces,” in Proc. Int. Conf. Mach. Learn., Sydney, NSW,
Australia, 2002, pp. 315–322.

[25] B. Kveton, M. Valko, A. Rahimi, and L. Huang, “Semi-supervised learning
with max-margin graph cuts,” in Proc. Int. Conf. Artif. Intell. Statist.,
Sardinia, Italy, 2010, pp. 421–428.

[26] A. N. Langville and C. D. Meyer, “Deeper inside pagerank,” Internet

Math., vol. 1, no. 3, pp. 335–380, 2004.
[27] D. A. Levin and Y. Peres, Markov Chains and Mixing Times. New York,

NY, USA: Amer. Math. Soc., 2017.
[28] F. Lin and W. W. Cohen, “Semi-supervised classification of network data

using very few labels,” in Proc. Int. Conf. Adv. Social Netw. Anal. Mining,
Odense, Denmark, 2010, pp. 192–199.

[29] W. Liu, J. Wang, and S.-F. Chang, “Robust and scalable graph-based
semisupervised learning,” Proc. IEEE, vol. 100, no. 9, pp. 2624–2638,
Sep. 2012.

[30] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information

Retrieval. Cambridge, MA, USA: Cambridge Univ. Press, 2008.
[31] E. Merkurjev, A. L. Bertozzi, and F. Chung, “A semi-supervised heat ker-

nel pagerank MBO algorithm for data classification,” Univ. California—
Los Angeles, Los Angeles, CA, USA, Tech. Rep. AD1018376, 2016.

[32] A. N. Nikolakopoulos and J. D. Garofalakis, “NCDawareRank: A novel
ranking method that exploits the decomposable structure of the web,”
in Proc. ACM Int. Conf. Web Search Data Mining, Rome, Italy, 2013,
pp. 143–152.

BERBERIDIS et al.: ADAPTIVE DIFFUSIONS FOR SCALABLE LEARNING OVER GRAPHS 1321

[33] A. N. Nikolakopoulos, A. Korba, and J. D. Garofalakis, “Random surfing
on multipartite graphs,” in Proc. IEEE Int. Conf. Big Data, Washington,
DC, USA, Dec. 2016, pp. 736–745.

[34] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of so-
cial representations,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining. New York, NY, USA, 2014, pp. 701–710.
[35] A. T. Puig, A. Wiesel, G. Fleury, and A. O. Hero, “Multidimensional

shrinkage-thresholding operator and group LASSO penalties,” IEEE Sig-

nal Process. Lett., vol. 18, no. 6, pp. 363–366, Jun. 2011.
[36] N. Rosenfeld and A. Globerson, “Semi-supervised learning with com-

petitive infection models,” in Proc. Int. Conf. Artif. Intell. Statist., 2018,
pp. 336–346.

[37] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, Apr. 2013.

[38] S. Segarra, A. Marques, and A. Ribeiro, “Optimal graph-filter design and
applications to distributed linear network operators,” IEEE Trans. Signal

Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.
[39] P. P. Talukdar and K. Crammer, “New regularized algorithms for transduc-

tive learning,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery

Databases, 2009, pp. 442–457.
[40] J. Ugander and L. Backstrom, “Balanced label propagation for partitioning

massive graphs,” in Proc. ACM Int. Conf. Web Search Data Mining, Rome,
Italy, 2013, pp. 507–516.

[41] X.-M. Wu, Z. Li, A. M. So, J. Wright, and S.-F. Chang, “Learning with
partially absorbing random walks,” in Proc. Adv. Neural Inf. Process. Syst.,
Lake Tahoe, CA, USA, Dec. 2012, pp. 3077–3085.

[42] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised
learning with graph embeddings,” in Proc. 33rd Int. Conf. Int. Conf. Mach.

Lear., vol. 48, 2016, pp. 40–48.
[43] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using

Gaussian fields and harmonic functions,” in Proc. Int. Conf. Mach. Learn.,
Washington, DC, USA, Aug. 2003, pp. 912–919.

[44] D. F. Gleich and M. W. Mahoney, “Using local spectral methods to robus-
tify graph-based learning algorithms,” in Proc. Int. Conf. Knowl. Discovery

Data Mining, Sydney, NSW, Australia, Aug. 2015, pp. 359–368 .
[45] K. He, P. Shi, J. E. Hopcroft, and D. Bindel, “Local spectral diffusion for

robust community detection,” in Proc. SIGKDD Workshop, San Francisco,
CA, USA, Aug. 2016.

[46] B. Jiang, K. Kloster, D. F. Gleich, and M. Gribskov, “AptRank: An adaptive
PageRank model for protein function prediction on bi-relational graphs,”
Bioinformatics, vol. 33, no. 12, pp. 1829–1836, Aug. 2017.

[47] K. He, Y. Sun, D. Bindel, J. E. Hopcroft, and Y. Li, “Detecting overlapping
communities from local spectral subspaces,” in Proc. Int. Conf. Data

Mining, Atlantic City, NJ, USA, Aug. 2015, pp. 769–774

Dimitris Berberidis (S’15) received the Diploma in
electrical and computer engineering (ECE) from the
University of Patras, Patras, Greece, in 2012, and the
M.Sc. degree in ECE from the University of Min-
nesota, Minneapolis, MN, USA, where he is cur-
rently working toward the Ph.D. degree. His research
interests lie in the areas of statistical signal process-
ing, focusing on sketching and tracking of large-scale
processes, and in machine learning, focusing on the
development of algorithms for scalable learning over
graphs, including semi-supervised classification, and
node embedding.

Athanasios N. Nikolakopoulos (M’16) received the
Computer Engineering and Informatics Diploma, the
Master of Science degree in computer science and
technology, and the Ph.D. degree, in 2016, all from
the Department of Computer Engineering and In-
formatics, University of Patras, Patras, Greece. He
is currently a Research Associate with the Digital
Technology Center, University of Minnesota, Min-
neapolis, MN, USA. His research interests are con-
centrated in the areas of data mining, and statistical
learning with an emphasis on information processing

over networks and recommender systems. Within these areas, his research fo-
cuses in developing novel algorithms for solving important emerging problems,
as well as practical software tools. He has been the member of the scientific
committee of many prominent CS conferences in the areas of data mining and
recommender systems. He is a member of ACM and SIAM.

Georgios B. Giannakis (F’97) received the Diploma
in electrical engineering from the National Technical
University of Athens, Athens, Greece, in 1981, and
the M.Sc. degree in electrical engineering, in 1983,
M.Sc. degree in mathematics, in 1986, and the Ph.D.
degree in electrical Engineering, in 1986, all from the
University of Southern California, Los Angeles, CA,
USA. He was with the University of Virginia from
1987 to 1998, and since 1999 he has been a Professor
with the University of Minnesota, Minneapolis, MN,
USA, where he holds an Endowed Chair in wireless

telecommunications, a University of Minnesota McKnight Presidential Chair
in electrical and computer engineering, and serves as the Director of the Digi-
tal Technology Center. His general interests span the areas of communications,
networking, and statistical learning—subjects on which he has authored or coau-
thored more than 440 journal papers, 740 conference papers, 25 book chapters,
2 edited books, and 2 research monographs (h-index 135). His current research
focuses on learning from big data, wireless cognitive radios, and network sci-
ence with applications to social, brain, and power networks with renewables.
He is the (co-)inventor of 32 patents issued.

He is the (co-)recipient of nine Best Journal Paper Awards from the IEEE
Signal Processing (SP) and Communications Societies, including the G. Mar-
coni Prize Paper Award in Wireless Communications. He is also the recipi-
ent of the Technical Achievement Awards from the SP Society (2000), from
EURASIP (2005), a Young Faculty Teaching Award, the G. W. Taylor Award
for Distinguished Research from the University of Minnesota, and the IEEE
Fourier Technical Field Award (inaugural recipient in 2015). He is a Fellow of
EURASIP, and has served the IEEE in a number of posts, including that of a
Distinguished Lecturer for the IEEE-SP Society.

