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Abstract—The rising interest in pattern recognition and data
analytics has spurred the development of innovative machine
learning algorithms and tools. However, as each algorithm has
its strengths and limitations, one is motivated to judiciously
fuse multiple algorithms in order to find the “best” performing
one, for a given dataset. Ensemble learning aims at such high-
performance meta-algorithm, by combining the outputs from
multiple algorithms. The present work introduces a blind scheme
for learning from ensembles of classifiers, using a moment match-
ing method that leverages joint tensor and matrix factorization.
Blind refers to the combiner who has no knowledge of the ground-
truth labels that each classifier has been trained on. A rigorous
performance analysis is derived and the proposed scheme is
evaluated on synthetic and real datasets.

Index Terms—Ensemble learning, unsupervised, multiclass
classification, crowdsourcing.

I. INTRODUCTION

HE massive amounts of generated and communicated

data has introduced society and computing to a data
“deluge.” Along with the increase in the amount of data,
multiple machine learning, signal processing and data mining
algorithms have been developed. These algorithms are usually
tailored for different datasets, and they often operate under dif-
ferent assumptions. As such, finding an algorithm that works
“well” for a specific dataset can be prohibitively complex or
impossible.

Ensemble learning refers to the task of designing a meta-
learner, by combining the results provided by multiple dif-
ferent learners or annotators'; see Fig. 1. This meta-learner
should generally be able to outperform the individual learners.
In particular, ensemble classification refers to fusing the results
provided by different classifiers. Each classifier observes data,
decides one class, out of K possible, each of these data belong
to, and provides the meta-learner with those decisions. Such
a setup emerges in diverse disciplines including medicine [1],
biology [2], team decision making and economics [3], and has
recently gained attention with the advent of crowdsourcing [4],
as well as services such as Amazon’s Mechanical Turk [5],
CrowdFlower and Clickworker, to name a few. A related setup
appears in distributed detection [6], [7], where sensors collect
data, decide which one out of K possible hypotheses is in
effect, and transmit those decisions to a fusion center, that
makes a final decision. A similar task is also known as the
CEO problem or multiterminal source coding [8].

Panagiotis A. Traganitis and Georgios B. Giannakis are with the Dept.
of Electrical and Computer Engineering and the Digital Technology Center,
University of Minnesota, Minneapolis, MN 55455, USA.

Alba Pages-Zamora is with the SPCOM Group, Universitat Politécnica de
Catalunya BarcelonaTech, Spain.
Emails: {traga003 @umn.edu, alba.pages@upc.edu, georgios@umn.edu}

'The terms learner, annotator, and classifier will be used interchangeably
throughout this manuscript.

When training data are available, a meta-learner can learn
how to combine the results from individual classifiers, based
on these ground-truth labels [9]. One such approach is boost-
ing [10], where multiple classifiers are combined according to
their probability of error on the training set. In the boosting
regime, each classifier is also using information from the rest.
In many cases however, labeled data are not available to train
the combining meta-classifier, and/or, the individual classifiers
cannot be retrained, justifying the need for unsupervised (or
blind) ensemble learning methods. One such paradigm is
provided by crowdsourcing, where people are tasked with
providing classification labels. Accordingly, in a distributed
detection setup, the fusion center might not have access to the
sensors, once they have been deployed.

The present work puts forth a novel scheme for multiclass
blind ensemble classification, built upon simple concepts from
probability and detection theory, as well as recent advances
in tensor decompositions [11] and optimization theory, that
enable assessing the reliability of multiple annotators and
combining their answers. Under our proposed model, each
annotator has a fixed probability of deciding that a datum
belongs to class k, given that the true class of the datum is
k’. Assuming that annotators make decisions independent of
each other, the proposed method extracts these probabilities
from the first-, second-, and third-order statistics of annotator
responses. This becomes possible thanks to a joint PARAFAC
decomposition, which has been employed in a related problem
of identifying conditional probabilities to complete a joint
probability functions from its projections [12]. The crux of
our algorithm is a moment matching method, that leverages the
aforementioned PARAFAC decomposition approach to obtain
accurate estimates of annotator decision probabilities along
with class priors. These estimates are then provided to the
meta-detector to form the final estimate of data labels.

To assess the proposed scheme, extensive numerical tests,
on synthetic as well as real data are presented, comparing
the proposed approach to state-of-the-art binary and multiclass
blind ensemble classification methods. In addition, a rigorous
performance analysis is provided, which showcases the con-
ditions under which our novel method works.

The rest of the paper is organized as follows. Section II
states the problem, provides preliminaries for the proposed
approach along with a brief description of the prior art in
unsupervised ensemble classification. Section III introduces
the proposed scheme for multiclass unsupervised ensemble
classification, while Section IV analyses the performance of
the proposed method. Section V presents numerical tests to
compare our method with state-of-the-art ensemble classi-
fication algorithms. Finally, concluding remarks and future
research directions are given in Section VI. Detailed deriva-



Fig. 1. Unsupervised ensemble classification setup, where the outputs of
learners are combined in parallel.

tions are delegated to Appendix A, while proofs of theorems,
propositions and lemmata are deferred to Appendix B.
Notation: Unless otherwise noted, lowercase bold letters, x,
denote vectors, uppercase bold letters, X, represent matrices,
and calligraphic uppercase letters, &', stand for sets. The
(i, 7)th entry of matrix X is denoted by [X];;; and its rank
by rank(X); X7 denotes the tranpose of matrix X; R”
stands for the D-dimensional real Euclidean space, R, for
the set of positive real numbers, Z, for the set of positive
integers, E[] for expectation, and || - || for the f5-norm.
Underlined capital letters X denote tensors, vec(-) denotes the
vectorization operator, that stacks columns of a matrix into a
longer column vector; the vector outer product is denoted by
o, and, ® denotes the Khatri-Rao matrix product. For a 3-
mode tensor X, X(:,:,4),X(:,4,:), and X(4,:,:) denote the
i-th frontal, longitudinal and lateral slabs of X, respectively,
while X (4, 7,1) denotes the iji-th element of X.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data (possibly vectors)
{x,}N_, each belonging to one of K possible classes with
corresponding labels {y,}N_;, e.g. y,, = k if x,, belongs to
class k. The pairs {(z,,yn)} are drawn independently from
an unknown joint distribution D, and X and Y denote random
variables such that (X,Y) ~ D. Consider now M annotators
that observe {z,}2_;, and provide estimates of labels. Let
fm(xn) € {1,...,K} denote the label assigned to datum
Z, by the m-th annotator. All annotator responses are then
collected at a centralized meta-learner or fusion center. The
task of unsupervised ensemble classification is: Given only the
annotator responses { f,, (), m =1,..., M}N_,, we wish to
estimate the ground-truth labels of the data {y,}; see Fig. 1.

Similar to unsupervised ensemble classification, crowd-
sourced classification seeks to estimate ground-truth labels of
the data {y, } from annotator responses {f,,(zy)}, with the
additional caveat that each annotator m may choose to provide
labels for only a subset N,, < N of data.

A. Prior work

Probably the simplest scheme for blind or unsupervised
ensemble classification is majority voting, where the estimated
label of a datum is the one that most annotators agree
upon. Majority voting has been used in popular ensemble
schemes such as bagging, and random forests [13]. While

relatively easy to implement, majority voting presumes that
all annotators are equally “reliable,” which is rather unrealis-
tic, both in crowdsourcing as well as in ensemble learning
setups. Other blind ensemble methods aim to estimate the
parameters that characterize the annotators’ performance. A
joint maximum likelihood (ML) estimator of the unknown
labels and these parameters has been reported using the
expectation-maximization (EM) algorithm [14]. As the EM
algorithm does not guarantee convergence to the ML solution,
recent works pursue alternative estimation methods. For binary
classification, [15] assumes that annotators adhere to the “one-
coin” model, meaning each annotator m provides the correct
(incorrect) label with probability 6, (1 — d,,); see also [16]
when annotators do not label all the data, and [17] for an
iterative method.

Recently, [18], [19] advocated a spectral decomposition
technique of the second-order statistics of annotator responses
for binary classification, that yields the reliability param-
eters of annotators, when class probabilities are unknown,
while [20] introduced a minimax optimal algorithm that can
infer annotator reliabilities. In the multiclass setting, [17]
solves multiple binary classification problems. In addition,
[21] and [22] utilize third-order moments and orthogonal
tensor decomposition to estimate the unknown reliability pa-
rameters and then initialize the EM algorithm of [14].

This procedure however, can be numerically unstable, espe-
cially when the number of classes K is large, and classes are
unequally populated. Finally, all the methods mentioned in this
section employ ML estimation, which implicitly assumes that
the dataset is balanced, meaning classes are roughly equiproba-
ble. Another interesting approach is presented in [23], where a
joint moment matching and maximum likelihood optimization
problem is solved.

The present work puts forth a novel scheme for multiclass
blind ensemble classification, built upon simple concepts from
probability and detection theory. It relies on a joint PARAFAC
decomposition approach, which lends itself to a numerically
stable algorithm. At the same time, our novel approach takes
into account class prior probabilities to yield accurate esti-
mates of class labels. Compared to our conference precursor
in [24], here we do not require the prior probabilities to be
known, and we present comprehensive numerical tests, along
with a rigorous performance analysis.

B. Canonical Polyadic Decomposition/PARAFAC

This subsection will outline tensor decompositions, which
will be used in the following sections to derive the proposed
scheme. Consider a 3-mode I x J x L tensor X, which can
be described by a matrix in 3 different ways

XM = [vec(X(1,:,:)),...,vec(X(I,:,:))]  (la)
X® = [vec(X(;,1,:)),...,vec(X(:, J,:))] (1b)
XG) = [vec(X(:,:,1)),...,vec(X (5,5, L)) (lc)

where X is of dimension JL x I, X is IL x J and
X () is IJ x L. Under the Canonical Polyadic Decomposi-
tion(CPD)/Parallel Factor Analysis (PARAFAC) model [25],



X can be written as a sum of R rank one tensors (a.k.a.
factors)

R
X:ZarobTocr )
r=1

where a,,b,,c. are [ x 1,J x 1 and L x 1 vectors, respec-
tively. Letting A := [a1,...,ag],B = [b1,...,bg], and

C :=[cy, ..., cp| be the so-called factor matrices of the CPD
model, we write (2) compactly as
X =[[A,B,ClJr 3)
and (1) can be equivalently written as
XM =(CoB)AT (4a)
X® =(CoA)BT (4b)

X® =BoA)CT (4c)
where we have used the fact that for matrices A, B
and a vector ¢ of appropriate dimensions, it holds that
vec(Adiag(c)BT) = (B ® A)e. By vectorizing X, it is
easy to show that the vectorization of the entire tensor will be
of the form @ := vec(X) = vec(X®)) = (COB® A)1.

Accordingly, vectorizing X(!) or X(? produces different
vectorizations of the entire tensor, where the order of factor
matrices in the Khatri-Rao product is permuted. Recovery of
the factor matrices A, B and C, can be done by solving the
following non-convex optimization problem

[A,B,C] = argmin||X — [[A, B, CJ]zl[-
AB.C

&)

Similar to the matrix case, the Frobenius norm here can be

defined as || X|F == />, ;, X(i,7,1)% and as (4) is just a

rearrangement of the terms in X, it holds that

1XIIr = |XWlr = [1XP| 7 = XD . (6)
Typically, (5) is solved using alternating optimization (AO) or
gradient descent [11]. Multiple off-the-shelf solvers are avail-
able for PARAFAC tensor decomposition; see e.g. [26], [27].
Furthermore, depending on extra properties of X, constraints
can be enforced on the factor matrices, such as nonnegativity
and sparsity to name a few, which can be effectively handled
by popular solvers such as AO-ADMM [28]. Under certain
conditions, the factorization of X into A,B, and C, is
essentially unique, or essentially identifiable, that is A, B, and
C can be expressed as
A = APA,, B=BPA,, C=CPA, (7)
where P is a common permutation matrix, and A,, Ay, A,
are diagonal scaling matrices such that A, ApA, = I [11].
For more details regarding the PARAFAC decomposition and
tensors with more than 3 modes, interested readers are referred
to the comprehensive tutorial in [11] and references therein.

III. UNSUPERVISED ENSEMBLE CLASSIFICATION

Each annotator in our model has a fixed probability of
deciding that a datum belongs to class k', when presented
with a datum of class k. Thus, each annotator m can be
characterized by a so called confusion matrix I',,, whose
(K', k)-th entry is

[Conlik =T (k' k) =Pr(fu(X) =KY =k). @8

The K x K matrix I';,, has non-negative entries that obey the
simplex constraint, since 25:1 Pr(fm(X)=FkKY =k) =
1, for k = 1,..., K; hence, entries of each I';,, column sum
up to 1, that is, 1";;1 =1 and I',,, > 0. The confusion matrix
showcases the statistical behavior of an annotator, as each
column provides the annotator’s probability of deciding the
correct class, when presented with a datum from each class.
Before proceeding, we adopt the following assumptions.

Asl. Responses of different annotators per datum, are condi-
tionally independent, given the ground-truth label Y of
the same datum X; that is,

Pr(fi(X)=ki,..., fu(X) =km|Y = k)

M
= H Pr (fm(X) = km‘Y = k)
m=1

As2. Most annotators are better than random; e.g., most have
probability of correct detection exceeding 0.5 for K = 2.

Clearly, for annotators that are better than random, the largest
elements of each column of their confusion matrix will be
those on the diagonal of T',,; that is

[I‘m}kk > [Fm]k’ka for k‘/,k‘ = 1, o .,K.

Asl suggests that annotators make decisions independently of
each other, which is rather a standard assumption [14], [19],
[22]. Likewise, As2 is another standard assumption, used to
alleviate the inherent permutation ambiguity of the confusion
matrix estimates provided by our algorithm. Note that As2
is slightly more relaxed than the corresponding assumption
in [22], which splits annotators into 3 groups and requires
most annotators in each group to be better than random.

A. Maximum a posteriori label estimation

Given only annotator responses for all data, a straight-
forward approach to estimating their ground-truth labels is
through a maximum a posteriori (MAP) classifier [29]. In
particular, for datum X the MAP classifier is

LIX|)Pr(Y =k) (9

Ymap(X) = arg ke?ﬁ?ffK}
where L(Xlk) = Pr (fl(X) = k’l, ceey fM(X) = k]\4|y = k)
is the conditional likelihood of X. As annotators
make independent decisions, it holds that L(X|k) =
1Y, Pr(fm(X) = ky|Y = k), and thus the MAP classifier
can be rewritten as

M

argmax logmi + > 10g(Tpm(km, k) (10)
ke{l,...,K}

gmap(X) =

m=1



where 7, := Pr(Y = k). It is well known from detection
theory [29] that the MAP classifier (10) minimizes the average
probability of error P, given by

K
PeZZﬂ'kPr(g)MAp =k £klY =k). (11)

k=1
If all classes are equiprobable, that is m, = 1/K for all

k=1,..., K, then (10) reduces to the ML classifier. In order
to obtaln the MAP or ML classifier, {T',, }}/_, must be avail-
able, while in the MAP classifier case 7 := [m1,...,7x] " is

also required. Interestingly, the next section will illustrate that
{T',,}M_, and 7 show up in (and can thus be estimated from)
the moments of annotator responses.

B. Statistics of annotator responses

Consider each label represented by the annotators using
the canonical K x 1 vector ey, denoting the k-th column
of the K x K identity matrix I. Let f,,(X) denote the
m-th annotator’s response in vector format. Since f,,(X)
is just a vector representation of f,,,(X), it holds that
Pr(fm(X)=FK|Y =k) = Pr(f,(X) =ep|Y = k). With
“Ym,k denoting the k-th column of I',,, it thus holds that

Z (% Pr fm

k'=1
= TYm,k

E[f,,(X)[Y = K] = X)=KY =) (12)

where the first equality comes from the definition of con-
ditional expectation, and the second one because ej’s are
columns of I. Using (12) and the law of total probability, the
mean vector of responses from annotator m, is hence

Z]E

Upon defining the diagonal matrix IT := diag(7), the K x K
cross-correlation matrix between the responses of annotators
m and m’ # m, can be expressed as

R = E[f (XOf !, (X)]

_,EE:]E

= I‘md1ag( hiat

XY =k|Pr(Y =k)=T,m. (13)

XY =K E[f] (X)]Y = k] Pr (Y = k)

r,Ir, (14)

m/

where we successively relied on the law of total probability,

Asl, and (12). Consider now the K x K x K cross-correlation

tensor between the responses of annotators m, m’ # m and
" % m', m, namely

g Il — E[fm(X

mmm ) © i (X) © finr (X))
It can be shown that ¥, . obeys a CPD/PARAFAC model
[cf. Sec. II-B] with factor matrices I',,,, I';,,» and T',,,/; that is,
K
Ymimr = Z Tk Ym,k © Ym/ ,k © Ym! k
k=1
= [[anarm’vrm”]]K

15)

(16)

Note here that the diagonal matrix IT can multiply any of the
factor matrices I',,,, IT',,./, or, T')r.

With F,, := [f,(x1),fn(22),...,fm(zy)] the sample
mean of the m-th annotator responses can be readily obtained
as

1 1

n=1

a7

Accordingly, the K x K sample cross-correlation S,,,,, ma-
trices between the responses of annotators m and m’ # m,
are given by

N
1 1
S = v }Zjl (@) (@) = P (8)

Lastly, the sample K x K x K cross-correlation tensors
T,.mm» between the responses of annotators m,m’ # m

and m" # m, m’ are

N
m'm Il = NZ wn)of ”(wn) (19)

= %Fm (@] Fm’ (o) Fm”
Clearly, Spypy = S, T®  =1@ 10

In addition, as IV increases, the law of large numbers (LLN)
implies that, {gpt, }, {Smm}, and {L,,,..,» } approach their
ensemble counterparts in (13), (14), and (15).

Having available first-, second-, and third-order statistics
of annotator responses, namely {ftm }53_ 1, {Smm Y5l .i—.
and {T, . » f‘jm, 7o cstimates of (T, }M_| and =
can be readily extracted from them [cf. (13), (14), (15)].
This procedure corresponds to the method-of-moments estima-
tion [30]. Upon obtaining {I',, }_, and #, the MAP classifier
of Sec. III-A can be subsequently employed to estimate the
label for each datum. That is, forn =1,..., N,

M
Imap(Tn) = at:ig max} log 7y, + Z 108 Lo (fin (20), k)
kel m=1

(20)
where I, (K, k) = [Ty]wk, and 7y = [7];. The following
section provides an algorithm to estimate these unknown
quantities.

C. Confusion matrix and prior probability estimation

To estimate the unknown confusion matrices and prior
probabilities consider the following non-convex constrained
optimization problem,

mlIl hN({Fm}m 1,7

i9Y;
{Tm}m=1

™) 2y

where



Algorithm 1 Confusion matrix and prior probability estima-
tion algorithm

Input: Annotator responses {F,,}M_,, A\ > 0, v > 0;
maximum number of iterations I € Z
Output: Estimates of {I',,}»_, and #

1: Compute {ftm}, {Smm’}s {Lmm~ } using (17),
(18), andél9).

2: Initialize {T";;,} and 7 randomly.
3: do

4 form=1,...,M do

5: Update I',,, using (23)

6 e 1,

7. end for

8:  Update 7 using (22)

9. qlrev) g

10 44+ 4i+1

—_
—

: while not converged and ¢ < Ir
: Find permutation matrix P, such that the majority of
{T,, P}M_, satisfy As2.

—_
N

Algorithm 2 Unsupervised multiclass ensemble classification

Input: Annotator responses {F,, }M_;
Output: Estimates of data labels {7, }2_;
1: Find estimates {I',,,}»_, and # using Alg. 1
2. forn=1,...,N do
3:  Estimate label y,, using (20).
4. end for

hv({Tm}, Z it — T3

=1

m/>m

M
1
+ 5 Z ||Tmm m!’ [[FTVLH7I"!?L/?]‘-"!?LN]]K”%‘

1

m
m/’
m 0/

and the subscript N in hy denotes the number of data used
to obtain annotator statistics. Collect the set of constraints per
matrix to the convex set C := {I' €¢ REXK . T >0,T71 =
1}, where essentially each column lies on a probability sim-
plex, and let C, := {u € RE : w > 0,u"1 = 1} denote the
constraint set for 7.

As (21) is a non-convex problem, alternating optimization
will be employed to solve it. Specifically the alternating
optimization-alternating direction method of multipliers (AO-
ADMM) will be employed; see [28], and also [12] where a
similar formulation appears. Under the AO-ADMM paradigm,
hy is minimized per block of unknown variables {T',,} or 7
while the other blocks remain fixed, as in block coordinate
descent schemes. Solving for one block of variables with the
remaining fixed is a convex constrained optimization problem
under convex C and C, constraint sets. These optimization
problems are pretty standard and several solvers are available,

including proximal splitting methods, projected gradient de-
scent or ADMM [31]-[34]. Here, the solver of choice for each
block of variables will be ADMM.

The update for 7 involves minimizing hy with {T',,}M_,
fixed. Specifically, the following problem is solved

i - 22
min - gy, () (22)
where
v rev
9N ( Z |t = T3 + 2 [l — w73
1 2
"3 5" lsus (P 0 T)
m/>m
M
o
m>m
m!' >m/
Smm' = vec(Spmm')s  tmmmr = Vec(TE,??)w,m,,)
[cf. (4)], v 1is a positive scalar, and we have
used  vec(T,,diag(m)T)] ) = (Tpy ©T,) ™ and

VCC([[Fmdiag(ﬂ), L., I‘m”HK) (Fm// o, ® I‘m)ﬂ'
Note that gy . contains all of the terms in hy along with
(v/2)||m —m®¥)||2, which is included to ensure convergence
of the AO-ADMM iterations to a stationary point of (21) [28],
[35]. Here, 7 (PreY) denotes the estimate of 7 obtained by the
previous solutions of (22).

Accordingly per T',,, the following subproblem is solved
with {T',,/ }24, 4m and 7 fixed

Join, gN,m(Tm) (23)
where
1 v rev
INm(Tm) := §Hum — T3+ gHFm — V|5
1 M
+5 2 ISmm = Do 0L 7
m'#m
1 M
+5 2 T = (P © Ty )IL L
m’>m
’HL”>’"L,
T = [vec(T(1,:)), ..., vec(T(K, :,:))], TR de-

notes the estimate of I';,, obtained by the previous solution
of (23), v is a positive scalar, and we have used (6). Here,
gN,m contains all the terms of hy that involve I'), with
the additional term (v/2)|| Ty, — T'2™Y)||2., which ensures
convergence of the AO-ADMM iterations.

Detailed derivations of the ADMM iterations for solving
(23) and (22) are provided in Appendix A, while the AO-
ADMM is summarized in Alg. 1. The computational com-
plexity of the entire AO-ADMM scheme is approximately
O(IrM3K*), where Ir is the number of required iterations
until convergence (see Appendix A-C). The entire unsuper-
vised ensemble classification procedure is listed in Alg. 2.



D. Convergence and identifiability

Convergence of the entire AO-ADMM scheme for (21),
follows readily from results in [28, Prop. 1], stated next for
our setup.

Proposition 1. [28, Prop. 1] Alg. 1 for M > 3, and v > 0
converges to a stationary point of (21).

Having established the convergence of Alg. 1 to a stationary
point of (21) using Prop. 1, the suitability of the estimates
provided by Alg. 1 for the ensemble classification task needs
to be assessed. As (21) involves joint tensor decompositions,
under certain conditions the solutions {IA‘m}JAr of (21) will
be, similar to the PARAFAC decomposition of Sec. II-B,
essentially unique.

Thus, in order to assess the suitability of the estimates
provided by Alg. 1 the conditions under which the model
employed in (21) is identifiable have to be established. Luckily,
identifiability claims for the present problem can be easily de-
rived from recent results in joint PARAFAC factorization [12],
[36].

Lemma 1. Let {T'},}, ©* be the optimal solutions of (21),
and {T',,}, 7 the estimates provided by Alg. 1. If at least three
{T,, }M_| have full column rank, there exists a permutation
matrix P such that

I,P=T: m=1,....M, Pla=nxn"

Lemma 1 essentially requires that at least three annotators
respond differently to different classes, that is no two columns
of at least three confusion matrices are colinear. Possibly
more relaxed identifiability conditions could be derived using
techniques mentioned in [36].

Unlike the tensor decomposition mentioned in Sec. II-B,
here we have no scaling ambiguity on the confusion matrices
or prior probabilities. This is important because there are
infinite scalings, but finite permutation matrices since K is
finite. Under As2, P can be easily obtained since the largest
elements of each column of a confusion matrix must lie on
the diagonal for the majority of annotators. Each I',, can be
multiplied by a permutation matrix P,,, such that the largest
elements are located on the diagonal. The final P can be
derived as the most commonly occurring permutation matrix
out of {P,,}M_, .

Remark 1. While we relied on statistics of annotator re-
sponses up to order three, higher-order statistics can also be
employed. Higher-order moments however, will increase the
complexity of the algorithm, as well as the number of data
required to obtain reliable (low-variance) estimates.

Remark 2. Estimates of annotator confusion matrices {f‘m}
and data labels {¢,}, provided by Alg. 2, can be used to
initialize the EM algorithm of [14].

Remark 3. The orthogonal tensor decomposition used by
[21], [22] is a special case of the PARAFAC decomposition
employed in this work.

Remark 4. When 7 is known, (22) can be skipped, and
correspondingly steps 8 and 9 of Alg. 1.

E. Reducing complexity

When K and M are large Alg. 1 may require long
computational time to converge. Our idea in this case is to
split the annotators into L groups, and solve (21) for each
group. For simplicity of exposition, consider non-overlapping
groups, each with M, > 3 annotators (Zle M, = M).
Let u%), Sgﬁ) , and Ig?

m mm denote the sample statistics for

annotators in group ¢, and {I‘%)}f\,{il the confusion matrices
in group /.

For each group ¢ € {l,...,L} confusion matrices
{fSﬁ)}j\,{;l and prior probabilities 7(*) are estimated by solv-
ing a smaller version of (21), namely

min A (T} 7 ) (24)
{1“5,;5}%=1
sto Y>>0, 1YW =1T m=1,..., M,
) >0, 1770 =1
where
1 e
® _1 ) _ 2
hy ({Tm}, ) = 5 nz_:l [t — Tl

L el T
2
+3 > [ISyony — T IIT, 17

m=1
m’>m
1 M
4
+5 2 IS = [T L T, Do e
m=1
m!>m

m/'! >m/

Upon solving (24) for all L groups, estimates of {T',,,}M_,
are readily obtained, since we have assumed non-overlapping
groups. A final estimate of the prior probabilities 7t can be
obtained by averaging the L estimates {7} ;.

As (24) incurs a complexity of O(IM}K?), the worst-case
complexity of this approach is O(Ip; K3 Zle M}), where
Ips is the largest number of iterations required to converge
among all L groups. Since M3 = (Zngl My)3 > Zngl M}
this approach reduces the computational and memory overhead
significantly compared to Alg. 1. Note however, that this
method is expected to perform well when Asl and As2, as
well as the conditions outlined in Lemma 1 are satisfied for
all L groups of annotators, and N is sufficiently large. The
effectiveness of this complexity reduction scheme is tested in
Sec. V.

F. Application to crowdsourcing

While crowdsourced classification is a task related to ensem-
ble classification, it presents additional challenges. So far it has
been implicitly assumed that all annotators provide labels for
all {z,, }_,. In the crowdsourcing setup however, an annotator
m could provide labels just for a subset of NV,,, < N data.

Next, we outline a computationally attractive approach, that
takes into account only the available annotator responses. If
an annotator m does not provide a label for a datum, his/her
response is fp,(z) = 0 or f,,(z) = 0 in vector format. Let
Jm(x,) be an indicator function that takes the value 1 when



annotator m provides a label for z,,, and 0 when f,,(z,) =
0. To account for such cases, the annotator sample statistics
become

N
1
22[21 I (2n) nz::l
N T
Sy = 2zt I o) I () () (0) 5
Zn:l Jm(:L'")Jm/ (xn)
Im,m’m” (250)

_ Zn Jm(xn)Jm’(xn)Jm” (‘rn)fm<wn) o fpn (wn) o £ (wn) )
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Upon computing the modified sample statistics of (25), we
can obtain estimates of the confusion matrices and prior
probabilities in the crowdsourcing setup, via Alg. 1. Finally,
the MAP classifier in (20) has to be modified as follows

M
gmap(x) = argmax log 7y + Z T () 1og Ty (frn (2), k)

ke{l,...,K} %)
(

to take into account only the available annotator responses for
each z.

Having completed the algorithmic aspects of our approach,
we proceed with performance analysis.

m=1

IV. PERFORMANCE ANALYSIS

In this section, performance of the proposed method will be
quantified analytically. First, the consistency of the estimates
provided by Alg. 1 as N — oo will be established, followed
by a performance analysis for the MAP classifier of Sec. III-A.

A. Consistency of Alg. 1 estimates

As N — oo, the sample statistics in (17), (18), and (19)
approach their ensemble counterparts, and we end up with
the following optimization problem for extracting annotator
confusion matrices and prior probabilities

min o ({Tp }M_,, ) (27)
{TmIM_,
s.to 'mnyelC, m=1,...,M, weC(,.

Clearly, the optimal solutions to (27) are the true confusion
matrices and prior probabilities. As IV increases, it is desirable
to show that the solutions obtained from Alg. 1 converge to
the true confusion matrices and prior probabilities. To this
end, techniques from statistical learning theory and stochastic
optimization will be employed [37], [38]. Specifically, we
will establish the uniform convergence of hy to h., Which
implies the consistency of the solutions. Define the distance
between two sets A, B C R, for some g > 0, as D(A,B) =
sup,e a{infyes [z — yll2}-

The following theorem shows that as N increases, the
solutions of (21) approach those of (27).

Theorem 1. If S. and Sy denote the sets of solutions of
problems (27) and (21), respectively, then D(Sn,Sx) — 0, as
N — oo almost surely.

Under As2 and the conditions outlined in Lemma 1, Alg. 1
can recover the true solutions of (21) or (27). Then, by Thm. 1
we know that as NV — oo the solutions of (21) converge to the
solutions of (27), which together with the result of Lemma 1
implies the statistical consistency of the solutions of Alg. 1.
As a result, the estimates {T',,, }_,, and # from Alg. 1 will
converge to their true values w.p. 1 as N — oo.

B. MAP classifier performance

With consistency of the confusion matrix and prior prob-
ability estimates established, the performance of the final
component of the proposed algorithm has to be studied. The
behavior of the MAP classifier of Sec. III-A can be quantified
in terms of its average probability of error

K
Pe =) Pr(juap =k # k[Y = k) Pr(Y = k)
k=1
Here, a well-known asymptotic result for distributed binary
detection under the MAP detector [6] is extended to the
multiclass case.

Theorem 2. Under Asl, and given {T',,}M_, and , there
exist constants o > 0,3 > 0 such that the MAP classifier of
Sec. III-A satisfies

P, < ae BPM.

In words, Theorem 2 suggests that when accurate estimates
of {T',,}M_, and = are available, the error rate decreases at
an exponential rate with the number of annotators M.

In order to validate our theoretical results and evaluate the
performance of the proposed scheme, the following section
presents numerical tests with synthetic and real data.

V. NUMERICAL TESTS

For K > 2, Alg. 2, using both MAP and ML criteria in
step 3, (denoted as Alg. 2 MAP and Alg. 2 ML respectively) is
compared to majority voting, the algorithm of [17] (denoted
as KOS), and the EM algorithm initialized both with majority
voting and with the spectral method of [22] (denoted as EM
+ MV and EM + Spectral, respectively). For K = 2, Alg. 2
is also compared to the binary ensemble learning methods
of [19], [20] and [16], denoted as SML, TE and EigenRatio,
respectively. For synthetic data, the performance of “oracle”
estimators, that is MAP/ML classifiers with true confusion
matrices of the annotators, and the true class priors, is also
evaluated for benchmarking purposes. The metric utilized in
all experiments is the classification error rate (ER), defined as
the percentage of misclassified data,

# of misclassified data
N

where ER = 100% indicates that all N data have been
misclassified, and ER = 0% indicates perfect classification

ER = x 100%,




accuracy. For synthetic data, the average confusion matrix and
prior probability estimation error is also evaluated

M A M
- 1 Hrm — I‘m‘ll 1 -
Eom = — —_—— = — [
M mZ: ITnli M mZ:

Ep = |7 —7|1.

All results represent averages over 10 independent Monte
Carlo runs, using MATLAB [39]. In all experiments, the
parameters A and v of Alg. 1 are set as suggested in [28], [35].
Vertical lines in some figures indicate standard deviation. For
some experiments, classification times (in seconds) required
by the ensemble algorithms are also reported. Note that
classification times for majority voting and oracle estimators
are not reported as the time required by these methods is
negligible compared to the rest of the algorithms.

A. Synthetic data

For the synthetic data tests, N ground-truth labels {y,, }2_,,
each corresponding to one out of K possible classes, were
generated i.i.d. at random according to 7, that is y, ~ T,

for n = 1,...,N. Afterwards, {I',,}M_, were generated
at random, such that '), € C, for al m = 1,..., M,

and annotators are better than random, as per As2. Then
annotators’ responses were generated as follows: if y, = k,
then the response of annotator m will be generated randomly
according to the k-th column of its confusion matrix, v,
[cf. Sec. IT, that is f,(zn) ~ Ym, k-

Tab. I lists the classification ER of different algorithms, for
a synthetic dataset with K = 2 classes with prior probabilities
m = [0.9003,0.0997] T, and M = 10 annotators. Tab. II lists
the results for a similar experiment, with K = 2 classes,
priors w = [0.5856,0.4144]T, and M = 10 annotators,
while Tab. III shows the clustering time required by all
algorithms. Note that when the class probabilities are similar,
the ML and MAP classifiers perform comparably as expected.
Furthermore, majority voting gives good results for a reduced
number of instances N. Fig. 2 depicts the average estimation
errors for the confusion matrices and prior probabilities in the
two aforementioned experiments. Clearly, as IV increases, the
proposed classifiers approach the performance of the oracle
ones, and as suggested by Thm. 1, the estimation error for the
confusion matrices and prior probabilities approaches 0.

The next synthetic data experiment investigates how the
proposed method performs when presented with multiclass
data. Furthermore, to showcase that accurate estimation of
m is beneficial, we also compare against Alg. 2 with =
fixed to the uniform distribution, i.e. # = 1/K (denoted
as Alg. 2 - fixed w.) Fig. 3 shows the simulation results
for a synthetic dataset with K = 5 classes, prior proba-
bilities m = [0.2404,0.2679,0.0731,0.1950,0.2236] ", and
M = 10 annotators, while Fig. 4 shows the simulation results
for a synthetic dataset with K = 7 classes, priors @ =
[0.2347,0.0230, 0.0705,0.1477,0.2659, 0.0043,0.2539] T and
M = 10 annotators. Tabs. IV and V show classification
times for the K = 5 and K = 7 experiments, respectively.
Fig. 5 shows the average estimation errors for the confusion

matrices and prior probabilities in the two aforementioned
multiclass experiments. Note that for K = 5 for small
values of N and K = 7 the EM+Spectral approach of [22]
suffers from numerical issues during the tensor whitening
procedure, which explains its worst classification ER and
slow runtimes. Here, the proposed approaches exhibit similar
behavior to the binary case, as expected from Thm. 1; as the
number of data increases, their performance approaches the
clairvoyant “oracle” estimators, and the estimation accuracy
of the confusion matrices and prior probabilities increases. In
addition, our methods outperform the competing alternatives
for almost all values of N. Here we also see that running
Alg. 2 with fixed w = 1/K produces lower quality estimates
than Alg. 2 that solves for 7. Specifically, Alg. 2 with fixed 7
performs similarly to the EM algorithm when initialized with
majority voting.

Next, we evaluate how the number of annotators M af-
fects the classification ER, for fixed N = 10°. Fig. 6
depicts an experiment for K = 3 classes with pri-
ors m = [0.2318,0.4713,0.2969] ", while Fig. 7 shows
an experiment for K = 5 classes with priors @ =
[0.3596, 0.1553,0.1229,0.3258,0.0364] T. Tabs. VI and VII
list classification times for the ' = 3 and K = 5 experiments,
respectively. Fig. 8 plots the results of an experiment with
K = 5 classes with the same priors as those in Fig. 7 and
N = 5,000 data, for varying number of annotators. The
average estimation error for the confusion matrices and prior
probabilities, for the aforementioned tests, is shown in Fig. 9.
As expected from Thm. 2, the classification ER decreases as
the number of annotators increase, for all methods considered.
In addition, our proposed algorithm outperforms the competing
alternatives for all values of M. Furthermore, the results
of Fig. 8 indicate that when the number of data is small,
increasing the number of annotators provides a boost to the
classification performance. Fig. 9 shows another interesting
feature: as the number of annotators increases the estimation
accuracy of {T'y,} and w also increases.

The following experiment evaluates the effectiveness of
the complexity reduction scheme of Sec. III-E, for a dataset
with M = 30 annotators with K = 3 classes with priors
m = [0.3096,0.3416,0.3488] T, and a varying number of
data N. Annotators are split into L = {1,2,4,5} non-
overlapping groups. Fig. 10 shows the classifcation ER and
time (in seconds) required for the ensemble classification
task, for different group sizes. When N is large we observe
similar ER for all L, however larger number of groups require
significantly less time than L = 1.

In all aforementioned experiments, all annotators were gen-
erated to be better than random. The next experiment, investi-
gates the effect of adversarial annotators, that is annotators for
who the largest values of the confusion matrix are not located
on its diagonal. Let a denote the percentage of adversarial
annotators. Fig. 11 shows the classification ER on a synthetic
dataset with K = 3, N = 10%, m = [0.31,0.34,0.35] T and
M = 10 annotators, for varying .. While all approaches, with
the exception of majority voting, seem to be robust to a small
number of adversarial annotators, Alg. 2 can handle values of
a of up to 50%, which speaks for the potential of the novel



Algorithm N=100 | N=1000 | N=10% | N =10°

Majority Voting 6.3 7.08 7.04 7.13
KOS 27.70 33.33 32.21 32.53
EigenRatio 6.30 5.75 5.69 5.64
TE 4.20 4.91 4.61 4.67

SML 15.80 11.38 11.82 12.26

EM + MV 21.2 27.67 26.50 27.01
EM + Spectral 17.7 27.72 26.50 27.01
Alg. 2 ML 6.30 2.70 1.97 1.87
Alg. 2 MAP 2.40 1.40 1.13 1.11
Oracle ML 1.6 2.05 1.81 1.86
Oracle MAP 1.1 1.31 1.11 1.11

TABLE I

CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR
PROBABILITIES 7r = [0.9003,0.0997] T AND M = 10 ANNOTATORS.

Algorithm N=100 [ N=1000 | N=10* | N=10°

Majority Voting 8.10 8.27 8.27 8.19
KOS 8.30 6.46 6.65 6.58
EigenRatio 7.40 6.35 6.39 6.21
TE 10.20 6.04 6.35 6.20
SML 13.10 8.47 4.66 4.61

EM + MV 6.60 5.15 4.93 4.87
EM + Spectral 6.60 5.15 4.93 4.87
Alg. 2 ML 6.50 4.86 4.66 4.61
Alg. 2 MAP 6.20 4.85 459 451
Oracle ML 4.10 4.86 4.66 4.61
Oracle MAP 3.90 4.81 4.58 4.50

TABLE II

CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR
PROBABILITIES 7 = [0.5856,0.4144] T AND M = 10 ANNOTATORS.

approach in adversarial learning setups [40], [41].

B. Real data

Further tests were conducted using real datasets. In this case,
in addition to other ensemble learning algorithms, the proposed
methods are also compared to the single best annotator, that is
the classifier that exhibited the highest accuracy. For all exper-
iments, a collection of M = 15 classification algorithms from
MATLAB’s machine learning toolbox were trained, each on a
different randomly selected subset of the dataset. Afterwards,
the algorithms provided labels for all data in each dataset. The
classification algorithms considered were k-nearest neighbor
classifiers, for varying number of neighbors k and different
distance measures; support vector machine classifiers, utilizing
different kernels; and decision trees with varying depth. The

Algorithm N=100 [ N=1000 | N=10% | N=10°
KOS 0.013 0.004 0.005 0.05
EigenRatio 0.003 0.002 0.005 0.03
TE 0.003 0.001 0.012 0.10
SML 0.04 0.09 0.76 11.98
EM + MV 0.01 0.02 0.12 1.47
EM + Spectral 1.48 1.55 1.58 3.00
Alg. 2 1.82 2.32 2.05 3.01

TABLE III

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH
K = 2, PRIOR PROBABILITIES 7 = [0.5856,0.4144] T AND M = 10
ANNOTATORS.
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Fig. 2. Average estimation errors of confusion matrices (top); and prior
probabilities (bottom), for two synthetic datasets with K = 2 and M = 10
annotators
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Fig. 3. Classification ER for a synthetic dataset with K = 5 classes, priors
7 = [0.2404, 0.2679,0.0731,0.1950, 0.2236] T and M = 10 annotators.

real datasets considered are the MNIST dataset [42], and 5
UCI datasets [43]: the CoverType database, the PokerHand
dataset, the Connect-4 dataset, the Magic dataset and the Dota
2 dataset. MNIST contains N = 70,000 28 x 28 images
of handwritten digits, each belonging to one of K = 10
classes (one per digit). For this dataset, each classification
algorithm was trained on subsets of 2,000 instances. The
CoverType dataset consists of N = 581,012 data belonging
to K = 7 classes. Each cluster corresponds to a different
forest cover type. Data are vectors of dimension D = 54 that
contain cartographic variables, such as soil type, elevation,
hillshade etc. Here, each classification algorithm was trained
on a subset of 1,000 instances. The PokerHand database
contains N = 10° data belonging to K = 10 classes. Each
datum is a 5-card hand drawn from a deck of 52 cards, with
each card being described by its rank and suit (spades, hearts,
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Fig. 5. Average estimation errors of confusion matrices (top); and prior

probabilities (bottom) for two synthetic datasets with K = 5 and K = 7
classes and M = 10 annotators

diamonds, and clubs). Each class represents a valid Poker
hand. For this experiment the 3 most prevalent classes are
considered. Here, each classification algorithm was trained on
a subset of 10, 000 instances. Connect-4 contains N = 67,557
vectors of size 42 x 1, each representing the possible positions
in a connect-4 game. These vectors belong to one of K = 3
classes, indicating whether the first player is in a position to
win, lose, or, tie the game. Here, each classification algorithm
was trained on a subset of 300 instances. The Magic dataset
contains N = 19,020 data captured by ground-based atmo-
spheric Cherenkov gamma-ray detector. The dataset contains
K = 2 classes, each indicating the presence or abscence of
Gamma rays. For this dataset, each classification algorithm
was trained on subsets of 100 instances. The Dota 2 dataset
contains N = 102,944 data, corresponding to different Dota

Algorithm N=1000 | N=10* [ N=10° [ N =10°
KOS 0.016 0.02 0.17 2.03
EM + MV 0.04 0.27 3.43 37.27
EM + Spectral 119.35 124.94 119.35 160.54
Alg. 2 28.27 40.23 36.08 47.17
Alg. 2 fixed 13.34 6.23 6.11 18.16
TABLE IV

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH
K = 5 CLASSES, PRIORS 7 = [0.2404, 0.2679,0.0731, 0.1950, 0.2236] T
AND M = 10 ANNOTATORS.

Algorithm N=1000 | N=10" [ N=10° [ N = 10°
KOS 0.017 0.025 0.23 2.83
EM + MV 0.05 0.30 4.80 48.87
EM + Spectral 619.61 616.47 621.30 676.95
Alg. 2 46.19 52.66 54.50 69.99
Alg. 2 fixed 7 34.94 38.88 39.11 40.17
TABLE V

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH
K = 7 CLASSES, PRIORS
7 = [0.2347,0.0230, 0.0705,0.1477, 0.2659, 0.0043, 0.2539]T AND
M = 10 ANNOTATORS.

2 games played, between two teams of 5 players. The dataset
is split into K = 2 classes, corresponding to the team that
won the game. Each datum consists of the starting parameters
of each game, such as the game type (ranked or amateur) and
which heroes were chosen from the players. Finally, for this
dataset, each classification algorithm was trained on subsets
of 5,000 instances.

Table VIII lists classification ER results for the real data
experiments. For most datasets, the proposed approaches out-
perform the competing alternatives, as well as the single-best
classifier. For the MNIST dataset the EM methods of [22]
outperform our approaches. Nevertheless, Alg. 1 comes very
close to the performance of the EM schemes and if the
confusion matrix estimates {I',,}M_, of Alg. 2 are refined
using EM, we also reach a classification ER of 6.23%.

C. Crowdsourcing data

In this section, the proposed scheme of Sec. III-F is eval-
uated on crowdsourcing data. The datasets considered are
the Adult dataset [44], the TREC dataset [45] and the Bird
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Fig. 6. Classification ER for a synthetic dataset with K = 3 classes, priors
7 = [0.2318,0.4713,0.2969] T and N = 105 data.



Dataset l K H Single best MV EigenRatio l TE l SML l KOS l EM + MV | EM + Spectral | Alg. 2 MAP | Alg. 2 ML
MNIST 10 7.29 7.0986 - - - 9.84 6.23 6.23 6.3986 6.3843
CoverType 7 29.89 28.642 - - - 31.13 58.68 95.62 28.574 28.913
PokerHand 3 41.95 43.365 - - - 49.62 53.62 78.38 39.436 39.339
Connect-4 3 29.17 31.636 - - - 32.33 44.27 61.20 26.176 26.86
Magic 2 21.32 21.73 26.25 26.28 21.27 21.29 21.17 21.14 20.77 20.98
Dota 2 2 41.27 42.174 45.55 45.75 | 40.568 | 40.59 40.80 59.19 40.497 40.549
TABLE VIII
CLASSIFICATION ER FOR REAL DATA EXPERIMENTS WITH M = 15.
Algorithm M=5| M=10 | M=20 | M =30 80
KOS 0.44 0.96 4.13 5.29 z::g g mﬁp
g.
EM+ MV | 1148 | 21.67 | 4188 | 62.19 e e
EM + Spectral 21.92 32.77 53.88 75.24 60 |- -x-KOS
Alg. 2 4.85 15.43 83.73 271.71 ~*-EM - MV
EM - Spectral
-¢-Oracle MAP
TABLE VI -%-Oracle ML

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH
K = 3 CLASSES, PRIORS 7 = [0.2318,0.4713,0.2969] T AND N = 106
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Fig. 7. Classification ER for a synthetic dataset with K = 5 classes, priors
7 = [0.3596, 0.1553,0.1229, 0.3258, 0.0364] T and N = 10° data.

dataset [46]. In most datasets, only a small set of ground-truth
labels was available, and the performance of each method was
evaluated on this set.

For the Adult dataset, annotators were tasked with classify-
ing N = 11,028 websites into K = 4 different classes, using
Amazon’s Mechanical Turk [5]. The 4 classes correspond to
different levels of adult content of a website. To maintain
reasonable computational complexity, we only considered an-
notators that had given labels for all 4 classes and provided
labels for more than 370 websites.

For the TREC dataset, annotators from Amazon’s Mechan-
ical Turk [5] were tasked with classifying N = 19,033

Algorithm M=5 | M=10 | M =20 | M =30
KOS 0.85 1.90 8.99 11.11
EM + MV 18.47 34.68 67.14 99.82
EM + Spectral | 136.30 153.35 186.99 221.50
Alg. 2 12.92 28.89 150.33 471.22
TABLE VII

CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH
K = 5 CLASSES, PRIORS 7 = [0.3596,0.1553,0.1229, 0.3258, 0.0364}T
AND N = 106 DATA.
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Fig. 8. Classification ER for a synthetic dataset with K = 5 classes, priors
7 = [0.3596, 0.1553,0.1229, 0.3258, 0.0364] T and N = 5,000 data.
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Fig. 9. Average estimation errors of confusion matrices (top); and prior
probabilities (bottom) for two synthetic datasets with X' = 3 and K = 5
classes and N = 109 data, and a synthetic dataset with K = 5 classes and
N = 5,000 data.

websites into K = 2 classes: “relevant” or “irrelevant” to some
search queries. Again, to maintain reasonable computational
complexity for our approach, we only considered annotators
that had given labels for both classes and provided labels for
more than 708 websites.
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Fig. 11. Classification ER for a synthetic dataset with K = 3 classes,
priors 7T = [0.31,0.34,0.35] ', N = 10, M = 10 annotators and varying
percentage of adversarial annotators .

For the bird dataset, annotators from Amazon’s Mechanical
Turk were tasked with classifying N = 108 images of birds
into K = 2 classes: “Indigo Bunting” or “Blue Grosbeak”.

Table IX lists classification ER for the two crowdsourcing
experiments. The column “Labels” denotes the number of
ground-truth labels available. As with the previous experi-
ments, our approach exhibits lower classification ER than
the competing alternatives, in both multiclass and binary
classification settings.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced a novel approach to blind ensemble
and crowdsourced classification that relies solely on anno-
tator responses to assess their quality and combine their
answers. Compact expressions of annotator moments, based on
PARAFAC tensor decompositions were derived, and a novel

moment matching scheme was developed using AO-ADMM.
The performance of the novel algorithm was evaluated on real
and synthetic data.

Several interesting research venues open up: i) Distributed
and online implementations of the proposed algorithm to fa-
cilitate truly large-scale ensemble classification; ii) multiclass
ensemble classification with dependent classifiers, along the
lines of [47]; iii) ensemble clustering and regression; and iv)
further investigation into the theoretical and practical implica-
tions of adversarial annotators along with possible remedies.

APPENDIX A
ALGORITHM DERIVATION

A. ADMM subproblem for
Consider the following problem that is equivalent to (22)

I}Tlidr)l gn.= (@) + pc, () (28)

: w

where ¢ is an auxiliary variable used to capture the smooth
part of the optimization problem, and pc, is an indicator
function for the constraints of (22), namely

s.to

0 ifueC
pe, () = P 29)
oo otherwise.
The augmented Lagrangian of (28) is then
A
(= 9N (®) + pe,(m) + 5w = o+ 0[5 (30)

where the K x 1 vector § contains the scaled Lagrange
multipliers for subproblem (22). Per ADMM iteration, (30) is
minimized w.r.t. ¢ and 7 before performing a gradient ascent
step for . Specifically, the update for ¢ at iteration 7 + 1 is
obtained by setting the gradient of ¢ w.r.t. ¢» to 0, and solving
for ¢; that is,

M M
<(/\ I+ Y TITm+ Y K Kom
m=1 m=1

m/>m

M
+ Z (Fm” O] Km’m)—r(]-‘m” O] Km’fﬂ)>¢[l + ]‘}

m=1
m/>m
m!! >m/
M M
§ : T § : T
= lel’m + Km’msmm’ + l/ﬂ_(prev)
m=1 m=1

m/>m

+ A li] +6[) + Y (T © K)o, (31)
7’:;752#1
m''>m

where K, := ', © I';,v. Brackets here indicate ADMM

iteration indices. Accordingly, the update for 7 is given by
wli+1] = Pe, (¢li + 1] — 8[i]) (32)

where P, is the projection operator onto the convex set Cp;
that is, @[i + 1]—4][i] is projected onto the probability simplex.



Dataset N l K l M l Labels H MV EigenRatio l TE l SML l KOS l EM + MV | EM + Spectral | Alg. 2 MAP | Alg. 2 ML
Adult 11,028 | 4 | 38 347 36.023 - - - 80.98 40.63 38.90 33.429 34.87
TREC 19,033 | 2 | 23 | 2,275 50.002 43.34 48.97 | 48.44 | 54.68 56.04 40.62 37.846 39.824

Bird 108 2 | 39 108 24.07 27.78 17.59 | 11.11 | 11.11 11.11 10.19 10.19 10.19
TABLE IX
CLASSIFICATION ER FOR CROWDSOURCING DATA EXPERIMENTS.
This projection can be performed using efficient methods [48].  Accordingly, the update for I',,, is given by
Finally, a gradient ascent step is performed for & as ) ) .
Loli+1]=Pe(®'[i + 1] — Ayli]) (37

Oli + 1] = 8[i] + w[i + 1] — p[i + 1]. (33)

Note that products of the form K, K, = (T) ©
T,.) (T, ® T,) can be efficiently computed by using
the following observation: (I',, ® T'\) (T, © Tp) =
(T,).T)+(T ) T,0), where * denotes the elementwise matrix
product [11]. In addition, the products I‘LI‘m do not have
to be explicitly computed each time (28) is solved, as they
can be cached every time (34) is solved. As suggested in
[28], the maximum number of ADMM iterations, I, for each
subproblem can be set to be small, e.g. I = 10.

B. ADMM subproblem for T',,

Proceeding along similar lines with the previous subsection,
consider the following problem which is equivalent to (23)

gN,m(erLa ¢') (34)
r,=&"

min
m

s.to

where ® is an auxiliary variable used to capture the smooth
part of the optimization problem in (23), and

gN,m(I"rru q)) - QN,m(’I’T) + pC(F7rL)-

The augmented Lagrangian of (34) is then

A
él = gN,m(erLy ¢') + *Hrm - ‘I>T + Am”%«“ (35)

2

where the K x K matrix A,, contains the scaled Lagrange
multipliers for subproblem (23), and A is a positive scalar.
As in the previous section, per ADMM iteration, (35) is
minimized with respect to (w.r.t.) ® and I,,, before performing
a gradient ascent step for A,,. Specifically, the update for ® at
iteration ¢ 4 1 is obtained by setting the gradient of ¢/ w.r.t. ®
to 0, and solving for ®. Since S,y =S, and I =11T,
it is easy to see that the update w.r.t. ® can be expressed as

M
<(A+y)1+mﬁ + ) I, T, II

m’'#m

+ ) HK;,,m,Kmum,H> i+ 1]
m’>m
m!!>m/

M
=mph+ Y OO0 Spm+ Y OKL T
m’'#m m’>m
m!! >m/!

+oDPre T N[ + Afi]) T (36)

where P is the projection operator onto the convex set
C with each column of ®'[i + 1] — A,,[i] projected onto
the probability simplex. Finally, a gradient ascent step is
performed per A,,, as follows

Apli+1]=An[]+Tuli+1]—@ [i+1].  (38)

C. Algorithm complexity

For the ADMM subproblems of Apps. A-A and A-B the
complexity per iteration is dominated by the matrix inversions
required in (31) and (36) respectively, that is O(K?). However,
in order to instantiate the left- and right-hand sides of (31),
O(M3K?) and O(M3K*) operations are required respec-
tively. These operations have to be performed only once and
cached to be used in each iteration. The increased complexity
of the right-hand side is due to the matricized tensor times
Khatri-Rao product (MTTKRP) (T, © Kprm) " trmrme-
These MTTKRPs however, can be computed efficiently due
to the Khatri-Rao structure, and are easily parallelizable, see
e.g. [49]. This brings the overall complexity of App. A-A to
O(M3K* + IK?), with I denoting the number of ADMM
iterations. Accordingly, the operations required to instantiate
the left- and right-hand sides of (36) are O(M?K?) and
O(M?K*) respectively. This brings the total complexity of
App. A-B to O(M?K* + IK?). As the number of iterations
for the ADMM algorithms of Apps. A-A and A-B is set
to be small the overall computational complexity of Alg. 1
is O(IrM3K?*), where It is the number of AO-ADMM
iterations required until convergence.

Furthermore, the number of tensors T',,,,./,,~ required to
solve (21) is (Jg ) , while the number of matrices S,,,,,’ required
is (Aj ), and the number of vectors g, is M. Thus, for K
classes, the memory needed for storing all the tensors, ma-
trices and vectors involved is O ((]g[) K3+ (Y)K? + MK)
Finally, computing the cross-correlation tensors, matrices and
mean vectors of annotators incurs a complexity of O(M3K N)
as each of the annotator response matrices {Fm}%:1 is of size
K x N and has N nonzero entries.

APPENDIX B
PROOFS

Proof of Lemma 1. Suppose that rank(I',,) = rank(T',,,/) =
rank(T,,») = K, for some m # m/,m” and m' # m’.
Then by [11, Thm. 2] the decomposition of ¥ . . . is
essentially unique. Invoking [36, Prop 4.10] the joint tensor



decomposition of (21) is essentially unique, meaning the
solutions of (21) will be of the form

[ =T%PA,, m=1,....M, #=AP'x

where P is a permutation matrix, and {A,,}M_,, A are
diagonal scaling matrices such that A, A,/ A, = A1 for
m #m/,m", m' #m”. Since {I',} and # are the solutions
to (21), they must satisfy the constraints of the optimization
problem; that is f‘m €C m=1,...,M and 7 € C,,.

Since I'*, "1 =1 for all m, and PT1 = 1, we have

IJ1=1=A,P' I 1=1=A,1=1m=1,....M

m
which implies that A,, = I for m = ., M. Since
A A Ay = A7 for m #m/,m”, m' #m', we arrive
at A = L Thus, the constraints of (21) solve the possible
scaling ambiguities. Letting P=PT =P, we arrive at the
statement of the lemma. O

Proof of Theorem 1. For notational convenience, collect all
optimization variables in 8, and denote the aggregated con-
straint set as C. Note that C is a compact set, since the
probability simplex is compact and C is an intersection of
simplexes. Since hy (@) is continuous and C is compact,
hy (@) is uniformly continuous on C, that is, Ve > 0 there
exists a neighborhood V of 6 such that

sup |hn(0) — hy(0)] < /2. (39)

focvnc

Due to the compactness of C there exist a finite number of

points @1,...,0; € C:, with corresponding neighborhoods
Vi,..., YV, that cover C, that is
sup |hn(0) — hn(0))] <e/2, forl=1,...,L. (40)
S%1a'

Invoking the LLN, it is straightforward to show that, for
sufficiently large N, w.p. 1

‘hN(ag)—hoo(eg)‘ <E/2, for{=1,...,L. 41)
Using the triangle inequality along with (40), and (41) we have
sup [hn () — hoo(0)] <&, 42)

ocC

that is, for sufficiently large N, hy converges uniformly to ho
on C. Then, by [38, Thm. 5.3] we have that D(Sy,S.) = 0
as N — oo. O

Proof of Theorem 2. Let L(x|k) = L(z|k)my, with L(x|k)
as defined in Sec. III-A. Then the average probability of error
of the MAP detector can be expressed as

K
P, = Z Pe,kﬂ'k
k=1

where Po = Pr(L(z|k) < L(z|k'),k" # k|Y = k). By
applying a union bound on Py it is easy to show that

ek < Z PI‘
k'#k

Defining Pz (k k') := Pr(L(z|k) < L(z|k)|Y = k),
substituting (44) in (43) and grouping terms we have

(43)

L(z|k) < L(z|K")|Y = k). (44)

K K

Pe <Y > miPp(k k) + muPr (K k).
k=1k'>k

Consider now the binary hypothesis testing problem between

classes k and k' # k. The average probability of error of a

MAP detector for the binary problem is

(45)

Tk Tk’

Po(k, k') = Pr(k k) + —* (K k). (46
() = — TP k) + Py B, (46)
Then

Wkpi(k,k,)+ﬁklpi(l€/,k’)

= (mp + 7 )Pe(k, k') < Pe(k, k') 47)

where the inequality is due to 7w + 7 < 1. Combining (47)
with (45) yields

(48)

K K
<Y Po(k, k)
k=1k'>k

Therefore, we have upper bounded the average probability
of error of our M-class hypothesis testing problem by the av-
erage error probabilities of binary hypothesis testing problems.
For the binary hypothesis testing problem between classes k
and k' # k, collect all annotator responses in an M x 1 vector
f and define two complementary regions R and R as

R ={f: L(z|k) < L(z|k')} (49a)
C = {f:L(z|K) < L(z|k)}. (49b)

Upon defining 7 v = ﬂki’;k/ and using (49), (46) can be
rewritten as

P. (k k’) =Pr(f € R|Y = k)ipp +Pr(f € RE)Y = k)7

H Pr
+ H Pr(|

where the second equality follows from As. 1 and R,,, RS
denote the subsets of R, RY corresponding to the m-th entry
of f, respectively. Now let

m S Rm‘Y k)ﬂ-k Kk’

flm € RE|Y = k) ps 4 (50)

m* = arg mnz%XPr([f]m ERM|Y = k) M7y (5D
+ Pr([flm € RS|Y = k)M 71 4
and define
Po(k, k') = Pr([flm- € Ryn-[Y = k)M
+ Pr([f]m- € RE|Y = KM g 4. (52)
Clearly P.(k, k') < P.(k,k’). From standard results in detec-

tion theory (52) can be bounded as [50], [51]
P.(k, k") < exp(—Md(pl|q)) (53)

where p := Pr([flm: € Rm-|Y = k), ¢ := Pr([f]m- €
= k'), and d(pl||q) denotes the Chernoff information
between pdfs p and g. Combining (53) with (48) yields the
claim of the theorem. U
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