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Abstract—The rising interest in pattern recognition and data
analytics has spurred the development of innovative machine
learning algorithms and tools. However, as each algorithm has
its strengths and limitations, one is motivated to judiciously
fuse multiple algorithms in order to find the “best” performing
one, for a given dataset. Ensemble learning aims at such high-
performance meta-algorithm, by combining the outputs from
multiple algorithms. The present work introduces a blind scheme
for learning from ensembles of classifiers, using a moment match-
ing method that leverages joint tensor and matrix factorization.
Blind refers to the combiner who has no knowledge of the ground-
truth labels that each classifier has been trained on. A rigorous
performance analysis is derived and the proposed scheme is
evaluated on synthetic and real datasets.

Index Terms—Ensemble learning, unsupervised, multiclass
classification, crowdsourcing.

I. INTRODUCTION

THE massive amounts of generated and communicated

data has introduced society and computing to a data

“deluge.” Along with the increase in the amount of data,

multiple machine learning, signal processing and data mining

algorithms have been developed. These algorithms are usually

tailored for different datasets, and they often operate under dif-

ferent assumptions. As such, finding an algorithm that works

“well” for a specific dataset can be prohibitively complex or

impossible.

Ensemble learning refers to the task of designing a meta-

learner, by combining the results provided by multiple dif-

ferent learners or annotators1; see Fig. 1. This meta-learner

should generally be able to outperform the individual learners.

In particular, ensemble classification refers to fusing the results

provided by different classifiers. Each classifier observes data,

decides one class, out of K possible, each of these data belong

to, and provides the meta-learner with those decisions. Such

a setup emerges in diverse disciplines including medicine [1],

biology [2], team decision making and economics [3], and has

recently gained attention with the advent of crowdsourcing [4],

as well as services such as Amazon’s Mechanical Turk [5],

CrowdFlower and Clickworker, to name a few. A related setup

appears in distributed detection [6], [7], where sensors collect

data, decide which one out of K possible hypotheses is in

effect, and transmit those decisions to a fusion center, that

makes a final decision. A similar task is also known as the

CEO problem or multiterminal source coding [8].
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1The terms learner, annotator, and classifier will be used interchangeably
throughout this manuscript.

When training data are available, a meta-learner can learn

how to combine the results from individual classifiers, based

on these ground-truth labels [9]. One such approach is boost-

ing [10], where multiple classifiers are combined according to

their probability of error on the training set. In the boosting

regime, each classifier is also using information from the rest.

In many cases however, labeled data are not available to train

the combining meta-classifier, and/or, the individual classifiers

cannot be retrained, justifying the need for unsupervised (or

blind) ensemble learning methods. One such paradigm is

provided by crowdsourcing, where people are tasked with

providing classification labels. Accordingly, in a distributed

detection setup, the fusion center might not have access to the

sensors, once they have been deployed.

The present work puts forth a novel scheme for multiclass

blind ensemble classification, built upon simple concepts from

probability and detection theory, as well as recent advances

in tensor decompositions [11] and optimization theory, that

enable assessing the reliability of multiple annotators and

combining their answers. Under our proposed model, each

annotator has a fixed probability of deciding that a datum

belongs to class k, given that the true class of the datum is

k′. Assuming that annotators make decisions independent of

each other, the proposed method extracts these probabilities

from the first-, second-, and third-order statistics of annotator

responses. This becomes possible thanks to a joint PARAFAC

decomposition, which has been employed in a related problem

of identifying conditional probabilities to complete a joint

probability functions from its projections [12]. The crux of

our algorithm is a moment matching method, that leverages the

aforementioned PARAFAC decomposition approach to obtain

accurate estimates of annotator decision probabilities along

with class priors. These estimates are then provided to the

meta-detector to form the final estimate of data labels.

To assess the proposed scheme, extensive numerical tests,

on synthetic as well as real data are presented, comparing

the proposed approach to state-of-the-art binary and multiclass

blind ensemble classification methods. In addition, a rigorous

performance analysis is provided, which showcases the con-

ditions under which our novel method works.

The rest of the paper is organized as follows. Section II

states the problem, provides preliminaries for the proposed

approach along with a brief description of the prior art in

unsupervised ensemble classification. Section III introduces

the proposed scheme for multiclass unsupervised ensemble

classification, while Section IV analyses the performance of

the proposed method. Section V presents numerical tests to

compare our method with state-of-the-art ensemble classi-

fication algorithms. Finally, concluding remarks and future

research directions are given in Section VI. Detailed deriva-
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Fig. 1. Unsupervised ensemble classification setup, where the outputs of
learners are combined in parallel.

tions are delegated to Appendix A, while proofs of theorems,

propositions and lemmata are deferred to Appendix B.

Notation: Unless otherwise noted, lowercase bold letters, x,

denote vectors, uppercase bold letters, X, represent matrices,

and calligraphic uppercase letters, X , stand for sets. The

(i, j)th entry of matrix X is denoted by [X]ij ; and its rank

by rank(X); X
> denotes the tranpose of matrix X; R

D

stands for the D-dimensional real Euclidean space, R+ for

the set of positive real numbers, Z+ for the set of positive

integers, E[·] for expectation, and ‖ · ‖ for the `2-norm.

Underlined capital letters X denote tensors, vec(·) denotes the

vectorization operator, that stacks columns of a matrix into a

longer column vector; the vector outer product is denoted by

◦, and, � denotes the Khatri-Rao matrix product. For a 3-

mode tensor X , X(:, :, i),X(:, i, :), and X(i, :, :) denote the

i-th frontal, longitudinal and lateral slabs of X , respectively,

while X(i, j, l) denotes the ijl-th element of X .

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data (possibly vectors)

{xn}
N
n=1 each belonging to one of K possible classes with

corresponding labels {yn}
N
n=1, e.g. yn = k if xn belongs to

class k. The pairs {(xn, yn)} are drawn independently from

an unknown joint distribution D, and X and Y denote random

variables such that (X,Y ) ∼ D. Consider now M annotators

that observe {xn}
N
n=1, and provide estimates of labels. Let

fm(xn) ∈ {1, . . . ,K} denote the label assigned to datum

xn by the m-th annotator. All annotator responses are then

collected at a centralized meta-learner or fusion center. The

task of unsupervised ensemble classification is: Given only the

annotator responses {fm(xn),m = 1, . . . ,M}Nn=1, we wish to

estimate the ground-truth labels of the data {yn}; see Fig. 1.

Similar to unsupervised ensemble classification, crowd-

sourced classification seeks to estimate ground-truth labels of

the data {yn} from annotator responses {fm(xn)}, with the

additional caveat that each annotator m may choose to provide

labels for only a subset Nm < N of data.

A. Prior work

Probably the simplest scheme for blind or unsupervised

ensemble classification is majority voting, where the estimated

label of a datum is the one that most annotators agree

upon. Majority voting has been used in popular ensemble

schemes such as bagging, and random forests [13]. While

relatively easy to implement, majority voting presumes that

all annotators are equally “reliable,” which is rather unrealis-

tic, both in crowdsourcing as well as in ensemble learning

setups. Other blind ensemble methods aim to estimate the

parameters that characterize the annotators’ performance. A

joint maximum likelihood (ML) estimator of the unknown

labels and these parameters has been reported using the

expectation-maximization (EM) algorithm [14]. As the EM

algorithm does not guarantee convergence to the ML solution,

recent works pursue alternative estimation methods. For binary

classification, [15] assumes that annotators adhere to the “one-

coin” model, meaning each annotator m provides the correct

(incorrect) label with probability δm (1 − δm); see also [16]

when annotators do not label all the data, and [17] for an

iterative method.

Recently, [18], [19] advocated a spectral decomposition

technique of the second-order statistics of annotator responses

for binary classification, that yields the reliability param-

eters of annotators, when class probabilities are unknown,

while [20] introduced a minimax optimal algorithm that can

infer annotator reliabilities. In the multiclass setting, [17]

solves multiple binary classification problems. In addition,

[21] and [22] utilize third-order moments and orthogonal

tensor decomposition to estimate the unknown reliability pa-

rameters and then initialize the EM algorithm of [14].

This procedure however, can be numerically unstable, espe-

cially when the number of classes K is large, and classes are

unequally populated. Finally, all the methods mentioned in this

section employ ML estimation, which implicitly assumes that

the dataset is balanced, meaning classes are roughly equiproba-

ble. Another interesting approach is presented in [23], where a

joint moment matching and maximum likelihood optimization

problem is solved.

The present work puts forth a novel scheme for multiclass

blind ensemble classification, built upon simple concepts from

probability and detection theory. It relies on a joint PARAFAC

decomposition approach, which lends itself to a numerically

stable algorithm. At the same time, our novel approach takes

into account class prior probabilities to yield accurate esti-

mates of class labels. Compared to our conference precursor

in [24], here we do not require the prior probabilities to be

known, and we present comprehensive numerical tests, along

with a rigorous performance analysis.

B. Canonical Polyadic Decomposition/PARAFAC

This subsection will outline tensor decompositions, which

will be used in the following sections to derive the proposed

scheme. Consider a 3-mode I × J × L tensor X , which can

be described by a matrix in 3 different ways

X
(1) := [vec(X(1, :, :)), . . . , vec(X(I, :, :))] (1a)

X
(2) := [vec(X(:, 1, :)), . . . , vec(X(:, J, :))] (1b)

X
(3) := [vec(X(:, :, 1)), . . . , vec(X(:, :, L))] (1c)

where X
(1) is of dimension JL × I , X

(2) is IL × J and

X
(3) is IJ × L. Under the Canonical Polyadic Decomposi-

tion(CPD)/Parallel Factor Analysis (PARAFAC) model [25],
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X can be written as a sum of R rank one tensors (a.k.a.

factors)

X =

R
∑

r=1

ar ◦ br ◦ cr (2)

where ar, br, cr are I × 1, J × 1 and L × 1 vectors, respec-

tively. Letting A := [a1, . . . ,aR],B := [b1, . . . , bR], and

C := [c1, . . . , cR] be the so-called factor matrices of the CPD

model, we write (2) compactly as

X = [[A,B,C]]R (3)

and (1) can be equivalently written as

X
(1) = (C�B)A> (4a)

X
(2) = (C�A)B> (4b)

X
(3) = (B�A)C> (4c)

where we have used the fact that for matrices A,B
and a vector c of appropriate dimensions, it holds that

vec(Adiag(c)B>) = (B � A)c. By vectorizing X
(3), it is

easy to show that the vectorization of the entire tensor will be

of the form x := vec(X) = vec(X(3)) = (C�B�A)1.

Accordingly, vectorizing X
(1) or X

(2) produces different

vectorizations of the entire tensor, where the order of factor

matrices in the Khatri-Rao product is permuted. Recovery of

the factor matrices A,B and C, can be done by solving the

following non-convex optimization problem

[Â, B̂, Ĉ] = argmin
A,B,C

‖X − [[A,B,C]]R‖
2
F . (5)

Similar to the matrix case, the Frobenius norm here can be

defined as ‖X‖F :=
√

∑

i,j,l X(i, j, l)2, and as (4) is just a

rearrangement of the terms in X , it holds that

‖X‖F = ‖X(1)‖F = ‖X(2)‖F = ‖X(3)‖F . (6)

Typically, (5) is solved using alternating optimization (AO) or

gradient descent [11]. Multiple off-the-shelf solvers are avail-

able for PARAFAC tensor decomposition; see e.g. [26], [27].

Furthermore, depending on extra properties of X , constraints

can be enforced on the factor matrices, such as nonnegativity

and sparsity to name a few, which can be effectively handled

by popular solvers such as AO-ADMM [28]. Under certain

conditions, the factorization of X into A,B, and C, is

essentially unique, or essentially identifiable, that is Â, B̂, and

Ĉ can be expressed as

Â = APΛa, B̂ = BPΛb, Ĉ = CPΛc (7)

where P is a common permutation matrix, and Λa,Λb,Λc

are diagonal scaling matrices such that ΛaΛbΛc = I [11].

For more details regarding the PARAFAC decomposition and

tensors with more than 3 modes, interested readers are referred

to the comprehensive tutorial in [11] and references therein.

III. UNSUPERVISED ENSEMBLE CLASSIFICATION

Each annotator in our model has a fixed probability of

deciding that a datum belongs to class k′, when presented

with a datum of class k. Thus, each annotator m can be

characterized by a so called confusion matrix Γm, whose

(k′, k)-th entry is

[Γm]k′k := Γm(k′, k) = Pr (fm(X) = k′|Y = k) . (8)

The K×K matrix Γm has non-negative entries that obey the

simplex constraint, since
∑K

k′=1 Pr (fm(X) = k′|Y = k) =
1, for k = 1, . . . ,K; hence, entries of each Γm column sum

up to 1, that is, Γ>
m1 = 1 and Γm ≥ 0. The confusion matrix

showcases the statistical behavior of an annotator, as each

column provides the annotator’s probability of deciding the

correct class, when presented with a datum from each class.

Before proceeding, we adopt the following assumptions.

As1. Responses of different annotators per datum, are condi-

tionally independent, given the ground-truth label Y of

the same datum X; that is,

Pr (f1(X) = k1, . . . , fM (X) = kM |Y = k)

=
M
∏

m=1

Pr (fm(X) = km|Y = k)

As2. Most annotators are better than random; e.g., most have

probability of correct detection exceeding 0.5 for K = 2.

Clearly, for annotators that are better than random, the largest

elements of each column of their confusion matrix will be

those on the diagonal of Γm; that is

[Γm]kk ≥ [Γm]k′k, for k′, k = 1, . . . ,K.

As1 suggests that annotators make decisions independently of

each other, which is rather a standard assumption [14], [19],

[22]. Likewise, As2 is another standard assumption, used to

alleviate the inherent permutation ambiguity of the confusion

matrix estimates provided by our algorithm. Note that As2

is slightly more relaxed than the corresponding assumption

in [22], which splits annotators into 3 groups and requires

most annotators in each group to be better than random.

A. Maximum a posteriori label estimation

Given only annotator responses for all data, a straight-

forward approach to estimating their ground-truth labels is

through a maximum a posteriori (MAP) classifier [29]. In

particular, for datum X the MAP classifier is

ŷMAP(X) = arg max
k∈{1,...,K}

L(X|k) Pr(Y = k) (9)

where L(X|k) := Pr (f1(X) = k1, . . . , fM (X) = kM |Y = k)
is the conditional likelihood of X . As annotators

make independent decisions, it holds that L(X|k) =
∏M

m=1 Pr (fm(X) = km|Y = k), and thus the MAP classifier

can be rewritten as

ŷMAP(X) = argmax
k∈{1,...,K}

log πk +

M
∑

m=1

log(Γm(km, k)) (10)
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where πk := Pr(Y = k). It is well known from detection

theory [29] that the MAP classifier (10) minimizes the average

probability of error Pe, given by

Pe =
K
∑

k=1

πk Pr(ŷMAP = k′ 6= k|Y = k). (11)

If all classes are equiprobable, that is πk = 1/K for all

k = 1, . . . ,K, then (10) reduces to the ML classifier. In order

to obtain the MAP or ML classifier, {Γm}
M
m=1 must be avail-

able, while in the MAP classifier case π := [π1, . . . , πK ]> is

also required. Interestingly, the next section will illustrate that

{Γm}
M
m=1 and π show up in (and can thus be estimated from)

the moments of annotator responses.

B. Statistics of annotator responses

Consider each label represented by the annotators using

the canonical K × 1 vector ek, denoting the k-th column

of the K × K identity matrix I. Let fm(X) denote the

m-th annotator’s response in vector format. Since fm(X)
is just a vector representation of fm(X), it holds that

Pr (fm(X) = k′|Y = k) ≡ Pr (fm(X) = ek′ |Y = k). With

γm,k denoting the k-th column of Γm, it thus holds that

E[fm(X)|Y = k] =
K
∑

k′=1

ek′ Pr (fm(X) = k′|Y = k) (12)

= γm,k

where the first equality comes from the definition of con-

ditional expectation, and the second one because ek’s are

columns of I. Using (12) and the law of total probability, the

mean vector of responses from annotator m, is hence

E[fm(X)] =
K
∑

k=1

E[fm(X)|Y = k] Pr (Y = k) = Γmπ. (13)

Upon defining the diagonal matrix Π := diag(π), the K ×K
cross-correlation matrix between the responses of annotators

m and m′ 6= m, can be expressed as

Rmm′ := E[fm(X)f>m′(X)]

=

K
∑

k=1

E[fm(X)|Y = k]E[f>m′(X)|Y = k] Pr (Y = k)

= Γmdiag(π)Γ>
m′ = ΓmΠΓ

>
m′ (14)

where we successively relied on the law of total probability,

As1, and (12). Consider now the K×K×K cross-correlation

tensor between the responses of annotators m, m′ 6= m and

m′′ 6= m′,m, namely

Ψmm′m′′ = E[fm(X) ◦ fm′(X) ◦ fm′′(X)]. (15)

It can be shown that Ψmm′m′′ obeys a CPD/PARAFAC model

[cf. Sec. II-B] with factor matrices Γm,Γm′ and Γm′′ ; that is,

Ψmm′m′′ =
K
∑

k=1

πkγm,k ◦ γm′,k ◦ γm′′,k (16)

= [[ΓmΠ,Γm′ ,Γm′′ ]]K .

Note here that the diagonal matrix Π can multiply any of the

factor matrices Γm,Γm′ , or, Γm′′ .

With Fm := [fm(x1), fm(x2), . . . , fm(xN )] the sample

mean of the m-th annotator responses can be readily obtained

as

µm =
1

N

N
∑

n=1

fm(xn) =
1

N
Fm1. (17)

Accordingly, the K ×K sample cross-correlation Smm′ ma-

trices between the responses of annotators m and m′ 6= m,

are given by

Smm′ =
1

N

N
∑

n=1

fm(xn)f
>
m′(xn) =

1

N
FmF

>
m′ . (18)

Lastly, the sample K × K × K cross-correlation tensors

Tmm′m′′ between the responses of annotators m,m′ 6= m
and m′′ 6= m,m′ are

Tmm′m′′ =
1

N

N
∑

n=1

fm(xn) ◦ fm′(xn) ◦ fm′′(xn) (19)

=
1

N
Fm ◦ Fm′ ◦ Fm′′ .

Clearly, Smm′ = S
>
m′m, T

(2)
m′mm′′ = T

(3)
m′m′′m = T

(1)
mm′m′′ .

In addition, as N increases, the law of large numbers (LLN)

implies that, {µm}, {Smm′}, and {Tmm′m′′} approach their

ensemble counterparts in (13), (14), and (15).

Having available first-, second-, and third-order statistics

of annotator responses, namely {µm}
M
m=1, {Smm′}Mm,m′=1,

and {Tmm′m
′′ }M

m,m′,m
′′=1

, estimates of {Γm}
M
m=1 and π

can be readily extracted from them [cf. (13), (14), (15)].

This procedure corresponds to the method-of-moments estima-

tion [30]. Upon obtaining {Γ̂m}
M
m=1 and π̂, the MAP classifier

of Sec. III-A can be subsequently employed to estimate the

label for each datum. That is, for n = 1, . . . , N ,

ŷMAP(xn) = argmax
k∈{1,...,K}

log π̂k +

M
∑

m=1

log Γ̂m(fm(xn), k)

(20)

where Γ̂m(k′, k) = [Γ̂m]k′k, and π̂k = [π̂]k. The following

section provides an algorithm to estimate these unknown

quantities.

C. Confusion matrix and prior probability estimation

To estimate the unknown confusion matrices and prior

probabilities consider the following non-convex constrained

optimization problem,

min
π

{Γm}M
m=1

hN ({Γm}
M
m=1,π) (21)

s.to Γm ≥ 0, Γ
>
m1 = 1, m = 1, . . . ,M

π ≥ 0, π>
1 = 1

where
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Algorithm 1 Confusion matrix and prior probability estima-

tion algorithm

Input: Annotator responses {Fm}
M
m=1, λ > 0, ν > 0;

maximum number of iterations I ∈ Z+

Output: Estimates of {Γ̂m}
M
m=1 and π̂

1: Compute {µm}, {Smm′}, {Tmm′m′′} using (17),

(18), and (19).
2: Initialize {Γm} and π randomly.

3: do

4: for m = 1, . . . ,M do

5: Update Γm using (23)

6: Γ
(prev)
m ← Γm

7: end for

8: Update π using (22)

9: π(prev) ← π

10: i← i+ 1
11: while not converged and i < IT
12: Find permutation matrix P̂, such that the majority of

{Γ̂mP̂}Mm=1 satisfy As2.

Algorithm 2 Unsupervised multiclass ensemble classification

Input: Annotator responses {Fm}
M
m=1

Output: Estimates of data labels {ŷn}
N
n=1

1: Find estimates {Γ̂m}
M
m=1 and π̂ using Alg. 1

2: for n = 1, . . . , N do

3: Estimate label yn using (20).

4: end for

hN ({Γm},π) :=
1

2

M
∑

m=1

‖µm − Γmπ‖22

+
1

2

M
∑

m=1
m′>m

‖Smm′ − ΓmΠΓ
>
m′‖2F

+
1

2

M
∑

m=1
m′>m
m′′>m′

‖Tmm′m′′ − [[ΓmΠ,Γm′ ,Γm′′ ]]K‖
2
F

and the subscript N in hN denotes the number of data used

to obtain annotator statistics. Collect the set of constraints per

matrix to the convex set C := {Γ ∈ R
K×K : Γ ≥ 0,Γ>

1 =
1}, where essentially each column lies on a probability sim-

plex, and let Cp := {u ∈ R
K : u ≥ 0,u>

1 = 1} denote the

constraint set for π.

As (21) is a non-convex problem, alternating optimization

will be employed to solve it. Specifically the alternating

optimization-alternating direction method of multipliers (AO-

ADMM) will be employed; see [28], and also [12] where a

similar formulation appears. Under the AO-ADMM paradigm,

hN is minimized per block of unknown variables {Γm} or π

while the other blocks remain fixed, as in block coordinate

descent schemes. Solving for one block of variables with the

remaining fixed is a convex constrained optimization problem

under convex C and Cp constraint sets. These optimization

problems are pretty standard and several solvers are available,

including proximal splitting methods, projected gradient de-

scent or ADMM [31]–[34]. Here, the solver of choice for each

block of variables will be ADMM.

The update for π involves minimizing hN with {Γm}
M
m=1

fixed. Specifically, the following problem is solved

min
π∈Cp

gN,π(π) (22)

where

gN,π(π) :=
1

2

M
∑

m=1

‖µm − Γmπ‖22 +
ν

2
‖π − π(prev)‖22

+
1

2

M
∑

m=1
m′>m

‖smm′ − (Γm′ � Γm)π‖22

+
1

2

M
∑

m=1
m′>m
m′′>m′

‖tmm′m′′ − (Γm′′ � Γm′ � Γm)π‖22

smm′ = vec(Smm′), tmm′m′′ = vec(T
(3)
mm′m′′)

[cf. (4)], ν is a positive scalar, and we have

used vec(Γmdiag(π)Γ>
m′) = (Γm′ � Γm)π and

vec([[Γmdiag(π),Γm′ ,Γm′′ ]]K) = (Γm′′ � Γm′ � Γm)π.

Note that gN,π contains all of the terms in hN along with

(ν/2)‖π−π(prev)‖22, which is included to ensure convergence

of the AO-ADMM iterations to a stationary point of (21) [28],

[35]. Here, π(prev) denotes the estimate of π obtained by the

previous solutions of (22).

Accordingly per Γm, the following subproblem is solved

with {Γm′}Mm′ 6=m and π fixed

min
Γm∈C

gN,m(Γm) (23)

where

gN,m(Γm) :=
1

2
‖µm − Γmπ‖22 +

ν

2
‖Γm − Γ

(prev)
m ‖2F

+
1

2

M
∑

m′ 6=m

‖Sm′m − Γm′ΠΓ
>
m‖

2
F

+
1

2

M
∑

m′>m
m′′>m′

‖T
(1)
mm′m′′ − (Γm′′ � Γm′)ΠΓ

>
m‖

2
F

T
(1)
mm′m′′ = [vec(T (1, :, :)), . . . , vec(T (K, :, :))], Γ

(prev)
m de-

notes the estimate of Γm obtained by the previous solution

of (23), ν is a positive scalar, and we have used (6). Here,

gN,m contains all the terms of hN that involve Γm with

the additional term (ν/2)‖Γm − Γ
(prev)
m ‖2F , which ensures

convergence of the AO-ADMM iterations.

Detailed derivations of the ADMM iterations for solving

(23) and (22) are provided in Appendix A, while the AO-

ADMM is summarized in Alg. 1. The computational com-

plexity of the entire AO-ADMM scheme is approximately

O(ITM
3K4), where IT is the number of required iterations

until convergence (see Appendix A-C). The entire unsuper-

vised ensemble classification procedure is listed in Alg. 2.
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D. Convergence and identifiability

Convergence of the entire AO-ADMM scheme for (21),

follows readily from results in [28, Prop. 1], stated next for

our setup.

Proposition 1. [28, Prop. 1] Alg. 1 for M ≥ 3, and ν > 0
converges to a stationary point of (21).

Having established the convergence of Alg. 1 to a stationary

point of (21) using Prop. 1, the suitability of the estimates

provided by Alg. 1 for the ensemble classification task needs

to be assessed. As (21) involves joint tensor decompositions,

under certain conditions the solutions {Γ̂m}, π̂ of (21) will

be, similar to the PARAFAC decomposition of Sec. II-B,

essentially unique.

Thus, in order to assess the suitability of the estimates

provided by Alg. 1 the conditions under which the model

employed in (21) is identifiable have to be established. Luckily,

identifiability claims for the present problem can be easily de-

rived from recent results in joint PARAFAC factorization [12],

[36].

Lemma 1. Let {Γ∗
m}, π

∗ be the optimal solutions of (21),

and {Γ̂m}, π̂ the estimates provided by Alg. 1. If at least three

{Γm}
M
m=1 have full column rank, there exists a permutation

matrix P̂ such that

Γ̂mP̂ = Γ
∗
m, m = 1, . . . ,M, P̂

>π̂= π∗.

Lemma 1 essentially requires that at least three annotators

respond differently to different classes, that is no two columns

of at least three confusion matrices are colinear. Possibly

more relaxed identifiability conditions could be derived using

techniques mentioned in [36].

Unlike the tensor decomposition mentioned in Sec. II-B,

here we have no scaling ambiguity on the confusion matrices

or prior probabilities. This is important because there are

infinite scalings, but finite permutation matrices since K is

finite. Under As2, P̂ can be easily obtained since the largest

elements of each column of a confusion matrix must lie on

the diagonal for the majority of annotators. Each Γ̂m can be

multiplied by a permutation matrix P̂m, such that the largest

elements are located on the diagonal. The final P̂ can be

derived as the most commonly occurring permutation matrix

out of {P̂m}
M
m=1.

Remark 1. While we relied on statistics of annotator re-

sponses up to order three, higher-order statistics can also be

employed. Higher-order moments however, will increase the

complexity of the algorithm, as well as the number of data

required to obtain reliable (low-variance) estimates.

Remark 2. Estimates of annotator confusion matrices {Γ̂m}
and data labels {ŷn}, provided by Alg. 2, can be used to

initialize the EM algorithm of [14].

Remark 3. The orthogonal tensor decomposition used by

[21], [22] is a special case of the PARAFAC decomposition

employed in this work.

Remark 4. When π is known, (22) can be skipped, and

correspondingly steps 8 and 9 of Alg. 1.

E. Reducing complexity

When K and M are large Alg. 1 may require long

computational time to converge. Our idea in this case is to

split the annotators into L groups, and solve (21) for each

group. For simplicity of exposition, consider non-overlapping

groups, each with M` ≥ 3 annotators (
∑L

`=1 M` = M ).

Let µ
(`)
m ,S

(`)
mm′ and T

(`)
mm′m′′ denote the sample statistics for

annotators in group `, and {Γ
(`)
m }

M`

m=1 the confusion matrices

in group `.
For each group ` ∈ {1, . . . , L} confusion matrices

{Γ̂
(`)
m }

M`

m=1 and prior probabilities π(`) are estimated by solv-

ing a smaller version of (21), namely

min
π(`)

{Γ
(`)
m }M

m=1

h
(`)
N ({Γ(`)

m }
M
m=1,π

(`)) (24)

s.to Γ
(`)
m ≥ 0, 1

>
Γ
(`)
m = 1

>, m = 1, . . . ,M`

π(`) ≥ 0, 1
>π(`) = 1

where

h
(`)
N ({Γm},π) :=

1

2

M
∑̀

m=1

‖µ(`)
m − Γmπ‖22

+
1

2

M
∑̀

m=1
m′>m

‖S
(`)
mm′ − ΓmΠΓ

>
m′‖2F

+
1

2

M
∑

m=1
m′>m
m′′>m′

‖T
(`)
mm′m′′ − [[ΓmΠ,Γm′ ,Γm′′ ]]K‖

2
F .

Upon solving (24) for all L groups, estimates of {Γm}
M
m=1

are readily obtained, since we have assumed non-overlapping

groups. A final estimate of the prior probabilities π can be

obtained by averaging the L estimates {π`}L`=1.

As (24) incurs a complexity of O(IM3
` K

3), the worst-case

complexity of this approach is O(IMK3
∑L

`=1 M
3
` ), where

IM is the largest number of iterations required to converge

among all L groups. Since M3 = (
∑L

`=1 M`)
3 >

∑L

`=1 M
3
`

this approach reduces the computational and memory overhead

significantly compared to Alg. 1. Note however, that this

method is expected to perform well when As1 and As2, as

well as the conditions outlined in Lemma 1 are satisfied for

all L groups of annotators, and N is sufficiently large. The

effectiveness of this complexity reduction scheme is tested in

Sec. V.

F. Application to crowdsourcing

While crowdsourced classification is a task related to ensem-

ble classification, it presents additional challenges. So far it has

been implicitly assumed that all annotators provide labels for

all {xn}
N
n=1. In the crowdsourcing setup however, an annotator

m could provide labels just for a subset of Nm < N data.

Next, we outline a computationally attractive approach, that

takes into account only the available annotator responses. If

an annotator m does not provide a label for a datum, his/her

response is fm(x) = 0 or fm(x) = 0 in vector format. Let

Jm(xn) be an indicator function that takes the value 1 when
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annotator m provides a label for xn, and 0 when fm(xn) =
0. To account for such cases, the annotator sample statistics

become

µm =
1

∑N

n=1 Jm(xn)

N
∑

n=1

Jm(xn)fm(xn) (25a)

Smm′ =

∑N

n=1 Jm(xn)Jm′(xn)fm(xn)f
>
m′(xn)

∑N

n=1 Jm(xn)Jm′(xn)
(25b)

Tmm′m′′ (25c)

=

∑

n Jm(xn)Jm′(xn)Jm′′(xn)fm(xn) ◦ fm′(xn) ◦ fm′′(xn)
∑N

n=1 Jm(xn)Jm′(xn)Jm′′(xn)
.

Upon computing the modified sample statistics of (25), we

can obtain estimates of the confusion matrices and prior

probabilities in the crowdsourcing setup, via Alg. 1. Finally,

the MAP classifier in (20) has to be modified as follows

ŷMAP(x) = argmax
k∈{1,...,K}

log π̂k +
M
∑

m=1

Jm(x) log Γ̂m(fm(x), k)

(26)

to take into account only the available annotator responses for

each x.

Having completed the algorithmic aspects of our approach,

we proceed with performance analysis.

IV. PERFORMANCE ANALYSIS

In this section, performance of the proposed method will be

quantified analytically. First, the consistency of the estimates

provided by Alg. 1 as N → ∞ will be established, followed

by a performance analysis for the MAP classifier of Sec. III-A.

A. Consistency of Alg. 1 estimates

As N → ∞, the sample statistics in (17), (18), and (19)

approach their ensemble counterparts, and we end up with

the following optimization problem for extracting annotator

confusion matrices and prior probabilities

min
π

{Γm}M
m=1

h∞({Γm}
M
m=1,π) (27)

s.to Γm ∈ C, m = 1, . . . ,M, π ∈ Cp.

Clearly, the optimal solutions to (27) are the true confusion

matrices and prior probabilities. As N increases, it is desirable

to show that the solutions obtained from Alg. 1 converge to

the true confusion matrices and prior probabilities. To this

end, techniques from statistical learning theory and stochastic

optimization will be employed [37], [38]. Specifically, we

will establish the uniform convergence of hN to h∞, which

implies the consistency of the solutions. Define the distance

between two sets A,B ⊆ R
q , for some q > 0, as D(A,B) =

supx∈A{infy∈B ‖x− y‖2}.
The following theorem shows that as N increases, the

solutions of (21) approach those of (27).

Theorem 1. If S∗ and SN denote the sets of solutions of

problems (27) and (21), respectively, then D(SN ,S∗)→ 0, as

N →∞ almost surely.

Under As2 and the conditions outlined in Lemma 1, Alg. 1

can recover the true solutions of (21) or (27). Then, by Thm. 1

we know that as N →∞ the solutions of (21) converge to the

solutions of (27), which together with the result of Lemma 1

implies the statistical consistency of the solutions of Alg. 1.

As a result, the estimates {Γ̂m}
M
m=1, and π̂ from Alg. 1 will

converge to their true values w.p. 1 as N →∞.

B. MAP classifier performance

With consistency of the confusion matrix and prior prob-

ability estimates established, the performance of the final

component of the proposed algorithm has to be studied. The

behavior of the MAP classifier of Sec. III-A can be quantified

in terms of its average probability of error

Pe =

K
∑

k=1

Pr(ŷMAP = k′ 6= k|Y = k) Pr(Y = k)

Here, a well-known asymptotic result for distributed binary

detection under the MAP detector [6] is extended to the

multiclass case.

Theorem 2. Under As1, and given {Γm}
M
m=1 and π, there

exist constants α > 0, β > 0 such that the MAP classifier of

Sec. III-A satisfies

Pe ≤ αe−βM .

In words, Theorem 2 suggests that when accurate estimates

of {Γm}
M
m=1 and π are available, the error rate decreases at

an exponential rate with the number of annotators M .

In order to validate our theoretical results and evaluate the

performance of the proposed scheme, the following section

presents numerical tests with synthetic and real data.

V. NUMERICAL TESTS

For K ≥ 2, Alg. 2, using both MAP and ML criteria in

step 3, (denoted as Alg. 2 MAP and Alg. 2 ML respectively) is

compared to majority voting, the algorithm of [17] (denoted

as KOS), and the EM algorithm initialized both with majority

voting and with the spectral method of [22] (denoted as EM

+ MV and EM + Spectral, respectively). For K = 2, Alg. 2

is also compared to the binary ensemble learning methods

of [19], [20] and [16], denoted as SML, TE and EigenRatio,

respectively. For synthetic data, the performance of “oracle”

estimators, that is MAP/ML classifiers with true confusion

matrices of the annotators, and the true class priors, is also

evaluated for benchmarking purposes. The metric utilized in

all experiments is the classification error rate (ER), defined as

the percentage of misclassified data,

ER =
# of misclassified data

N
× 100%,

where ER = 100% indicates that all N data have been

misclassified, and ER = 0% indicates perfect classification
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accuracy. For synthetic data, the average confusion matrix and

prior probability estimation error is also evaluated

ε̄CM :=
1

M

M
∑

m=1

‖Γm − Γ̂m‖1
‖Γm‖1

=
1

M

M
∑

m=1

‖Γm − Γ̂m‖1

ε̄π := ‖π − π̂‖1.

All results represent averages over 10 independent Monte

Carlo runs, using MATLAB [39]. In all experiments, the

parameters λ and ν of Alg. 1 are set as suggested in [28], [35].

Vertical lines in some figures indicate standard deviation. For

some experiments, classification times (in seconds) required

by the ensemble algorithms are also reported. Note that

classification times for majority voting and oracle estimators

are not reported as the time required by these methods is

negligible compared to the rest of the algorithms.

A. Synthetic data

For the synthetic data tests, N ground-truth labels {yn}
N
n=1,

each corresponding to one out of K possible classes, were

generated i.i.d. at random according to π, that is yn ∼ π,

for n = 1, . . . , N . Afterwards, {Γm}
M
m=1 were generated

at random, such that Γm ∈ C, for all m = 1, . . . ,M ,

and annotators are better than random, as per As2. Then

annotators’ responses were generated as follows: if yn = k,

then the response of annotator m will be generated randomly

according to the k-th column of its confusion matrix, γm,k

[cf. Sec. II], that is fm(xn) ∼ γm,k.

Tab. I lists the classification ER of different algorithms, for

a synthetic dataset with K = 2 classes with prior probabilities

π = [0.9003, 0.0997]>, and M = 10 annotators. Tab. II lists

the results for a similar experiment, with K = 2 classes,

priors π = [0.5856, 0.4144]>, and M = 10 annotators,

while Tab. III shows the clustering time required by all

algorithms. Note that when the class probabilities are similar,

the ML and MAP classifiers perform comparably as expected.

Furthermore, majority voting gives good results for a reduced

number of instances N . Fig. 2 depicts the average estimation

errors for the confusion matrices and prior probabilities in the

two aforementioned experiments. Clearly, as N increases, the

proposed classifiers approach the performance of the oracle

ones, and as suggested by Thm. 1, the estimation error for the

confusion matrices and prior probabilities approaches 0.

The next synthetic data experiment investigates how the

proposed method performs when presented with multiclass

data. Furthermore, to showcase that accurate estimation of

π is beneficial, we also compare against Alg. 2 with π

fixed to the uniform distribution, i.e. π = 1/K (denoted

as Alg. 2 - fixed π.) Fig. 3 shows the simulation results

for a synthetic dataset with K = 5 classes, prior proba-

bilities π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]>, and

M = 10 annotators, while Fig. 4 shows the simulation results

for a synthetic dataset with K = 7 classes, priors π =
[0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]> and

M = 10 annotators. Tabs. IV and V show classification

times for the K = 5 and K = 7 experiments, respectively.

Fig. 5 shows the average estimation errors for the confusion

matrices and prior probabilities in the two aforementioned

multiclass experiments. Note that for K = 5 for small

values of N and K = 7 the EM+Spectral approach of [22]

suffers from numerical issues during the tensor whitening

procedure, which explains its worst classification ER and

slow runtimes. Here, the proposed approaches exhibit similar

behavior to the binary case, as expected from Thm. 1; as the

number of data increases, their performance approaches the

clairvoyant “oracle” estimators, and the estimation accuracy

of the confusion matrices and prior probabilities increases. In

addition, our methods outperform the competing alternatives

for almost all values of N . Here we also see that running

Alg. 2 with fixed π = 1/K produces lower quality estimates

than Alg. 2 that solves for π. Specifically, Alg. 2 with fixed π

performs similarly to the EM algorithm when initialized with

majority voting.

Next, we evaluate how the number of annotators M af-

fects the classification ER, for fixed N = 106. Fig. 6

depicts an experiment for K = 3 classes with pri-

ors π = [0.2318, 0.4713, 0.2969]>, while Fig. 7 shows

an experiment for K = 5 classes with priors π =
[0.3596, 0.1553, 0.1229, 0.3258, 0.0364]>. Tabs. VI and VII

list classification times for the K = 3 and K = 5 experiments,

respectively. Fig. 8 plots the results of an experiment with

K = 5 classes with the same priors as those in Fig. 7 and

N = 5, 000 data, for varying number of annotators. The

average estimation error for the confusion matrices and prior

probabilities, for the aforementioned tests, is shown in Fig. 9.

As expected from Thm. 2, the classification ER decreases as

the number of annotators increase, for all methods considered.

In addition, our proposed algorithm outperforms the competing

alternatives for all values of M . Furthermore, the results

of Fig. 8 indicate that when the number of data is small,

increasing the number of annotators provides a boost to the

classification performance. Fig. 9 shows another interesting

feature: as the number of annotators increases the estimation

accuracy of {Γm} and π also increases.

The following experiment evaluates the effectiveness of

the complexity reduction scheme of Sec. III-E, for a dataset

with M = 30 annotators with K = 3 classes with priors

π = [0.3096, 0.3416, 0.3488]>, and a varying number of

data N . Annotators are split into L = {1, 2, 4, 5} non-

overlapping groups. Fig. 10 shows the classifcation ER and

time (in seconds) required for the ensemble classification

task, for different group sizes. When N is large we observe

similar ER for all L, however larger number of groups require

significantly less time than L = 1.

In all aforementioned experiments, all annotators were gen-

erated to be better than random. The next experiment, investi-

gates the effect of adversarial annotators, that is annotators for

who the largest values of the confusion matrix are not located

on its diagonal. Let α denote the percentage of adversarial

annotators. Fig. 11 shows the classification ER on a synthetic

dataset with K = 3, N = 106, π = [0.31, 0.34, 0.35]> and

M = 10 annotators, for varying α. While all approaches, with

the exception of majority voting, seem to be robust to a small

number of adversarial annotators, Alg. 2 can handle values of

α of up to 50%, which speaks for the potential of the novel
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Algorithm N = 100 N = 1000 N = 104 N = 105

Majority Voting 6.3 7.08 7.04 7.13
KOS 27.70 33.33 32.21 32.53

EigenRatio 6.30 5.75 5.69 5.64
TE 4.20 4.91 4.61 4.67

SML 15.80 11.38 11.82 12.26
EM + MV 21.2 27.67 26.50 27.01

EM + Spectral 17.7 27.72 26.50 27.01
Alg. 2 ML 6.30 2.70 1.97 1.87

Alg. 2 MAP 2.40 1.40 1.13 1.11

Oracle ML 1.6 2.05 1.81 1.86
Oracle MAP 1.1 1.31 1.11 1.11

TABLE I
CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR

PROBABILITIES π = [0.9003, 0.0997]> AND M = 10 ANNOTATORS.

Algorithm N = 100 N = 1000 N = 104 N = 105

Majority Voting 8.10 8.27 8.27 8.19
KOS 8.30 6.46 6.65 6.58

EigenRatio 7.40 6.35 6.39 6.21
TE 10.20 6.04 6.35 6.20

SML 13.10 8.47 4.66 4.61

EM + MV 6.60 5.15 4.93 4.87
EM + Spectral 6.60 5.15 4.93 4.87

Alg. 2 ML 6.50 4.86 4.66 4.61

Alg. 2 MAP 6.20 4.85 4.59 4.51

Oracle ML 4.10 4.86 4.66 4.61
Oracle MAP 3.90 4.81 4.58 4.50

TABLE II
CLASSIFICATION ER FOR A SYNTHETIC DATASET WITH K = 2, PRIOR

PROBABILITIES π = [0.5856, 0.4144]> AND M = 10 ANNOTATORS.

approach in adversarial learning setups [40], [41].

B. Real data

Further tests were conducted using real datasets. In this case,

in addition to other ensemble learning algorithms, the proposed

methods are also compared to the single best annotator, that is

the classifier that exhibited the highest accuracy. For all exper-

iments, a collection of M = 15 classification algorithms from

MATLAB’s machine learning toolbox were trained, each on a

different randomly selected subset of the dataset. Afterwards,

the algorithms provided labels for all data in each dataset. The

classification algorithms considered were k-nearest neighbor

classifiers, for varying number of neighbors k and different

distance measures; support vector machine classifiers, utilizing

different kernels; and decision trees with varying depth. The

Algorithm N = 100 N = 1000 N = 104 N = 105

KOS 0.013 0.004 0.005 0.05
EigenRatio 0.003 0.002 0.005 0.03

TE 0.003 0.001 0.012 0.10
SML 0.04 0.09 0.76 11.98

EM + MV 0.01 0.02 0.12 1.47
EM + Spectral 1.48 1.55 1.58 3.00

Alg. 2 1.82 2.32 2.05 3.01

TABLE III
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH

K = 2, PRIOR PROBABILITIES π = [0.5856, 0.4144]> AND M = 10
ANNOTATORS.
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Fig. 2. Average estimation errors of confusion matrices (top); and prior
probabilities (bottom), for two synthetic datasets with K = 2 and M = 10
annotators
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Fig. 3. Classification ER for a synthetic dataset with K = 5 classes, priors
π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]> and M = 10 annotators.

real datasets considered are the MNIST dataset [42], and 5

UCI datasets [43]: the CoverType database, the PokerHand

dataset, the Connect-4 dataset, the Magic dataset and the Dota

2 dataset. MNIST contains N = 70, 000 28 × 28 images

of handwritten digits, each belonging to one of K = 10
classes (one per digit). For this dataset, each classification

algorithm was trained on subsets of 2, 000 instances. The

CoverType dataset consists of N = 581, 012 data belonging

to K = 7 classes. Each cluster corresponds to a different

forest cover type. Data are vectors of dimension D = 54 that

contain cartographic variables, such as soil type, elevation,

hillshade etc. Here, each classification algorithm was trained

on a subset of 1, 000 instances. The PokerHand database

contains N = 106 data belonging to K = 10 classes. Each

datum is a 5-card hand drawn from a deck of 52 cards, with

each card being described by its rank and suit (spades, hearts,
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Fig. 4. Classification ER for a synthetic dataset with K = 7 classes, priors
π = [0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]> and M =
10 annotators.
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Fig. 5. Average estimation errors of confusion matrices (top); and prior
probabilities (bottom) for two synthetic datasets with K = 5 and K = 7
classes and M = 10 annotators

diamonds, and clubs). Each class represents a valid Poker

hand. For this experiment the 3 most prevalent classes are

considered. Here, each classification algorithm was trained on

a subset of 10, 000 instances. Connect-4 contains N = 67, 557
vectors of size 42×1, each representing the possible positions

in a connect-4 game. These vectors belong to one of K = 3
classes, indicating whether the first player is in a position to

win, lose, or, tie the game. Here, each classification algorithm

was trained on a subset of 300 instances. The Magic dataset

contains N = 19, 020 data captured by ground-based atmo-

spheric Cherenkov gamma-ray detector. The dataset contains

K = 2 classes, each indicating the presence or abscence of

Gamma rays. For this dataset, each classification algorithm

was trained on subsets of 100 instances. The Dota 2 dataset

contains N = 102, 944 data, corresponding to different Dota

Algorithm N = 1000 N = 104 N = 105 N = 106

KOS 0.016 0.02 0.17 2.03
EM + MV 0.04 0.27 3.43 37.27

EM + Spectral 119.35 124.94 119.35 160.54
Alg. 2 28.27 40.23 36.08 47.17

Alg. 2 fixed π 13.34 6.23 6.11 18.16

TABLE IV
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH

K = 5 CLASSES, PRIORS π = [0.2404, 0.2679, 0.0731, 0.1950, 0.2236]>

AND M = 10 ANNOTATORS.

Algorithm N = 1000 N = 104 N = 105 N = 106

KOS 0.017 0.025 0.23 2.83
EM + MV 0.05 0.30 4.80 48.87

EM + Spectral 619.61 616.47 621.30 676.95
Alg. 2 46.19 52.66 54.50 69.99

Alg. 2 fixed π 34.94 38.88 39.11 40.17

TABLE V
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH

K = 7 CLASSES, PRIORS

π = [0.2347, 0.0230, 0.0705, 0.1477, 0.2659, 0.0043, 0.2539]> AND

M = 10 ANNOTATORS.

2 games played, between two teams of 5 players. The dataset

is split into K = 2 classes, corresponding to the team that

won the game. Each datum consists of the starting parameters

of each game, such as the game type (ranked or amateur) and

which heroes were chosen from the players. Finally, for this

dataset, each classification algorithm was trained on subsets

of 5, 000 instances.

Table VIII lists classification ER results for the real data

experiments. For most datasets, the proposed approaches out-

perform the competing alternatives, as well as the single-best

classifier. For the MNIST dataset the EM methods of [22]

outperform our approaches. Nevertheless, Alg. 1 comes very

close to the performance of the EM schemes and if the

confusion matrix estimates {Γ̂m}
M
m=1 of Alg. 2 are refined

using EM, we also reach a classification ER of 6.23%.

C. Crowdsourcing data

In this section, the proposed scheme of Sec. III-F is eval-

uated on crowdsourcing data. The datasets considered are

the Adult dataset [44], the TREC dataset [45] and the Bird
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Fig. 6. Classification ER for a synthetic dataset with K = 3 classes, priors
π = [0.2318, 0.4713, 0.2969]> and N = 106 data.
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Dataset K Single best MV EigenRatio TE SML KOS EM + MV EM + Spectral Alg. 2 MAP Alg. 2 ML

MNIST 10 7.29 7.0986 - - - 9.84 6.23 6.23 6.3986 6.3843
CoverType 7 29.89 28.642 - - - 31.13 58.68 95.62 28.574 28.913
PokerHand 3 41.95 43.365 - - - 49.62 53.62 78.38 39.436 39.339

Connect-4 3 29.17 31.636 - - - 32.33 44.27 61.20 26.176 26.86

Magic 2 21.32 21.73 26.25 26.28 21.27 21.29 21.17 21.14 20.77 20.98

Dota 2 2 41.27 42.174 45.55 45.75 40.568 40.59 40.80 59.19 40.497 40.549

TABLE VIII
CLASSIFICATION ER FOR REAL DATA EXPERIMENTS WITH M = 15.

Algorithm M = 5 M = 10 M = 20 M = 30
KOS 0.44 0.96 4.13 5.29

EM + MV 11.48 21.67 41.88 62.19
EM + Spectral 21.92 32.77 53.88 75.24

Alg. 2 4.85 15.43 83.73 271.71

TABLE VI
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH

K = 3 CLASSES, PRIORS π = [0.2318, 0.4713, 0.2969]> AND N = 106

DATA.
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Fig. 7. Classification ER for a synthetic dataset with K = 5 classes, priors
π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]> and N = 106 data.

dataset [46]. In most datasets, only a small set of ground-truth

labels was available, and the performance of each method was

evaluated on this set.

For the Adult dataset, annotators were tasked with classify-

ing N = 11, 028 websites into K = 4 different classes, using

Amazon’s Mechanical Turk [5]. The 4 classes correspond to

different levels of adult content of a website. To maintain

reasonable computational complexity, we only considered an-

notators that had given labels for all 4 classes and provided

labels for more than 370 websites.

For the TREC dataset, annotators from Amazon’s Mechan-

ical Turk [5] were tasked with classifying N = 19, 033

Algorithm M = 5 M = 10 M = 20 M = 30
KOS 0.85 1.90 8.99 11.11

EM + MV 18.47 34.68 67.14 99.82
EM + Spectral 136.30 153.35 186.99 221.50

Alg. 2 12.92 28.89 150.33 471.22

TABLE VII
CLASSIFICATION TIME (IN SECONDS) FOR A SYNTHETIC DATASET WITH

K = 5 CLASSES, PRIORS π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]>

AND N = 106 DATA.
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Fig. 8. Classification ER for a synthetic dataset with K = 5 classes, priors
π = [0.3596, 0.1553, 0.1229, 0.3258, 0.0364]> and N = 5, 000 data.
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Fig. 9. Average estimation errors of confusion matrices (top); and prior
probabilities (bottom) for two synthetic datasets with K = 3 and K = 5
classes and N = 106 data, and a synthetic dataset with K = 5 classes and
N = 5, 000 data.

websites into K = 2 classes: “relevant” or “irrelevant” to some

search queries. Again, to maintain reasonable computational

complexity for our approach, we only considered annotators

that had given labels for both classes and provided labels for

more than 708 websites.
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Fig. 10. Classification ER (top); and time (in seconds) (bottom) for a synthetic
dataset with K = 3 classes, priors π = [0.3096, 0.3416, 0.3488]> , M =
30 annotators for varying number of data N and annotator groups L.
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Fig. 11. Classification ER for a synthetic dataset with K = 3 classes,
priors π = [0.31, 0.34, 0.35]>, N = 106, M = 10 annotators and varying
percentage of adversarial annotators α.

For the bird dataset, annotators from Amazon’s Mechanical

Turk were tasked with classifying N = 108 images of birds

into K = 2 classes: “Indigo Bunting” or “Blue Grosbeak”.

Table IX lists classification ER for the two crowdsourcing

experiments. The column “Labels” denotes the number of

ground-truth labels available. As with the previous experi-

ments, our approach exhibits lower classification ER than

the competing alternatives, in both multiclass and binary

classification settings.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced a novel approach to blind ensemble

and crowdsourced classification that relies solely on anno-

tator responses to assess their quality and combine their

answers. Compact expressions of annotator moments, based on

PARAFAC tensor decompositions were derived, and a novel

moment matching scheme was developed using AO-ADMM.

The performance of the novel algorithm was evaluated on real

and synthetic data.

Several interesting research venues open up: i) Distributed

and online implementations of the proposed algorithm to fa-

cilitate truly large-scale ensemble classification; ii) multiclass

ensemble classification with dependent classifiers, along the

lines of [47]; iii) ensemble clustering and regression; and iv)

further investigation into the theoretical and practical implica-

tions of adversarial annotators along with possible remedies.

APPENDIX A

ALGORITHM DERIVATION

A. ADMM subproblem for π

Consider the following problem that is equivalent to (22)

min
π,φ

gN,π(φ) + ρCp
(π) (28)

s.to π = φ

where φ is an auxiliary variable used to capture the smooth

part of the optimization problem, and ρCp
is an indicator

function for the constraints of (22), namely

ρCp
(u) :=

{

0 if u ∈ Cp

∞ otherwise.
(29)

The augmented Lagrangian of (28) is then

` = gN,π(φ) + ρCp
(π) +

λ

2
‖π − φ+ δ‖22 (30)

where the K × 1 vector δ contains the scaled Lagrange

multipliers for subproblem (22). Per ADMM iteration, (30) is

minimized w.r.t. φ and π before performing a gradient ascent

step for δ. Specifically, the update for φ at iteration i + 1 is

obtained by setting the gradient of ` w.r.t. φ to 0, and solving

for φ; that is,

(

(λ+ ν)I+

M
∑

m=1

Γ
>
mΓm +

M
∑

m=1
m′>m

K
>
m′mKm′m

+

M
∑

m=1
m′>m
m′′>m′

(Γm′′ �Km′m)>(Γm′′ �Km′m)

)

φ[i+ 1]

=

M
∑

m=1

Γ
>
mµm +

M
∑

m=1
m′>m

K
>
m′msmm′ + νπ(prev)

+ λ(π[i] + δ[i]) +
∑

m=1
m′>m
m′′>m′

(Γm′′ �Km′m)>tmm′m′′ , (31)

where Kmm′ := Γm � Γm′ . Brackets here indicate ADMM

iteration indices. Accordingly, the update for π is given by

π[i+ 1] = PCp

(

φ[i+ 1]− δ[i]
)

(32)

where PCp
is the projection operator onto the convex set Cp;

that is, φ[i+ 1]−δ[i] is projected onto the probability simplex.
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Dataset N K M Labels MV EigenRatio TE SML KOS EM + MV EM + Spectral Alg. 2 MAP Alg. 2 ML

Adult 11, 028 4 38 347 36.023 - - - 80.98 40.63 38.90 33.429 34.87

TREC 19, 033 2 23 2, 275 50.002 43.34 48.97 48.44 54.68 56.04 40.62 37.846 39.824

Bird 108 2 39 108 24.07 27.78 17.59 11.11 11.11 11.11 10.19 10.19 10.19

TABLE IX
CLASSIFICATION ER FOR CROWDSOURCING DATA EXPERIMENTS.

This projection can be performed using efficient methods [48].

Finally, a gradient ascent step is performed for δ as

δ[i+ 1] = δ[i] + π[i+ 1]− φ[i+ 1]. (33)

Note that products of the form K
>
m′mKm′m = (Γm �

Γm′)>(Γm � Γm′) can be efficiently computed by using

the following observation: (Γm � Γm′)>(Γm � Γm′) =
(Γ>

mΓm)∗(Γ>
m′Γm′), where ∗ denotes the elementwise matrix

product [11]. In addition, the products Γ
>
mΓm do not have

to be explicitly computed each time (28) is solved, as they

can be cached every time (34) is solved. As suggested in

[28], the maximum number of ADMM iterations, I , for each

subproblem can be set to be small, e.g. I = 10.

B. ADMM subproblem for Γm

Proceeding along similar lines with the previous subsection,

consider the following problem which is equivalent to (23)

min
Γm,Φ

ḡN,m(Γm,Φ) (34)

s.to Γm = Φ
>

where Φ is an auxiliary variable used to capture the smooth

part of the optimization problem in (23), and

ḡN,m(Γm,Φ) = gN,m(Φ>) + ρC(Γm).

The augmented Lagrangian of (34) is then

`′ = ḡN,m(Γm,Φ) +
λ

2
‖Γm −Φ

> +∆m‖
2
F (35)

where the K × K matrix ∆m contains the scaled Lagrange

multipliers for subproblem (23), and λ is a positive scalar.

As in the previous section, per ADMM iteration, (35) is

minimized with respect to (w.r.t.) Φ and Γm before performing

a gradient ascent step for ∆m. Specifically, the update for Φ at

iteration i+1 is obtained by setting the gradient of `′ w.r.t. Φ

to 0, and solving for Φ. Since Sm′m = S
>
mm′ and Π = Π

>,

it is easy to see that the update w.r.t. Φ can be expressed as

(

(λ+ ν)I+ ππ> +
M
∑

m′ 6=m

ΠΓ
>
m′Γm′Π

+
∑

m′>m
m′′>m′

ΠK
>
m′′m′Km′′m′Π

)

Φ[i+ 1]

= πµ>
m +

M
∑

m′ 6=m

ΠΓ
>
m′Sm′m +

∑

m′>m
m′′>m′

ΠK
>
m′′m′T

(1)
mm′m′′

+ νΓ(prev)
m

> + λ(Γm[i] +∆m[i])>. (36)

Accordingly, the update for Γm is given by

Γm[i+ 1] = PC

(

Φ
>[i+ 1]−∆m[i]

)

(37)

where PC is the projection operator onto the convex set

C with each column of Φ
>[i+ 1] − ∆m[i] projected onto

the probability simplex. Finally, a gradient ascent step is

performed per ∆m, as follows

∆m[i+ 1] = ∆m[i] + Γm[i+ 1]−Φ
>[i+ 1]. (38)

C. Algorithm complexity

For the ADMM subproblems of Apps. A-A and A-B the

complexity per iteration is dominated by the matrix inversions

required in (31) and (36) respectively, that isO(K3). However,

in order to instantiate the left- and right-hand sides of (31),

O(M3K2) and O(M3K4) operations are required respec-

tively. These operations have to be performed only once and

cached to be used in each iteration. The increased complexity

of the right-hand side is due to the matricized tensor times

Khatri-Rao product (MTTKRP) (Γm′′ � Km′m)>tmm′m′′ .

These MTTKRPs however, can be computed efficiently due

to the Khatri-Rao structure, and are easily parallelizable, see

e.g. [49]. This brings the overall complexity of App. A-A to

O(M3K4 + IK3), with I denoting the number of ADMM

iterations. Accordingly, the operations required to instantiate

the left- and right-hand sides of (36) are O(M2K2) and

O(M2K4) respectively. This brings the total complexity of

App. A-B to O(M2K4 + IK3). As the number of iterations

for the ADMM algorithms of Apps. A-A and A-B is set

to be small the overall computational complexity of Alg. 1

is O(ITM
3K4), where IT is the number of AO-ADMM

iterations required until convergence.

Furthermore, the number of tensors Tmm′m′′ required to

solve (21) is
(

M
3

)

, while the number of matrices Smm′ required

is
(

M
2

)

, and the number of vectors µm is M . Thus, for K
classes, the memory needed for storing all the tensors, ma-

trices and vectors involved is O
(

(

M
3

)

K3 +
(

M
2

)

K2 +MK
)

.

Finally, computing the cross-correlation tensors, matrices and

mean vectors of annotators incurs a complexity of O(M3KN)
as each of the annotator response matrices {Fm}

M
m=1 is of size

K ×N and has N nonzero entries.

APPENDIX B

PROOFS

Proof of Lemma 1. Suppose that rank(Γm) = rank(Γm′) =
rank(Γm′′) = K, for some m 6= m′,m′′ and m′ 6= m′′.

Then by [11, Thm. 2] the decomposition of Ψmm′m′′ is

essentially unique. Invoking [36, Prop 4.10] the joint tensor
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decomposition of (21) is essentially unique, meaning the

solutions of (21) will be of the form

Γ̂m = Γ
∗
mPΛm, m = 1, . . . ,M, π̂ = ΛP

>π∗

where P is a permutation matrix, and {Λm}
M
m=1, Λ are

diagonal scaling matrices such that ΛmΛm′Λm′′ = Λ
−1, for

m 6= m′,m′′, m′ 6= m′′. Since {Γ̂m} and π̂ are the solutions

to (21), they must satisfy the constraints of the optimization

problem; that is Γ̂m ∈ C m = 1, . . . ,M and π̂ ∈ Cp.
Since Γ

∗
m

>
1 = 1 for all m, and P

>
1 = 1, we have

Γ̂
>
m1 = 1⇒ ΛmP

>
Γ
∗
m

>
1 = 1⇒ Λm1 = 1 m = 1, . . . ,M

which implies that Λm = I for m = 1, . . . ,M . Since

ΛmΛm′Λm′′ = Λ
−1, for m 6= m′,m′′, m′ 6= m′′, we arrive

at Λ = I. Thus, the constraints of (21) solve the possible

scaling ambiguities. Letting P̂ = P
> = P

−1, we arrive at the

statement of the lemma.

Proof of Theorem 1. For notational convenience, collect all

optimization variables in θ, and denote the aggregated con-

straint set as C̄. Note that C̄ is a compact set, since the

probability simplex is compact and C̄ is an intersection of

simplexes. Since hN (θ) is continuous and C̄ is compact,

hN (θ) is uniformly continuous on C̄, that is, ∀ε > 0 there

exists a neighborhood V of θ̃ such that

sup
θ∈V∩C̄

|hN (θ)− hN (θ̃)| < ε/2. (39)

Due to the compactness of C̄ there exist a finite number of

points θ1, . . . ,θL ∈ C̄, with corresponding neighborhoods

V1, . . . ,VL that cover C̄, that is

sup
θ∈V`∩C̄

|hN (θ)− hN (θ`)| < ε/2, for ` = 1, . . . , L. (40)

Invoking the LLN, it is straightforward to show that, for

sufficiently large N , w.p. 1

|hN (θ`)− h∞(θ`)| < ε/2, for ` = 1, . . . , L. (41)

Using the triangle inequality along with (40), and (41) we have

sup
θ∈C̄

|hN (θ)− h∞(θ)| < ε, (42)

that is, for sufficiently large N , hN converges uniformly to h∞

on C̄. Then, by [38, Thm. 5.3] we have that D(SN ,S∗) → 0
as N →∞.

Proof of Theorem 2. Let L̄(x|k) = L(x|k)πk, with L(x|k)
as defined in Sec. III-A. Then the average probability of error

of the MAP detector can be expressed as

Pe =
K
∑

k=1

Pe,kπk (43)

where Pe,k = Pr(L̄(x|k) < L̄(x|k′), k′ 6= k|Y = k). By

applying a union bound on Pe,k it is easy to show that

Pe,k ≤
∑

k′ 6=k

Pr(L̄(x|k) < L̄(x|k′)|Y = k). (44)

Defining PL̄(k, k
′) := Pr(L̄(x|k) < L̄(x|k′)|Y = k),

substituting (44) in (43) and grouping terms we have

Pe ≤
K
∑

k=1

K
∑

k′>k

πkPL̄(k, k
′) + πk′PL̄(k

′, k). (45)

Consider now the binary hypothesis testing problem between

classes k and k′ 6= k. The average probability of error of a

MAP detector for the binary problem is

Pe(k, k
′) =

πk

πk + πk′

PL̄(k, k
′) +

πk′

πk + πk′

PL̄(k
′, k). (46)

Then

πkPL̄(k, k
′) + πk′PL̄(k

′, k)

= (πk + πk′)Pe(k, k
′) ≤ Pe(k, k

′) (47)

where the inequality is due to πk + πk′ ≤ 1. Combining (47)

with (45) yields

Pe ≤
K
∑

k=1

K
∑

k′>k

Pe(k, k
′). (48)

Therefore, we have upper bounded the average probability

of error of our M -class hypothesis testing problem by the av-

erage error probabilities of binary hypothesis testing problems.

For the binary hypothesis testing problem between classes k
and k′ 6= k, collect all annotator responses in an M×1 vector

f̃ and define two complementary regions R and RC as

R = {f̃ : L̄(x|k) < L̄(x|k′)} (49a)

RC = {f̃ : L̄(x|k′) < L̄(x|k)}. (49b)

Upon defining π̃k,k′ = πk

πk+πk′
and using (49), (46) can be

rewritten as

Pe(k, k
′) = Pr(f̃ ∈ R|Y = k)π̃k,k′ + Pr(f̃ ∈ RC |Y = k′)π̃k′,k

=

M
∏

m=1

Pr([f̃ ]m ∈ Rm|Y = k)π̃k,k′

+

M
∏

m=1

Pr([f̃ ]m ∈ R
C
m|Y = k′)π̃k′,k (50)

where the second equality follows from As. 1 and Rm,RC
m

denote the subsets of R,RC corresponding to the m-th entry

of f̃ , respectively. Now let

m∗ = argmax
m

Pr([f̃ ]m ∈ Rm|Y = k)M π̃k,k′ (51)

+ Pr([f̃ ]m ∈ R
C
m|Y = k′)M π̃k′,k

and define

P̄e(k, k
′) = Pr([f̃ ]m∗ ∈ Rm∗ |Y = k)M π̃k,k′

+ Pr([f̃ ]m∗ ∈ RC
m∗ |Y = k′)M π̃k′,k. (52)

Clearly Pe(k, k
′) ≤ P̄e(k, k

′). From standard results in detec-

tion theory (52) can be bounded as [50], [51]

P̄e(k, k
′) ≤ exp(−Md(p||q)) (53)

where p := Pr([f̃ ]m∗ ∈ Rm∗ |Y = k), q := Pr([f̃ ]m∗ ∈
RC

m∗ |Y = k′), and d(p||q) denotes the Chernoff information

between pdfs p and q. Combining (53) with (48) yields the

claim of the theorem.
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