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ABSTRACT: In 1926, E. Schrödinger showed that the mean position and mean
momentum of the displaced ground state in a harmonic oscillator obey the
equations of motion of the classical oscillator. This Schrödinger Correspondence
Principle, extended to an N-dimensional harmonic oscillator, is an intuitive and
powerful way to approach many aspects of harmonic solids by converting the
quantum-mechanical problems to the classical ones. For the application of the
correspondence principle, the concepts of the phonon and its pseudomomentum are clarified, and the importance of taking into
account the center-of-mass momentum is explained. Also, the concept of the antiphonon is introduced through the examples of
physical processes in a line and a ring of atoms. With the correspondence principle, the quantum behavior of harmonic solids
under a Mössbauer-like kick is analyzed classically, and the simulation verified the formation of an antiphonon.

1. INTRODUCTION
In 1926, Schrödinger made the connection between the
dynamics of a displaced quantum ground-state Gaussian wave
packet in a harmonic oscillator and classical motion in the
same harmonic oscillator1 (see Figure 1). The mean position

of the Gaussian (its guiding position center) and the mean
momentum (its guiding momentum center) follow classical
harmonic oscillator equations of motion, whereas the width of
the Gaussian remains stationary if it initially was a displaced (in
position, momentum, or both) in the ground state. This classic
“coherent state” dynamics is now very well known and is
described in the next section.
By analogy to the 1-D case, we consider a harmonic crystal

in its ground state with separable normal modes, disturbed by
displacements of positions and momenta. We consider time-
dependent Schrödinger oscillators for each normal-mode
degree of freedom. This principle was previously used, for
example, for a polyatomic molecule with 27 and 41 normal
coordinates.2

Starting with a laboratory coordinate for each atom in a
solid, which is supposed to be free floating, as on the space

shuttle, we have 3N − 6 internal, normal coordinates and 6
zero-frequency modes that arise from the translational and
rotational symmetry of the whole.

2. COHERENT STATE DYNAMICS
The classic “coherent state” dynamics is now very well known;
see, for example, ref 3. Specifically, for a harmonic oscillator
with the Hamiltonian H p m m q/22 1
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(i.e., classical motion for the guiding trajectory (qt, pt)), and if
A0 = imω/2, then At = A0. The phase then obeys

s s p q p q t1
2t t t0 0 0 ω= + [ − − ]

(4)

More general “squeezed state” time-dependent solutions
apply if the Gaussian spread of the initial wave packet is a
narrower or broader Gaussian than is the ground state of the

Received: December 8, 2018
Revised: March 5, 2019
Published: March 20, 2019

Figure 1. Photocopy from Schrödinger’s 1926 paper. Reprinted with
permission from ref 1. Copyright 1926 Springer-Verlag.
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same oscillator. In this case, the Gaussian “breathes,” becoming
wider and narrower twice per period of the harmonic oscillator.
Arbitrary time-dependent harmonic potentials have exact

solutions in terms of Gaussians and their parameters, which are
always classical in nature. A more general propagation of time-
dependent “excited state” Gaussians, that is, Hermite
polynomials multiplying the Gaussians, can be defined.4 Here
we consider only the usual coherent state solutions.
Any imaginable classical motion of a harmonic solid must

have a quantum analog, according to Schrödinger correspond-
ence. Each normal mode of a finite crystal, no matter what the
size, is a 1-D oscillator, with frequencies and “classical”
parameters appropriate to the initial conditions. For example,
below, we will consider the interesting events after an atom in a
crystal is kicked by a γ-ray photon in the Mössbauer effect.
In the case of a Gaussian in a general, N-dimensional time-

dependent quadratic form potential, the governing equations
are3
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where At is an N × N-dimensional matrix for N coordinates,
and q, qt, and pt are N-dimensional vectors, which obey
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V″ and m−1 are N-dimensional matrices of mixed second
derivatives of the Hamiltonian with respect to position and
momentum coordinates, respectively. That is
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where m11 = ∂pt/∂p0|q0, m12 = ∂pt/∂q0|p0, m21 = ∂qt/∂p0|q0, and
m22 = ∂qt/∂q0|q0.

3. PHONON MOMENTUM AND WAVE VECTOR
From the perspective of Schrödinger correspondence, the
classical vibrational motion of a harmonic lattice and the
motion of phonons must be more than analogous to each
other; they must be derivable from one another. First, we need
to understand the notion of a phonon, its mechanical
momentum, and its pseudomomentum.
Ashcroft and Mermin5 clarified the role of phonons by

calling them corpuscles, stating, “Usually the language of
normal modes is replaced by a corpuscular description...”, and
adding that the concept of a phonon is deliberately analogous
to that of a photon. In his well-known textbook, Kittel6 states
“...a phonon really carries zero momentum...” Kittel was using
the word “phonon” to mean a crystal normal mode, not a
corpuscle, just as in quantum electrodynamics, where the word
“photon” is sometimes used for a singly occupied cavity mode.
The understanding of phonon pseudomomentum versus

mechanical momentum is star-crossed at best. The problem is
traceable to the tradition of suppressing the role of whole
crystal momentum, usually by eliminating it before eq 1, so to
speak, by writing interactions in internal coordinates. Writing
that pseudomomentum is sometimes called “crystal momen-
tum”, Kittel calls the momentum confusion a “delicate point”
in a footnote, stating, “...Thus, in an H2 molecule the
internuclear vibrational coordinate r1 − r2 is a relative
coordinate and does not carry linear momentum; the center-
of-mass coordinate (r1 + r2)/2 corresponds to the uniform
mode and can carry linear momentum.”
Strangely, Kittel goes on to assign the “uniform mode”

carrying momentum to the internal K = 0 phonon mode, that
is, the infinite wavelength internal normal mode of a crystal.
Because he, like almost all authorities, has long since
abandoned the crystal center-of-mass translation, the K = 0
mode is the best thing left on the shelf, so to speak, but it is not
correct. This mode only has the right flavor; the correct
assignment is to the zero-frequency normal modes, an
assignment that is correct even for a finite crystal. No internal
mode can correctly describe the overall rigid translation of the
crystal, which had just been highlighted by Kittel’s H2 example,
which required only two atoms!
Nonetheless, Kittel clearly understands the essential

momentum-carrying role of the center of mass. He did not
assign a wave function to this mode, which is actually exp[iK⃗·
X⃗], where X⃗ is the center of mass of the crystal, for which K⃗ ≠
0 in general. We call the momentum-carrying external modes
“K” modes, in honor of Prof. Charles Kittel, age 102 as of this
writing. We note that three rotational degrees of freedom are
also K modes. It does not matter if the crystal is attached to a
lab bench, and so on; momentum conservation is still
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maintained, and the attachment normally has no effect on
internal crystal dynamics.

4. DEFINITIONS
We give some definitions that are desirable given the
somewhat confusing statements that can be found in the
literature. Even though the greater majority of sources are
clear, enough “noise” exists to make this exercise worthwhile.
Especially dangerous and confusing are loose statements about
the manipulation of electron pseudomomentum by reciprocal
lattice vectors. Phonon pseudomomentum is an entirely
different matter.
It helps to put some objects in what we call the foreground,

and the remainder of the whole crystal is the background. An
electron or a phonon may be a foreground object, for example.
A neutron passing through a crystal is a foreground object.
Foreground objects may have mechanical momentum and
pseudomomentum, which may or may not be preserved, and
so, too, may the background. The momentum of the whole
system, that is, the foreground plus the background, must be
conserved.
The definitions given immediately below will be clarified by

the linear and circular atom chains considered later.
The mechanical linear momentum of an object is defined

classically as the sum of masses times the Cartesian velocities
of the object’s constituent particles and quantum mechanically
as the sum over the particle momentum operators −iℏ∂/∂xj.
The conservation of this momentum for the totality of objects
is a consequence of the translational invariance of the total
Hamiltonian. Similar statements are made about angular
momentum. Any phonon mechanical momentum (there may
or may not be any for a given phonon) is automatically
assigned to the total crystal center-of-mass momentum by the
definition of that momentum.
Phonon pseudomomentum k ⃗ is a consequence of

Hamiltonian symmetry under cyclic particle relabeling. Cyclic
means that an atom at one face is reattached on an opposite
face, in Born−von Karman fashion. This definition of phonon
pseudomomentum differs from the usual crystal translation
operator by primitive lattice vectors, which is problematic
because the translation symmetry holds for any translation, not
just by lattice vectors, and is really the symmetry of the total
system momentum.
Phonon pseudomomentum will not be conserved if cyclic

particle relabeling is not a symmetry, as when a defect is
present, but it is conserved under phonon−phonon inter-
actions induced by anharmonicity obeying crystal symmetries.
Taking an acoustic phonon mode as an example, the band

edge amounts to alternate compression and expansion every
unit cell. Any shorter wavelength oscillation does not exist
physically and is equivalent to a longer wavelength oscillation
obtained by adding a reciprocal lattice vector to bring the
mathematically faster oscillation back into the physical
Brillouin zone. See the Appendix for a discussion of phonon
pseudomomentum.
Electron pseudomomentum is a consequence of Hamil-

tonian symmetry under electron translation by primitive lattice
vectors for a f ixed crystal lattice. The pseudomomentum
acknowledges that mechanical momentum undulates for
energy-conserving motion in a periodic potential. It is replaced
by a pseudomomentum that is conserved.
Crystals have a pseudomomentum when they are

considered a “background” object with an interior electron in

the foreground. If the foreground object (electron) has
pseudomomentum, then the background object (crystal)
should have pseudomomentum. The symmetry leading to a
crystal pseudomomentum is as follows: The electron is held
fixed while the background is translated; an undulating
potential is experienced, implying a background crystal
pseudomomentum.
Total momentum results from translational symmetry of the

whole system (both an electron and a crystal). The total
momentum P is the sum of the electron pseudomomentum ℏk
and crystal pseudomomentun ℏK: P = ℏK + ℏk. This is
especially apparent if the electron entered from outside the
crystal: total mechanical momentum of crystal + electron is
conserved, but the total momentum is the sum of two
pseudomomenta while the electron is inside the crystal.

5. LINE OF ATOMS
Figure 2 begins the exercise of Schrödinger correspondence in
an interesting many-body situation. We consider an N-atom

1D classical harmonic chain of atoms (1D crystal) and, by
Schrödinger correspondence, a quantum chain. Such quasi-1-D
chains are becoming experimentally realizable with dozens of
atoms in a trap and are already the subject of dynamical
investigations involving vibrational disturbances on the chain7

and instabilities.8

The chain can be described in the laboratory or a center-of-
mass frame. If the chain is initially at rest in the lab frame and
the left-end atom is transiently forced left to right, then this
causes a corpuscle of energy and momentum to travel down
the chain. The system center-of-mass momentum will have
received a boost. In Figure 2A,C, we describe the chain in the
lab frame. The phonon corpuscle has a local momentum
density traveling along the chain. Because atoms are not
moving, except in the vicinity of the phonon, the center-of-
mass momentum is entirely attributable to the phonon. It is
often a matter of taste whether the momentum is thought of as
belonging to the phonon or to the center of mass, but it should
not be counted twice.

Figure 2. Three snapshots of a disturbance traveling in a linear chain
of equal masses connected by equal force constants. Snapshot A is in
the lab frame, B is in the center-of-mass frame at the same time as A,
and C is taken later in the lab frame. Springs that are stretched relative
to their equilibrium length are shown in blue, and those that are
compressed are shown in red. Atoms moving right are red, and those
moving left are blue, with saturation representing speed. The
disturbance resulted from pushing the chain, initially at rest, from
the left-end atom. See the text.
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Figure 2B shows motion in the center-of-mass frame. In the
center-of-mass frame, the motion is entirely composed of
“internal” normal modes, none of which has any momentum. A
corpuscle (phonon) with locally demonstrable momentum is
traveling from left to right, but atoms momentarily not
participating in the phonon are drifting in the opposite
direction, so as to make the total center-of-mass momentum
vanish. Snapshots A and C are shown in the lab frame after the
same push.
In panel C, we see the situation some moments after the

phonon has reflected off the free right-hand end. A dilation has
formed and is heading from right to left. Its momentum is
opposite its direction of motion, and its mass density is below
the average. The local momentum contained in the phonon
has not changed. It is reasonably thought of as an antiphonon.
Following the scenario of panels A and C, on average, over
time, each mass drifts to the right, spending most of its time at
rest, only to be rather suddenly displaced to the right as either
the negative or positive mass density corpuscle passes by. Over
time, the chain crawls to the right in an earthworm-like
motion. By Schrödinger correspondence, we have just
described the quantum-mechanical motion as well.
In the lab frame used in panels A and C, there is positive

center-of-mass momentum carried by the K mode. All of this
momentum is attributable to the corpuscle. This remains true
after the corpuscle reflects from the end to become an
anticorpuscle or antiphonon of lower-than-background mass
density. The corpuscle’s momentum still points to the right,
now in opposition to its motion toward the left. Both before
and after the collision with the free end, the corpuscle is
responsible for the center-of-mass momentum, which cannot
change in the absence of external forces. When the
anticorpuscle collides with the left end, it again reflects as a
corpuscle. The scenario corresponds roughly to an air pressure
pulse in a tube with both ends open, apart from the part of the
pulse that is radiated from the tube ends.
The foreground (corpuscle) momentum and the back-

ground momentum are different in the two frames. The
corpuscle in B has a momentum slightly lower than that in
panels A and C. This difference vanishes in the limit of a large
chain because the drift velocity of the noncorpuscle masses is
proportional to the inverse of the chain length. The time
between passes of the corpuscle is proportional to the chain
length. The displacement of atoms as the corpuscle passes by is
independent of chain length. Over time, the atoms do not drift
right or left in the center-of-mass frame.
The corpuscle in the lab frame chain has mechanical

momentum, p, that can be calculated in the usual way by
adding all of the velocities of the masses comprising it. If a
large free mass is just touching the right-hand chain member,
then very nearly (and exactly as the large mass approaches
infinite mass), momentum 2p is imparted to the heavy mass as
the corpuscle arrives (Figure 3). With the heavy mass present,
the corpuscle now recoils as a positive mass density pulse, with
reversed momentum. The heavy mass behaves just as if it had
been struck elastically by a particle of momentum p, acquiring
momentum 2p. The total momentum of the chain plus heavy
mass remains fixed.
If the chain is pushed to the right, followed quickly by an

opposite pull, then a wave of compression, followed by
rarefaction, is sent down the chain. The two parts together, if
carefully balanced, have canceling, net-zero momentum, even
though they may be traveling briskly down the chain. Energy is

nonetheless being propagated in this composite phonon. The
pushing and pulling could be done periodically, apart from
fading in and out, creating a well-defined phonon pseudomo-
mentum for a phonon with no mechanical momentum.
Because of Schrödinger correspondence, we can take any
classical scenarios quite seriously quantum mechanically. If so,
we have learned that phonons can have mechanical
momentum or not, quite apart from their pseudomomentum.
We apply the Schrödinger correspondence explicitly to the ring
of atoms considered next.

6. RING OF ATOMS
A chain of atoms connected to itself as in a circle (Born−von
Karman boundary conditions) is a well-known model (Figure
4). Ashcroft and Mermin choose these conditions on an N-
atom chain for convenience, stating, “for if N is large, and we
are not interested in end effects, then the precise way in which
the ends are treated is immaterial.”5 We disagree with this
seemingly benign statement, for it hides once again the role of
the total momentum or, here, the angular momentum. The
zero-frequency angular momentum mode gets no mention in
their treatment.
To be specific, an N-atom chain slides frictionlessly on a

rigid ring confined to the plane. Each atom is linked by
harmonic springs (Figure 4) to its neighbors.
Atoms with a clockwise drift are shown in light blue, and

those with a counterclockwise drift are red. Atoms with a
steady angle are white. On the left, the total angular
momentum around the center of the ring vanishes, yet a
corpuscle travels counterclockwise around the circle. The
corpuscle has angular momentum if it is considered as a
foreground object, with the momentum of atoms 12−17 added
together. The background momentum cancels the foreground
momentum, giving 0 total angular momentum. As the
corpuscle passes each atom, the atom suddenly increases its
angle counterclockwise; in between such times, the atoms
slowly drift clockwise. Over time, there is no drift in angle. On
the right, a component of the zero-frequency K mode (which
here is the total angular momentum) has been added, just so as
to cancel the clockwise drift in between arrivals of the
corpuscle. The atoms make counterclockwise jumps, and, over
time, steadily progress counterclockwise in angle. The progress
of an atom with time in each case is shown at the bottom. On

Figure 3. In panel A, the initial phonon in Figure 2 now heads toward
a large stationary mass waiting in contact at the end of the chain. The
mass imposes a nearly fixed boundary condition on the right-end
atom, causing the reflection of a phonon in frame B with reversed
momentum in the chain. The change in chain center-of-mass
mechanical momentum, −2p, is balanced by the mechanical
momentum gain +2p of the heavy mass, showing that the phonon
momentum was indeed real and of value p.
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the left, the foreground corpuscle has angular momentum L0,
and the background has −L0; total L = 0. This is a phonon
corpuscle built out of states of 0 angular momentum. On the
right, the compensated foreground corpuscle has angular
momentum L0, and the background has L = 0, with total
angular momentum L0.
We issue a warning that although this model has rotational

symmetry and well-defined angular momentum, it has not been
set free to flex or translate as a whole, so its physics is realistic
only for 1D motion along the ring. If, for example, an atom in
the ring was to emit a γ-ray into the 2D plane, then momentum
would not be conserved.
We form N normal modes in the usual way. One of these

modes has zero frequency or no restoring force. In that mode,
all of the atoms move in unison around the ring. It is the only
mode that can carry angular momentum.
The kinetic energy is that of N atoms, each of mass m, in a

free-sliding heavy rigid ring of radius R. There are N angles
required to specify the positions of the atoms, which interact
by harmonic potentials with a Hamiltonian given as

H
mR

L R1
2

1
2

( )
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2
1

2
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1
2

1
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which is quantized as
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The normal modes χk that diagonalize the force matrix can
be written down by symmetry, for N atoms on a ring of radius
R, as
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where n is −(N − 1)/2, ..., 0, ..., (N − 1)/2, bN = (N − 1)/2, a
= 2πR/N, and kn = 2nπ/Na with normal frequency ωn =

2 m/ sin k a
2
nκ = 2 m/ sin n

N
κ π .

We wish to use real valued normal mode ξk. The χ0 mode is
already real, so we define ξ0 ≡ χ0. We take two real linear
combinations of the degenerate modes χn and χ−n to make two
s t and ing wave s , one a co s ine , ζ n =

2
n nχ χ+ − =

n Ncos(2 / )R
N

N
/ 2 1 π θ∑ = SS S, where n is [−bN, −1], and one a

sine, n i2
n nξ = χ χ− − = n Nsin(2 / )R
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N

/ 2 1 π θ∑ = SS S, where n is [1,

bN]. The Hamiltonian becomes, in the normal coordinates
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with normal frequency ωn = 2 m/ sin k a
2
nκ = 2 m/ sin n

N
κ π .

The coordinate ξ0 stands out as having no restoring force. It is
the K mode, a measure of the overall rotation of the atoms of
the ring; its conjugate momentum is proportional to the
angular momentum.
Classically, the total angular momentum reads

L mR NmR MR
N

1

2
0

2∑ θ ξ= ̇ = ̇ ≡ Θ̇
=S

S
(22)

and M = m∑S and Θ = N/θ∑S S . The angular momentum of
the ring is the sum of the angular momenta of the atoms. The
angular momentum operator for the ring of N atoms with
angle θS and of mass m and a ring of radius R is

L L i i
N N

1 1
∑ ∑ θ

̂ = ̂ = − ℏ ∂
∂ = − ℏ ∂

∂Θ= =S
S

S S (23)

To quantize this system, we take the Hamiltonian in normal
coordinates (for N odd)

H
m

m
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1
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Figure 4. Ring of atoms linked by harmonic springs carries a phonon corpuscle with 0 angular momentum (left) or the angular momentum of the
phonon (right). The angular progress of an atom over time is shown in each case at the bottom.
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An eigenstate of the chain reads, with angular momentum
ℏK in the (zero-frequency) rotational mode, ηn quanta in the
nth mode, and so on

K e, iK
b

n b
n

N

N
n 0

∏η η| ⟩ = | ⟩Θ

=−
≠ (25)

where ikjjj y{zzz ikjjjj y{zzzzm
e H
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2
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n n
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2ξ η
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π

ω ξ⟨ | ⟩ =
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ω ξ
η

− ℏ

(26)

Any ηn = 1 means a singly occupied normal mode. (We are
reserving the term “phonon” for corpuscles, as per standard
usage.) The angular momentum ℏK with K as an integer owes
its existence to the K-mode free rotation, independent of the
normal modes, which carry no momentum. This is obvious if
we apply the total angular momentum operator L̂ = −iℏ∂/∂Θ
to the wave function of eq 25; we get ℏK, independent of the
internal normal-mode quantum numbers. Because the function
must be the same for Θ and Θ + 2π, K must be an integer, and
the angular momentum is quantized to L = ℏK. The
occupation of any phonon of coordinate ξn and wavenumber
kn, where n ≠ 0, contributes no angular momentum, that is, no
mechanical momentum, despite superficial appearances (eq
19).
We are not particularly interested in the restriction of

allowable angular momenta due to the finite number N of
atoms in the ring. Rather we take the macroscopic limit of a
huge moment of inertia and large N. Then angular momentum
becomes, in effect, a continuum, and we approach the
idealization of a large crystal.
There are several ways to make a spatially localized phonon

wave packet. Perhaps the simplest is to use Schrödinger
correspondence. Starting with a 0 K ground state

e00, 0i

n b

b

n
0

N

N

∏| ⟩ = | ⟩Θ

=− (27)

we apply a momentum boost to a group of adjacent atoms of
the form

e ip /θ∑ ℏS S S

imparting angular momentum
ÄÇÅÅÅÅÅ ÉÖÑÑÑÑÑp Kv exp ( )0

2α= ℏ · − −S SS to
the thS atom, creating

e e a00,ip iK
boost

/ ∑ ηψ| ⟩ = | ⟩ = | ⟩
η

η
θ∑ ℏ ΘS S S

(28)

where |η⟩ is shorthand for

b

n b
n

N

N
n 0

∏η η| ⟩ = | ⟩
=−

≠

The parameter ν is chosen so that p K∑ = ℏS S . The boosted
state imparts momentum to each atom, maximizing at the
atom 0=S S . The angular momentum imparted to the center of
mass is definite

L Kboost boostψ ψ̂| ⟩ = ℏ | ⟩

The situation just described corresponds to Figure 4, right. A
group of atoms has been given a real, mechanical momentum
and, collectively, they have contributed to the total
(mechanical) angular momentum.

Phonon Momentum. In building a localized phonon, any
mechanical momentum it possesses accrues to the center-of-
mass momentum or angular momentum. However, there is a
practical sense in which the momentum may be associated
with the phonon itself. Indeed, we have just created a phonon
with mechanical momentum that is attributable to a local
disturbance.
The local phonon’s effect on the total angular momentum of

the ring can be canceled by applying a reverse boost, that is

e e e a00,iK iK ip
boost

/ ∑ ηψ| ⟩ = | ⟩ = | ⟩
η

η
θ− Θ − Θ ∑ ℏS S S

(29)

This wave function has no total momentum, but atom-by-atom
inspection with the operators

p i θ̂ = − ℏ ∂
∂S

S

reveals a group of atoms near 0=S S with collective net
momentum. The sum over all atoms gives zero momentum.
This exactly corresponds to Figure 4, left.
The phonon in Figure 4 does not have a very well-defined

pseudomomentum because it is a pulse with no modulation.
Phonon Pseudomomentum. How can a spatially

localized phonon be created, with a well-defined pseudomo-
mentum, near the atom labeled by 0S ? We can use a linear
superposition of one quantum normal mode of nearby kn, a
narrow range of states of nearby pseudomomentum. We will
create a state with no total angular momentum (because
angular momentum is conserved, and none of the normal
modes have any) but well-defined pseudomomentum.
Apart from normalization, we take

e( ) 0 0 ... 1 0 ... 0n
m

m n ik a
m, ,

(1/2 )( ) m
0

2
0∑ξψ| ⟩ ≈ | ⟩| ⟩ | ⟩| ⟩ | ⟩α

α− − −
S

S

(30)

or i
kjjjjjj

y
{zzzzzze e

e

( )n
m

m n ik
m

m

n
m

, ,
(1/2 )( ) /2

, ,
/2

m n n n

n n n

0

2
0

2

0

2

∑ξψ ξ

ξ

≈

≡

α
α ω ξ

α
ω ξ

− − − − ∑ ℏ

− ∑ ℏ

′ ′ ′

′ ′ ′

S
S

S (31)

The parameter kn controls the average pseudomomentum of
the result; the phonon is centered on the site 0S . The result is
described as

R
N

en

N
ik a

, ,
1

( ) ( /2)( )n
0

0 0
2∑ξ θ≈α

α

=

− − −
S

S

S S S S
S

(32)

which leaves atoms with labels far from 0S unaltered but acts
like ξn near 0=S S . n, , 0ξ α S is a compromise between Fourier
extremes of fixed position and fixed wave vector. This phonon
involves only singly occupied normal modes by construction.

Phonon−Phonon Interaction. Because there is no real
mechanical momentum associated with the pseudomomentum,
there is no concern about momentum conservation when
phonons interact due to anharmonicities or impurities. Energy
must be conserved in any case. For anharmonicities that are
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uniform throughout the crystal and intrinsic to the atomic
interactions, cyclic atom replacement symmetry exists, and
total pseudomomentum conservation applies. For example, if
the energy dispersion is sufficiently linear in the long
wavelength acoustic region, then two phonons may interact
anharmonically to give two new phonons

k k k kn n m m+ → +′ ′

where n + n′ = m + m′.

7. TIME EVOLUTION OF A MÖSSBAUER-LIKE KICK
The showpiece of many-body elastic quantum transitions is
certainly Mössbauer emission, which features a demonstrably
purely elastic component: No internal lattice phonon
occupations change in a large block of material, despite a
sharp kick to one of its atoms. Only the K mode is affected in
this fraction of elastic events.
The sample mass is normally so large that the energy (due to

momentum conservation) exchanged in a zero-phonon process
is truly infinitesimal. A sample of the nuclear ground state of
57Fe placed nearby will hungrily soak up any such γ-ray with an
enormous resonant cross section. So narrow is the Mössbauer
line that moving the nearby sample at a centimeter per second
or less relative to the emitter can Doppler shift the resonance
absorption line more than its intrinsic line width and let the
radiation pass through the sample unhindered, as detected by a
counter. There can be little doubt: Some of the emission is
totally elastic; it is not just “quasi-elastic”. The theory of
Mössbauer emission9 verifies this conclusion.
The remainder of the γ-ray emission by the same nucleus in

the same surroundings gives a broad continuum of mostly
lower energy due to phonon production for cold samples.
Warmer samples also reveal phonon destruction events. Each
emission event, whether totally elastic or not, must be
accompanied by recoil of the sample with exactly the opposite
momentum of the γ-ray. There is no escape from whole sample
recoil even if phonons are created in the emission. Phonon
momentum simply and instantly adds to the sample bulk
momentum, as discussed above.
The beginnings (although not a proof) of the quantum effect

responsible for the ultranarrow Mössbauer line can be seen in a
1-D oscillator, essentially an Einstein model of a solid (Figure
5). A quantum coherent state wave packet unquestionably
oscillates in classical fashion (i.e., Schrödinger correspond-
ence) after a kick due to γ-ray emission. However, if the wave
packet energy is measured, then it may be found to be lying
quietly in its ground state. The cross section for resonant
reabsorption by another nearby 57Fe is large, and within about
a nanosecond, the energy of the γ-ray (and thus the lattice
energy change) can me measured.
The spectrum of energies of the γ-rays looks like that in

Figure 6, left. Discussions of “Mössbauer spectroscopy” often
summarize this beautiful physics only briefly and rather tend to
focus on something admittedly more practical: the technique
of using tiny shifts of the nuclear resonance energy to probe
the chemical environments of the unstable nucleus. This is
detected (Figure 6) by shifts in the resonant Doppler speeds
often well under centimeters per second and possible multiple
resonance lines. The shifts reflect electric and magnetic field
effects on the nuclear energy level, modulated again by the
surroundings of the nucleus and therefore a very useful probe.
This is the business end of Mössbauer spectroscopy, and it
deserves the attention it gets. But for present purposes, it is the

phonon-less recoil that concerns us. This recoil can involve any
of the six degrees of freedom of zero-frequency K modes.
In addition to the ultranarrow phonon-less Mössbauer line,

there is a broad continuum of γ-ray emission that is of lower
energy because a phonon (or more than one) has been
deposited in the crystal. If so, there are internal agents set loose
in the crystal, a phonon or phonons. Again, the whole crystal
momentum has jumped by an equal and opposite amount to
the γ-ray. That amount is slightly lower in magnitude for the
inelastic component; the γ-ray is slightly lower frequency if
phonons have been created.
The wave vector of the momentum to be deposited is ∼70

Å−1. This is usually deposited into total crystal recoil without a
phonon being created or destroyed, that is, the Mössbauser
line. If a phonon is created, then it need not be responsible for
all of the recoil momentum. Indeed, the momentum can be
divided between background recoil and phonons (if we choose
to put them in the foreground), the sum of which is total
system recoil momentum, which is exactly equal and opposite
to the photon momentum, now very slightly reduced due to
the energy deposited in phonons.
The Mössbauer effect continues to surprise. For example, a

clever way of partitioning the γ-ray emission into pulses was
proposed in ref 11.
The proper derivation of the Mössbauer γ-ray spectrum is

given by Maradudin.9 Here we will examine an ersatz
Mössbauer kick (Figure 7) by providing an instantaneous
momentum boost to a single atom. The exact momentum
supplied to the system is therefore given, whereas it varies
somewhat in γ-ray emission according to whether a phonon or
phonons accompany the emission.
An impulsive kick to one atom (as in Mössbauer γ-ray

emission) in a harmonic chain produces a phonon−
antiphonon pair, seen in Figure 7 propagating in five snapshots
at increasing times. The motion is indicated by red atoms if it
is traveling right to left, by red springs if the springs are
compressed relative to equilibrium, and by blue springs if they
are extended. At the top, the mth atom has just been
accelerated (kicked), but there is no displacement as yet. In
step 2, the atom to its left has been accelerated and moved
slightly, and the atom to its right has been pulled to the left.

Figure 5. Ground-state Gaussian quantum eigenstate of the harmonic
oscillator on the left, centered in the potential, is displaced in position,
as shown with the lighter colored Gaussian displaced to the right. The
Gaussian has indeed been displaced. Under time evolution, it will
oscillate back and forth classically (Schrödinger correspondence). But
suppose we ask, “What is the probability that the displaced Gaussian
is still in the undisturbed ground state?” The overlap between the two
states shows that this probability is significant, even though classically
the function has been displaced with certainty.
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This sets up a cascading propagation of disturbances in both
directions. A dilation can be seen heading to the right, and a
compression is seen heading to the left. Both the phonon and
the antiphonon have right-to-left momentum with atoms
moving to the left as either disturbance passes by. In this
scenario, the atoms become permanently displaced. By the
Schödinger correspondence, this scenario has direct quantum
counterparts. This figure omits rapid local back-and-forth
oscillation with no momentum-transfer consequences; see
Figure 8. Suppose ψn,α,θ0(ξ) is a lattice that just got a
momentum kick ℏk to an atom at position mS . What happens
under time evolution? We take phonons to be absent initially
and suppose no initial center-of-mass momentum. The initial
many-body wave function is then (apart from normalization)

e( , 0) m /2n n n
2ξψ = ω ξ− ∑ ℏ′ (33)

Each ground-state normal mode simply evolves with a phase
factor appropriate to its energy, but all of these phase factors
add in the exponent, and nothing but an overall phase
develops. This is another way to say that the ground state is
stationary. After the thS atom gets its kick at t = 0, it becomes

e e( , 0)k
m ikR/2n n n

2ξψ = ω ξ θ− ∑ ℏ
S

S (34)

We can ask the following questions now and as time evolves:
(1) What is the momentum of the center of mass?
(2) What is the time evolution of the many-body wave

function?
(3) Where is the momentum located on the chain?
(4) What is the probability that the kick produced no

phonons (i.e., was elastic)?
(5) What is the distribution of other phonon probabilities?

Only the answers to (2) and (3) will depend on time if the
system is not further disturbed. We now address these
questions in turn.
(1) The momentum delivered to one atom was ℏk. Because

there was no center-of-mass momentum to begin with, we had
better find that the momentum of the center of mass is now
also ℏk. The atom with coordinate

0
θS is expanded as

U
R N
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n

N

n n
n

N

n n
0

1

0
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1
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where R
N j

N
j0 1ξ θ= ∑ = The center-of-mass coordinate for N

identical masses along a line at positions θj is

N R N
1 1

j
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j
1

0∑ θ ξΘ = =
= (36)

The wave function eq 34 at t = 0 with the kick eikRθS has the

term e eik N ik(1/ ) 0 =ξ Θ, proving that the center of mass
acquired the correct momentum.
(2) To find the time evolution of the many-body system, we

use Schrödinger correspondence and the equations

k
m

t

p k t

sin

cos( )

nt
n

n
n

nt n n

ξ ω ω

ω

= ℏ

= ℏ (37)

where k kUn n= S and the wave function evolves as

t e( , )k
m ip i( ) /2 ( )/n n n nt nt n nt t

2ξψ = ω ξ ξ ξ ξ ϕ− ∑ − ℏ+ − ℏ+
S (38)

We will not bother to specify the overall phase here.
(3) To ask where in the chain the momentum density lies,

we need to examine the atomic momentum operators

p i
R
1

j
jθ̂ = − ℏ ∂

∂ (39)

At t = 0, eq 34 reveals, of course, that the (real) momentum
resides locally on the thS atom. We want to discuss the
situation as time evolves.

Figure 6. (left) A figure like this one from 1960 showing the Mössbauer line as an ultranarrow “pip” on a much broader background10 is very hard
to find under the heading of Mössbauer emission, even with a broad Wikipedia search. The pip height is given as a function of temperature; note
that it is ∼500 times taller than the ordinate of the graph at 4 K. It is often the case that “Mössbauer spectroscopy” is discussed even in a
pedagogical article without beginning with a figure like the one on the left showing what is really going on. Almost universally, Mössbauer
spectroscopy and even the more fundamental “Mössbauer effect” are shown only as on the right, spectra that are unremarkable to the eye, unless
you notice the x axis labeled in Doppler shifts at speeds of centimeters per second. Reprinted with permission of ref 10. Copyright 1960 Elsevier.

Figure 7. Phonon−antiphonon pair is created by a Mössbauer-like
kick.
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We apply the momentum operator for each atom separately
and plot the results atom-by-atom (Figure 8, left column) or
averaged over a range of neighboring atoms (Figure 8, right
column) to get a momentum density. Here the central atom
was kicked to the left, and the positive values are left-heading
momenta. Note that the phonon−antiphonon narrative is
confirmed. This is not a semiclassical result of some sort; by
Schrödinger correspondence, it is the exact result. The group
velocity of the phonon is v k a m/ /g δω δ κ≈ ≈ at long

wavelengths.
Schrödinger correspondence and the classical mechanics of

the chain inform us that the kick produces a phonon−
antiphonon pair (Figure 7). The phonon and the antiphonon
travel in opposite directions, departing the site of the kick but
carrying the same momentum. This is certainly different than
the standard picture of a “phonon” heading off in one
direction, carrying all of the momentum. The classical reason
for the pair production is clear from Figure 7, and by
Schrödinger correspondence, it is clear that the classical picture
is extremely relevant to the quantum evolution.
(4) What is the probability that the kick produced no

phonons? This is given by the square amplitude, in the case of
an initial quiescent ring, as
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(40)

The elastic fraction e−2W is called a Debye−Waller factor and is
clearly related to the root-mean-square dispersion of the
impacted atom. This result carries over to finite temperature.
The finite elastic fraction for Mössbauer emission in a 3-D
solid at finite temperature is affirmed by the fact that
subangstrom resolution of atoms in scanning tunneling
microscopy scans of surfaces is possible. It would not be if
the root-mean-squared position dispersion of an atom was
large.
(5) The elastic zero-phonon line is flanked by a density of

inelastic processes that have an energy spectrum given by the
Fourier transform of the autocorrelation of the kicked state

t e t( ) d ( )i t∫ω ϕ ϕΣ = ⟨ | ⟩ω
(41)

Figure 8. Here the central atom was kicked to the left, and the positive values in the plots are left-heading momenta.
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where e ( )ikR
0ϕ ψ ξ| ⟩ = | ⟩θS and |ϕ(t)⟩ = e−iHt/ℏ|ϕ⟩. The

autocorrelation ⟨ϕ|ϕ(t)⟩ is evaluated using eq 38 and
straightforward Gaussian integrals, but its Fourier transform
is problematic, and it is best evaluated numerically.

8. CONCLUSIONS
The Schrödinger Correspondence Principle is a useful tool to
understand the various aspects of harmonic solids by
converting quantum-mechanical problems to classical ones.
The clear (corpuscular) definition of a phonon, the importance
of taking into account the center-of-mass momentum, and the
concept of antiphonon are explained through the examples of
the line and ring of atoms. The quantum behavior of harmonic
solids under a Mössbauer-like kick is analyzed classically,
verifying the existence of antiphonon through the simulation.
Beyond the examples of this Article, we expect the Schrödinger
Correspondence Principle to be useful in understanding
anharmonic interactions, electron−phonon interactions, and
other fundamental processes in solids.

■ APPENDIX: SYMMETRY AND PHONON
PSEUDOMOMENTUM

What symmetry gives rise to phonon pseudomomentum? It is
not best thought of as a translational symmetry. Continuous
translational symmetry gives rise to ordinary total momentum
and is a symmetry possessed by a finite crystal residing in free
space. The system Hamiltonian is the same under any free
translation; it gives rise to system center-of-mass momentum
conservation. The translation of the system that happens to be
by a lattice translation vector is nothing special; the
Hamiltonian is the same even if the translation is not a lattice
vector. Classical particle shift symmetry is a more appropriate
symmetry: We replace atoms with their neighbors in a toroidal
geometry, as in xn → xn+1, with xN → x1.
For a circular ring of identical atoms with identical forces

between them, labeled by their angle θi on the ring, the
invariance of Hamiltonian under the operator +9 can be
written

H H H( , , ..., ) ( , , ..., ) ( , , ..., )N N N N1 2 1 1 1 2θ θ θ θ θ θ θ θ θ= =+ − + +9 9 9

that is, θi → θi−1 and H H=+ +9 9 . There is also the inverse
operator with the reverse replacement and a finite cyclic group.
This is a permutation symmetry of labels, after which operation
the Hamiltonian reads the same. Cyclic atom replacement
requiring H H=+ +9 9 is certainly not a continuous translation
symmetry, and it cannot generate a traditional momentum.
The Schrödinger equation satisfies

H H E( ) ( ) ( )1 χ χ χψ ψ ψ= [ ] = [ ]+ +
−

+ + +9 9 9 9 9 (42)

with χ = (θ1, θ2, ..., θN), which implies that eigenfunctions of H
are or can be chosen (if they are degenerate) to be
eigenfunctions of +9 . With the mod N condition

e( ) ( )p ipk amχ χψ ψ=+9 (43)

where m and p are integers, which implies a pseudomomentum
km = 2πm/Na, where a is the distance between neighbors.
However, this momentum is only defined within multiples of

a reciprocal lattice vector because km → km + 2πM/a does not
change the phase factor eikma. Thus, in any manipulations, we
may want to adjust k to put it in the first Brillouin zone by

adding multiples of reciprocal lattice vectors. This is optional
because other Brillouin zones are just copies of the first one.
If some atoms or bonds differ in some way, then
H H≠+ +9 9 and the atom shift symmetry is broken. The

phonon wave vector or pseudomomentum will not be
conserved.
The conservation of phonon pseudomomentum for a

collection of phonons works like the conservation of
mechanical momentum: The sum of the momenta must be
conserved, although individual momenta may change if the
crystal is anharmonic, causing phonons to interact.
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