A FREE BOUNDARY PROBLEM WITH FACETS

WILLIAM M FELDMAN AND CHARLES K SMART

ABSTRACT. We study a free boundary problem on the lattice whose scaling
limit is a harmonic free boundary problem with a discontinuous Hamilton-
ian. We find an explicit formula for the Hamiltonian, prove the solutions are
unique, and prove that the limiting free boundary has a facets in every ra-
tional direction. Our choice of problem presents difficulties that require the
development of a new uniqueness proof for certain free boundary problems.
The problem is motivated by physical experiments involving liquid drops on
patterned solid surfaces.

1. INTRODUCTION

1.1. Overview. In this paper, we study a variational problem on the lattice Z¢
whose scaling limit is a free boundary problem of the form

{LuO in {u > 0}

(1.1) H(Vu) =1 on d{u> 0},

where L is the Laplacian and H is a lower semicontinuous Hamiltonian. We study
viscosity solutions of this problem for general H, and prove existence and uniqueness
of solutions for certain boundary value problems. We exactly compute our limiting
Hamiltonian for the lattice problem, prove that it is not continuous, and show that
the scaling limit has facets.

The main motivation for our study is to explain the appearance of facets in
the contact line of liquid droplets wetting rough surfaces or spreading in a porous
medium. This phenomenon has been observed in physical experiments [13}/164(17].
While it is easy enough to construct a problem of the form with facets in the
free boundary, we are able to derive such a problem as a scaling limit of a simple
microscopic model for the liquid droplet problem. Furthermore we find solutions
which can be reliably obtained by a natural flow at the level of the microscopic
problem, advancing the contact line from a small initial wetted set as was done in
the experiments [16].

1.2. A discrete free boundary problem. Consider the following familiar vari-
ational problem. Given an open set U C R? whose boundary U is smooth and
compact, compute the (local) minimizers of the energy

(1.2) Tl = [ Vusap(a) + [ Vu(o) de

among the functions u € H} (RY) satisfying v = 1 on R\ U. This has a well-
developed theory, see for example Caffarelli-Salsa [9], that leads to the free boundary
1
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FIGURE 1. Top: u; and u” for d = 2, U = By, and h = 27.
Bottom: wuj, and u” for d = 2, U = R?\ By, and h = 2. The
free boundary is the black edge in all four images. Right: the
boundaries d{H < 1} (black) and 0{H > 1} (gray).

problem

Lu=0 inUnNn{u>0}
[Vul =1 on UnNad{u>0}
u=1 on R4\ U
u>0 in U,

(1.3)

where L denotes the Laplacian on R¢. While generally does not have a unique
solution, there is always a least supersolution.

We consider a lattice discretization of the above variational problem. Given a
large scale h > 1, we study the local minimizers of the energy

(1.4) Talul = Y Lsoy(@) +d D (ulz) —uly))?

zehU |z—y|=1
{z,y}NhU#D

over functions u : Z¢ — R that satisfy v = h on Z¢\ hU. Note our choice of
constants does not quite match with (1.2). Computing the first variation, we see
that local minimizers of Jj should satisfy

Au=0 on hUnN{u> 0}
Au<1 onhUNaT{u>0}

(1.5) u> 55 on hUNO {u> 0}
u=nh onZ%\hU
>0 onZiNhU,

where A denotes the discrete Laplacian on Z¢ and 97X and 0~ X denote the outer
and inner lattice boundary of a set X C Z?. The outer boundary %X is the set of
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FIGURE 2. Left: the Laplacian Auy, on 8% {u, > 0} for d = 3,
U = By, and h = 27. Right: the values of H on the points |p|~!p
for p € Z3 with maxy, [px| < 50.

points in Z?\ X with a neighbor in X, the inner boundary 9~ X is the set of points
in X with a neighbor in Z%\ X.

It is reasonable to expect that our discretization has a scaling limit described
by the original continuum problem. That is, if let up : Z% — R denote the least
supersolution of , then we might expect the rescalings

an(z) = h™tup (ha)

to converge to the least supersolution of . The energy minimizers do converge
to the energy minimizer of (with appropriate constants), this is a standard
I'-convergence argument. The local minimizers, however, have a more complicated
scaling limit. Indeed, as we see in Figure [I] and Figure [2| the least supersolutions
up, are not radially symmetric for U = B;. Instead, we find ourselves in a situ-
ation analogous to that of Caffarelli-Lee @ and Kim , who studied the local
minimizers of

(1.6) /U Q(z/2)? Luso() + [Vu(a)? de,

where @ : R? — (0,00) is smooth and periodic and ¢ > 0 is small. The periodic
structure creates preferred directions for the free boundary, and thus breaks radial
symmetry in the homogenized limit. In this paper we will only study the minimal
supersolution, still we expect that the tools we develop here will be useful to study
the scaling limit for general local minimizers.

For our stationary problem on the lattice, we are able to push a bit further than
the past works. In Theorem below, we identify the scaling limit of as

Lu=0 in UN{u>0}
(1.7) H(Vu)=1 onUno{u>0}
u=1 on R%\ U,
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where H is a lower semicontinuous Hamiltonian that satisfies H (tp) = tH (p) and
C~Yp| < H(p) < Clp|. In Theorem we prove that the Hamiltonian H is
discontinuous at the slope p whenever the slope p satisfies one or more Diophantine
relations. Moreover, in Theorem [3.21] we prove that the limiting free boundary has
facets in every rational direction.

The case of the maximal non-trivial subsolution u” : Z¢ — R is dual to the min-
imal supersolution case. Indeed, comparing the top and bottom rows of Figure [I]
we see that d{uy, > 0} has facets for the exterior while 9{u" > 0} has facets for the
interior. The scaling limit of u” : Z¢ — R is captured by the upper semicontinuous
Hamiltonian H(p) = 2d|p|>H(p)~!. From the right of Figure [1} we see that there
is a non-trivial pinning interval for all slopes. Due to the duality, we only handle
the case of the minimal supersolution in the paper below.

1.3. Main results. Our first result is an exact computation of H (p).
Theorem 1.1. For p € R?

H(p)? = 2dexp Z S(q) | Inl?,
q€Z?: p-q=0
where S is the Fourier transform of S(0) = log(1 + i 2?21 cos0;), a 2nZ%-periodic
function on R?.

In homogenization, it is rarely possible to find precise formulas like the above,
and, when it is possible, it opens the possibility of a precise characterization of the
shapes appearing in the scaling limit.

Our second result is the uniqueness of the scaling limit of the discrete problem
for convex domains, which is consequence of Theorem [3.2T]and Theorem [£.10} Note
that the terms “least supersolution,” “facet,” and “rational direction” are defined
precisely in the body of the paper.

Theorem 1.2. Let U C R? be the complement of the closure of an open bounded
and convex set. There is a u € COY(R?) such that, if uy, : Z¢ — R denotes the least
supersolution of , then h™Yuy (hx) — u(x) uniformly in x € RY as h — oo.
Moreover, the support {u > 0} is conver and has facets in every rational direction.

Our results for viscosity solutions of are stated below in Section For
lower semicontinuous Hamiltonians the viscosity subsolution condition is delicate.
We utilize three a priori different notions of viscosity subsolution, listed in increas-
ing order of strength: weakened subsolution, modified subsolution, and (standard)
subsolution. These are defined precisely in Section The weakened subsolution
condition is easy to prove for the scaling limit, but is only sufficient for uniqueness
in the convex case. The modified subsolution condition, which we believe to be
equivalent to the subsolution condition, is relatively difficult to prove for the scal-
ing limit, and is needed for uniqueness in the non-convex case in two dimensions.
We only obtain the full subsolution condition a posteriori using uniqueness and
Perron’s method.

We are also able to prove the existence of a unique solution for and the
scaling limit of the wuj, without convexity in d = 2. Some geometric assumptions,
such as strong star-shapedness, on U are still needed to avoid the typical degen-
erate non-uniqueness which can occur for this type of problem. The following is a
consequence of Theorem Theorem and Theorem
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Theorem 1.3. Let U CRY ¢ reqular open set.

(i) Any subsequential uniform limit u of the rescalings h™tuy (hx) is a super-
solution and modified (and weakened) subsolution of ,

(1) If d =2 and U is strongly star-shaped or d > 3 and U is convex, then the
limit is the unique solution of .

We remark that the exact formula in Theorem is used only to prove that
the support {«# > 0} in Theorem has facets in every rational direction. The
remaining parts of Theorem and Theorem [1.3|only require the softer properties
presented in the first part of Section[2] In fact, with more work, we expect that even
this usage could be avoided. The result which we truly do not know how to prove
without the exact formula is the radial symmetry of H at irrational directions (in
d = 2), and in higher dimensions the radial symmetry on the irrational directions
within any given rational subspace. In terms of the homogenization argument this
is only used in the d = 2 non-convex case.

1.4. Water droplets on a rough surface. As mentioned earlier in the introduc-
tion, the first motivation for our work was to explain the formation of facets in the
effective contact line of liquid drops wetting a patterned solid surface. In a series
of physical experiments, Raj-Adera-Enright-Wang [16] control the shape of a liquid
droplet by creating a surface patterned with periodic arrays of micro-pillars. For an
expanding droplet the contact line is pinned sooner when it is parallel to a lattice
direction. This leads the formation of facets in the contact line. Raj et al. [16] are
able to create surfaces so that the steady state wetted set appears to be polygonal,
squares, hexagons, octagons and others. The goal of this engineering research is
essentially the inverse version of the problem we consider. That is, can one find a
planar graph for which the limit of local minimizers of the analogue of has a
particular convex shape? The article [16] suggests that this may be possible.

We were interested to explain the results of [16] via a relatively simple math-
ematical model. The key feature we were interested to capture was the existence
of facets in the free boundary of either the minimal super-solution or the maximal
sub-solution of the Euler-Lagrange equation. Note that since the water droplets
in [16] were achieved by an advancing contact line they should arise as a minimal
super-solution, or at least the minimal supersolution above a certain obstacle. In
general the minimal super-solution and maximal sub-solution are of physical im-
portance since they are the only local minimizers which can be found reliably by
the flow without prior knowledge of the solution, either advancing from a small
initial contact set or receding from a large initial contact set.

To model the physics accurately, one would ideally study the full capillarity en-
ergy. Global energy minimizers of the capillarity energy were studied by Caffarelli-
Mellet [7] for flat patterned surfaces, and for rough surfaces by Alberti-DeSimone |[2]
and more recently quantified by the first author and Kim in [12]. As with our dis-
crete model, the global energy minimizers turn out to have axial symmetry in the
limit as the length scale of the roughness — 0. Thus the formation of facets in
the contact line is a property of local minimizers, or, possibly, the length scales in
the physical experiments are not sufficiently separated for a homogenization type
argument. After their work [7], Caffarelli-Mellet [§] also studied local minimizers,
showing the existence of a sequence of local minimizers which converged to a non-
axially-symmetric limit. Characterizing the pinning interval and the limiting free
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boundary problem for minimal super-solutions (or maximal sub-solutions) of the
full capillarity problem seems to be a difficult problem.

One possible simplification of the full capillarity model is the Alt-Caffarelli type
energy (|1.6) with an oscillating coefficient. This problem was studied by Caffarelli-
Lee [6], they showed in d = 2 that the limit of minimal supersolutions is a superso-
lution of an equation like (1.7). They establish the existence of facets under some
additional assumptions on the scaling limit and the limiting Hamiltonian. Our
work is the first to give an example of a discontinuous H arising in a scaling limit,
and to show the convergence to the minimal supersolution. The dynamic version
of this problem was studied by Kim [14], who proved that the limiting normal ve-
locity can have non-trivial pinning intervals, which can lead to facet formation for
carefully chosen initial data. While the scaling limit of our problem is of the same
form as the homogenized limit of , a significant part our our work is devoted to
proving convexity and facet formation of the free boundary of the limiting minimal
supersolution of the natural boundary value problem . The difficulties with
the continuum models, and the appealing similarity between the finite solutions in
Figure [I| and the droplets observed in [16], were one motivation for our study of

[3).

1.5. The boundary sandpile. There is a connection between our model and
the boundary sandpile considered by Aleksanyan-Shahgholian [4,[5]. Indeed, our
discrete model first appears in this work. The divisible sandpile (see for example
Levine [15]) is a deterministic diffusion process on the lattice in which configurations
p:Z% —[0,00) evolve by toppling. Each site has some fixed capacity and, at each
time step, evenly divides and sends its excess to its neighbors. When all sites have
capacity 1, the evolution is described by:

pr1 = pi+ (2d) "' Amax{0, p, — 1}

In the boundary sandpile model, once a site topples, its capacity is set to zero.
That is, one also keeps track of the set of toppled vertices Dy C Z® and evolves
according to:

Diy1 =Dy U{py>1} and ppi1 = pp + (2d) ' Amax{0, py — 170\ p,y}

If po : Z¢ — [0,00) has finite support, then the evolution stabilizes. That is,
Poo = limy_, o pi exists. Moreover, the limit can be computed as po, = po + Au,
where u : Z% — R is the least function satisfying

u>0 and po+ Au < 1g,—oy-

This is quite similar to computing the least supersolution of (|1.5)). Indeed, it is
simply the Poisson version. The connection between the dynamics described here
and our discrete problem is made clear below in Lemma [4.4]

1.6. Outline. In Section[2] we study the Hamiltonian used to describe the bound-
ary condition of the limit of local minimizers of . We use a contour integration
to find a nice formula for the Hamiltonian. In Section [3 we develop the viscosity
solution theory of for general lower semicontinuous Hamiltonians. Here we
prove uniqueness of weak solutions and the formation of facets on the free bound-
ary when the data is convex. In Section [4) we prove that local minimizers of
converge, under the appropriate scaling and with suitable data, to the unique solu-
tion of . This is essentially standard given the work of the previous sections.
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Finally, in Section [p, we explore removing the convexity hypothesis from our results
in Section |3} We prove that this is possible in dimension two and lay groundwork
for higher dimensions.

2. THE HAMILTONIAN

2.1. Essential properties. In this subsection, we define the limiting Hamiltonian
H and study its basic properties. These properties suffice to capture the scaling
limit of . The later subsections study the fine structure of H, which is required
to prove the limit has facets.

Our definition is inspired by the condition Au < 1g,—gy that is implied by
(1.5). If, in the blow up limit, we obtain a solution Z¢ that looks roughly like
u(x) = max{0,p - 2}, then the discrete Laplacian on the boundary should be at
most one. To define the Hamiltonian, we reverse this thinking, and measure the
Laplacian on the boundary of a half space solution.

Definition 2.1. If p € R%\ {0}, then H(p) = Au(0), where u : Z¢ — R solves
Au(z) =0 forp-z>0
(2.1) u(z)=0 forp-x<0
SUPy,.5>0 |lu(z) —p-z| < oco.
First we state a maximum principle in half-spaces.

Lemma 2.2. There is a constant C > 0 such that, if p € RY\ {0}, R >r > 1, and
w:Z% — R satisfies Au= 0 in

D={qeZ:p-q>0 and|q <R},

then
r
max |u| < max |u| + C— max|ul.
B,ND Bry2Nd+D R o+D
Proof. This is a standard barrier argument. O

The uniqueness of (2.1]) follows from Lemma and more generally it implies
the following maximum principle: if u is subharmonic and bounded in {z - p > 0}
then

sup u(z) = sup u(x).
p-x>0 ot {p-z>0}

The maximum principle implies the following easy estimates.

Lemma 2.3. For p € RY, the solution u : Z¢ — R of satisfies

(2.2) max{0,p -2} < u(z) < max{0,p-z} + ||pllec for z € Z°.

Moreover, Au < Au(0) 1,0y

Proof. The lower and upper bounds in are, respectively, a subsolution and a
supersolution of (2.1)). The error term ||p||oc guarantees that the right-hand side is

non-negative on the boundary 9t {q € Z¢: p-q > 0}.
It is more convenient to prove Au < Au(0) 1{,—o} later in Lemma O

When combined with a compactness argument, the easy estimates from Lemma
[2:3 tell us all that we need to know about H to capture the scaling limit of our
discrete problem.
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Lemma 2.4. Forp € R? and t > 0, we have

(2.3) H(tp) = tH(p),
(2.4) C~'p| < H(p) < Clpl,
and

(2.5) li(IInHiBf H(q) > H(p).

Proof. The homogeneity (2.3) is immediate from the definitions. The bounds (2.4

follow from the bounds (2.2)). It remains to prove the lower semicontinuity (2.5)). It
is enough to show that, if p, — p and H(p,) — s as n — oo, then H(p) < s. Let
up @ Z% = R solve for p,. On account of the bounds , we may pass to
a subsequence to assume that u,(x) has a limit v(x) for all € Z?. Observe that
v: Z4 — R satisfies

v(0) =0

Av(0) < s

Av(z) =0 when v(z) >0

max{0,p- 2} <v(z) <max{0,p-z} + ||p|loo-

The maximum principle gives u < v for the solution u : Z¢ — R of (2.1)) for p.
Since u(0) = v(0) and v < v, we have Au(0) < Av(0) < s and H(p) < s. O

2.2. Rational slopes. In order to understand the fine structure of our Hamiltonian
H, we compute its values for rational slopes. We rewrite our definition of H several
times, making it easier to compute at each iteration. We first change into a
one dimensional problem.

Lemma 2.5. If p € Z¢ and ged(py, ..., pa) = 1, then
(26) Hp) = |pf? Jim g(k),

— 00
where g : Z — R is the unique solution of

Apg(k)=0 fork>0
9(0) =1

g(k)=0 fork<0
supy |9(k)| < oo

(2.7)

and

d
Apg(k) = (g(k +p;) + gk —p;) — 29(k)).

j=1

Proof. We begin by observing that the solution u of (2.1) satisfies u(z + y) = u(x)
whenever z,y € Z% and p -y = 0. Thus, if we quotient by the lattice A = {q € Z% :

p-q = 0}, then we obtain a one dimensional problem. That is, there is a function
f:+7Z — R such that

u(z) = f(p-x)
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and
d

Au(z) = Z(u(x +e) +ulr —e) — 2u(x))

=dl
:Z(f(p-x+pi)+f(p-x—pi)—f(p-w))

— Apf(p-a).
Since p is irreducible, the operator A, is the Laplacian of connected and translation
invariant graph on Z. In particular, f : Z — R is the unique solution of
Apf(k)=0 fork>0
f(k)=0 for k<0
supgso (k) — k| < o,
We observe that

> ALf(R) = Ipl.

k<0
Since A, f(k) is distributed on k£ < 0 according to A,-harmonic measure from +oo0,
we obtain H(p) = Au(0) = A, f(0) = |p|? limy—c0 g(k).
At this point we can also check that Au < Awu(0). Consider f(k+ 1) — f(k),
bounded and Ap-harmonic on Z, and f > 0 on the A,-boundary of Z,. Thus by
maximum principle f is increasing, and so also is A, f(k) for k < 0. a

We study the roots of the characteristic polynomial A"Q(\) of A,.
Lemma 2.6. If p € Z¢ and ged(py, ..., pa) = 1, then

d
QU = SV + A7 =)

k=1
can be written
(2.8) Q) =mA" [T = A=A h),
k=1

where n = maxy, |pr|, m = #{k : |px| = n}, and the roots A\, € C satisfy
(29) 1=X\< |>\2| << |>\n|, and A9, ..., A\p ¢ [1700)
Proof. The existence of a factorization of the form ({2.8)) follows from the observation
that m~*A"Q()) is a monic and palindromic polynomial. Since
d

Q(e") = 2(2 cosh(p;t) — 2),

j=1

we see that 1 is the only positive real root. Since

d
Q") = 2(2 cos(pjt) — 2)
j=1
and ged(p1, ..., pa) = 1, we see that 1 is the only root of unit modulus. ([

We write H(p) in terms of the roots of Q.
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Lemma 2.7. Ifp € Z¢ and ged(py, ..., pa) = 1, then
(2.10) H(p)® = [p/*m [ [ (=),
k=2

where A\, € C, n, and m are as in @ and (@)

Proof. Observe that A"Q(A) is the characteristic polynomial of A,. Let us tem-
porarily assume that

(2.11) A2, ...y A are distinct,
so that we may solve (2.7)) by making the ansatz

g(k) = Zaj)\;k for k > —n.
j=1

Since the A; are roots of the characteristic polynomial, we obtain
Apg(k) =0 for k > 0.
Since the A; have modulus at least one, we obtain
Sup lg(k)| < oo.
To meet the boundary conditions, we must have

n
Z/\;‘f_laj =6y fork=1,..,n.
j=1

The Vandermonde
Vij = )\?_1
is invertible by (2.11]). We compute the inverse as follows. Since the polynomials
Pe(A) = V'V
satisfy
Puh) =D Vi !X =) VitV = Ly,
1 1
we recognize them as the Lagrange polynomials
A=A '
Ak — Aj

Pp(A) =
itk
Thus ka is the coefficient of A~1 in P ()). In particular,

n

s
. -l _ _ j
khigog(k)fal =V = coeff(P,1) = || =

=2

To simplify this product, we compute

n

pI> = 3Q"(1) =m JT(1 = M)A = A7) = ma;? [T (=)
k=2

k=2
We conclude that

H(p)® = |pl* lim g(k)* = [pl*of = p/*m [](=A)).
j=2
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Since the result is continuous in the A;, we can eliminate the assumption (2.11)
by a density argument. We perturb the characteristic polynomial, which in turn
perturbs the operator, and use (2.9) to pass to limits. O

Appealing to complex analysis, we transform the expression (2.10) of H(p) in
terms of the roots of Q(A) into an oscillatory integral.

Lemma 2.8. If p € Z¢ and ged(py, ..., pa) = 1, then

1 [ 1
(2.12) H(p)? = |p|*2d exp %/0 log 1—gj§::1cos(pkt) dt

Proof. Recalling (2.8)), observe that

d n
Q) = Z 2(cos(prz) — 1) =m H(2 cosz — A — A Y.
k=1 k=1
Removing the zero at 1, we consider the holomorphic function
41— cos(piz) e
h(z) = —_ = 2c082 — A\, — AL L.
(2) kz::l 1 —cos(z) mkl;[z( s ’ v

For all sufficiently large L > 0, the restrictions (2.9)) imply that the zeros of h in
rectangle © = (0,27) x (0, L) are exactly ilog(A2), ..., 71log(Ay,) and that h does not
vanish on 9Q2. By the Residue Theorem,

1 zh (z)

> log(A)) = —5- dz.
j=2

™ Joa h(z)
Since h does not vanish on 9€2, there is a holomorphic w : 9\ {0} — C such that
h=¢eY on o0\ {0}.
Integrating by parts, we obtain
1 zh'(z) 1 1

- z=—— 2w'(2)dz = — w(z) dz.
21 Jao M(z) 27 Joa\ {0y 27 Jaa\ {0y

We evaluate the right-hand side by estimating w along the four sides of the rectan-
gle. Since h is real on [0, 27] and [2, 27 + Li|, we may assume that

w=1logh on (0,27 U[27, 27 + Li].
For the top side [27 + Li, Li], we use the asymptotic estimate
h(t 4 Li) = me™ D= L O((n=DL),
Since w(2m 4 Li) is real, we conclude that
w(t + Li) =logm + (n — 1)L+ (n — 1)(27 — t)i + O(e™1).
Since h is also real on [Li, 0], we must have
w(si) = w(2m + st) + (n — 1)2mi.

We are now ready to compute the integral. We have

1 1 2
w(z)dz = — / log h(t) dt,
0

% [0,27] 27
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1 1
o w(z)dz + o / w(z)dz = (n—1)L,
T J[27,2n+Li) ™ J[Li,0]

and
1

Py it L]w(z)dz:—logm—(n—l)L—(n—l)m'—l—O(e_L).
2+ Li, Li

Since the value of the contour integral is independent of L for large L > 0, the
O(e~ ) term is actually equal to zero, and it follows that

n 1 2T
log [ m H(—Aj) = %/0 log h(t) dt.
Jj=2
Plug in the definition of h and use that,
1 2m
%/0 log(1 — cost) dt = —log 2.

Conclude by appealing to (2.10). |

In preparation for our final formula for H(p), we study the Fourier coefficients
of an abstraction of the integrand from (2.12]).

Lemma 2.9. The 2nZ%-periodic function
14
S(0) = log <1 + p Zcos(@@)

k=1
has Fourier coefficients S:7% - R that satisfy
(2.13) 0 < —5(g) < C(1 +al)“log(2 + lq))-
Proof. Step 1. The lower bound follows from the estimates

IS|(0) < C(1+|logf|) and [V*S|(6) <Cl]™¢ for 0 € [—m, 7|4\ {0}

and a standard integration by parts argument. For § € (0,1) to be determined,
select a function n € C(R?/(2rZ%)) satisfying n = 0 in Bs, n = 1 in [, 7]?\ Bas,
and [VFn[(0) < C|0|7F for 6 € Bys \ Bs and k = 1,...,d. Using the identity

iq iq-0 iq-0
—_ . V e q = —€ 4q 5
(Itzl2 )
compute
Sca=f  enseas
[—m,m]d
, i ¢ :
fooe <q2 . v> 0S| (0)do +f ¢0[(1 — 1)S)(6) db
[77‘.771.](1 ‘Q| [W’”]d

:0/ lg|~|0]~ do +0(/ 1+10g6|d0>
[—m,m]4\ Bs Bos

= O(lg|~"[1og 8]) + O(6%(1 + [ log d])).
Now select § = (2 + |q|) L.
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Step 2. The upper bound follows by series expansion. For 6 € [—m, 7|4\ {0},

4 k
1 = 1
log [ 1— p Zcos(ﬁj) =-2_% Zcos
j=1 k=1
4 k
_ i 1 S it 4 et
N k(2d)*
k=1 j=1

Observe that the coefficient of ¢4? in any partial sum is real and non-positive.
Conclude by dominated convergence. O

We now arrive at the simplest formulation of H(p).

Lemma 2.10. Ifp € Z%\ {0} then

(2.14) H(p)* =2dexp | > S(q) | Ip|*

A
p-q=0

Proof. Use the Fourier expansion of S to formally compute

log ( Zcos pit )
),

S(pt)dt

1 271' Z
_ iq-pt dt
o /

py
Z:

Since the sublattice {¢ € Z¢ : p-q = 0} is contained in a subspace of R? of
codimension 1, this formal computation is made rigorous by the decay estimate

Lemma We conclude by appealing to (2.12)). a

2.3. Irrational slopes. We now extend our formula to irrational p. Observe
that the sum in for H(p) is over all the Diophantine conditions that p satisfies.
In particular, the sum at least makes sense for any p € R?. We define the lattice of
Diophantine conditions satisfied by p:

Definition 2.11. For p € R?\ {0}, let A, = {g € Z%:p-q=0}.

The map p € A, is, of course, not continuous in p. However, it is upper semi-
continuous with respect to inclusion, as the following lemma shows.
Lemma 2.12. For every unit vector p € R and ¢ > 0 there is a q € Z* such
ged(q1, -, qa) = 1, Ap C Ag, and [p—|q| 7 q| <.
Proof. Define A;- ={qeZ:p-q=0for p e A,} and observe that the quotient
Z%/(Ap + Ay) is finite. By the pigeonhole principle, there is a Cp > 0 such that
there are infinitely many ¢ € A, + A; with |p — |¢|71q| < Cplg|™2. Since p L A,
we may as well take ¢ € AZJ; so that A, C A,. O
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Using the uniqueness of (2.1 from Lemma [2.2] and the upper semicontinuity of
p — A,, we are able to extend our formula to arbitrary p € R,

Theorem 2.13. The formula holds for arbitary p € RY.

Proof. We may assume that p € R? is a unit vector. Let uq denote the solution of
for slope ¢ € R%. Using Lemma choose a sequence of g, € Z% such that
A, C A,, and |g,|"'g, — p. Observe that, for any z € Z4, that p -z and g, -«
have the same sign for all sufficiently large n. Thus

lim 2dexp ZS = 2d exp ZS’

e ALIW, A:D
Moreover, for any R > 0,
Brn{zezZl:p-x>0}=Bpn{zecz:q, -z >0}
holds for sufficiently large n. Letting Dgr denote the above set, we observe that
Up =g, =0 on Br/N 0t Dpg

and, using , that

lup — ug,| <C ond"Dp
holds for all sufficiently large n. Applying Lemma we see that maxp, |up —
ug, | < CR™! for all large n. Since R > 0 was arbitrary, we obtain lim,,_, o Aug, (0) =
Awuy,(0) and the theorem.

2.4. Fine structure. From the formula for H, we see immediately that H
is lower semicontinuous. In fact, we can prove something much finer. Looking at
the plot of H on the sphere in dimension 3 in Figure [2 we see that H has “valleys”
on the sphere that correspond to Diophantine conditions. In higher dimensions,
there are Diophantine conditions that make “valleys” of arbitrary codimension in
H on the sphere. Each point on the sphere lies in a “valley” given by a lattice of
Diophantine conditions. The sparser the lattice, the less deep the “valley.” Generic
points of the sphere satisfy no conditions, and therefore the generic points all have
the same maximal value. We encode all of this in the following theorem.

Theorem 2.14. For every p € R?\ {0}, we have
lim H(q) = H(p) and liminf H(q) > H(p).
ApgAq Apg_Aq

Moreover, for H?1-almost every unit vector p € RY,
H(p)* = 2d.exp(5(0)).

We give some examples to elucidate the meaning of the theorem. First consider
in d = 2 a sequence of rational unit vectors ¢, € S converging to an irrational
vector p € S'. Then A, = {0} and therefore A, C A,, for all n. In this case the
limit of H(qy,) agrees with H(p). On the other hand suppose that g, converge to p
rational and g, # p. The rational relations in A, uniquely specify p so it must be
A, € A,, then the theorem says H(p) < liminf,, oo H(gn).

Now consider an example in d = 3. Let p be an irrational direction satisfying one
rational relation, i.e. A, = Zk for some lattice vector k. If ¢, is a sequence in the
two-dimensional hyperplane A; with g, — p then lim, _, H(¢,) = H(p). On the
other hand if g, ¢ A, for large n, then A, € A, and H(p) < liminf, o H(gn).
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Proof. Using p # 0, we see that, for every R > 0, there is a § > 0 such that
|p —¢q| < ¢ implies BR N Ay C A,,. This proves the first limit. For the second limit,
choose a finite generating set X C A, and let ¢ = miny (—9). Using , we
may choose R > 0 such that
X C Bp
and
0<  sup Z (—S) <e/2.
aeR\{(0} \ 55,

Observe that, if [p — ¢| small and A, € A,, then X € A, and Bg N A, C A,. Thus
Y (=8 <e/2+ Y (-8 <—g/2+ > (-8) < —¢/2+ ) (-5).
Aq BRﬁAq BROAP Ap

For the final statement, we observe that, for x € Z¢, the set {p € 0B, : v € A}
has zero (d — 1)-dimensional Hausdorff measure. Since Z? is countable, we see that

A, = {0} for H?l-almost every p € 0B;. O
In d = 2, the structure is simpler.

Theorem 2.15. For any p € R2\ {0}, lim,_.,, H(q)? = 4exp(S(0))|p|>. Moreover,

H(p)? < 4exp(S(0))|p|* if and only if p has is a multiple of an element of Z*\ {0}.

Proof. The limit follows from the observation that, for every R > 0, thereisa § > 0

such that 0 < |¢ — p| < 0 implies A; N Bg = {0}. The second follows from the
observation that A, # {0} if and only if p has a rational direction. (]

Remark 2.16. When d = 2, we can show that the inradius of {H < 1} is

exp(—% ), where K ~ 0.91597 is Catalan’s constant. We do not know an ex-

plicit formula when d > 3.

3. VISCOSITY SOLUTIONS

3.1. Basic notions. In this section we study the exterior problem

Lu=0 in {u>0}\W
(3.1) H(Vu)=1 ond{u>0}\W
u=1 on W

for a W C R that is open, bounded, and inner regular. We assume familiarity with
the viscosity interpretation of for H(p) = |p| given, for example, in Caffarelli-
Salsa [9]. We interpret in the viscosity sense, with the necessary modifications
to treat a discontinuous Hamiltonian. Except for the last subsection, all results of
this section apply to any H satisfying , 7 and .

The viscosity interpretation of an equation moves the derivatives onto test func-
tions using the maximum principle. At first glance, this means that a function
should be a viscosity supersolution if it enjoys comparison from below by strict
classical subsolutions. Similarly, a function should be a viscosity subsolution if it
enjoys comparison from above by strict classical supersolutions. However, we need
to be careful about the meaning of classical solution. In order for viscosity solutions
to be stable under uniform convergence, the classical solutions need to be stable
under perturbations. Since H is merely lower semicontinuous, we must therefore
restrict our notion of classical supersolution. This is reflected in the definitions
below.
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Definition 3.1. If X is a topological space, then USC(X) and LSC(X) denote
the upper and lower semicontinuous functions on X. We say u € USC(X) touches
v € LSC(X) from below (and v touches u from above) in X if u > v and the
contact set {u = v} is non-empty and compact.

Definition 3.2. A supersolution of (3.1)) is a function u € LSC(R?) that is com-
pactly supported, satisfies v > 1y, and such that, whenever ¢ € C* (R9) touches
u from below in R%\ W, there is a contact point 2 such that either

Lp(x) <0

e(x) =0 and H(Vp(r)) <1.

Definition 3.3. A subsolution of (3.1} in a function v € USC(R?) that is com-
pactly supported, satisfies u < 1y, and such that, whenever ¢ € C*°(U) touches u

from above in {u > 0} \ W, there is a contact point = such that either
Lo(x) >0

or p(x) =0 and
limsup H(Ve(y)) > 1.
y*X’L’

This is just the subsolution property which comes from using Perron’s method
to find the minimal supersolution of . Although the supersolution and mini-
mality properties of the minimal supersolution to do uniquely determine it,
what is not obvious is that the conditions Definition [3.2] and Definition [3.3] also
uniquely determine the minimal supersolution of . The advantage of replacing
the minimality property with the subsolution property Definition [3.3]is that it can
naturally be checked in the scaling limit by a perturbed test function type argu-
ment. Uniqueness of viscosity solutions with a discontinuous equation were first
considered by Ishii [18] in the case of Hamilton-Jacobi equations, we face similar
difficulties here.

In addition to the (essentially standard) definition of supersolution and subso-
lution given above, we also need a weakened form of subsolution. We obtain this
notion by further restricting the class of classical supersolutions used as test func-
tions. This definition is easier to check for the scaling limit and, it turns out that,
in the convex setting, this notion of subsolution is enough to obtain uniqueness.
The definition is also useful in proving that the minimal supersolution in the case
of convex W has convex support. The minimal convex supersolution will satisfy
this weakened subsolution property. Without convexity this condition would not
be sufficient for uniqueness.

Definition 3.4. A weakened subsolution of (3.1)) in a function u € USC(R?) that
is compactly supported, satisfies u < 13- and such that, whenever ¢ € C>=(R%)
touches u from above in {u > 0} \ W, there is a contact point x such that either
Le(x) =0,
or ¢(z) =0 and either
H(Ve(r)) =1,
or
V(U) contains two linearly independent slopes.
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Remark 3.5. In the above definitions, we can make the inequalities Lp(z) > (<)0
strict without changing the meaning. This is a consequence of the strong maximum
principle and the homogeneity ([2.3)).

It is useful to define a special class of functions solving part of (3.1)).

Definition 3.6. If W C U C R? is open and bounded, then let wy,; € H'(R?)
denote the unique solution of

Lw=0 inU\W
w=1 onW
w=0 onRI\T.

We say that ww, is a supersolution, subsolution, or weakened subsolution if it is,
respectively, a supersolution, subsolution, or weakened subsolution of (3.1)).

3.2. Existence. We obtain existence of a solution of by Perron’s method.
This requires three ingredients: stability under uniform convergence, barrier func-
tions, and some regularity to stay in the continuous category. We assemble these
ingredients below.

Lemma 3.7. The notions of supersolution, subsolution, and weakened subsolution
are stable under uniform convergence.

Proof. This is a standard feature of viscosity solutions. Here it is important that,
for any smooth ¢, the function z — H(V¢(x)) is lower semicontinuous and the
function z — limsup,,_,, H(V(y)) is upper semicontinuous. O

Harmonic lifting preserves the sub/super-solution property.

Lemma 3.8. If u € LSC(R?) is a supersolution of for some W C R? open,
bounded, and inner reqular, then wyy, (u~oy is a supersolution. If u € USC(RY)
is a (weakened) subsolution of for some W C R? open, bounded, and inner
regular, then wy, ry>o0y s a (weakened) subsolution.

Proof. We prove the supersolution case. The (weakened) subsolution case is similar.
The maximum principle implies 0 < w = wyy, (>0} < w. Since W is inner regular, w
is continuous up to OW. Since u is lower semicontinuous, w is lower semicontinuous
up to d{u > 0}. In particular, w € LSC(R?) has compact support and satisfies
w > 1y If o € C°(R?\ W) touches w from below, then there is a contact point
x such that either Lo(x) < 0 or ¢(x) = 0 and V() # 0. In the latter case, we
see that ¢ touches u from below, and conclude H(Vp(x)) < 1. O

Lemma 3.9. If W C R? is open bounded and inner reqular, W C U C R? is open
and bounded, and ww,u is a supersolution, then |[ww,ullco1 sy < Cw .

Proof. Using ([2.4), we see that wy,y also a supersolution for the simpler Hamil-
tonian H(p) = C~!|p|. The Lipschitz estimate of Alt-Caffarelli [3] now applies. [

Our existence theorem has two parts: we can either solve (3.1]) outright or we
can find a weakened solution whose support is convex.

Theorem 3.10. Suppose 0 € W C R? is open, bounded, and inner reqular. There is
au € C,(RY) that is a supersolution and subsolution of . There is av € C.(RY)
with {v > 0} convex that is a supersolution and weak subsolution .
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Proof. The Lipschitz regularity allows us to carry out Perron’s method in the con-
tinuous category. That is, by Lemma Lemma |3.8] and Lemma the point-
wise infimum of all supersolutions is a supersolution u € C%!(R?). The minimality
and continuity then imply that u is a subsolution.

For the convex case, we need to show that the infimum of supersolutions with
convex support is a supersolution with convex support. The key observation is the
following. Suppose that w € LSC(R?) is a supersolution of with V = {w > 0}
convex. By the strong maximum principle, V' = {ww,y > 0}. By the Lipschitz
estimate in Lemma we have W 4+ Bs C V for § = oy > 0. Now, if B,.(x) CV
is arbitrary and V., denotes the convex hull of B, (z) U (W + Bs), then we have
w > ww,y > ww,y,,. Since the lower bound depends only on W and B,(x), we
see that the infimum v of all supersolutions w with convex support has {v > 0} =
Nw{w > 0}, and hence v is a supersolution with convex support.

By minimality, the weakened subsolution property holds. Suppose that ¢ touches
v from above at x € 9{v > 0} with Vp(U) C span(p) for some unit vector p and
H(Veg(x)) < 1. Then the level sets of ¢ are planar and, since H is continuous
on one-dimensional subspaces, H(Vy) < 1 for (y — ) - p small. Thus, for § > 0
sufficiently small, min{(¢ — d)4,v} will be a supersolution with convex support
which is smaller than v. That is a contradiction. ]

Finally we recall the non-degeneracy property satisfied by the minimal superso-
lution.

Lemma 3.11. Let u be the minimal supersolution of , as constructed in The-
orem then for any x € 0{u > 0} and any r > 0 such that B.(z) CU

sup w > cr
0B, (x)

where the constant ¢ is dimensional.

Proof. Recall that H(p) < Ci|p|. Then the argument is standard. Let ¢ be the
harmonic function in By \ By, with ¢ = 1 on 9By and ¢ = 0 on B;/;. Then
V| = C3 on 9By 5. Suppose that supg (,)u < C'Cy ' then

~Juncr'Crtre(=2) in Bi(z)
u in RY\ B, ()

is a smaller supersolution of (3.1)). O

3.3. Convex comparison lemmas. This subsection contains the technical lem-
mas required to prove uniqueness.

Definition 3.12. An open set U C R? has an inner tangent ball of radius r > 0
at x € OU if there is a y € U such that B,(y) C U and z € 0B,(y). An open set
U C R? is r-inner regular if U has an inner tangent ball of radius r at every point
in OU. We define outer regularity by replacing U with R%\ U.

Our first two lemmas concern the differentiability of Lipschitz harmonic functions
at regular points of the boundary of their support. The first lemma says that a
Lipschitz harmonic function is C*'/3 at any boundary point where u is both inner
and outer regular.
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Lemma 3.13. If u € C%Y(By) is harmonic in {u > 0} and
Bi(1,0,...,0) C {u> 0} C R\ By(—1,0,...,0),
then there is an s > 0 such that
(@) — s21] < Cllullcos sy |2/ for @ € Bin {u>0}.

Proof. We may assume [|lul|cos = 1. Fix r € (0,1). Let v € C(B,) be harmonic in
B, N{x; > 0} and satisfy v = 0 on B, N{z; <0} and v = uw on dBr N {z; > 0}.
Using the Lipschitz bound and the tangent balls, we obtain

v = ull = (B,) < v — ullp~(a5,) < Cr?
and
||’U||Loo(BT) S CT‘.

Since w(z) = sgn(z1)v(|x1|, 2, ..., £4) is harmonic in B,., we obtain
lw(z) — Vw(0) - z| < Cr~ |||z (p,y|z[>  for z € B, js.

Since Vw(0) = (s,0,...,0) with s > 0, we have thus proved the following estimate:
For every r € (0, 1), there is an s > 0 such that

lu(z) — sz1| < C(r* + 7 z|?) for z € {u >0} N B, s.

Using the scaling r ~ |x|2/ 3 a standard iteration gives the quantitative first-order
expansion. The Hopf Lemma implies s > 0. [

The second lemma sharpens the upper bound in the first lemma, assuming the
boundary point has a local outer supporting hyperplane.

Lemma 3.14. If u,s are as in Lemma[3.13 and {u > 0} C {21 > 0}, then

u(z) < (s + Cllullcor(pylz'*)zy  for € Byjp N {u > 0}.
Proof. We may assume ||ul|co.1(p,) = 1. For r € (0,1), let u, € C(B,) be harmonic
in B, N{z1 > 0} and satisfy u, = 0 on B, N{z; < 0} and u, = max{0,u} on
0B, N{x; > 0}. Observe that u < u, in B, N {z; > 0} and, by Lemma that

u,(2) = max{0,u(x)} < sy + Cri/3 for x € 9B, N {x; > 0}. For a > 0 to be
determined, divide the boundary of B, N {x; > 0} into three peices. Observe that

uy(z) < (s +ar'/)ay —r*3  for x € 9B, N {x; > Cra~'}
u,(z) < (s + ar'/3)z; + Cri/3 for x € 9B, N {0 < z; < Cra~'}
up(z) < (s + ar'/3)a, for x € B, N 0{x1 > 0}

holds independently of o > 0. By explicit computation with the Poisson kernel,
observe that
wy (0B, N{0 < z1 < Cra~'})

sup < Ca™!
2€B, ;N {z1>0} wg (0B, N{z1 > Cra~1})

where w, is the harmonic measure of B, N{x; > 0} from a point = € B, N{x; > 0}.
In particular, for a > 0 sufficiently large, obtain u,(z) < (s + ar'/3)z; for all
x € B,y N {z1 > 0}. Thus u(z) < ugyy((z) < (s + Clz|V/3)2y. O
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The next lemma says, roughly, that if a sufficiently smooth u : R? — R is
negative inside a bounded convex set X C R¢ (which may have dimension less than
d) and zero on at least one point of # € X, then we can find a sequence of points
r, € X such that x, — x, Vu(z,) are non-zero, |Vu(z,)| 'Vu(x,) = p, and p is
an outward normal for X at x.

Lemma 3.15. Suppose X C X C Q C R? X convex, Q open and bounded,
a>0,g:Q— R upper semicontinuous, g(y) < aly — z|*> forx € X and y € Q,
and g(z) = 0 for some x € X. There are y, € X and pp,p € R?\ {0} such
that yn =y € X, Ipa|"'pn — p, 9(y) = 0, p-y = max,cxp-x, and g(y) <
9(Yn) +Pn - (Y — yn) +2aly — yn|2'

Proof. After a change of coordinates, we may assume that X is a relatively open
convex and bounded subset of the hyperplane {z;11 = --- = x4 = 0} for some
k=1,...,d and that 0 € X. In particular, we have 7X C X for all 7 € (0,1). After
scaling, we may assume that o = 1. Consider the function h : (0,1) — R given by

h(7) = min {2|y — 72|* — .
(7) = min {2y —7a|* ~ g(y)}
zeX
Observe that h(7) is positive, Lipschitz, non-increasing, and satisfies lim,_,1 h(7) =
0. In particular, h'(r,) exists and is negative for a sequence of 7,, € (0,1) with
7, — 1. Using the definition of h, we see that there must be points y, € €2 and
x, € X and a slope p,, € R? such that
h(1n) = 2|yn — Tnzn|* — g(yn) >0
and
h/(Tn) = —4z, (yn - Tnxn) = —x,  pp <O0.
The optimality condition

20yn — Ttnl” — g(yn) < 2|y — Tnwn|® — g(y) for y € Q
gives us
9(Y) < 9(yn) + P (¥ —yn) +2ly —yal”® fory e Q.
The optimality condition

2|yn - 7—n$n‘2 —9(yn) < 2|yn - Tnx|2 —9(yn) forze X

gives us
0 < pn - (Thtn — Tnx) + 2T — ann|2 for z € X.
In particular, we must have
zeX
Note that we must have g(y,) — 0 and |y, — T,@,|* — 0. In particular, we may
pass to a subsequence to obtain y, =y € X N {g = 0}. O

The next lemma is the key technical result required to prove uniqueness. Our
geometric picture is the following: when a surface touches a convex set on a facet,
then either the surface covers the entire facet or it peels away. When it peels away,
we can find regular points of the surface arbitrarily close to the facet whose normal
lies in the direction of the peeling. In deriving consequences of this idea for the
function uw,y, the convexity of the domain W is used in a key way.
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FIGURE 3. Schematics for the proof of Lemma

Lemma 3.16. Suppose W CV C U C Re are open and bounded, W and V are
convex and inner reqular, U is outer reqgular, W C V., and OV NOU # 0. For any
e > 0, we can find a point x € OU where U has an inner tangent ball such that
p=Vuwy(z) #0 and |Vuwy| < (I+e)|lplonV,={z eV ipax= minyevpy}.

Proof. Throughout the proof, we let C' denote a positive constant that may depend
on U, V,W and differ in each instance. Write u = wy y and v = wy,y. Choose a
supporting hyperplane A with unit inward normal v for V' at some point of 0V NOU.
Without loss we assume that v = ¢4 and A = {zg = 0}. Let X = ANAJV and
Y = X NOU. A schematic of this appears in the left-hand side of Figure [3

Since V is convex and inner regular, Lemma [3.13| implies that Vv extends con-
tinuously to OV and does not vanish on dV. Observe that |[Vv|~!Vv = v on X.
Moreover, by Caffarelli-Spruck [10], we know that {v > ¢} is convex for all ¢t € (0,1).
Since Vv is continuous up to the boundary, this implies |Vv| is concave on X.

Lemma [3.13] implies that Vu extends continuously to and does not vanish on Y.
Thus |Vu|7'Vu = v on Y. The maximum principle implies |Vv| < |[Vu| on Y.

If maxx |Vv| < maxy |Vu|, then we immediately conclude. Indeed, if maxy |Vu|
is attained at x € Y, then z satisfies the conclusions of the lemma.

Henceforth, we assume that maxx |Vv| > maxy |Vul|. Since |Vu| < |Vu| on
Y C X and Y is closed, we see that Y £ X and there is a 7 > 0 such that the set
Z = XN{|Vv| > 7} satisfies ZNY = ) and ZNY # (). Since |Vv| is concave on X,
the set Z is convex. A schematic of this appears in the right-hand side of Figure

Since V' is outer regular, OV is the graph of a Lipchitz function over A in a
neighborhood of X. That is, there is an open X C Qx C R? and a Lipschitz
function h : A — R such that Qx N 90X = {x € Qx : h(z1,...,24-1,0) = z4}.
Similarly, since U is inner regular, there is an openset Y C Qy C R¢ and a Lipschitz
function g : A — R such that Qy NJY = {z € Qy : g(z1,...,24-1,0) = z4}. We
may assume g < hon A and g<honA\Y.

Observe that g =0=hon YNZ # and g <0 =hon Z C X\Y. Moreover, by
the inner regularity of V, there is an a > 0 such that, for all y € Z and x € Qx NA,
g(r) < alr — y|%. Tt follows that Lemma applies to the function g : A — R in
the sets Z C Z C Qx. In particular, there is a radius r > 0, a sequence of points
yn € OU, and a sequence of unit vectors v, € R? such that B, (y, +rv,) CU\ W
touches OU from the inside at ¥, ¥n — Yoo € Y N Z, v, — v. If 3/, denotes the
projection of y,, onto A, then y,, = y., +g(y.)v and vy, -y, < (14+0(1)) min, 7 vy y.

Comparing the first order expansions from Lemma [3.13]of u at y,, and v at Yoo,
using the uniform bounds on the tangent ball radii, we see that

lirginf [Vu(yn)| > lirginfu “Vu(yn) > v - Vu(ys) = V(Yo )| > 7.
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Now, for any sequence z, € Vyn with z, — 2o, we see that zoo € X \ Z. In
particular, v - Vu(200) = |[Vv(200)| < 7. Thus, by the regularity of Vv up to 9V,
for any € > 0, we |Vv| < (1 +¢)|Vu(y,)| on V,, = Vyyy,) for all large n. O

The next lemma is used for the “easy” direction of our uniqueness theorem below.
This is essentially already present in the viscosity theory for H(p) = |p|, but needs
to be adapted to work for weakened subsolutions.

Lemma 3.17. Suppose W C V C U C R? are open and bounded, W and V are
inner reqular, U is convex, W C V, and OVNOU # (). For any e > 0, we can find a
point x € dUNOV, a normal vector v, and a § > 0 such that Vuw,y(z) = |Vuw,u|v
exists and wyw,v (y) < 1+ &)Vuwu(z) - (y —x) forv-(y—x) <4.

Proof. Write u = ww,y and v = wyw,y. Since U is convex and W is inner regular,
u is Lipschitz continuous. Since V is inner regular, we see from Lemma that
Vu exists and is continuous in U up to OU N 9V. Choose = € U NIV and a unit
vector v such that v-z =min Fv-y. Let A={y € Re: v (y —x) = 0} denote
the supporting hyperplane of U at x with normal v. Consider the set X = ANOV.
Since V' C U, we have X C 90U N 90V. In particular, Vu is continuous in U up
to X. Since Vu = |Vu|v on X, we may assume that |Vu| < |Vu(z)| on X. By
Lemma we may choose 7 > 0 such that u(y) < (1 + ¢)Vu(x) - (y — z) for
all y € UN (X + B,.). Using the definition of X, we may choose § > 0 such that
{yeV:v-(y—=z)<d} C X + B,. Conclude using v < u. O

3.4. Uniqueness. Our uniqueness proof requires two additional and fairly stan-
dard lemmas. The first says that, when a supersolution is differentiable at a bound-
ary point, then the supersolution condition holds classically.

Lemma 3.18. If u € USC(RY) is a supersolution of , {u > 0} has an inner
tangent ball at x € O{u > 0}, and there is a p € R? such that u(y) =p- (y — x) +
o(ly — z|) fory € {u> 0}, then H(p) < 1.

Proof. Choose B,.(z) C {u > 0} \ W with 0B,.(2) N d{u > 0} = {z}. Let G denote
the fundamental solution of L. For € > 0 small, consider the test function

pe(y) = (1= e)lpllVG(x — )71 (Gy — 2) — G(a — 2)).

Observe that, for § > 0 small, . is subharmonic and touches u from below in
Bs(z) with contact set {z}. The supersolution condition implies H(Vp.(z)) =
H((1—¢)p) <1. Conclude using the homogeneity (2.3)). O

The next lemma is the usual min and max convolution.

Lemma 3.19. If u € USC(R?) is a (weakened) subsolution of for W, then
u = maxg, ) u is a (weakened) subsolution of for W = W + Bs. If

u € LSC(RY) is a supersolution of for W, then us(z) = ming, ) u is a
supersolution of for Ws = R4\ (R4 \ W)3.

Proof. This is a standard property of viscosity solutions. (I

Note that the positivity sets for u%, us are respectively inner and outer regular.
Using our technical lemmas above, we are ready to prove uniqueness.
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Theorem 3.20. Suppose 0 € W C R? is open, bounded, convex, and inner regular.
There is a unique u € C.(R?) that satisfies uw =1 on W and is both a supersolution
and weakened subsolution of . Moreover, {u > 0} is convex.

Proof. Step 1. Suppose that u,v € C.(R?) are identically 1 on W and both superso-
lutions and weakened subsolutions of . Observe that v = wyw,y and v = ww,v
where U = {u > 0} and V = {v > 0}. To show u = v, it is enough, by symmetry,
to show that V' C U. We assume for contradiction that V' ¢ U. By Theorem
we may assume that one of U or V is convex.

Step 2. By min and max convolution and dilation, we regularize U and V
and make u strict supersolution. Since V' ¢ U and W is convex, we may choose
0 <& <1< 7such that V? C 7Us, 0V° N d(rUs) # 0, and W‘s C 7Ws. Let
W=WU=7Us, V=V 1= Wy 7 and u = wyy - Using Lemmaand
Lemma@ we see that 74 is a buperbolutlon and v is a weakened subsolution. We
also have that U is outer regular, V is inner regular, W is convex and inner regular,
VCU,and VNU #0.

Step 3. We derive a contradiction assuming that U is convex. Since U is convex,
we may apply Lemma For any € > 0, we find a § > 0, a normal v, and a
point 2 € U N AV such that Va(z ) |Vi(z)|v exists and v(y) < (1 +¢€) - Va(z)
for v-(y —z) < 0. By Lemma we have H(7Va(z)) < 1. In particular
H((1+¢)Va(z)) < (1 +e)r L. Since T > 1, we can choose € > 0 small so that
(1 +&)77t < 1. Thus ? fails the weak subsolution condition for the test function
o) = (1+ 2)Vila) - (y — ).

Step 4. We derive a contradiction assumin that V is convex. Since V is convex
and inner regular, we may apply Lemma For any € > 0, we find a z € dV
where p = Via(z) # 0 exists and |Vo(z)] < (1 +¢)|p| on V,. Since V is convex
and inner regular, we see from Lemma that Vo is continuous up to V. In
particular, we see there is a ¢ > 0 such that 9(y) < (14 2¢)p- (y — ) holds for any
z€V,and p-(y —x) < J. As in step 3, Lemmaimplies that H((1+ 2¢e)p) <
(14 2e)771. Making € > 0 small, we see that (1 +2¢)7~! < 1 and thus ? fails the
weak subsolution condition for the test function ¢(y) = (1 4 2¢)p - (y — ). O

3.5. Rational facets. We now use the special structure of H given by Theorem
[2.14] to show that facets form in all of the rational directions. Observe that, when
p € Z%\ {0} is rational, then the lattice A, determines |p|~'p. Then by Theorem
[2.14] there is § > 0 such that H(|p|"'p) < H(q) — ¢ for all ¢ € R? with |¢| = 1 and
0 < |g—|p|~'p| < §. Combining this with a compactness argument inspired by free
boundary regularity theory, we show that a facet forms in the direction p.

We remark that the existence of facets, even of higher co-dimension, is easier if
|Du| is continuous up to d{u > 0}. This would follow from a C1:Pnl estimate of
the free boundary. Here we use convexity to get C'! regularity of the free boundary
cheaply, and use a blow up argument in place of regularity of the gradient.

Theorem 3.21. Suppose that W C R? is open, bounded, convex, and inner reqular,
let u € C.(RY) denote the unique solution of (.) and let @ = {u > 0}. For every
p € Z\ {0}, the set Q, ={x € Q:p -2 = min, 5 p-y} is closed, conver, and has
dimension d — 1.

Proof. Recall from Theorem [3:20] that €2 is convex, first we prove that the boundary
of Qis C1. Each 2 € 99 has a closed convex cone of supporting half-spaces indexed
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by their inward normals, we write v(x) for the intersection of the cone with the
unit sphere. First we show that v is single-valued. Let z € 92 and let e be a unit
vector such that e - v > 0 for all v € v(x). Blow up to
ur(y) = u(re) " tu(z +ry).

Up to taking a subsequence, by the uniform Lipschitz continuity of w, the non-
degeneracy Lemma and the Harnack inequality, the u, converge locally uni-
formly to a positive globally Lipschitz continuous harmonic function ug in the cone
K={y-v>0Vwvev()}, with up(e) = 1 and up = 0 on the boundary of the
cone. Thus, for example by Theorem 1.2 of (1], u(z) = (x - f)4+ for some f # 0, i.e.
v(z) = {f/|f]} is a singleton. Now since v : 9 — S?~! is single-valued, it is also
continuous. Suppose otherwise, then there exists a point x € 92 and a sequence z,,
converging to x with v(x,) — v/ # v. Then, by the continuity of p — mingy - p,
{V' -z =0} is also a supporting hyperplane for  at z, this is a contradiction.

Since Q is convex, (2, is closed and convex. Write p = |p|~!p. Since p has
integer coordinates, Theorem implies there is a small s > 0 such that H(q) >
(14 2s)H(p) whenever |¢| =1 and 0 < |¢ — p| < s. Suppose for contradiction that
ﬁp has dimension d — 2.

By the weak subsolution condition, there is a sequence of points z,, € ) with
Ty — Too € ﬁp such that

lim sup M > H(p)~ .
By convexity, we have

D (Tn — o) > dist(xy,, 0).
Since u € C%!(R%), we have

D (n — 2oo) < Cu(zy,) < Cdist(zy, 00Q).
We now use the low dimension hypothesis. Recall that, for any bounded convex
open U C R¢ and sphere 0B C U, the set
V ={y € 9U : dist(z,0U) = |z — y| for some z € OB}

has positive H?~! measure. Indeed, the downward characteristics of the distance
function in a convex set spread out as they travel to the boundary. From this,
we see that, by perturbing the z,, we may assume there are y, € 99 such that
Tn = |Yn — | = dist(z,,, 0Q) and ¢, = |2 — Yn| (2p — yn) # P. Since y, — Too
and we have shown above that 09 is C' we have ¢, — p.

By Lemma and Lemma Vu(y,) exists, Vu(y,) = |Vu(yn)|gn, and
|Vu(y,)| < H(g,)~"t. Moreover, we may choose a § € (0,1) such that

satisfies
u(zn) < (14 8)H(gn) " dist(z,,09).
Consider the rescalings
un(w) = u(xn)_lu(yn + ’I“nUJ)-

Since C~1r,, < u(z,) < Cr,, we may pass to a subsequence to obtain u, — u €
CYY(R?) locally uniformly, 7, (z,, — y) — z, and 7,1 (2, — y) — 6x. Note that
u(0) = 0, u(z) = 1, and Bq(z) C {u > 0}. In fact, by the same argument as in
Theorem [3.10, we see that {u > 0} is convex and unbounded.
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Since {u > 0} is convex and unbounded, u is globally Lipschitz, harmonic,
u(0) = 0, u(z) = 1, and |z| = 1, we must have u(w) = max{0,z - w}. Thus
compute

0 = u(dx)

< limu(z,)  u(z,)

< limsup H(p)(1 + s)H(g,) "8
<(1+s)(1+28)71

< 6,

which is impossible. Thus ﬁp must have dimension d — 1. (I

4. SCALING LiMIT

4.1. Local minimizers. Throughout this section, fix 0 € W C R? open, bounded,
convex, and inner regular. For h > 1, consider the energy

Jnlu] = Z Liusoy (@) +d Z (u(z) — u(y))?

z¢hW |z—y|=1
{z,y}LhW

defined for u : Z¢ — R. Note that the sum over edges counts each edge twice, as
the pairs {z,y} are unordered.
We define local minimizer to be with respect to single-site modifications:

Definition 4.1. A function u : Z¢ — R is a local minimizer of J}, if u = h on hW,
Jn[u] < oo, and Jy,[v] > Jp[u] for any v : Z¢ — R such that {v # u} is a singleton.

An analysis of single-site modifications yields the following result.
Lemma 4.2. Ifu:Z% — R is a local minimizer of Jy,, then

Au=0 on {u>0}\ AW
Au<1 on 0t {u >0} \ AW

(4.1) u>(2d)™' on 07 {u>0}\ AW
u=nh on hW
u>0 on Z4\ hW,

where

"X ={yecZ\X:|ly—x|=1 for somex € X}
and
0~ X =0T (z4\ X)
denote the outer and inner lattice boundary of a set X C Z4.

Proof. Since the first, fourth, and fifth conditions are standard, we prove the second
condition. Suppose that x € 97 {u > 0} \ hW and consider the variation

o (y) = {U(y) ify #x

Using u(z) = 0, we compute

0 < Ju[u®] — Jufu] = 1 — (Au(x))?.
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This proves the second condition. Now suppose that x € 9~ {u > 0} \ AW and

consider the variation
R e
Using Au(x) = 0, we compute
0 < Jnlus] — Juu] = (2d)*u(x)* — 1.
This proves the third condition. ([

We study the least supersolution of (4.1).
Lemma 4.3. The least function uy, : Z% — R that satisfies
(4.2) up > hlpw  and  Aup < 1py,, -0
is a local minimizer.

Proof. By the maximum principle for A, we see that up, = h on hW, {u > 0} is
finite, and Aup, = 0in {up > 0} \ AW. If Jy[u] < Jp[up] and {u # up} = {z}, then
either z € 9" {u, > 0} \ hW or = € 9 {uj, > 0}. In the former case, then by the
proof of the previous lemma, we must have Auy(x) > 1, which is impossible. In
particular, any single site variation of uj that reduces the energy must remove a
point from its domain. We may therefore find a local minimizer v : Z¢ — R such
that {v > 0} € {u > 0}. By the previous lemma, Av < 1y,0}, contradicting the
minimality of u. O

As in the continuum setting, we may compute the least supersolution by para-
bolic flow. This flow is a special case of the divisible sandpile dynamics.

Lemma 4.4. If vg = hlyw,
(43) Vg1 = Vg + (2d)71 max{O, Avy, — l{vk:O}}a
and up, : Z% — R the least function satisfying , then limy o0 Vi = up,.

Proof. We first observe that 0 < v < h for all k. Next, we prove vy < u, by
induction. It is trivially true for k¥ = 0. Suppose it is true for k and let z € Z¢
be arbitrary. If z € hW, then vii1(x) < h = up(x). If up(z) = 0, then we have
ve(z) = 0, Avg(z) < Aup(z) < 1, and vgyi(x) = 0. If up(z) > 0 and = ¢ AWV,
then we have vj,41(x) < (2d)7! D ly—a=1 Vk(Y) < (2d)~1 Doly—a|=1 Un(y) = un(z).
Since v, < vy1 < up and {up, > 0} is finite, we see that Vo, = limy_, oo vy exists.
Since v, is stationary, we see that v, satisfies . We conclude vy = u using
the minimality of wy,. ([l

4.2. Compactness. We adapt the uniform Lipschitz estimate of Alt-Caffarelli
[3] to the discrete setting. A variation on this already appeared in the work of
Aleksanyan-Shahgholian [4,/5]. In fact, the discrete analogue of the Alt-Caffarelli
result is easier to prove, owing to the fact that a discrete boundary can not be
irregular and the discrete normal derivative is always defined.

Lemma 4.5. Every local minimizer of Jy, is Lipschitz with constant depending only
on dimension and the inner regularity of W.
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Proof. We show that, if u : Z¢ — R is a local minimizer and z € 0ThW, then
u(xz) > h — C for some C' > 0 depending only on dimension and the inner regular
of W. Let us first observe that this is sufficient. Indeed, by , we know that
u(z) < C for all z € T {u = 0}. Thus, since Au =0 in {u > 0} \ AW, we can apply
the maximum principle to z — u(z + ex) — u(z) to conclude |u(y) — u(x)| < C for
lz—y|=1.

Suppose that W is 2r-inner regular and r < 1/2. Define the test function

p(z) = 2r" a7 -1

and its rescalings
on(r) = ho(h™ ).

Observe that ¢, = h on 0By, and ¢} = 0 on dBy,,, where s = r21/(d=1) 5 1 Since
Lo(z) = dré=Yz|=1=4 > C~1 > 0 in B; \ By, we see that

Ay, >0 on Bps \ Bpr

for large h > 1. Using |Vo|(z) = (d — 1)r¢"t|z|=% and 7 < 1 and r < 1/2, we also
see that

Amax{0,op} >1 on OBy

for large h > 1.
We claim, for A > 1 large, that

u(w) > op(w —z) for w € 2.

Indeed, if this fails, then by the maximum principle, the maximum of w — @y (w —
z) — u(w) must occur at a point w € dT{u > 0} \ hW. However, this implies
Au(w) > Amax{0, ¢, }(w) > 1, contradicting ([4.1)).

Since, for large h > 1, we have hs > hr +2 > |x — z| > hr, the claim implies
u(z) > pp(w—2) > h—C. For small h > 1, we have u(x) > 0 > h—C trivially. O

We also must control the support to obtain compactness.

Lemma 4.6. There is a radius R > 0 depending only on W such that every local
minimizer of Jy is supported in Brp,.

Proof. Let u : Z% — R be a local minimizer of J,. Choose r > 0 such that W C B,.
For R > r, let v : Z% — R solve

Av=0 on BhR \ Bh,«
v=20 on Z%\ Byr
v=nh on B}”«.

Standard Green’s function estimates tell us that Av < C(R — 7)1 "% 1(,_0y. In
particular, Av < (4d)~! l{y—oy for all large R > 0. Now, let R > r be least such
that Bpr 2 {u > 0}. Choose x € 07 {u > 0} \ Byr. By and the maximum
principle, we have (2d)~! < Au(x) < Av(z). Thus {u > 0} C By for some R > r
depending only on dimension and W. (]
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4.3. The supersolution property. The supersolution property for any limit of
local minimizers follows by a blow-up argument.

Lemma 4.7. If p € R? and, for every R,6 > 0 there is a v : Z* — R such that

v(0) =0
Av(z) <04 1p—py(x) for|z|< R
v(z)>(p-z—0)*t for|z| <R

then H(p) < 1.

Proof. By the maximum principle, we may assume v satisfies the additional condi-
tions

v(z) < (p-x +max lpk|)T and Awv(z) >0 for |z| < R.

More precisely take the min with (p-z+maxy, |pg|)* and then solve for the harmonic
function in {|z| < R} N{p-x > —d} with the same boundary data. Together with
the original conditions, these imply enough compactness to pass to limits, obtaining
w : Z% — R that solves and has Aw(0) < 1. O
Lemma 4.8. If h,, — 00, u,, is a local minimizer of Jy,, i, (x) = h; 'u,(hpx), and
Up — u € C(R?) uniformly, then u is a supersolution of .

Proof. Suppose that ¢ € C>°(R?) touches u from below at z. That is u(z) = ()
and, for some r > 0 and all 0 < |y — x| < 7, u(y) > ¢(y). It is enough to show
H(Dp(z)) < 1 under the assumption Ap > 0 in B,.(z) C R?\ B,. Let

U, =20 By, (hpz) and ¢, (x) = hpo(h, 'z).
Choose z,, € U,, such that

(un - @n)(xn) = H(}in(un - @n)-

By the uniform convergence of h, 'u, (h,x) to u(z) in B,(z), we see that

In e
ho, '

By the monotonicity of A, we have
Aty — @n)(xn) > 0.
Since
Aun — pp) < L{u, =01}
we must have
Up () = 0.
Letting
Un(2) = up(zy + )
we see that
v,(0) =0
Av, < 1{%:0}
Uy >0
v () = Doy (2y) -+ O(h,2|z|?)  for |x| < hy,r.
Since Dy, (x,) — Dp(z), the previous lemma implies H(Dg(z)) < 1. O
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4.4. The weakened subsolution property. The weakened subsolution property
for any limit of least supersolutions also follows by a blow-up argument. Note that
this property generically fails for arbitrary sequences of local minimizers.

Lemma 4.9. If h, — o0, u, : Z* — R is the least function satisfying ,
Un(z) = hytun(hyo), and @, — u € C(RY) uniformly, then u is a weakened

subsolution of .

Proof. Since Au,, = 0 in {u, > 0} \ h,W, we see that Lu = 0 in {u > 0} \ W.
In particular, we may suppose for contradiction that H(p) < 1, U C R4 \ W open,
and ¢(y) =p - (y — ) touches u from above in {u >0} NU.

We may assume that U is compact. By the strong maximum principle, we see
that the contact set is a compact subset of 9{u > 0} NU. We may therefore choose
a § > 0 such that

{p—d<un{u>0}nU

is non-empty and has compact closure in {u >0} NU.

Let v denote the solution of for p. We may select a sequence of points
x,, such that, if v,(z) = v(z — ), then v, (z) = h; v, (h,z) converges locally
uniformly to ¥ (z) = max{0, p(z) — d}. By the above, and the uniform convergence
of u, to u, we see that, for all sufficiently large n, we have

0% {vn < un} O {un > 0} N AU C (haUn) \ 9~ (haU).

In particular, if we define

i (7) = min{u, (z),v,(z)} if x € h, U
T @) otherwise,

then @y, is a strictly smaller solution of (4.2)). O

4.5. Convergence. Appealing to our uniqueness theorem for viscosity solutions,
we see that the minimal supersolutions converge. The key use of convexity here is
that we only need to check the weakened subsolution property, which only requires
use to constructed planar supersolutions of the discrete problem. Without convexity
we would need to check the full subsolution condition and therefore we would need
to construct non-planar supersolutions of the discrete problem. This is significantly
harder and is addressed below in Section [ Additionally we do not know how to
prove uniqueness, even with the full subsolution property, without convexity in
d > 3. See below Theorem for the comparison principle without convexity in
two dimensions.

Theorem 4.10. If W C R? is open, bounded, convex, and inner reqular and
up : Z% — R is the least function satisfying

up > hlpw  and  Aup < gy, o),
then the rescalings un(x) = h~Yuy(hx) converge uniformly to the unique solution
of (1)

Proof. By Lemma[4.5] and Lemma [4.6] every subsequence of h,, — oo has a further
subsequence h/, — oo such that @, — u € CZ'(R?) uniformly. By Lemma

and Lemma u is a supersolution and weakened subsolution of (3.1)). Thus, by
Theorem [3.20, u is the unique solution of (3.1). O
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5. THE NON-CONVEX CASE

5.1. Failures of uniqueness. As is well-known, see Caffarelli-Salsa [9], the exte-
rior problem does not always have a unique viscosity solution even for the
simplest case H(p) = |p|. Indeed, when W is the complement of a ball or W is a
finite union of disjoint balls, there generally are multiple viscosity solutions.

In the situations where uniqueness is known to hold for H(p) = |p|, the argument
always consists of two steps. First, one shows that supersolutions perturb to strict
supersolutions. Second, one applies strict comparison. Since the known strictifica-
tion arguments still work for general H, we are only missing strict comparison. In
this section, we describe some partial progress.

5.2. Strict comparison in the plane. We are not able to prove strict comparison
for weakened subsolutions. Instead, we need to use something closer to the full
subsolution condition, which we now describe. In order to state strict comparison
in greater generality, we also make our definitions local. That is, we define what it
means to solve

Lu=0 in {u > 0}
(5.1) {H(VU) =1 on d{u> 0}

in an open set U C R?, without any boundary conditions.

For convenience, we use a notion of local supersolution that is stronger than
the natural local version of our notion of supersolution for above. Indeed, we
demand that local supersolutions be harmonic, rather than merely superharmonic,
where they are positive. Since we are no longer proving existence, this definition is
more convenient.

Definition 5.1. A supersolution of (5.1)) in an open set U C R? is a non-negative
u € C(U) that harmonic in {u > 0} and such that, whenever ¢ € C*°(U) touches
u from below in U, there is a contact point x where either Lyp(z) < 0 or ¢(z) =0
and H(Vep(z)) < 1.

Our notion of subsolution is a natural interpolation of subsolution and weakened

subsolution. The idea is to exploit the linear structure of the discontinuities of H
as described in Theorem 2.14]

Definition 5.2. A modified subsolution of in an open set U C R% is a non-
negative v € C(U) that is harmonic in {u > 0} and such that, whenever ¢ €
C>(U), ¥ C R? a subspace, Dy C %, and ¢ touches u from above in U N {u > 0},
there is a contact point x where either

Lp(z) 20
or
p(x) =0 and limsup H(p) > 1.
p—=Ve(z)
peS

We now prove strict comparison in dimension two. The proof does use some
additional structure of H besides lower semi-continuity, which is that
lim H(q) = H"(p)
q—Pp, 4FP
exists. The idea is that if a smooth strict supersolution u touches a smooth modified
subsolution v from above at a free boundary point, the gradient p will have to
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satisfy H*(p) > 1. The interesting case is when H is discontinuous at p. Then
H*(p) > 1 contradicts the strict supersolution condition unless Du is parallel to p in
a neighborhood of the touching point. This argument can be repeated until the free
boundary of v separates from the free boundary of u, and we find a neighborhood
of the contact set where d{u > 0} is flat. Then the weakened subsolution condition
can be applied to get a contradiction. The main additional difficulty, beyond this
idea, is to deal with the reduced regularity of general sub/supersolutions.

Theorem 5.3. If U C R? is open, u € C(U) is a supersolution of , ve C(U)
is a modified subsolution of (5.1]), {u > 0} is outer regular, {v > 0} is inner regular,
and T € (0,1), then Tu does not touch v from above in U N {v > 0}.

Proof. Step 1. We suppose for contradiction that 7u touches v from above in
UN{v > 0}. Let = be a contact point. Observe that {u > 0} D {v > 0}. Moreover,
by the strong maximum principle, we must have x € 9{u > 0} N 9{v > 0}. By
scaling, we may assume that {v > 0} is 2-inner regular and {u > 0} is 2-outer
regular. We may therefore choose a unit vector v such that

Ba(z 4 2v) C {v >0} C {u>0} SR\ By(zx — 2v).
Using the supersolution property, we obtain
[ullcor @y < C.
Applying Lemma we see there is a p € R? such that
luly) =p- (y — )| < Cly —a|** fory € {u>0}.

Note that p = |p|v and H(p) < 1.
Step 2. We show there is a ¢ > 0 such that

H(q) >1+40 when|g/=1and 0<|¢—p| <o

Consider the test function

p(y) = plIVG@)|7H(G(v) = Gly +v)),

where G is the fundamental solution of L. Observe that, for € > 0 small, there is a
§ > 0 such that 1. = (14¢)p —e2¢? is strictly superharmonic in Bs(x) and touches
u from above in Bs(x) N {u > 0} with contact set {z}. In particular, Tt touches
v from above in Bs(z) N {v > 0} with contact set {}. Recall from Theorem m
that there is a k > 0 such that lim,_,, H(g) = k|p|. Since L).(z) < 0, the modified
subsolution property implies that 7k|V(x)| > 1. Sending ¢ — 0 gives 7k|p| > 1.
Since H(p) < 1, we must have H(p) < 7k|p| < k|p| = lim,—,, H(q).

Step 3. We use this to show that d{u > 0} contains an open line segment that
contains x. Consider the test function

p(y) = PlIVG(=v)[ TGy —v) = G(-v)).

For ¢ > 0 small, there is a § > 0 such that ¥. = (1 — &)p + £2¢ is subharmonic in
Bj(x) and touches u from below in Bs(z) with contact set {x}.
By the previous step, we fix € > ¢ > 0 so that

H(Vie(2)) > 1 for z € {¢p. =0} N Bs(x) \ {z}.
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Let us fix e > 0 > 0 with (14+¢)7 < 1 and, for [§] =1 and 0 < |£ —v| < 4,
H(¢) > (1+e)H(v). Let A= {y € R¢: v-(y—z) = 0}. Using Ba(x+2v) C {u > 0},
we have

inf — e > 0.
yE{u>é?ﬁaBg(ac)u(y) v (y)
In particular, there are v € (0,6/2), @ > 0, and h : By(z) N A — R such that
|h(2)| < alz — x|? and

Ve z(y) = te(y — 2 — vh(2))

touches u from below in Bs/o(z). Since H(V.(z)) > 1 when z € {¢. = 0} N
Bs(x) \ {z}, the supersolution property implies that the contact set between u and
e, must be {z + vh(z)}. In particular, we see that

{z+vh(z) : 2 € AN By(z)} C 0{u > 0}.
Moreover, we see that, for all z € AN B, (x),
Bs(x) N By(z 4+ 2z + (h(2) + 1)v) € {u >0} CRY\ By(x + 2z + (h(z) — 1)v).

In particular, h € C*'(A N B, (z)) and therefore VA = 0. Since h(z) = 0, we see
that O{u > 0} contains AN B, (z).

Step 4. We use the modified subsolution property again to obtain a contradiction.
Let £ C AN d{u > 0} be the maximal open line segment containing z. We know
from the previous step that £Nd{v > 0} is a compact subset of £. We know that, for
every z € £, that Vu(z) exists and satisfies Vu(z) = |Vu(z)|v and H(Vu(z)) < 1.
Let p = (sup,¢, |Vu(z)|)v. For any € > 0, there is an open V' D ¢ N d{v > 0} such
that the function p(y) = (1 +¢)7p - (y — x) touches v from above in V N {v > 0}.
By the modified subsolution condition, H((1 + ¢)mp) = (1 +¢)7H(p) > 1. This
contradicts H(p) <1 for € > 0 small enough. O

5.3. Limits of half spaces. In order for the notion of modified subsolution to be
useful, we need to able to verify it for limits of the minimal supersolutions of .
This requires a more detailed analysis of the halfspace problem . We introduce
another half space type problem which arises when we study the limiting behavior
of H(q) as ¢ — p # 0.

We need to classify the collection of sets that can arise as limits of discrete half-
spaces B(¢) = {zx € Z?:x-( > 0}. Let ¢*,...,¢* be an orthogonal set of non-zero
vectors in R? with 1 < k < d. We define the half-space type domain,

k
E(¢....¢M = Jfzez? [¢" - ¢ '2 =0 and (72> 0}
j=1

we interpret the first condition for 7 = 1 as trivially satisfied. We remark that the
domain E(¢!,. .., ¢*) is only distinct from {z-¢* > 0} = F(¢!) when the orthogonal
complement of ¢! contains at least one lattice vector. That is, when Ao #{0}. It
is useful to note that,

(5.2) B¢, ¢*) = E(G) U(E(E, ..., ¢ ¢t -2 = 0),

which gives an inductive way to understand the limit half-spaces.
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Now we study the linearly growing harmonic functions in the limit half-spaces.
Let u¢i...cx denote the unique solution of

Auer..co =0 on E(¢Y,...,¢F)
(5.3) Uer..cr =0 on Z4\ E(¢Y, ..., ¢
SUP(1.p50 [Ugt...r (2) — 2 - 1] < o0.
To explain the definition of the limit half-spaces we show how such domains arise

naturally as the limit of standard half-spaces. We consider the following sequence
of half-spaces,

Ey = B +t¢t +2¢2 4+ - + t5¢¥) in the limit ¢ — 0.

The particular powers of ¢ are not important, only that each subsequent term is
lower order than the previous one as ¢ — 0. Then,

tlirr(l)Et ={z€2%: 2 ¢ E, for all sufficiently small t > 0} = E(¢°,...,¢").
—
This is basically the way that the limit half spaces appear.

Lemma 5.4. Suppose that ¥ is a subspace of R and ¢, € N S then, up to
taking a subsequence, there exist C',...,(* € ¥ orthonormal for some 1 < k <
dim(X) so that,

E() — B¢, ¢7) as n— oo

Proof. Take a subsequence of the (, converging to ¢! € ¥ NS4 1. If (" = (; for
infinitely many n we are done, taking a subsequence along which (,, are constant,

E(Gn) = E(G).
Suppose instead that, eventually, ¢, # ¢'. We define the approach direction of ¢,
to ¢
2 G—¢ 2 A1
Cnfm and we have ¢, ¢ —0 as n — oo.

Take a further subsequence so that (2 converges to some ¢? € S9! with ¢2-¢! = 0.
Note that ¢2 € ¥ for all n and hence so is ¢?>. Now we continue inductively, if
j = dim(X) or if ¢/ = ¢? for infinitely many n then we stop the process, taking if
necessary another sub-sequence so that ¢ = ¢? for all n. Otherwise we can define,
Cj+1 — Cvjz — C]

" |G — ¢
We check the orthogonality conditions by induction. Thus we obtain an orthonor-
mal set of vectors (1, (2, ..., (¥ for some 1 < k < dim(X). By the set-up we have
either (1) for all n it holds ¢¥ = (¥ or (2) k = dim(Z) and ¢!,...,¢* are an
orthonormal basis for X.

We claim now that,

and Cf;—H'Ce—)O as n—oo for 1<£<35.

E(() — E(CY, ..., ¢Y) as n— .

If z- ¢! > 0 then z- ¢! > 0 eventually and if z- ¢! < 0 then z- ¢} < 0 eventually. If
z- ¢! =0 then,

200 >0 = 2. (¢! =) >0 = z-Z>0.
So we have, in the case when z- (! =0,

2-C*>0 (resp. <0) = z-(, >0 (resp. <0) eventually.
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Suppose that z - ¢ =0 for £ =1,..., 7, then when is ¢J - 2z > 0 eventually,
23>0 2 (-I)>0 <= z-¢T >0
Sowhen z- ¢! =0for ¢ =1,...,7,
z- (I >0 (resp. <0) = z-(, >0 (resp. <0) eventually.
The final case isif z- ¢ =0 forall £ =1,...,k. If k = dim(X) then since ¢',...¢"
are an orthonormal basis for ¥ this holds only when z € ¥+ in which case we know

(o -2z = 0 for all n. Otherwise ¢¥ = ¢* for all n and so z - ¢¥ = 0 if and only if
z-Ck=o0. O

Theorem 5.5. For each (',...,(* an orthogonal collection of non-zero vectors
1 < k < d, there exists a unique solution uci...cx of the half-space problem
with the following properties,

(1)
zea+gf?f(,...,gk) Auer..cr(x) = Auer..cx(0)

(2) Let ¥ be the subspace spanned by C*,...,C* then,

Auer...cx(0) < limsup H(p)
peEX
p—=¢t
(3) If ¢! is contained in the subspace X', then there are €2,--- €8 completing
¢! to be an orthogonal basis of ¥ such that,

Augigz..¢x(0) = limsup H(p)
pex’
p—¢?

Proof. Take a sequence,

1 1

Cn=C'+=C+-+(Fex

n n
Clearly the ¢, converge to ¢! as n — oco. Consider the half-space solutions u,
solving (5.3) in E((,). Since we have shown in Lemma [5.4] that

E((n) — E(CY,...,¢F) as n— oo,

We can establish, by uniqueness of (5.3)), that,

U¢,, — Ugt...ck as n — 0Q.

In particular,
H(Cn) = A’U/Cn(O) — AUCI“'Ck (O),
which proves part [2]
Next we consider the proof of part [3 There is a sequence of ¢, € ¥’ such that
¢ — ¢tand H((,) — lim sup,esy 1 H(p). Applying Lemmawe find €2,...,¢&"
for some 1 < k < dim(X) such that, up to a subsequence, the u,, converge and,

E(Ca) = E(¢H€%,...,6%) as n— oo

Then, as usual, the limit of the u¢, solves 1) for ¢1,€2,...,€%. By uniqueness
the limit is uc1g2...¢r and we obtain

limsup H(p) = lim H((,) = lim Aug, (0) = Auer g2 1 (0).

peEX/ —(?!
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5.4. Sphere approximation. We now explain how to construct a discrete approx-
imation A,, of the lattice ball B(0,m) with a certain regularity property. Basically
the regularity property we would like to have is that, when we send m — oo and
follow a sequence of boundary points z,, the blow up A,, — z,, will converge (along
a subsequence) to the complement of a limit half space. Once we have done this
construction for balls we will also be able to construct regular discrete domains
approximating any smooth domain in R? by an inf-convolution type argument.

The purpose of this, eventually, is to carry out a perturbed test function ar-
gument. We need to construct discrete supersolutions converging to a smooth
supersolution. However the discretization needs to be done carefully, the local su-
persolution property can be violated by a bad choice of discretization. Specifically
what is needed is that any blow up sequence at a boundary point results in a limit
half-space. The discrete ball approximations constructed here show that such a
construction is possible.

We will use the following notation below, for a collection ey, ..., e, C R,

T(er, .. ex) = {z €R%: ey = =z-e =0}

Lemma 5.6. Let ¥ be a k-dimensional rational subspace of R® and let r > 1.
There exists a sequence of sets A, (X) C ZENY with A,, = —A,, and,

B(O,m)NY CA, CBO,m+1)N3,

with the following property: for any sequence z,, € Ay, such that A, — 2z, converges
to a set H then there is some orthonormal set (*,...,¢F € X NT(p) for 1 <k <
dim(X) such that,

HY NS N B(0,r) C E(CY....¢M.
Proof. Instead of working in a subspace ¥ of R? with the lattice Z2NX, we will just
work in R? with an arbitrary d-dimensional integer lattice Z¢. We denote, for r > 0
and x € R?, the ball of radius r in Z¢ around = by B(z,7) = {z € Z¢: |z —z| < r}.
The proof is by an induction argument on the dimension. We start with the case
d=1. If Z is an integer lattice in R then,

Z={ne:ncZ} for some e € R\ {0}.

It will be convenient for the induction to define the regularized balls A,, around
arbitrary points, not just lattice points. For x € R and m > 1 we can simply take

A () = B(x,m).

Then, for a sequence z,, € A, (z,,), we take a subsequence so that A, (z,;,) — 2m
converges to some H, and then,

HDO{ne:n<0} or HD{ne:n >0},

which is what we required.

Now we assume that the result is proven up to dimension d — 1, and we consider
a d-dimensional integer lattice Z¢ in R%. Let m € N, start with the sets B(0,m) =
{z € Z4: |z <m}. We fix an 7 > 1 and define for 1 <k <d

Si(r) = {p € R\ {0} : the dimension of span(T'(p) N B(0,7)) is at least d — k},

these sets are evidently monotone increasing in r and in k and Sy(r) = R4\ {0}.
In words, Sk (r) is the set of directions satisfying k independent rational relations
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with norm at most 7 with respect to the lattice Z¢. Let £, > 1 chosen as £y = m
and for 1 <k <d-1,

(5.4) li(m) = mi  chosen to satisfy (3., = o(lk).

Given p € R? the lattice Z¢ N T(p) has dimension at most d — 1. For = € T(p) and
¢ >11et Ay(z,Z4NT(p)) be the ball approximations which are already defined by
the inductive hypothesis. Furthermore, every affine hyperplane = +7'(p) for x € R?
either contains no points of Z% or contains a translated copy of Z¢ N T(p). Thus
we can define for every x € R? the set Ay(x, Z4NT(p)) C (x + T(p)) N Z<.

Now we are ready to define the sets A,, in Z¢. We define

d—1
(5.5) A = B(0,m)u U Aam.2'nTw).

k=1 p€ S, (r)NB(0,m)

For the ball around a generic point 2 € R? the definition is analogous. The set A,,
has the following property, for every z € A,, either there is 1 < k < d— 1 such that,

(5.6) 2 € Ay, (p, 22N T(p)) for some p € Si(r)N B(0,m),

or z € B(0,m). Let us define k(z) to be the minimum value of & so that (5.6)
holds, or if does not hold for any 1 < k < d—1 then z € B(0,m) and we take
k(z) = d. We define p(z) to be the p € Sy (.)(r) achieving , taking p(z) = z if
k(z) = d. We note that,

(5.7) for any j < k(z) we have d(z,S5;(r)) > ¢;.
We also point out that for any z € A,,,

1(6 +1)2
27 = |z~ DA + () < (6 + 12 +m? and so |2 <mt L L

<m-+1
for m sufficiently large by the inductive hypothesis and since we chose £2 = o(m).
We consider a sequence z,, € A,,. Up to taking a subsequence we can assume
that k = k(z,,) is constant, we call p,, = p(zm). By it’s definition p,, € S(r) N
B(0,m) with,
Zm € Aék (pm7 Z4n T(pm))u

in the case k = d we have p,, = 2, € B(0,m). We can choose a further subsequence
so that for some fixed &1,...,&4— € B(0,7),

=1
Pm €=,

where call Z to be (interchangeably) the subspace spanned by &1, ...,&;— and the
corresponding integer lattice. We remark that in the case k = d this is a trivial
condition. We now take a further subsequence if necessary so that,

Ap—2m = HCZNY and p—mﬁpeSd_l.
2
It is easy to see that p € =+, hence p € S(r), although it may satisfy additional
rational relations in B(0, 7).

Now we show that the limit set H has the structure of a limit half-space at
least until we get down to the level of =, this part of the proof will be familiar from
Lemmal5.4] although it contains some new elements due to the curvature of the ball.
Call ¢}, = p,, and ¢* = p. We will define a set of mutually orthogonal directions
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¢7 € =+ for (at most) 1 < j < k by an inductive procedure, these directions will

be defined as the limit of some sequences C:“fn If at any stage 1 < j <k,
T¢...,¢)nB0,r) CE

then we will stop the induction. Note that since = has dimension d — k, = C
T(¢Y,...,¢%), and the dimension of T(¢!,...,¢?) is d — j the induction must stop
by stage 5 = k. Suppose that dim(T(¢Y,...,¢?~1) N B(0,r)) > n — k, then the
induction can continue and we define,

j—1

¢ho=C =16 or expanded ¢, = pm — Y [CLIC = pm — @l

i=1
From the inductive assumption, as ¢J, is a linear combination of ¢*,...,¢/71, we
have ¢J, € =+ and ¢J, € =+, Since T(¢Y, ..., ¢? 1) € T(ql,) and dim(T'(¢Y, ..., ¢~ 1N
B(0,7r)) > n—k we have that ¢J, € Sk_1(r). From our assumptions (??) this means
that,

|Gl = [Pm — @] > e
In particular it is not equal to 0. Then we take a subsequence so that zzn con-
verges to some (7 € 471 N EL. It is also easily checked that ¢*,¢?,...,¢? ! is an
orthonormal set.
Now given the above set up we are able to establish the limit set structure.

Suppose that,

(5.8) 2.¢('=0 for 1<i<j—1 and z-¢ <0
then we claim that z € . For this we show that |z, + z| < m eventually,
2m + 2> < pml® + 2|2m — Pm[? +2|2° + 22 - i
<m? 202 4+ 2122 + 22 (pm — &)
~J

<m? 202 + 2212 + (2- ()1

< m?
since we have by the set up that ¢7 = o(¢)_1), i.e. under (5.8)) we have z € H.

Now we suppose that the inductive procedure above ends at some stage 1 < jg <

k, the ending condition is that T'(¢1,...,¢7*) N B(0,7) = 2N B(0,r). Now we use
the main induction hypothesis. We already have that,

Zm € Aék (pma Zd N T(pm)) C Am~

Since Ay, (P, 24 N T(pm)) N B(zm,7) = Ay, (pm,Z) for the fixed subspace = we
can use the inductive hypothesis. Taking a subsequence so that Ay, (pm,Z) — zm
converges to some set G C =, we have G C H, and the inductive hypothesis implies
that there are some orthonormal ¢7%°F1 ... (7t € = so that,

GenT(C, ..., )N B(0,r) C B(¢PH .. ).

Thus,
J1
BO,r)Nn|J{ze2?: zen(,....¢")n{z- ¢ <0}} CH.

i=1
This completes the proof. (I
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5.5. Perturbed test functions. We now explain how to construct discrete ap-
proximations of a set of classical supersolutions. This suffices to verify that limits of
local minimizers of are modified subsolutions. We need to choose a sequence
of discrete approximation to the classical supersolution such that all the bound-
ary blow up limits are limit half-spaces. The main difficulty was already included
in Lemma now we use the ball approximations there to regularize a general
discrete set by inf-convolution.

Theorem 5.7. Suppose that U C R? is open and bounded, p € C=(U), Ly < 0
in {p >0}, ¥ CR? is a subspace, Vo C X, and lim,esy vy H(p) < 1 whenever
o(x)=0. IfV CU open, V C U, and h,, — oo, we can find u, : Z¢ — R such that
Uy >0, Aup, < (14 0(1)) gy, =0}, and by uy(hpx) = max{e(x),0} + o(1) hold in
h,V.

Proof. Step 1. Throughout the proof, we let C' denote a positive constant that

depends on ¢, V, U and may differ in each instance. For integers n,m > 1, define
(@) = hop(hy @)

and

Onm(x) = yeglirgz) on(z +y)

where A,,(X) is given by Lemma Choose W 2 V open with W C U and let
Y, m solve

Ynm = max{0, ©n m} in h, U\ (bW 0 {n.m > 0})

Since ¢ is smooth and Ly < 0, we have —Ch;l < Ap, < Ch;g’ in h,U and
—Ch;t < App m < Ch,,;3 in h,W. Moreover, we also have that ¢,, and ©n,m are
uniformly Lipschitz. In particular, we see that

Pn,m < wn,m < Pn,m + Ch:Ll in hnW N {Qpn,m > O}

{Awn,m = min{0, Appm} 0 W N {@pm >0}

and
0<9n—vnm<Cp inh,W.
It suffices to show that, for all € > 0, there are N, m > 1 such that
Atpm < (1+€) 1y, =0y inh,V

holds for all n > N. We suppose for contradiction that this fails and run blow up
argument. We will first send n — oo and then send m — oc.

Step 2. Fix ¢ > 0 and m > 1 and suppose, for infinitely many n > 1, there is a
Zn € hyV N O {tby m > 0} such that

Aty m(2n) > 1+ €.
Since
oW N {tnm > 0} = hyW N {pp,m > 0}
we may select a w, € 0T {p,, > 0} such that
Zn € Wy, + A (2) C {tp.m = 0}.
Let p, = Vo (w,) = Vo(h, 'w,). Taylor expanding ¢, at w,,, we see that
nm(2n +2) < on(wn +2) <pp-2+ Chy 'z
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and
On,m(2n +2) > p(wn +2) — Cry >y - 2 — ChYz)? = Cp.

Since [¥n.m — Pnm| < C, we may choose a sequence n — 00, Z, € V, W, € Z%,
and ¥, : Z% — R such that

h;lzn = Zms  Dn = Dm = VO(Zm), Wpn—2n = W, and ¥, m(znt+z) = ¥Un(2).

Since

{¥n,m(2n + 2) = 0} = {pnm(2n +2) < 0}
D (W — 2n + A (2)) U {pn - 2 + Ch, Mz|* < 0},
we see that
{tm(2) = 0} 2 {pp, - 2 <0} U (@ + A (%))
Note the strict inequality that arises because we do not know the relative rates of
pn — pand h,! — 0 as n — oo. We also have

0 € @ + An(D)
A (0) > 1+¢
and
Awm =0 and |¢m(x) _?m : 33‘| < Cm in {wm > O}

Step 3. Observe that, since {p,, - 2 < 0} C {¢,(2) = 0} and p,, is bounded
uniformly in m, that we have

0 < ¢ (2) < max{0,p,, -z} + C.

Thus we again have compactness of the 1, and may choose a sequence m — oo,
zeV,ECZ% and v : Z¢ — R such that

Zm — 2, DPm —DP=Vp(Z), Wnt+A,(E)—=>E and ¢,(z) = ¥(2).
Observe that
{p-2<0}UEC {p =0},
AYpy=0 and [Y(z)—p-z|<C in{¢ >0}
and
P»(0) =0 and AP(0)>1+e.
Since Vo C 3, we also have
Ym(z+q) = Ym(z) for g€ 24N %t
Thus, by Lemma we see that there are (2, ...,¢* € ¥ such that
E(p,¢?, .., ¢") S {y =0}
By the maximum principle, we see that
Aug e ox(0) > Ap(0) > 1 +¢.

In particular, we have limsupsy, v, z) H(p) > 1+ &, contradicting the theorem
hypothesis. (I

5.6. Acknowledgments. Both authors benefited from conversations with Hayk
Aleksanyan and Henrik Shahgholian.



40

WILLIAM M FELDMAN AND CHARLES K SMART

5.7. Conflict of interest. The first author was partially supported by the Na-
tional Science Foundation RTG grant DMS-1246999. The second author was par-
tially supported by the National Science Foundation DMS-1606670 and the Alfred
P Sloan foundation.

REFERENCES

[1] Scott N. Armstrong, Boyan Sirakov, and Charles K. Smart, Singular Solutions of Fully Non-

linear Elliptic Equations and Applications, Archive for Rational Mechanics and Analysis 205
(2012), no. 2, 345-394.

[2] Giovanni Alberti and Antonio DeSimone, Wetting of rough surfaces: a homogenization ap-

proach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2053, 79-97.

[3] H. W. Alt and L. A. Caffarelli, Ezistence and regularity for a minimum problem with free

boundary, J. Reine Angew. Math. 325 (1981), 105-144.

[4] H. Aleksanyan and H. Shahgholian, Discrete Balayage and Boundary Sandpile, available at

ArXiv:1607.01525.
, Perturbed divisble sandpiles and quadrature surfaces, available at ArXiv:1703.07568.

[6] L. Caffarelli and K. Lee, Homogenization of oscillating free boundaries: the elliptic case,

Comm. Partial Differential Equations 32 (2007), no. 1-3, 149-162.

[7] L. A. Caffarelli and A. Mellet, Capillary drops on an inhomogeneous surface, Perspectives in

nonlinear partial differential equations, 2007, pp. 175-201.
, Capillary drops: contact angle hysteresis and sticking drops, Calc. Var. Partial Dif-
ferential Equations 29 (2007), no. 2, 141-160.

[9] Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, Graduate

Studies in Mathematics, vol. 68, American Mathematical Society, Providence, RI, 2005.

[10] Luis A. Caffarelli and Joel Spruck, Convexity properties of solutions to some classical vari-

(11]

(12]
(13]
(14]
(15]

(16]

(17)

(18]

ational problems, Comm. Partial Differential Equations 7 (1982), no. 11, 1337-1379.
William M. Feldman, Homogenization of the oscillating Dirichlet boundary condition in gen-
eral domains, J. Math. Pures Appl. (9) 101 (2014), no. 5, 599-622 (English, with English
and French summaries).

William M. Feldman and Inwon C. Kim, Liquid Drops on a Rough Surface (2016), available
at ArXiv:1612.07261.

Hyoungsoo Kim, Zhong Zheng, and Howard A Stone, Noncircular stable displacement pat-
terns in a meshed porous layer, Langmuir 31 (2015), no. 20, 5684-5688.

Inwon C. Kim, Homogenization of a model problem on contact angle dynamics, Comm.
Partial Differential Equations 33 (2008), no. 7-9, 1235-1271.

L. Levine, Limit Theorems for Internal Aggregation Models, University of Californial Berke-
ley, 2007. PhD Thesis.

R. Raj, S. Adera, R. Enright, and E. Wang, High-resolution liquid patterns via three-
dimensional droplet shape control, Nature Communications, posted on 12 Aug 2014, DOI
10.1038 /ncomms5975.

A. Susarrey-Arce, A. Marin, A. Massey, A. Oknianska, Y. Diaz-Fernandez, J. F. Herndndez-
Sanchez, E. Griffiths, J. G. E. Gardeniers, J. H. Snoeijer, Detlef Lohse, and R. Raval, Pattern
Formation by Staphylococcus epidermidis via Droplet Evaporation on Micropillars Arrays at
a Surface, Langmuir 32 (2016), no. 28, 7159-7169.

Hitoshi Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open
sets, Bull. Fac. Sci. Engrg. Chuo Univ. 28 (1985), 33-77.

Email address: feldman@math.uchicago.edu
Email address: smart@math.uchicago.edu

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, CHICAGO, IL 60637, USA


ArXiv:1607.01525
ArXiv:1703.07568
ArXiv:1612.07261

	1. Introduction
	1.1. Overview
	1.2. A discrete free boundary problem
	1.3. Main results
	1.4. Water droplets on a rough surface
	1.5. The boundary sandpile
	1.6. Outline

	2. The Hamiltonian
	2.1. Essential properties
	2.2. Rational slopes
	2.3. Irrational slopes
	2.4. Fine structure

	3. Viscosity Solutions
	3.1. Basic notions
	3.2. Existence
	3.3. Convex comparison lemmas
	3.4. Uniqueness
	3.5. Rational facets

	4. Scaling Limit
	4.1. Local minimizers
	4.2. Compactness
	4.3. The supersolution property
	4.4. The weakened subsolution property
	4.5. Convergence

	5. The non-convex case
	5.1. Failures of uniqueness
	5.2. Strict comparison in the plane
	5.3. Limits of half spaces
	5.4. Sphere approximation
	5.5. Perturbed test functions
	5.6. Acknowledgments
	5.7. Conflict of interest

	References

