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Abstract

Complex machine learning models for NLP

are often brittle, making different predic-

tions for input instances that are extremely

similar semantically. To automatically de-

tect this behavior for individual instances,

we present semantically equivalent ad-

versaries (SEAs) – semantic-preserving

perturbations that induce changes in the

model’s predictions. We generalize these

adversaries into semantically equivalent

adversarial rules (SEARs) – simple, uni-

versal replacement rules that induce ad-

versaries on many instances. We demon-

strate the usefulness and flexibility of SEAs

and SEARs by detecting bugs in black-box

state-of-the-art models for three domains:

machine comprehension, visual question-

answering, and sentiment analysis. Via

user studies, we demonstrate that we gener-

ate high-quality local adversaries for more

instances than humans, and that SEARs in-

duce four times as many mistakes as the

bugs discovered by human experts. SEARs

are also actionable: retraining models us-

ing data augmentation significantly reduces

bugs, while maintaining accuracy.

1 Introduction

With increasing complexity of models for tasks like

classification (Joulin et al., 2016), machine compre-

hension (Rajpurkar et al., 2016; Seo et al., 2017),

and visual question answering (Zhu et al., 2016),

models are becoming increasingly challenging to

debug, and to determine whether they are ready for

deployment. In particular, these complex models

are prone to brittleness: different ways of phrasing

the same sentence can often cause the model to

In the United States especially, several high-profile
cases such as Debra LaFave, Pamela Rogers, and
Mary Kay Letourneau have caused increased
scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?
A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

Q: What haL been the result of this publicity?
A: teacher misconduct

(c) Adversarial Q & A (Ebrahimi et al., 2018)

Q: What’s been the result of this publicity?
A: teacher misconduct

(d) Semantically Equivalent Adversary

Figure 1: Adversarial examples for question an-

swering, where the model predicts the correct an-

swer for the question and input paragraph (1a and

1b). It is possible to fool the model by adversarially

changing a single character (1c), but at the cost of

making the question nonsensical. A Semantically

Equivalent Adversary (1d) results in an incorrect

answer while preserving semantics.

output different predictions. While held-out accu-

racy is often useful, it is not sufficient: practitioners

consistently overestimate their model’s generaliza-

tion (Patel et al., 2008) since test data is usually

gathered in the same manner as training and vali-

dation. When deployed, these seemingly accurate

models encounter sentences that are written very

differently than the ones in the training data, thus

making them prone to mistakes, and fragile with re-

spect to distracting additions (Jia and Liang, 2017).

These problems are exacerbated by the variability

in language, and by cost and noise in annotations,

making such bugs challenging to detect and fix.

A particularly challenging issue is oversensitiv-

ity (Jia and Liang, 2017): a class of bugs where

models output different predictions for very similar

inputs. These bugs are prevalent in image classifi-
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Transformation Rules #Flips

(WP is→WP’s) 70 (1%)
(?→??) 202(3%)

(a) Example Rules

Original: What is the oncorhynchus
also called? A: chum salmon

Changed: What’s the oncorhynchus
also called? A: keta

(b) Example for (WP is→WP’s)

Original: How long is the Rhine?
A: 1,230 km

Changed: How long is the Rhine??
A: more than 1,050,000

(c) Example for (?→??)

Figure 2: Semantically Equivalent Adversarial Rules: For the task of question answering, the proposed

approach identifies transformation rules for questions in (a) that result in paraphrases of the queries, but

lead to incorrect answers (#Flips is the number of times this happens in the validation data). We show

examples of rephrased questions that result in incorrect answers for the two rules in (b) and (c).

cation (Szegedy et al., 2014), a domain where one

can measure the magnitude of perturbations, and

many small-magnitude changes are imperceptible

to the human eye. For text, however, a single word

addition can change semantics (e.g. adding “not”),

or have no semantic impact for the task at hand.

Inspired by adversarial examples for images,

we introduce semantically equivalent adver-

saries (SEAs) – text inputs that are perturbed in

semantics-preserving ways, but induce changes in

a black box model’s predictions (example in Figure

1). Producing such adversarial examples systemati-

cally can significantly aid in debugging ML models,

as it allows users to detect problems that happen

in the real world, instead of oversensitivity only

to malicious attacks such as intentionally scram-

bling, misspelling, or removing words (Bansal

et al., 2014; Ebrahimi et al., 2018; Li et al., 2016).

While SEAs describe local brittleness (i.e. are

specific to particular predictions), we are also inter-

ested in bugs that affect the model more globally.

We represent these via simple replacement rules

that induce SEAs on multiple predictions, such as

in Figure 2, where a simple contraction of “is”after

Wh pronouns (what, who, whom) (2b) makes 70
(1%) of the previously correct predictions of the

model “flip” (i.e. become incorrect). Perhaps more

surprisingly, adding a simple “?” induces mistakes

in 3% of examples. We call such rules semantically

equivalent adversarial rules (SEARs).

In this paper, we present SEAs and SEARs, de-

signed to unveil local and global oversensitivity

bugs in NLP models. We first present an approach

to generate semantically equivalent adversaries,

based on paraphrase generation techniques (Lapata

et al., 2017), that is model-agnostic (i.e. works for

any black box model). Next, we generalize SEAs

into semantically equivalent rules, and outline the

properties for optimal rule sets: semantic equiva-

lence, high adversary count, and non-redundancy.

We frame the problem of finding such a set as a

submodular optimization problem, leading to an

accurate yet efficient algorithm.

Including the human into the loop, we demon-

strate via user studies that SEARs help users un-

cover important bugs on a variety of state-of-the-art

models for different tasks (sentiment classification,

visual question answering). Our experiments indi-

cate that SEAs and SEARs make humans signifi-

cantly better at detecting impactful bugs – SEARs

uncover bugs that cause 3 to 4 times more mistakes

than human-generated rules, in much less time. Fi-

nally, we show that SEARs are actionable, enabling

the human to close the loop by fixing the discov-

ered bugs using a data augmentation procedure.

2 Semantically Equivalent Adversaries

Consider a black box model f that takes a sentence

x and makes a prediction f(x), which we want

to debug. We identify adversaries by generating

paraphrases of x, and getting predictions from f

until the original prediction is changed.

Given an indicator function SemEq(x, x′) that

is 1 if x is semantically equivalent to x′ and 0 oth-

erwise, we define a semantically equivalent adver-

sary (SEA) as a semantically equivalent instance

that changes the model prediction in Eq (1). Such

adversaries are important in evaluating the robust-

ness of f , as each is an undesirable bug.

SEA(x, x′)=✶
[

SemEq(x, x′)∧f(x) 6=f(x′)
]

(1)

While there are various ways of scoring semantic

similarity between pairs of texts based on embed-

dings (Le and Mikolov, 2014; Wieting and Gimpel,

2017), they do not explicitly penalize unnatural sen-

tences, and generating sentences requires surround-

ing context (Le and Mikolov, 2014) or training

a separate model. We turn instead to paraphras-

ing based on neural machine translation (Lapata

et al., 2017), where P (x′|x) (the probability of a

paraphrase x′ given original sentence x) is propor-

tional to translating x into multiple pivot languages
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SEAR Questions / SEAs f(x) Flips

What is What’s the NASUWT? Trade unions

2%
What VBZ→ Teachers in Wales

What’s What is What’s a Hauptlied? main hymn Veni

redemptor gentium

What resource Which resource coal wool

1%
What NOUN→ was mined in the Newcastle area?

Which NOUN What health Which health nervous breakdown

problem did Tesla have in 1879? relations

What was So what was Satyagraha

2%
What VERB→ Ghandi’s work called? Civil Disobedience

So what VERB What is So what is a new trend Co-teaching

in teaching? educational institutions

What did And what did Tesla an induction motor

2%
What VBD→ develop in 1887? laboratory

And what VBD What was And what was journalist sleep

Kenneth Swezey’s job?

Table 1: SEARs for Machine Comprehension

SEAR Questions / SEAs f(x) Flips

WP VBZ→ What has What’s been cut? Cake Pizza
3.3%

WP’s Who is Who’s holding the baby Woman Man

What NOUN→ What Which kind of floor is it? Wood Marble
3.9%

Which NOUN What Which color is the jet? Gray White

color →colour
What color colour is the tray? Pink Green

2.2%
What color colour is the jet? Gray Blue

ADV is→ Where is Where’s the jet? Sky Airport
2.1%

ADV’s How is How’s the desk? Messy Empty

Table 2: SEARs for Visual QA

we display two example questions with the corre-

sponding SEA, the prediction (with corresponding

change) and the percentage of “flips” - instances

previously predicted correctly on the validation

data, but predicted incorrectly after the application

of the rule. The rule (What VBZ→What’s) general-

izes the SEA on Figure 1, and shows that the model

is fragile with respect to contractions (flips 2% of

all correctly predicted instances on the validation

data). The second rule uncovers a bug with respect

to simple question rephrasing, while the third and

fourth rules show that the model is not robust to a

more conversational style of asking questions.

Visual QA: We show SEARs for a state-of-the-

art visual question-answering model (Zhu et al.,

2016) in Table 2. Even though the contexts are

different (paragraphs for machine comprehension,

images for VQA), it is interesting that both models

display similar bugs. The fact that VQA is fragile to

“Which” questions is because questions of this form

are not in the training set, while (color→colour)

probably stems from an American bias in data col-

lection. Changes induced by these four rules flip

more than 10% of the predictions in the validation

data, which is of critical concern if the model is

being evaluated for production.

SEAR Reviews / SEAs f(x) Flips

movie → Yeah, the movie film pretty much sucked . Neg Pos
2%

film This is not movie film making . Neg Pos

film → Excellent film movie . Pos Neg
1%

movie I’ll give this film movie 10 out of 10 ! Pos Neg

is →was
Ray Charles is was legendary . Pos Neg

4%
It is was a really good show to watch . Pos Neg

this →that
Now this that is a movie I really dislike . Neg Pos

1%
The camera really likes her in this that movie. Pos Neg

DET NOUN is The movie is It is terrible Neg Pos
1%

→it is The dialog is It is atrocious Neg Pos

Table 3: SEARs for Sentiment Analysis

Sentiment Analysis: Finally, in Table 3 we dis-

play SEARs for a fastText (Joulin et al., 2016)

model for sentiment analysis trained on movie re-

views. Surprisingly, many of its predictions change

for perturbations that have no sentiment connota-

tions, even in the presence of polarity-laden words.

5 User Studies

We compare automatically discovered SEAs and

SEARs to user-generated adversaries and rules, and

propose a way to fix the bugs induced by SEARs.

Our evaluation benchmark includes two tasks:

visual question answering (VQA) and sentiment

analysis on movie review sentences. We choose

these tasks because a human can quickly look at a

prediction and judge if it is correct or incorrect, can

easily perturb instances, and judge if two instances

in a pair are semantically equivalent or not. Since

our focus is debugging, throughout the experiment

we only considered SEAs and SEARs on examples

that are originally predicted correctly (i.e. every

adversary is also by construction a mistake). The

user interfaces for all experiments in this section

are included in the supplementary material.

5.1 Implementation Details

The paraphrasing model (Lapata et al., 2017) re-

quires translation models to and from different

languages. We train neural machine translation

models using the default parameters of OpenNMT-

py (Klein et al., 2017) for English↔Portuguese

and English↔French models, on 2 million and 1
million parallel sentences (respectively) from Eu-

roParl, news, and other sources (Tiedemann, 2012).

We use the spacy library (http://spacy.io)

for POS tagging. For SEAR generation, we set

δ = 0.1 (i.e. at least 90% equivalence). We gener-

ate a set of candidate adversaries as described in

Section 2, and ask mechanical turkers to judge them
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Human vs SEA Human vs HSEA

Neither 145 (48%) 127 (42%)
Only Human 47 (16%) 38 (13%)
Only SEA 54 (18%) 72 (24%)
Both 54 (18%) 63 (21%)

(a) Visual Question-Answering

Human vs SEA Human vs HSEA

Neither 177 (59%) 161 (54%)
Only Human 45 (15%) 40 (13%)
Only SEA 47 (16%) 63 (21%)
Both 31 (10%) 36 (12%)

(b) Sentiment Analysis

Table 4: Finding Semantically Equivalent Ad-

versaries: we compare how often humans produce

semantics-preserving adversaries, when compared

to our automatically generated adversaries (SEA,

left) and our adversaries filtered by humans (HSEA,

right). There are four possible outcomes: neither

produces a semantic equivalent adversary (i.e. they

either do not produce an adversary or the adversary

produced is not semantically equivalent), both do,

or only one is able to do so.

for semantic equivalence. Using these evaluations,

we identify τ = 0.0008 as the value that minimizes

the entropy in the induced splits, and use it for

the remaining experiments. Source code and pre-

trained language models are available at https:

//github.com/marcotcr/sears.

For VQA, we use the multiple choice telling

system and dataset of Zhu et al. (2016), using

their implementation, with default parameters. The

training data consists of questions that begin with

“What”, “Where”, “When”, “Who”, “Why”, and

“How”. The task is multiple choice, with four pos-

sible answers per instance. For sentiment analy-

sis, we train a fastText (Joulin et al., 2016) model

with unigrams and bigrams (embedding size of 50)

on RottenTomato movie reviews (Pang and Lee,

2005), and evaluate it on IMDB sentence-sized

reviews (Kotzias et al., 2015), simulating the com-

mon case where a model trained on a public dataset

is applied to new data from a similar domain.

5.2 Can humans find good adversaries?

In this experiment, we compare our method for

generating SEAs with user’s ability to discover

semantic-preserving adversaries. We take a ran-

dom sample of 100 correctly-predicted instances

for each task. In the first condition (human), we

display each instance to 3 Amazon Mechanical

Turk workers, and give them 10 attempts at creating

semantically equivalent adversaries (with immedi-

ate feedback as to whether or not their attempts

changed the prediction). Next, we ask them to

choose the adversary that is semantically closest

to the original instance, out of the candidates they

generated. In the second condition (SEA), we gen-

erate adversaries for each of the instances, and pick

the best adversary according to the semantic scorer.

The third condition (HSEA) is a collaboration be-

tween our method and humans: we take the top 5
adversaries ranked by S(x, x′), and ask workers to

pick the one closest to the original instance, rather

than asking them to generate the adversaries.

To evaluate whether the proposed adversaries

are semantically equivalent, we ask a separate set

of workers to evaluate the similarity between each

adversary and the original instance (with the image

as context for VQA), on a scale of 1 (completely

unrelated) to 5 (exactly the same meaning). Each

adversary is evaluated by at least 10 workers, and

considered equivalent if the median score ≥ 4. We

thus obtain 300 comparisons between human and

SEA, and 300 between human and HSEA.

The results in Table 4a and 4b are consistent

across tasks: both models are susceptible to SEAs

for a large fraction of predictions, and our fully au-

tomated method is able to produce SEAs as often as

humans (left columns). On the other hand, asking

humans to choose from generated SEAs (HSEA)

yields much better results than asking humans to

generate them (right columns), or using the high-

est scored SEA. The semantic scorer does make

mistakes, so the top adversary is not always seman-

tically equivalent, but a good quality SEA is often

in the top 5, and is easily identified by users.

On both datasets, the automated method or hu-

mans were able to generate adversaries at the ex-

clusion of the other roughly one third of the time,

which indicates that they do not generate the same

adversaries. Humans generate paraphrases differ-

ently than our method: the average character edit

distance of our SEAs is 6.2 for VQA and 9.0 for

Sentiment, while for humans it is 18.1 and 43.3, re-

spectively. This is illustrated by examples in Table

5 - in Table 5a we see examples where very com-

pact changes generate adversaries (humans were

not able to find these changes though). The exam-

ples in Table 5b indicate that humans can generate

adversaries that: (1) make use of the visual context

in VQA, which our method does not, and (2) sig-
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Error rate
Validation Sensitivity

Visual QA
Original Model 44.4.% 12.6%
SEAR Augmented 45.7 % 1.4%

Sentiment Analysis
Original Model 22.1% 12.6%
SEAR Augmented 21.3% 3.4%

Table 6: Fixing bugs using SEARs: Effect of re-

training models using SEARs, both on original

validation and on sensitivity dataset. Retraining

significantly reduces the number of bugs, with sta-

tistically insignificant changes to accuracy.

SEARs than trying to create their own rules (Fig-

ure 6). SEARs for sentiment analysis contain fewer

POS tags, and are thus easier to evaluate for seman-

tic equivalence than for VQA.

Discovering these bugs is hard for humans (even

experts) without SEARs: not only do they need to

imagine rules that maintain semantic equivalence,

they must also discover the model’s weak spots.

Making good use of POS tags is also a challenge:

only 50% of subjects attempt rules with POS tags

for VQA, 36% for sentiment analysis.

Experts accepted 8.69 rules (on average) out of

20 for VQA as semantically equivalent, and 17.32
out of 20 for sentiment analysis. Similar to the

previous experiment, errors made by the seman-

tic scorer lead to rules that are not semantically

equivalent (e.g. Table 7). With minimal human

intervention, however, SEARs vastly outperform

human experts in finding impactful bugs.

5.4 Fixing bugs using SEARs

Once such bugs are discovered, it is natural to want

to fix them. The global and deterministic nature

of SEARs make them actionable, as they represent

bugs in a systematic manner. Once impactful bugs

are identified, we use a simple data augmentation

procedure: applying SEARs to the training data,

and retraining the model on the original training

augmented with the generated examples.

We take the rules that are accepted by ≥ 20 sub-

jects as accepted bugs, a total of 4 rules (in Table 2)

for VQA, and 16 rules for sentiment (including

ones in Table 3). We then augment the training data

by applying these rules to it, and retrain the models.

To check if the bugs are still present, we create

a sensitivity dataset by applying these SEARs to

instances predicted correctly on the validation. A

model not prone to the bugs described by these

rules should not change any of its predictions, and

should thus have error rate 0% on this sensitivity

data. We also measure accuracy on the original

validation data, to make sure that our bug-fixing

procedure is not decreasing accuracy.

Table 6 shows that the incidence of these errors

is greatly reduced after augmentation, with negli-

gible changes to the validation accuracy (on both

tasks, the changes are consistent with the effect

of retraining with different seeds). These results

show that SEARs are useful not only for discover-

ing bugs, but are also actionable through a simple

augmentation technique for any model.

6 Related Work

Previous work on debugging primarily focuses on

explaining predictions in validation data in order to

uncover bugs (Ribeiro et al., 2016, 2018; Kulesza

et al., 2011), or find labeling errors (Zhang et al.,

2018; Koh and Liang, 2017). Our work is com-

plementary to these techniques, as they provide no

mechanism to detect oversensitivity bugs. We are

able to uncover these bugs even when they are not

present in the data, since we generate sentences.

Adversarial examples for image recognition

are typically indistinguishable to the human

eye (Szegedy et al., 2014). These are more of

a security concern than bugs per se, as images

with adversarial noise are not “natural”, and not

expected to occur in the real world outside of tar-

geted attacks. Adversaries are usually specific to

predictions, and even universal adversarial pertur-

bations (Moosavi-Dezfooli et al., 2017) are not

natural, semantically meaningful to humans, or ac-

tionable. “Imperceptible” adversarial noise does

not carry over from images to text, as adding or

changing a single word in a sentence can drastically

alter its meaning. Jia and Liang (2017) recognize

that a true analog to detect oversensitivity would

need semantic-preserving perturbations, but do not

pursue an automated solution due to the difficulty

of paraphrase generation. Their adversaries are

whole sentence concatenations, generated by man-

ually defined rules tailored to reading comprehen-

sion, and each adversary is specific to an individual

instance. Zhao et al. (2018) generate natural text

adversaries by projecting the input data to a la-

tent space using a generative adversarial networks

(GANs), and searching for adversaries close to the

original instance in this latent space. Apart from

the challenge of training GANs to generate high
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quality text, there is no guarantee that an example

close in the latent space is semantically equiva-

lent. Ebrahimi et al. (2018), along with propos-

ing character-level changes that are not semantic-

preserving, also propose a heuristic that replaces

single words adversarially to preserve semantics.

This approach not only depends on having white-

box access to the model, but is also not able to

generate many adversaries (only ∼ 1.6% for sen-

timent analysis, compare to ∼ 33% for SEAs in

Table 4b). Developed concurrently with our work,

Iyyer et al. (2018) proposes a neural paraphrase

model based on back-translated data, which is able

to produce paraphrases that have different sentence

structures from the original. They use paraphrases

to generate adversaries and try to post-process non-

sensical outputs, but they do not explicitly reject

non-semantics preserving ones, nor do they try to

induce rules from individual adversaries. In any

case, their adversaries are also useful for data aug-

mentation, in experiments similar to ours.

In summary, previous work on text adversaries

change semantics, only generate local (instance-

specific) adversaries (Zhao et al., 2018; Iyyer

et al., 2018), or are tailored for white-box mod-

els (Ebrahimi et al., 2018) or specific tasks (Jia and

Liang, 2017). In contrast, SEAs expose oversensi-

tivity for specific predictions of black-box models

for a variety of tasks, while SEARs are intuitive

and actionable global rules that induce a high num-

ber of high-quality adversaries. To our knowledge,

we are also the first to evaluate human performance

in adversarial generation (semantics-preserving or

otherwise), and our extensive evaluation shows that

SEAs and SEARs detect individual bugs and gen-

eral patterns better than humans can.

7 Limitations and Future Work

Having demonstrated the usefulness of SEAs and

SEARs in a variety of domains, we now describe

their limitations and opportunities for future work.

Semantic scoring errors: Paraphrasing is still

an active area of research, and thus our semantic

scorer is sometimes incorrect in evaluating rules

for semantic equivalence. We show examples of

SEARs that are rejected by users in Table 7 – the se-

mantic scorer does not sufficiently penalize preposi-

tion changes, and is biased towards common terms.

The presence of such errors is why we still need

humans in the loop to accept or reject SEARs.

SEAR Questions / SEAs f(x)

on →in
What is on in the background? A building Mountains

What is on? in Lights The television

VBP→is
Where are is the water bottles Table Vending Maching

Where are is the people gathered living room kitchen

VERB on
→

What is on the background? A building Mountains

VERB What are the planes parked on? Concrete landing strip

Table 7: SEARs for VQA that are rejected by users

Other paraphrase limitations: Paraphrase

models based on neural machine translation are

biased towards maintaining the sentence structure,

and thus do not produce certain adversaries

(e.g. Table 5b), which recent work on para-

phrasing (Iyyer et al., 2018) or generation using

GANs (Zhao et al., 2018) may address. More

critically, existing models are inaccurate for long

texts, restricting SEAs and SEARs to sentences.

Better bug fixing: Our data augmentation has

the human users accept/reject rules based on

whether or not they preserve semantics. Develop-

ing more effective ways of leveraging the expert’s

time to close the loop, and facilitating more inter-

active collaboration between humans and SEARs

are exciting areas for future work.

8 Conclusion

We introduced SEAs and SEARs – adversarial ex-

amples and rules that preserve semantics, while

causing models to make mistakes. We presented

examples of such bugs discovered in state-of-the-

art models for various tasks, and demonstrated via

user studies that non-experts and experts alike are

much better at detecting local and global bugs in

NLP models by using our methods. We also close

the loop by proposing a simple data augmentation

solution that greatly reduced oversensitivity while

maintaining accuracy. We demonstrated that SEAs

and SEARs can be an invaluable tool for debug-

ging NLP models, while indicating their current

limitations and avenues for future work.
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