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Abstract—In this paper the dynamics of a Chaplygin sleigh like system are investigated. The
system consists a of a Chaplygin sleigh with an internal rotor connected by a torsional spring,
which is possibly non-Hookean. The problem is motivated by applications in robotics, where
the motion of a nonholonomic system is sought to be controlled by modifying or tuning the
stiffness associated with some degrees of freedom of the system. The elastic potential modifies
the dynamics of the system and produces two possible stable paths in the plane, a straight
line and a circle, each of which corresponds to fixed points in a reduced velocity space. Two
different elastic potentials are considered in this paper, a quadratic potential and a Duffing like
quartic potential. The stiffness of the elastic element, the relative inertia of the main body and
the internal rotor and the initial energy of the system are all bifurcation parameters. Through
numerics, we investigate the codimension-one bifurcations of the fixed points while holding
all the other bifurcation parameters fixed. The results show the possibility of controlling the
dynamics of the sleigh and executing different maneuvers by tuning the stiffness of the spring.
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1. INTRODUCTION

Mechanical systems with nonholonomic constraints are of significant interest in the design and
control of mobile robots. Nonholonomic systems, such as spherical robots [1–3], skateboards and
roller racers [4–10], and chained trailers [11–13], have been canonical problems where nonholonomic
constraints play a key role in the dynamics and control of mobile robots. The dynamics and control
of nonholonomic systems that have been commonly studied in relation to such robotics do not
usually have a potential other than that due to gravity. The falling rolling disk is a classical
example of such a system [14, 15]. The unicycle with a rider [16], the Chaplygin sleigh on an
inclined surface [17] are a few other examples. On the other hand, the effect of elastic potentials on
the dynamics of nonholonomic systems has received relatively little attention. Elastic potentials due
to spring-like elements can play an important role in modifying the dynamics and control of mobile
robots with nonholonomic constraints. For example, in [7] the motion of a wheeled vehicle with a
linear spring was shown to asymptotically approach a straight line or a circle depending on the
stiffness of the spring and a periodic applied moment. Associated with elastic potentials are passive
or unactuated degrees of freedom. There is evidence that the animals use passive degrees of freedom
with variable stiffness to control their motion or make it more efficient. Examples are the passive
flapping of wings by insects to generate lift in hovering flight [18, 19], passive deformations of fish to
extract energy from ambient wake in a stream [20, 21]. Experiments have also demonstrated that
the maneuverability of swimming fish-like robots improves with passive tails, [22] and such fish
like swimming robots have been shown to be subject to nonholonomic constraints [23–25]. These
phenomena and experiments motivate an investigation of the role of passive degrees of freedom and
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elastic potentials in the dynamics of nonholonomic systems, in particular, systems that are related
to the Chaplygin sleigh.

In this paper, the dynamics of a modified Chaplygin sleigh consisting of an internal passive rotor
joined by a torsional spring are investigated. The specific case of a rotor fastened at the center of
mass of the sleigh is considered. An alternative physical interpretation of this modified Chaplygin
sleigh is that the system consists of two rigid bodies, a head and a tail, which can pivot about
each other and are connected by a torsional spring, with the tail being a Chaplygin sleigh, while
the head is free to slide on the ground. Such a system without the presence of the elastic element
was investigated in [26]. In this paper the same system with two cases of elastic potential functions
is investigated, a quadratic potential due to a Hookean spring and a quartic potential due to a
spring with a cubic nonlinearity. The stable motions of the system are analyzed and results of the
numerical simulations of these are presented. It is shown that the addition of a spring leads to fixed
points in the velocity space and that the limiting trajectory becomes periodic or a straight line.
Unlike in [7, 10], we show that both motions, along a straight line and along a circle, can be stable
for a given energy for the sleigh with a rotor if the elastic restoring force is allowed to be nonlinear.
By adding an elastic degree of freedom the dynamics of the system can thus become more variegated
without becoming chaotic. This work presents the utility of elastic joints in nonholonomic systems
and provides a foundation to develop control algorithms for nonholonomic systems using passive
degrees of freedom and elastic elements.

2. EQUATIONS OF MOTION

A schematic of the modified Chaplygin sleigh is shown in Fig. 1. The sleigh has a runner or a
slender wheel at the rear that contacts the ground at the point P . The runner is assumed to be
able to slide smoothly in its longitudinal direction but not in a transverse direction. The mass of
the sleigh is denoted by mc and the moment of inertia about its center by Ic. An internal rotor
of mass mr and moment of inertia Ir is hinged to the center of mass, C, of the sleigh, such that
the rotor can rotate freely without any friction. The rotor and the Chaplygin sleigh are, however,
connected by a torsional spring that resists a change in the relative motion of the two bodies. The
configuration of the Chaplygin sleigh is parameterized by the location of its center of mass, (x, y),
and its orientation θ, with respect to an inertial frame of reference. The relative angle between the
two links is δ ∈ S1. The configuration space of the system is Q = SE2× S1. The tuple (x, y, θ, δ)

will be represented by q = [q1, q2, q3, q4]
T for convenience. The body axes attached to point C are

denoted by (Xb, Yb).

(a) (b)

Fig. 1. The Chaplygin sleigh consists of a sleigh of mass mc with a rear wheel or a sharp runner at distance b
from the center of mass. The runner makes contact with the ground at point P . An internal rotor of mass mr

is attached to the center of the sleigh. The center of mass of the rotor is at distance a from the center of the
sleigh. a) shows the second link represented as an internal rotor and b) shows the second link as an additional
cart with casters.

The Lagrangian for the system is

L =
1

2
q̇TM(q)q̇ − V(δ), (2.1)
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where

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m 0 −mr a sin (δ + θ) −mr a sin (δ + θ)

0 m mr a cos (δ + θ) mr a cos (δ + θ)

−mr a sin (δ + θ) mr a cos (δ + θ) mr a
2 + Ic + Ir mr a

2 + Ir

−mr a sin (δ + θ) mr a cos (δ + θ) mr a
2 + Ir mr a

2 + Ir

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where m = mc +mr is the total mass of the sleigh. The function V(δ) = k1δ
2 + k2δ

4 is the potential
energy of the spring. The system must also satisfy a nonholonomic constraint that the rear wheel
or runner is not allowed to slip in the transverse (Yb) direction, i. e.,

W(q)q̇ = 0, (2.2)

where

W(q) =
[
− sin θ cos θ −b 0

]
(2.3)

with Pfaffian one form being

− sin θdx+ cos θdy − bdθ = 0. (2.4)

The equations of motion of the Chaplygin sleigh can be derived using the Lagrange multiplier
method. Such calculations for the Chaplygin sleigh can be found in [27, 28], and these can be
extended to the case of the Chaplygin sleigh with a passive internal rotor. The Euler – Lagrange
equations are

d

dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= Wkλ, (2.5)

where λ is the Lagrange multiplier and Wk is the coefficient of the one form dqk in (2.4).
Straightforward calculations yield the Euler –Lagrange equations as⎡

⎣M −WT

W 0

⎤
⎦
⎡
⎣q̈
λ

⎤
⎦ = B(q, q̇), (2.6)

where

B(q, q̇) =

⎡
⎣C(q, q̇)q̇

Ẇ q̇

⎤
⎦+

∂L
∂q

.

Here ∂L
∂q is a vector of partial derivatives of the potential terms. For the Chaplygin sleigh with an

internal rotor, this takes the form of
[
0, 0, 0, ∂L

∂δ , 0
]T

, since the only potential force is the restoring

force on the spring. The matrix C(q, q̇) contains elements cjk =
∑n

i=1 cijkq̇i where cijk are the

Christoffel symbols of the first kind computed as cjk =
∑n

i=1
1
2

(
∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk

)
q̇i. For (2.5)

this system becomes

B(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mr a cos (δ + θ) δ̇2 + 2mr a cos (δ + θ) δ̇θ̇ +mr a cos (δ + θ) θ̇2

mr a sin (δ + θ) δ̇2 + 2mr a sin (δ + θ) δ̇θ̇ +mr a sin (δ + θ) θ̇2

0

−4 k2 δ
3 − 2 k1 δ

cos (θ) θ̇ẋ+ sin (θ) θ̇ẏ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)
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The fifth equation of (2.6) is obtained by differentiating the nonholonomic constraint with respect
to time. This is needed to complete the system in this form and solve for the velocities. In our
formulation we eliminate the constraint force using Gaussian elimination in order to obtain the
equations in matrix form useful for fixed points analysis. Let us define the body-fixed state vector

ξ = [u, ω1, ω2, δ]
T where u is the velocity of P , ω1 = θ̇, and ω2 = δ̇. The velocities and accelerations

of the tail may first be expressed in terms of u, ω1 and θ as

ẋ = u cos θ − ω1b sin θ (2.8)

ẏ = u sin θ + ω1b cos θ (2.9)

and

ẍ = u̇ cos θ − uω1 sin θ − ω2
1b cos θ − ω̇1b sin θ (2.10)

ÿ = u̇ sin θ + uω1 cos θ − ω2
1b sin θ + ω̇1b cos θ. (2.11)

After substituting the above expressions into (2.6) and eliminating λ the following reduced
equations are obtained:

⎡
⎣Mb 0

0 1

⎤
⎦ ξ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω2
1(mra cos δ +mb) +mraω

2
2 cos δ + 2amrω1ω2 cos(δ)

mrabω
2
2sinδ + 2mrabω1ω2 sin(δ) − uω1(mra cos(δ) +mb)

−mrauω1 cos δ −mrabω
2
1 sin(δ) − 2k1δ − 4k2δ

3

ω2

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.12)

where ω1 = θ̇, ω2 = δ̇, and δ is the angle made by the internal rotor with respect to the body Xb
axis and Mb represents the locked inertia tensor:

Mb =

⎡
⎢⎢⎢⎣

m −mra sin(δ) −mra sin(δ)

−mra sin(δ) Ic + Ir +mb2 +mra
2 + 2abmr cos(δ) mrab cos δ + Ir +mra

2

−mra sin(δ) mrab cos δ + Ir +mra
2 Ir +mra

2

⎤
⎥⎥⎥⎦ . (2.13)

3. FIXED POINTS OF THE ELASTIC CHAPLYGIN SLEIGH SYSTEM
AND THEIR STABILITY

The block diagonal matrix

⎡
⎣Mb 0

0 1

⎤
⎦, hereafter denoted by A, is invertible since the diagonal

block Mb is the locked inertia tensor, a symmetric positive definite matrix. Denoting the right-hand
side of (2.12) by g(ξ), the dynamical system (2.12) can be rewritten as

ξ̇ =

⎡
⎣Mb 0

0 1

⎤
⎦
−1

g(ξ) =

⎡
⎣M

−1
b 0

0 1

⎤
⎦g(ξ) ≡ f(ξ). (3.1)

The fixed points of (3.1), denoted by ξe = (ue, ωe
1, ω

e
2, δ

e), satisfy f(ξe) = 0, i. e., A−1g(ξe) = 0.

Since A−1 andM−1
b are obviously invertible, the only solution to A−1g(ξe) = 0 is the trivial solution

g(ξe) = 0. The last equation of (2.12), δ̇ = ω2, implies ωe
2 = 0, for any fixed point of (2.12). The

total energy of the system, E, the sum of the kinetic energy of the sleigh, T (q, q̇), and the potential
energy, V(q), stored in the elastic element is a constant, since the nonholonomic constraint force
does not do any work. The velocity of the sleigh u can be eliminated in the dynamical system:

u(ω1, ω2, δ;E) =
1

m

(
sin (δ) amr ω1 ±

(
(sin (δ))2 a2mr

2ω1
2 − 2 cos (δ) abmmr ω1

2

− a2mmr ω1
2 − b2m2ω1

2 − 2 δ4k2 m− Ir mω1
2 − Icmω1

2 − 2 δ2k1 m+ 2Em
)1/2) (3.2)
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Similarly, for a triplet ωe
1, ωe

2 = 0 and δe, a one-parameter set ue(E) exists. For instance, an
inspection of (2.12) together with (3.2) shows that one set of fixed points is given by (ωe

1 = 0,
ωe
2 = 0, δe = 0) and

ue =

√
2E

m
. (3.3)

The fixed points of the dynamical system (2.12) are nonisolated. The stability of such nonisolated
fixed points can be analyzed by first reducing the dimension of (2.12).

If the four components of the vector field f(ξ) are denoted as f(ξ) = [f1(ξ), f2(ξ), f3(ξ), f4(ξ) =

ω2]
T , then the equations of motion reduced to a constant energy manifold are the last three

equations of (3.1) with the velocity u replaced by (3.2)
⎡
⎢⎢⎢⎣

ω̇1

ω̇2

δ̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f2(E;ω1, ω2, δ)

f3(E;ω1, ω2, δ)

ω2

⎤
⎥⎥⎥⎦ ≡ fR. (3.4)

The fixed points of (3.4), denoted by (ωe
1, ω

e
2 = 0, δe), satisfy fR

(
E(ue);ω1, ω2, δ

)
= 0. Equiv-

alently, the fixed points satisfy g2
(
E(ue);ωe

1, ω
e
2, δ

e
)
= 0, g2

(
E(ue);ωe

1, ω
e
2, δ

e
)
= 0 and ωe

2 = 0.
Every nonisolated fixed point ξe of the original dynamical system (3.1) leads to an isolated fixed
point (ωe

1, ω
e
2 = 0, δe) on the manifold of constant energy, E(ue). To analyze the stability of these

isolated fixed points, we linearize the system about (ωe
1, ω

e
2 = 0, δe). This allows us to determine

whether the fixed point is stable or unstable by examining the eigenvalues of the Jacobian DfR
if these eigenvalues do not lie on the imaginary axis. Suppose the eigenvalues of the Jacobian
DfR(ω

e
1, ω2 = 0, δe) are denoted by (λ1, λ2, λ3) and

σ = max
i=1,2,3

(
Re(λi)

)
,

then the fixed point (ωe
1, ω

e
2 = 0, δe) is stable if σ < 0 and unstable if σ > 0.

Due to the large parametric space in (3.4), the following scaling will be introduced:

mc

m
= ε,

b

a+ b
= ε, Ic = Kmcb

2 = Kml2ε3, Ir = Kmra
2 = Kml2(1 − ε)3, (3.5)

where l = a+ b. The spectral stability of the fixed points of (3.5) is investigated numerically
for values ε ∈ (0, 1). The cases of ε = 0 and ε = 1 are singular, with either the head or the tail
link becoming negligible. The stability analysis of fixed points of (3.4) shows dependence on the
parameters ε and the total energy E, with bifurcations occurring as the parameters change. The
following sections contain a detailed analysis of fixed points of (3.4). The fixed points and their
stability are summarized in Table 1.

3.1. Motion Along a Line

The first category of equilibrium motion of the sleigh is motion along a straight line in the
(x, y) plane (cases 1, 2, 5–7 and 8 in Table 1). Inspecting (2.12), these fixed points are such that
ωe
1 = 0, ωe

2 = 0. The value of δe is given by the third equation of (2.12), −2k1δ − 4k2δ
3. When

k1 > 0 and k2 � 0, this implies δe = 0. When k1 < 0 and k2 > 0, however, three fixed points exist

for δe ∈ {0, δ1, δ2}, where δ1 and δ2 are the minima of the elastic potential, δ1,2 = ±
√

−k2
k1
. These

are the same fixed points for the reduced system (3.1).

A sample trajectory for the sleigh converging to a straight-line motion (case 1 with σ < 0) is
shown in Fig. 2. In Fig. 2a the trajectory of the sleigh in the plane converges to a straight line whose
slope is determined by the transient dynamics. The straight-line motion is indicated in Figs. 2b
and 2c as the longitudinal velocity, u(t), converges to the equilibrium value ue > 0 and the angular
velocities, ω1 and ω2, converge to zero.
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Table 1. Fixed points of the dynamics (2.12) of the sleigh with various spring parameters. The fixed
points are denoted by (ue, ωe

1, ω
e
2, δ

e) in the case of straight-line motion and by (u∗, ω∗
1 , ω

∗
2 , δ

∗) in
the case of circular motion by the sleigh. Here ue(E) is given by (3.3), ω∗

1 is given by (3.7), u∗ is

given by (3.8) and δ∗ = cos−1
(

−mb
mra

)
. In cases 1, 3, 7 and 9, where there are multiple fixed points,

(ue, ωe
1, ω

e
2, δ

e), some of them are stable and some are unstable, which are indicated by (S/U). The
fourth column shows the nature of the eigenvalues of the Jacobian of the reduced system (3.1). The

notation employed is that each aj,k > 0 corresponds to the jth case for j = 1, 2, 3 and i =
√
−1. The

letter (U) indicates that the fixed point is unstable for all values of E and ε.

k1, k2 Case Nonisolated Fixed Points λ
(
DfR(E(u∗);ω∗

1 , ω
∗
2 , δ

∗)
)

Path

k1 > 0
k2 � 0

1 ue(E) > 0, ωe
1 = 0, ωe

2 = 0, δe = 0 [−a1,1,−a1,2,−a1,3] (S/U) Line

2 ue(E) < 0, ωe
1 = 0, ωe

2 = 0, δe = 0 [a2,1, a2,2 + a2,3i, a2,2 − a2,3i] (U) Line

3 u∗(E) > 0, ω∗
1(E), ω∗

2 = 0, δ∗ [−a3,1,±a3,2 − a3,3i,±a3,2 + a3,3i] (S/U) Circle

4 u∗(E) < 0, ω∗
1(E), ωe

2∗ = 0, δ∗ [a4,1,−a4,2 − a4,3i,−a4,2 + a4,3i] (U) Circle

k1 < 0
k2 > 0

5 ue(E) > 0, ωe
1 = 0, ωe

2 = 0, δe = 0 [a5,1,−a5,2,−a5,3] (U) Line

6 ue(E) < 0, ωe
1 = 0, ωe

2 = 0, δe = 0 [a6,1,−a6,2, a6,3] (U) Line

7 ue(E) > 0, ωe
1 = 0, ωe

2 = 0, δe ∈ {δ1, δ2} [−a7,1 + a7,2i,−a7,1 − a7,2i,−a7,3] (S/U) Line

8 ue(E) < 0, ωe
1 = 0, ωe

2 = 0, δe ∈ {δ1, δ2} [a8,1 + a8,2i, a8,1 − a8,2i, a8,3] (U) Line

9 u∗(E) > 0, ω∗
1(E), ωe

2 = 0, δ∗ [−a3,1,±a3,2 − a3,3i,±a3,2 + a3,3i] (S/U) Circle

10 u∗(E) < 0, ω∗
1(E), ωe

2 = 0, δ∗ [a10,1,±a10,2 − a10,3i,±a10,2 + a10,3i] (U) Circle

k1 = 0
k2 = 0

11 ue(E) > 0, ωe
1 = 0,ωe

2 = 0, ∀δ [0, 0,−a11,1] (U) Line

12 ue(E) < 0, ωe
1 = 0, ωe

2 = 0, ∀δ [0, 0, a12,1] (U) Line

13 u∗(E) > 0, ω∗
1(E), ωe

2 = 0, δ∗ [−a13,1, a13,2 − a13,3i, a13,2 + a13,3i] (U) Circle

14 u∗(E), 0, ω∗
1(E), ωe

2 = 0, δ∗ [a14,1,−a14,2 − a14,3i,−a14,2 + a14,3i] (U) Circle

(a) (b) (c)

Fig. 2. Trajectory of the sleigh when ε = 0.3 for case 1. Other parameters are K = 1, k1 = 1, k2 = 0 and
l = 1. The (x, y) trajectory of the sleigh (blue) and the rotor (black) are shown in a), the longitudinal velocity
in b), the angular velocities of the sleigh (blue) and rotor (black) in c).

When ue < 0, in cases 2, 6 and 8, one of the eigenvalues of the Jacobian, DfR(ω
e
1, ω

e
2, δ

e), lies in
the right half-plane, showing that these fixed points are unstable. In cases 1, 5 and 7, the equilibrium
velocity of the sleigh is positive, ue > 0. For case 5, when k1 < 0 and k2 > 0, the equilibrium state
of δe = 0 is unstable. In the remaining two cases, 1 and 7, the eigenvalues of DfR(ω

e
1, ω

e
2, δ

e) lie in
the left half-plane for a range of values of ε and E, showing that fixed points are stable. However,
these stable fixed points undergo bifurcations and the loss of stability as the parameter ε changes.

The fixed point in case 1 undergoes a Hopf bifurcation around ε = 0.707. The real part of the
three eigenvalues (one complex conjugate pair and a real eigenvalue) of DfR evaluated at the fixed
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point are shown in Fig. 3a. The fixed point changes stability only once at ε ≈ 1√
2
in the range

of (0, 1) when the real part of the complex conjugate eigenvalues becomes positive. The complex
conjugate eigenvalues are plotted in Fig. 3b showing a crossing from the left half to the right half
of the complex plane when ε ≈ 1√

2
. Figure 3a shows these changing eigenvalues as the parameter ε

is varying for an energy of E = 1. Numerical simulations show that the critical value of ε varies by
less than 10−4 from 0.707 for E = (0, 106).

In case 7, the stability of the fixed point undergoes three changes as the paramter ε varies in
the interval (0, 1).The real parts of the three eigenvalues of DfR at the fixed point are plotted in
Fig. 3c. For ε < 0.349 the eigenvalues of DfR are real with one of them being positive, with the fixed
point being a rank-1 saddle. At ε ≈ 0.349 the fixed point changes stability from a rank-1 saddle
to a stable node. A second bifurcation occurs at ε ≈ 0.351 when the stable node becomes a stable
focus. Here two of the distinct real eigenvalues of DfR transition to complex conjugates. This is
shown in the inset figure in Fig. 3c. A third bifurcation occurs at ε ≈ 0.698 when the two complex
conjugate eigenvalues cross the imaginary axis into the right half of the complex plane.

(a) (b) (c)

Fig. 3. a) Real parts of eigenvalues of D(fR) for ε ∈ (0, 1) for case 1 with k1 = 1 and k2 = 0. b) A pair of
eigenvalues crosses the imaginary axis as ε increases for case 1. The numbers on the plots indicate ε. c) Real
parts of eigenvalues of D(fR) for ε ∈ (0, 1) for case 7 with k1 = −7 and k2 = 1. Other parameters are K = 1,
E = 1 and l = 1.

3.2. Motion on a Circle

The second category of equilibrium motion of the sleigh is that of a circle in the (x, y) plane. The
fixed points of the dynamical system (2.12) that correspond to this motion are those of cases 3, 4, 9,
10, 13 and 14 in Table 1. For these cases the fixed points will be referred to as ξ∗ = (u∗, ω∗

1 , ω
∗
2, δ

∗).

Inspecting (2.12), we see that ω∗
2 = 0 and δ∗ = ± cos−1

(
−mb
mra

)
cause all but the third equation

to become zero. The existence of δ∗ requires that mb
mra

< 1, that is, the internal rotor has to have

a larger mass and inertia than the mass of the main body. Due to this feature of the system a
bifurcation occurs for all such fixed points such that the fixed point does not exist beyond a value
of ε defined by

mb

mra
=

ε

(1− ε)2
= 1.

Using the fact that ε ∈ (0, 1), we find that this bifurcation occurs at ε = 3
2 −

√
5
2 ≈ 0.382. In the

alternate physical interpretation of the system, shown in Fig. 1b, this implies that the “tail” is
smaller than the main body or the “head”. Inspecting the third equation of (2.12), we find that
equilibrium values u∗ and ω∗

1 satisfy

0 = −mrau
∗ω∗

1 cos δ
∗ −mrab(ω

∗
1)

2 sin(δ∗)− 2k1δ
∗ − 4k2δ

∗3. (3.6)
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The fixed point can be obtained by eliminating ue from (3.6) using (3.2). This gives

ω∗
1 = ±

√
A±

√
B

D
, (3.7)

where

A = amr(δ
4k2 + δ2k1 − E)

(
cos(δ)

)2
+ 4 δ sin(δ)(δ2k2 + 1/2 k1)mra cos(δ)

+ 4 bmδ sin(δ)(δ2k2 + 1/2 k1),

B =
(
a2mr

2(δ4k2 − 4 δ3k2 + δ2k1 − 2 δ k1 − E)(δ4k2 + 4 δ3k2 + δ2k1 + 2 δ k1 − E)
(
cos(δ)

)2

+ (8 amr(δ
4k2 + δ2k1 − E) sin(δ) − 32 bmδ (δ2k2 + 1/2 k1))δ (δ

2k2 + 1/2 k1)mra cos(δ)

− 16 δ
(
−1/2 abmmr(δ

4k2 + δ2k1 − E) sin(δ) + δ (δ2k2 + 1/2 k1)
(
−a2mr

2 + a2mmr

+m(mb2 + Ic + Ir)
))

(δ2k2 + 1/2 k1)
)(

cos(δ)
)2
,

D = mr((a
2mr + Ic + Ir)

(
cos(δ)

)2
+ 2 cos(δ

)
abmr +mb2)a.

Once ω∗
1 is calculated, u∗ can be calculated using (3.6) to get

u∗ = −abmrω
∗
1
2 sin (δ∗) + 4 k2δ

∗3 + 2 k1δ
∗

amrω∗
1 cos (δ

∗)
. (3.8)

(a) (b)

(c) (d)

Fig. 4. The sleigh’s trajectory converges to motion on a circle (case 9 with σ < 0). The parameters are ε = 0.35,
K = 1, k1 = −7, k2 = 1 and l = 1. The trajectory of the sleigh (blue) and the rotor (black) are shown in a),
the longitudinal velocity in b), the angular velocities of the sleigh (blue) and rotor (black) in c). d) The sleigh
traces out a circular path, in cases 3 and 9, with the relative angle between the rotor and the sleigh being
constant, δ∗. The dashed line shows the path of the unbalanced rotor and the solid line shows the path of the
sleigh.

In order to determine the path of the sleigh in the (x, y) plane, first note the fact that there
is no relative motion between the rotor and the sleigh body, δ(t) = δ∗, and the sleigh moves with
a constant velocity u∗ and ω∗

1 . Therefore, θ(t) = ω∗
1t and we can substitute these values into (2.8)
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and (2.9) to get

ẋ = A cos(ω∗
1t+ φ), and ẏ = A sin(ωt

1 + φ)

where

A =
√

u∗2 + b2ω∗2
1 and φ = tan−1(

u

bω∗
1

).

Integrating these we have

x− xc =
A

ω∗
1

sin(ω∗
1t+ φ), and

y − yc = − A

ω∗
1

cos(ω∗
1t+ φ).

Therefore, we get

(x− xc)
2 + (y − yc)

2 =
A2

ω∗2
1

=

(
u∗

ω∗

)2

+ b2,

clearly the sleigh’s path is a circle of radius

√(
u∗
ω∗

)2
+ b2. An example of the simulation of the

sleigh’s motion in case 9 is shown in Fig. 4a: the trajectory of the sleigh converging to motion on a
circle with the trajectory of the sleigh is shown in blue and that of the rotor in black. In this case
ω1 → ω∗, u(t) → u∗ and ω2 → 0 (Fig. 4c). Consequently, the angle of the sleigh grows at a linear
rate proportional to ω∗ and δ → δ∗. The equilibrium circular path of the sleigh is shown in 4d.

We find that for any given energy where the fixed point exists there are eight fixed points
ξ∗ = (u∗, ω∗

1, ω
∗
2 , δ

∗) due to the positive and negative values of δ∗ as well as the four solutions
of (3.6) for (u∗, ω∗). As we vary the energy, the location of each such fixed point in the (u, ω1)
plane changes. Different (u∗, ω∗

1) are shown in Fig. 5a for energies ranging from 4.7 to 300 and a
representative value of ε = 0.35. The stability for these fixed points varies depending on the energy
as well as the stiffness values k1, k2. This is seen in Fig. 5b where we fix the energy and vary
the stiffness. Red regions are where the fixed point does not exist. The blue parameter regions are
where the fixed point ξ∗ exists but is unstable, and green regions are where the fixed point ξ∗ is
stable.

(a)
(b)

Fig. 5. a) Fixed points ξ∗ (case 9) in the plane of u and ω1 for energies ranging from 4.7 to 300. Here δ = δ∗,
ω2 = 0, k1 = −7, k2 = 1, and ε = 0.35. Solid lines indicate stable fixed points and dotted lines are unstable
foci. These fixed points do not exist for energies lower than 4.7. Numbers on the plot indicate the energy for
different points of interest. b) Existence and stability of the fixed point ξ∗ for various values of k1 and k2 with
a fixed energy of E = 100. Either the fixed point does not exist (red), it exists but is unstable (blue) or it
exists and is stable (green).
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As expected, the dynamics are symmetric about the ω1 axis due to the symmetry in rotational
dynamics. We can identify eight unique branches of fixed points (ξ∗1 , . . . , ξ

∗
8) beginning from E ≈ 4.7,

four with u∗ > 0 (case 9) and four with u∗ < 0 (case 10). We can take (ξ∗1 , . . . , ξ
∗
4) to be the four

branches in the top half-plane (ω1 > 0). Let ξ∗1 refer to the branch with higher ω∗
1 for u∗ > 0 in the

first quadrant of Fig. 5a and let ξ∗2 be the other branch with u∗ > 0 in the first quadrant. Figure 5a
shows the result of a numerical computation of the stability, and it can be seen that for the given
parameters ξ∗1 is stable for low energies and becomes unstable for higher energies. For this value
of ε = 0.35 we also find that the branch ξ∗2 is unstable for all energies. The other two branches are
unstable due to the negative value of u∗. In Fig. 6 we investigate the stability of ξ∗2 as a function
of epsilon. We see in Fig. 6b that when we fix the energy and vary epsilon, ξ∗2 is stable for lower
values of ε and becomes unstable after ε = 0.2. A plot of (ξ∗1 , . . . , ξ

∗
2) is shown in Fig. 6a for ε = 0.1.

We find that the general shape and stability of the branches changes as we vary ε.

(a) (b)

Fig. 6. a) Fixed points ξ∗ (case 9) in the plane of u and ω1 for energies ranging from 4.7 to 300. Here δ = δ∗,
ω2 = 0, k1 = −7, k2 = 1 and ε = 0.1. Solid lines indicate stable fixed points and dotted lines are unstable
foci. These fixed points do not exist for energies lower than 4.7. Numbers on the plot indicate the energy for
different points of interest. b) Real eigenvalues as a function of ε when the energy is E = 700.

Consider k1 = −7, k2 = 1 and take ξ∗1 in the first quadrant of Fig. 5a for an energy of E = 100.
The eigenvalues of Df in this case are of the form λ = [−a9,1,−a9,2 − a9,3j,−a9,2 + a9,3j], therefore
σ < 0 making ξ∗1 is a stable focus at this point. In Fig. 7a we see convergence to three different
stable fixed points (one for case 7 and two fixed points ξ∗1 and ξ∗5 for case 9) for different initial
conditions at three constant energies (E = 80, 100, 120). The fixed points are shown as a function
of energy with black lines. The trajectories corresponding to case 7 converge to the ω1 = 0 axis
and the trajectories converging to circular motion in case 9 are symmetrically placed around this
fixed point at ±ω∗

1. All three fixed points are stable for the three energy levels shown. This figure
shows that for any given energy cases 7 and 9 can both be stable simultaneously with asymptotic
behavior of trajectories being dependent on initial conditions.

As the energy E increases, σ changes sign and ξ∗1 becomes locally unstable. The eigenvalues of
Df cross the imaginary axis into the right half-plane at E = 208.1, (Fig. 7c). A stable limit cycle
is formed around the unstable fixed point in a supercritical Hopf bifurcation. This is clearly shown
in Fig. 7b, where we see how the fixed point ξ∗1 is at first a stable focus for energies of E = 180
and 200 and a stable limit cycle is formed around it for higher energies of E = 220 and E = 240.
Note that the limit cycle is present in four dimensions. That is, ω2 and δ also converge to periodic
functions.

In order to identify other bifurcations the fixed point ξ∗ may undergo, we vary ε ∈ (0, 0.382) and
plot the complex eigenvalues of DfR(ξ

∗
1) of case 9 as well as a fixed point of the same energy for

case 3. As ε is varied while holding the energy constant, the stability of these fixed points does not
change for energies below E ≈ 520. However, for higher energies, we find a double Hopf bifurcation
where the complex eigenvalues cross the imaginary axis twice as ε is varied. This is seen in Figs. 8a
and 8b where we vary ε for cases 3 and 9, respectively. We find that both cases undergo a similar
bifurcation for an energy of E = 700. In case 9, the imaginary eigenvalues of fR cross the imaginary
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(a) (b) (c)

Fig. 7. a) Three stable trajectories of the sleigh corresponding to cases 7 and 9 with σ < 0 at energies of
E = 80, E = 100, and E = 120. Initial conditions are chosen to lie on the corresponding energy level and the
trajectory is plotted in the (u, ω1, E) space. The fixed points as functions of energy are shown by the black
lines. The trajectory where ω → 0 corresponds to case 7 and the trajectories to either side correspond to case
9 with symmetrically placed fixed points at ±ω∗ (ξ1 and ξ5 in Fig. 5a). b) The fixed point ξ∗1 goes from being
stable to unstable and a stable limit cycle is formed around it (case 9 with transition from σ < 0 to σ > 0 as we
vary energy). Convergence to the stable focus is shown for energies E = 180 and E = 200 and convergence to a
stable limit cycle is seen for E = 220 and E = 240 c) Eigenvalues cross the imaginary axis and a supercritical
Hopf bifurcation occurs at an energy of E = 208.1. Other parameters are ε = .35, k1 = −7, k2 = 1, K = 1,
m = 1, and l = 1.

axis from left to right near ε = 0.25 and then in the opposite direction at ε = 0.36. Before the first
transition ξ∗ is a stable focus. After the first crossing the point becomes unstable and a stable limit
cycle is created around the fixed point, but as we increase ε further, the fixed point becomes a
stable focus once again.

(a) (b)

Fig. 8. Eigenvalues cross the imaginary axis as we vary ε for case 3 a) and case 9 b). The numbers on the
eigenvalues show ε at selected values. In a) the energy is E = 1000 with k1 = 0 and k2 = 1

4
and in b) the

energy is E = 600 with k1 = − 7
2
and k2 = 1

4
.

3.3. Dynamics of the System with no Elastic Element

If the spring element between the rotor and the sleigh’s body is absent, the rotor is free to
spin without any restoring torque. The fixed points for the case k1 = 0 and k2 = 0 correspond to
cases 11–14 in Table 1. Two of these cases correspond to straight-line motion and two to circular
motion. However, two of the eigenvalues of the DfR are zero in case 11, where ue > 0. Here a
linearized analysis of stability is insufficient. However, extensive numerical simulations have shown
that the fixed point in case 11 is unstable. The fixed points in the other cases, 12–14, are similarly
unstable. The solutions to the dynamical system (2.12) converge to a chaotic attractor. For a
thorough analysis of this case for a small rotor, we refer the reader to [26].

4. CONCLUSION

We have investigated the effect of a passive degree of freedom with an elastic potential on the
Chaplygin sleigh, a well-known nonholonomic system. With just a passive internal rotor and no
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elastic element the sleigh executes chaotic motion [26], while in the presence of an elastic element
the sleigh can execute stable motion along a straight line or a circular path. In the reduced velocity
space, such motions correspond to fixed points, which we have classified in this paper. These fixed
points can undergo bifurcations and lose stability as the parameters of the system vary. Nevertheless,
there exists a significant range of parameters where two kinds of stable motion are possible. The
introduction of the passive elastic element produces a very rich variety of behaviors that are absent
in the usual Chaplygin sleigh. The two primary types of stable motion of this modified system in
the plane, straight lines and circles, can be used as the basis of motion planning and control for
this system. We did not elucidate the full range of codimension-2 bifurcations associated with this
system and instead presented results on codimension-1 bifurcations only for selected parametric
values of stiffness and energy. An investigation of such bifurcations is left to future work.
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