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Adaptive Bayesian Radio Tomography

Donghoon Lee

Abstract—Radio tomographic imaging (RTI) is an emerging
technology to locate physical objects in a geographical area cov-
ered by wireless networks. From the attenuation measurements
collected at spatially distributed sensors, radio tomography cap-
italizes on spatial loss fields (SLFs) measuring the absorption of
radio frequency waves at each location along the propagation path.
These SLFs can be utilized for interference management in wire-
less communication networks, environmental monitoring, and sur-
vivor localization after natural disaster such as earthquakes. Key
to the success of RTI is to model accurately the shadowing effects
as the bi-dimensional integral of the SLF scaled by a weight func-
tion, which is estimated using regularized regression. However, the
existing approaches are less effective when the propagation en-
vironment is heterogeneous. To cope with this the present paper
introduces a piecewise homogeneous SLF governed by a hidden
Markov random field model. Efficient and tractable SLF estima-
tors are developed by leveraging Markov chain Monte Carlo tech-
niques. Furthermore, an uncertainty sampling method is developed
to adaptively collect informative measurements in estimating the
SLF. Numerical tests using synthetic and real datasets demonstrate
capabilities of the proposed algorithm for radio tomography and
channel-gain estimation.

Index Terms—Radio tomography, channel-gain cartography,
Markov chain Monte Carlo, active learning, Bayesian inference.

I. INTRODUCTION

OMOGRAPHIC imaging is a technique widely appreci-
T ated by natural sciences, notably in medical imaging [33].
The principles underpinning radio tomographic methods have
been carried over to construct underlying spatial loss fields
(SLFs), which are maps quantifying the attenuation experienced
by electromagnetic waves in radio frequency (RF) bands at every
spatial position [28]. To this end, pairs of collaborating sensors
are deployed over the area of interest to estimate the attenua-
tion introduced by the channel between those pairs of sensors.
Different from conventional methods, radio tomography relies
on incoherent measurements containing no phase information;
see also [20] for another application of incoherent measurements
to cognitive radio networks. Such simplification saves costs
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incurred for synchronization that is necessary to calibrate phase
differences among waveforms received at different sensors.

SLFs are instrumental in various problems including radio
tomography [36] and channel-gain cartography [19]. The ab-
sorption captured by the SLF allows one to discern objects
located in the area of interest, thus enabling radio tomographic
imaging (RTI). Benefiting from the ability of RF waves to pene-
trate physical structures such as trees or buildings, RTI provides
a means of device-free passive localization [37], [38], and has
found diverse applications in disaster response situations for
e.g., detecting individuals trapped in buildings or smoke [35].
SLFs are also useful in channel-gain cartography to provide
channel-state information (CSI) for links between arbitrary lo-
cations even where no sensors are present [19]. Such maps can
be employed in cognitive radio setups to control the interfer-
ence that a secondary network inflicts to primary users that
do not transmit—a setup encountered with television broadcast
systems [6], [18], [40]. The non-collaborative nature of these
primary users precludes training-based channel estimation be-
tween secondary transmitters and primary receivers. Other ap-
plications of channel-gain maps include network planning, and
interference management in cellular networks.

The key premise behind RTT is that spatially close radio links
exhibit similar shadowing due to the presence of common ob-
structions. This shadowing correlation is related to the geome-
try of objects present in the area waves propagate through [1],
[28]. As a result, shadowing is modeled as the weighted line
integral of the underlying two-dimensional SLF. The weights
in the integral are determined by a function depending on the
transmitter-receiver locations [12], [28], [31], which models
the SLF influence on the shadowing over a link between those
transceivers. Inspired by this SLF model, various tomographic
imaging methods were proposed [17], [34]-[36]. To detect loca-
tions of changes in the propagation environment, the difference
between the SLF at consecutive time slots was employed [34],
[36]. To cope with multipath fading in a cluttered environment,
multiple channel measurements were utilized to enhance lo-
calization accuracy [17]. Although these are calibration-free
approaches, they cannot reveal static objects in the area of in-
terest. It is also possible to replace the SLF with a label field
indicating presence (or absence) of objects in motion on each
voxel [35], and leverage the influence moving objects on the
propagation path have on variance in RSS measurements. On
the other hand, the SLF was directly reconstructed in [11], [12]
to depict the static structure in the area of interest, but calibra-
tion was necessary by using extra measurements (e.g., collected
without the structure). One can avoid additional data collection
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for the calibration by estimating the SLF together with pathloss
components [3], [31].

A different body of works inspired by the SLF model is
available for channel-gain cartography [5], [19], [22], [31]. Lin-
ear interpolation techniques such as kriging were employed to
estimate shadowing effects based on spatially correlated mea-
surements [5], and the spatio-temporal dynamics were tracked
by using Kalman filtering approaches [19]. SLFs with ‘regular
patterns’ of objects have also been modeled as a superposition
of a low-rank matrix plus a sparse matrix capturing structure
irregularities [22]. While the aforementioned methods rely on
heuristic criteria to choose the weight function, [31] provides
a suite of blind algorithms to learn the weight function using a
non-parametric kernel regression method.

Conventionally, the SLF is learned via regularized least-
squares (LS) methods tailored to the propagation environ-
ment [12], [22], [34]. A ridge-regularized solution can be in-
terpreted as a maximum a posteriori (MAP) estimator provided
that the SLF is statistically homogeneous and modeled as a
zero-mean Gaussian random field. However, these approaches
are less effective when the propagation environment is spatially
heterogeneous due to a combination of free space and objects
in different sizes and materials (e.g., as easily seen in urban
areas), which subsequently induces statistical heterogeneity in
the SLF. To account for environmental heterogeneity, the novel
method here leverages the Bayesian framework to learn the
piecewise homogeneous SLF through a hidden Markov random
field (MRF) model [15], which captures spatial correlations of
neighboring regions exhibiting related statistical behavior. Ef-
ficient field estimators will be derived by using Markov chain
Monte Carlo (MCMC) sampling [9], which is a powerful tool
for Bayesian inference when analytical solutions of the mini-
mum mean-square error (MMSE) or the MAP estimators are not
available. Furthermore, hyperparameters are estimated as well,
instead of being fixed a priori.

Besides accounting for heterogeneous propagation, another
contribution here is an adaptive data acquisition technique, with
the goal of reducing SLF uncertainty, by cross-fertilizing ideas
from the fields of experimental design [7] and active learn-
ing [24]. The conditional entropy of the SLF is considered as
an uncertainty measure in this work, giving rise to a novel data
acquisition criterion. Although such criterion is intractable es-
pecially when the size of the SLF is large, its efficient proxy can
be obtained thanks to the availability of posterior samples from
the proposed MCMC-based algorithm. Note that the proposed
technique is appealing for a practical scenario constrained to
incur low communication overhead, since the data collection
cost can be reduced by using a minimal number of selective
measurements to learn the SLF.

The rest of the paper is organized as follows. Section II
reviews the radio tomography model and states the problem.
The Bayesian model and the resultant field reconstruction are
the subjects of Section III. Numerical tests with synthetic as
well as real measurements are provided in Section IV. Finally,
Section V summarizes the main conclusions.

Notations: Bold uppercase (lowercase) letters denote matri-
ces (column vectors). Calligraphic letters are used for sets; I,
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is the n x n identity matrix; while 0,, and 1,, denote n x 1 vec-
tors of all zeros and ones, respectively. Operators (-) " and tr(-)
represent the transpose and trace of a matrix X € R+ >Ny,
respectively; | - | is used for the cardinality of a set, and the
magnitude of a scalar; and vec(X) produces a column vector
x € RY=Nv by stacking the columns of a matrix one below
the other (unvec(x) denotes the reverse process). For a vector
y € R" and an n x n weight matrix A, the weighted norm of

yis|ylla ==y Ay.

II. BACKGROUND AND PROBLEM STATEMENT

Consider a set of sensors deployed over a two-dimensional
geographical area indexed by a set A C R?. After averaging out
small-scale fading effects, the channel-gain measurement over
a link between a transmitter located at x € 4 and a receiver
located at x” € A can be represented (in dB) as

9(x,x') = go — 710log, d(x,x) — s(x,x") (1)
where gy is the path gain at unit distance; d(x,x’) := ||x — X/|
is the Euclidean distance between the transceivers at x and x’;
~ is the pathloss exponent; and s(x,x’) is the attenuation due

to shadow fading. For radio tomography, a tomographic model
for the shadow fading is [12], [22], [28]

s(x,xl):/Aw(x,x’,i)f(i)di. 2)

where f : A — R denotes the spatial loss field (SLF) capturing
the attenuation at location X, and w: A x A x A — R is the
weight function modeling the influence of the SLF at x to the
shadowing experienced by link x-x’. Typically, w confers a
greater weight w(x,x’,X) to those locations x lying closer to
the link x—x’. Examples of the weight function include the
normalized ellipse model [34]
1/y/d(x,x'), ifd(x,X)+ d(x/,%)
<d(x,x')+ /2 (3)

0, otherwise

w(x,x',X) =

where A > 0 is a tunable parameter. The value of A is commonly
set to the wavelength to assign non-zero weights only within the
first Fresnel zone. In radio tomography, the integral in (2) is
approximated as

=

S w(x,x, %) (%) @)
1

s(x,x)~c

where {x; }fV:”l is a grid of points over A and c is a constant that
can be set to unity without loss of generality by absorbing any
scaling factor in f. Clearly, (4) shows that s(x,x’) depends on
f only through its values at the grid points.

The model in (2) describes how the spatial distribution of
obstructions in the propagation path influences the attenuation
between a pair of locations. The usefulness of this model is
twofold: i) as f represents absorption across space, it can be
used for imaging; and ii) once f and w are known, the gain
between any two points x and X’ can be recovered through
(1) and (2), which is precisely the objective of channel-gain
cartography.
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The goal of radio tomography is to obtain a tomogram by es-
timating f. To this end, N sensors located at {x;,...,xy} € A
collaboratively obtain channel-gain measurements. At time slot
7, the radios indexed by n(7) and n/(7) measure the channel-
gain g, := g(X,(r),Xn(r)) +v; by exchanging training se-
quences known to both transmitting and receiving radios, where
n(r),n'(t) € {1,..., N} and v, denotes measurement noise.
It is supposed that gy and -y have been estimated during a cal-
ibration stage. After subtracting these from ¢., the shadowing
estimate is found as

n(T)aXn’(T)) —9r
7L(T)7X7L’(‘r)) — Vr. ®)

8: 1= go —710logy, d(x
= s(x

Having available §; := [31,..., ] € R’ along with the set of
links {(X;, (7}, Xn/(r)) }o— (either known at the sensor deploy-
ment stage or acqulred using GPS), and the weight function w
at the fusion center, the problem is to estimate f, or equivalently
f=1f(x1),.... f(xn,)]" € RV using (4).

Regularized least-squares (LS) estimators of f solve [12],
[22], [34]

t N

mfinz w(x

T=1 i=1

2

(r)s Xi) f(Xi)

<

+ usR(f)

(6)
where R : RYs — R is a generic regularizer to promote a
known attribute of f, and py > 0 is a regularization weight
to reflect compliance of f with this attribute. Although (6) has
been successfully applied to radio tomographic imaging tasks
after customizing the regularizer to the propagation environ-
ment, how accurate approximation is provided by a regularized
solution of (6) is unclear when the propagation environment
exhibits inhomogeneous characteristics.
To overcome this and improve estimation performance of the
SLF, a priori knowledge on the heterogeneous structure of f
will be exploited next, under a Bayesian framework.

III. ADAPTIVE BAYESIAN RADIO TOMOGRAPHY

In this section, we view f as random, and forth propose a
two-layer Bayesian SLF model, along with an MCMC-based
approach for inference. We further develop an adaptive data
acquisition strategy to select informative measurements.

A. Bayesian Model and Problem Formulation

Let A consist of two disjoint homogeneous regions Ay :=
{X|E[f(x)] = s, , Var[f(x)] = U/%U,X € A}, and A; = {x|
E[f(x)] = py,, Var[f(x)] = 0} ,x € A}, giving rise to a hid-
den label field z := [2(X1), ..., 2(%y,)]" € {0,1}"s with bi-
nary entries z(X;) =k if X; € AiVi, and k = 0,1. The two
separate regions can be used to model heterogeneous environ-
ments. For instance, if A corresponds to an urban area, A; may
include densely populated regions with buildings, while Ay with
s, < iy, may capture the less obstructive open spaces. In such
a paradigm, we model the conditional distribution of f(%;) as

f&i)|z(%i) =k~ N(ps, ,07,), (7)
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Fig. 1. Four-connected MRF with z(%;) marked red and its neighbors in
N (%) marked blue.
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Fig. 2. Mixture of independent Gaussians (MIG) with Potts prior model for
radio tomography, together with the measurement model for sensors located at
(X'n ) Xn’)'

while the Ising prior [32], which is a binary version of the
discrete MRF Potts prior [15], is assigned to z in order to cap-
ture the dependency among spatially correlated labels. By the
Hammersley-Clifford theorem [13], the Ising prior of z follows
a Gibbs distribution

b 62 Y 0GE) =) ®

i=1 jeN(x;)

p(z]8) =

where N (%;) is a set of indices associated with 1-hop neigh-
bors of x; on the rectangular grid in Fig. 1, 3 is a granularity
coefficient controlling the degree of homogeneity in z, §(-) is
Kronecker’s delta, and

N.‘/
)= exp [BY ) Y d(z(%) ==2(%))| O

z€Z i=1 jeN(%;)
is the partition function with Z := {0,1}"s. By assuming con-
ditional independence of {f (5(7)}?7:”1 given z, the resulting
model is referred to as the mixture of independent Gaussians
(MIG) with Potts prior model [2] with two labels. The MIG with
Potts prior model for radio tomography is depicted in Fig. 2 with
the measurement model in (2).
To describe priors of other parameters, let v, be inde-
pendent and identically distributed (i.i.d) Gaussian with
zero mean and variance o2, and @ denote a hyperparameter

v
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vector comprising oy, B, and Oy :=[uy,,pf,,07 0% 1"
The weight matrix W € R+ is formed with columns
W = [w(X7L(T)aXn’(T)a)~(1)a- ) w(X’n(T)?X’ﬂ’(T)7iNq )]T €

RYs of the link Xy (7)=Xp'(r) for 7=1,... ¢ Assuming the
independence among entries of 8, p(0) can be expressed as

p(8) = p(o)p(B)p(1y, )p(aF, ) (10)

with p(py, ) = p(ug, )p(py,) and p(af ) = p(oj, )p(ff?l)
where the individual priors p(c2), p(3), (u ), and p(o? )
are specified next.

1) Granularity Coefficient (3: To cope with the variability
of /3 in accordance with structural patterns of the propagation
medium, [ is viewed as an unknown random variable that is to be
estimated together with f and z under the Bayesian framework.
Similar to e.g., [29], the uniform distribution is adopted for the
prior of 3 as

1/ﬁmaxa lfﬁ € [Oyﬁmax]

0, otherwise.

P(B) = U0, p,,..)(B) = { (1)

2) Noise Variance o: In the presence of the additive Gaus-
sian n01se with fixed mean, it is common to assign a conjugate
prior to o2, which reproduces a posterior distribution in the same
family of its prior. The inverse gamma (IG) distribution serves
this purpose for o2 € R* as follows:

B o b,
(o) =TG(eu. ) = g () e ( - U)

12)

where a, is referred to as the shape parameter, b, as the scale
parameter, and I'(+) denotes the gamma function.

3) Hyperparameters of the SLF 0 y: While the prior for jiy,
is assumed to be Gaussian with mean my; and variance 0,3
(see also [2]), the inverse Gamma distribution parameterized

by {ax, b } is considered for the prior of o7 :
= N(my,07),k=0,1,
ZG(ak, b)),k =0,1.

pug,) (13)

(O'fk)

In addition to analytical tractability provided by the conjugate
priors in (13) and (14), no constraint is imposed on the support
of p(uy, ) in (13). This facilitates estimating 1y, via a data-
driven approach given shadowing measurements §;. Note that
a truncated Gaussian prior for yy, can be adopted when the
support of fiy, is known a priori.

Together with the priors for { f, z, 8}, our joint posterior is

p(f. 2, 018) o< p(3i|f,00)p(f|z,07)p(2|8)p(6)  (15)

where p(8;| f, 02) is the data likelihood. Note that Fig. 3 summa-
rizes the proposed hierarchical Bayesian model for {3;, f, z,0}
as a directed acyclic graph, where the dependency between (hy-
per) parameters is indicated with an arrow.

We will pursue the the conditional MMSE estimator

(14)

Frwise = E[f]2 = Zvap, /] (16)
where the marginal MAP estimate is
ZMap i= arg mzaxp(z\ét). (17)
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Fig. 3. Graphical representation of the hierarchical Bayesian model for (hy-
per) parameters (those in boxes are fixed).

Furthermore, the marginal MMSE estimates of the 6 entries are
found as

ohywise = E[02[3] (18)

Auvist = E[B]8] (19)
Bfovmse ©= Elug, 8],k =0,1 (20)
o3 se = EL07, 81,k =0,1. 1)

B. Sampling via Markov Chain Monte Carlo

While approximate estimators have been proposed for
Bayesian inference (see e.g., [16], [39]), analytical solutions
to (16)—(21) are not tractable due to the complex form of the
posterior in (15) that does not permit marginalization or max-
imization. To bypass this challenge, one can generate samples
from (15), and then numerically approximate the desired esti-
mators from those samples. MCMC is a class of methods used
to generate samples from a complex distribution [9].

Among MCMC methods, Gibbs sampling [8] is particularly
suitable for this work. It draws samples following the target dis-
tribution (e.g., the posterior in (15)) by sweeping through each
variable to sample from its conditional distribution while fixing
the others to their up-to-date values. Although the samples at
early iterations of Gibbs sampling with random initialization are
not representative of the desired distribution (such duration is
called the burn-in period Npym.in), the theory of MCMC guar-
antees that the stationary distribution of those samples matches
with the target distribution [9].

Gibbs sampling requires only the conditional distribution
within a proportionality scale. When a given conditional dis-
tribution is not easy to simulate, one can resort to a Metropolis-
Hastings (MH) sampler [14], which generates a candidate from
a simple proposal distribution of such conditional distribution,
and accepts (or rejects) the candidate as a sample of interest
under a certain acceptance ratio «. The substitution of MH
sampling for some sampling steps inside the Gibbs sampler re-
sults in a Metropolis-within-Gibbs (MwG) sampler, as listed in
Algorithm 1. Posterior conditionals considered in this work and
associated sampling methods will be described next.

1) Spatial Loss Field f: Itis easy to show that

p(f151,2,0) o< p(s:| f, 07 )p( £z, ;)

NN(ﬂf\z,H,S,>2f'\z,0,ét) (22)
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Algorithm 1:
{f 20}

Metropolis-within-Gibbs sampler for

Input: z(()), 0(0)5 ét7 NCL’ NBurn—in, and NIter
l: for!{ =1to Nher do

2:  Generate f ~p (f|sf (=1) gli- )) in (22)

3:  Generate 2\ ~ p(z[8;, fV,0 ’ ) via Algorithm 2

4:  Generate 8 ~ p (5|st, D, 20 o2 (-1 91 D )
via Algorithm 4

5:  Generate o> 2 D ( 218, f(”,z(l),ﬂ(l)ﬁyfl))

in (32)

6: Generate Iu;l,‘) ~p (ka |ét7 f(l)’z(l)7o—3(l)7ﬂ(l)
aif?‘”) in (34) for k = 0,1

7:  Generate UJ%IEZ) ~Dp (U}k |5, fO, 2, 02(1)75(”»

uﬁ?) in (38) for k = 0, 1
8: end for

9: return S Nier

= {f(l) ) z! ) 6" 1= Npum-in+1

where
-1
Sios = (@) 7TWWT ALY @3)
Asle0s = Bpeos (027 Ws +A7Lug.) @4

since p(f|z,0;) follows N (ps|., Ay ) by (7), with pg|. :=
E[f|2] and A;. = diag({Var[fi|]};,) with f; := f(%:)
and z; := z(X;) (see Appendix V-A for derivation). Hence, f
can be easily simulated by a standard sampling method.

2) Hidden Label Field z: A Gibbs sampler is required to
simulate p(z|8,, f,0) x p(f|z, 0;)p(z|3) while avoiding the
intractable computation of C'(3) in (8). Let z_; and zy(x,)
represent replicas of z without its ¢-th entry, and only with the
entries of N'(x;), respectively. By the Markovianity of z and
conditional independence between f; and f; Vi # j given z, the
conditional distribution of z; is

p(2i|z—iaéta f?g) X €exp

zl+625

JEN(xi)

—Z,

(25)
where ((z;) :=Inp(f;|z,05). After evaluating (25) for z; =
0,1 and normalizing, one can obtain p(z; = 1|z_;,8, f,0) =
(1+ h;)~!, where

hi :=exp [£(z; =0) — £(z Z ﬁl—QzJ}
JeN(x;)

(26)
with 0(z; = 0) — 0(z; = 1) =1 — 2z;. Then, the sample of z
can be obtained via the single-site Gibbs sampler by using (26),
as summarized in Algorithm 2. It is worth stressing that the
sampling criterion with h; in (26) does not require the evaluation

of C ().

Algorithm 2: Single-site Gibbs sampler for z.
Input: () -1

and z(
1: Initialize ¢() := [g{”, .
2: fori = 1to N, do

3:  Obtain h; in (26) with z = ¢(V)
4: Generate u ~ U 1)

5: ifu< (1+h;)"! then
6:  Set¢!! =
7:  else

8  Set¢!) =
9.

0

1

NN

g

and f = f(l)

. endif
: end for
- return z(1) = ¢

3) Granularity Coefficient 3: The conditional distribution
of /3 satisfies the following proportionality relation

(6|Stv.fazv lnef) O(p( |ﬁ)p(/8)

Bmax ( exp ﬁz Z 0(z; — zi)

i=1jeN(x;)

27)

for 8 € [0, Bmax], simply by the Gibbs distribution in (8) and
the uniform prior of 3 in (11). Unfortunately, sampling of 3 is
formidably challenging because evaluating the partition func-
tion C'(8) in p(z|f), incurs exponential complexity. To address
this, one may resort to auxiliary variable MCMC methods that
do not require exact evaluation of p(z|3), including the single
auxiliary variable method (SAVM) [26] and the exchange algo-
rithm [27]. Those methods replace C'(3) with its single-point
importance sampling estimate by using an auxiliary variable,
which unfortunately must be generated via exact sampling that
is generally expensive for statistical models with intractable
partition functions. To bypass exact sampling for generating
this auxiliary variable, we will leverage a double-MH sampling
method for (3; also [23].

Let z* and §* denote the auxiliary variable of z and a can-
didate of (3 for MH sampling, respectively. The idea behind the
double-MH algorithm is to generate z* through N¢p, cycles of
MH updates from the current sample z(!), instead of using exact
sampling from p(z*|3*). As the name suggests, the double-MH
sampling includes two nested MCMC samplers: the inner one
to generate a chain of the auxiliary variable at each step of the
outer sampler for (3. It is instructive to mention that N is not
necessarily large by initializing the chain with z(!) at the I-th
iteration [23], [29], which means that additional complexity to
generate the auxiliary variable is not necessarily high. In this
work, z* is obtained via another single-site Gibbs sampler, as
described in Algorithm 3:

p(zf|z", ) cexp |7 Y 0z —2)| Vi (28)

JEN(%:)
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Algorithm 3: Single-site Gibbs sampler for z*.

Input: z(), 3*, and N¢p
1: Initialize ¢* := [}, ...
2: for m = 1 to N¢ do
3: fori=1to N, do

JCx, 1T =20

4. Obtain A} in (29) with z* = ¢~
5: Generate u~ U 1)

6: ifu<(1+hf)" N then

7: Set(f =1

8: else

9: Set (7 =0

10: end if

11:  end for

12: end for

13: return z* = ¢*

Algorithm 4: Double-MH sampler for 3.

Input: 301, 2() and Nep
: Generate ﬁ* ~ q(ﬂ*\ﬂ (=1)) in (30)

: Generate z* ~ p(z*|3*) via Algorithm 3
p(8)q(B" "V [B)p(z |8 )p(z1)]87)
P(BT ) g (BB )p(=z BT D) p(= 3]
: Obtain o = min {1, o/

: Generate u ~ Uy 1)
: if u < a then

B =5

else
g(l) — 5(171)
: end if

: return 5

: Seta =

— SV A W N~

—_—

and a sample of 2/ is generated by utilizing p(z; = 1|2*,, 3*) =

(14 hy)~! with
> -2z
]EN X,)
The overall double-MH sampler for [ is summarized in
Algorithm 4. A proposal distribution of 3* is the truncated Gaus-
sian

‘= exp [ } (29)

N(@BU 00)fe, it B* € [0, Bmax]
q(B718Y) = ’ _ (30)
0, otherwise
with a tunable variable 02 and a normalizing constant
* 6(171))2 dﬂ* (31)

B ax 1 1
c:= / exp [ ﬁ(ﬂ
0 \ /27r02 9

4) Noise Variance 0‘ : With p(o
terior conditional of o2 satlsfymg

p(03|ét; fvzaﬂaef) X p(é,|f,03)p((7,2)

xZG(a, +

2) in (12), we have the pos-

W' Fl3).
(32)

Therefore, a sample of o2 can be generated by a standard sam-
pling method.

1
b + - ||Sf

1969

5) Means of the SLF py, : Let f; be the Nj x 1 vector
formed by concatenating f(%;) for X; € Ay, for k =0, 1. By
recalling the priori independence between the parameters of dis-
joint homogeneous regions Ay and Ay, the posterior conditional
of s, = [us,, ps,]" can be expressed as

p(p',fk Iét’ f"z’ag’ﬁ’a-%[)’a%l)

o< p(£lz, 07)p(is,) o< plug, |2, Fo, 07, )p(us, |2, f1,0%,)
(33)
with
plus |z, fi,08,) o p(Filz, p 05 )p(ug, ), Ve (34)
Since a sample of each /iy, can be independently drawn accord-
ing to p(uy, |z, fr, U}k) in (34), the sampling method for py,
will be described.

To efficiently simulate a sample of uy, , the likelihood
p(Frlz, s, J}k) is recast as an univariate distribution with
respect to the sample mean f, := (32, fi.;)/Ny. as

_ N,

1
72 Z(flw i :LLfk)2

szl

p(filz, pp, , 07,) o< exp

r N,
1
X exp —ﬁ (_2/“’Lfk Z fri + Nkﬂ?“k>‘|
L ; i=1

SR
~go7 Ui - um?]
o< N(py, 207, /Ni). (35)

Since p(fty, ) is the Gaussian conjugate prior, one can show that
p(us, |z, fi, ‘7/2‘;» ) is Gaussian as well, parameterized by

Gf; MNe
(Ufk /Nk)

X exp

U}%fk
k + (O-fk /Ni)

-1
9 1 Ny,
Var [y, |z, fi, 07, | = (o}‘i + 7 ) .
Therefore, a sample of uy, can be generated for £ = 0,1 by
using a standard sampling method
6) Variances of the SLF o> 7, - Similar to py, , the statistical
independence between .4y and A; leads to the following pro-

portionality of the posterior conditional for 0%, := [0 ,07 "

E ['u’fk‘z’fk’o—?k] =

(36)

p(U?k |étafvzvo—1%7ﬂ7u’fk) o<p( |Z ef) (o-fk)

O(p(U;0|Z7f(],MfU)p(O'J2rI |z7f17ﬂf1) (37)
where

p(a-?k ‘Z, fk?#fg) X p(fk|zvp’fk70-/2‘k )p(o—?,‘)

xIG <ak + b+ 2 ka — g, 1, 3) k. (38)
Therefore, a sample of each 0,% can be independently drawn
according to p(a7, |2, fi, s, ) in (38).

C. Efficient Estimators for f, z, and 6.

In this section, efficient sample-based estimators for f, z, and
0 are derived, by using a set of samples S*) from Algorithm 1.
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Building on [16], the elementwise marginal MAP estimator of
z and its sample-based approximation are
Zimap = arg max p(z;|$;)
z;€{0,1}

i

Nllsr
1 0)

~arg max —— 0z —z 39)

ze{0,1} |S®)| l:NBZ:_» . ( )
fori=1,...,N,. After obtaining Zymap, the sample-based ele-

mentwise conditional MMSE estimator of f follows as

Nller

; l 1 . .

fimmse =~ —75 > FU8(2" — Zimap), Vi (40)
|Si | l=Npym-in+1

where S,L-<t> c 8 is a subset of samples such that zzm = Z; MAP

for | = Npuymin + 1, - - -, Nier- To estimate 6, the following
marginal MMSE estimators are employed

1 Nller
3 ~ (1)
BMMSE =~ SO] Jé] (41)
I=NBum-in+1
— 1 Niter 0
Thvwse > i X O 42)
1= NBum-in+1
1 Niter
T ~ O 4. _
Friwse = 5] AZ k=01
= ‘TBum—inJr
— 1 ]Vlier (1)
2 ~ 2 o
Tfi MMSE — |S(t)| z NZ o, k=0,1. (44)
= NBumint+1

Remark 1 (Monitoring sampler-convergence): The pro-
posed sampler in Algorithm 1 generates a sequence of samples
from the desired distribution in (15), after a burn-in period to
diminish the influence of initialization. By recalling that the
stationary distribution of those samples is matched with the de-
sired distribution, monitoring convergence of sample-sequences
guides the choice of Npym.in-

Let ¢ denote a generic scalar random variable of interest. Sup-
pose that Nseq parallel sequences of length Ny, are available,
and let 1)(™) denote the I-th sample of 1) in the m-th sequence
forl =1,..., Nier and m = 1,. .., Ngeq. Then, the following
potential scale reduction factor (PSRF) estimate is adopted for
convergence diagnosis [9]

N -1 o
PSRF(w) = Iter =+ Between (45)
N, I,ter O-\QVithin
where N{., := Nier — Npum-in» the within-sequence variance:
1 A’VSeq 1 Nier
2 - (I,m) T(m)\2
- Pl —
i NSeq ,mz:l NI/ter -1 12N§n+1 ( )

_ ) (46)
with 0 = Ve pm) /(Nf o — 1)¥m, and  the
between-sequence variance:

1 Nseq ,
Ul%etween = NS Z (d)(m) - ¢) (47)
4 =1

with (™) .= Z,XSSI (™) /Nseq. As those sequences con-
verge while Ny — oo, the PSRF declines to 1. In prac-

tice, each sequence is supposed to follow the desired distri-
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bution when PSRF < 1.2 [9, p. 138]. For synthetic data tests,
Num-in and Ny were found to have PSRF < 1.06 for f, z,
and 0 over Nsoq = 20 independent sequences. On the other
hand, Ngym-in and Ny, for real data tests were found to have
PSRF < 1.04 for f and z, while the PSRF < 1.5 for @, over
Nseq = 20 independent sequences. It allows to have moderate-
sized Npum-in and Ny, for real data tests. Note that elementwise
{PSNR(f;), PSNR(ZZ')};Z’1 were monitored for f and z.

Remark 2 (Computational complexity): For the proposed
MCMC method in Algorithm 1, the complexity order to gener-
ate a sample of f is O(N;) per iteration [ to compute X, g 5,
in (23). While sampling of z incurs complexity O(N, ), that of 8
has complexity O(Ny Ncr.) dominated by the sampling required
for 3 via Algorithm 4. Therefore, the overall computational
complexity per iteration [ is O(N; + N, (NcL + 1)) = O(N)
for Ncp, < N,. Note that Ncp, = 2 is used for numerical tests,
while N, ~ 1.6 x 10°.

For conventional methods to estimate f, the ridge regularized
LS [12] has a one-shot (non-iterative) complexity of C’)(Ng’),
while the total variation (TV) regularized LS via the alternating
direction method of multipliers (ADMM) in [30] incurs com-
plexity of O(N, ;) per iteration [; see also [22], [31] for details.
This shows that the computational complexity per iteration of
the proposed algorithm is comparable with that of the TV regu-
larized solution that relies on the ADMM.

Extra complexity is needed to decide Npym.in by checking
the PSRF as described in Remark 1, which is computed by us-
ing multiple sample-sequences generated in parallel. However,
sample-sequence generation through parallel processing saves
the delay from serially generating multiple sample sequences.
Furthermore, the computational burden is kept low by the data-
adaptive sensor selection strategy, which will be introduced in
Section III-D, by reducing the number of measurements to re-
construct the SLF eligible for the tomogram.

D. Adaptive Data Acquisition via Uncertainty Sampling

The proposed Bayesian radio tomography accounts for the
uncertainty of f, through the variance in (23). Using the latter,
our idea is to adaptively collect a measurement (or a mini-batch
of measurements) from the set of available sensing radio pairs,
with the goal of reducing the uncertainty of f. To this end, we
will rely on the conditional entropy [4] that in our context is
given by

H(fls.20)= 3 [ 0(s.2.0)
iezles
X H.(f|s, =8.,2=2',0 =0")d0'ds..
(48)
where
H, (f|s, =8,2=2",0=6)

- / P(FI8,. 2. 0) np(fIs.. 2, 0)df

1 N,
= 5 ln(|2f‘z/’9/,§; ’) + 2‘/ (1 + 111(27’1')) 49)

and |- | denotes matrix determinant. To obtain $,,;, one
can choose a pair of sensors, for which w,,;, minimizes
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Algorithm 5: Adaptive Bayesian radio tomography.

Input: 29, 09 500 Ne | Ngymein, and Niger-
1: Set é() = é(o)
2: forr=0,1,...do
3:  Obtain S7) via Algorithm 1(z(*)
NBurn-in; NIter)
Obtain le(vap from (39) by using S(7)

0<0) ) éT ) NCL7

Obtain f&\),,SE from (40) by using 21(\2 /lp and S()

4

5

6:  Obtain O\ from (41)~(44) by using S

7:  Calculate @(w) in (52) for w € W, | by using S(7)
8: Collect 5, from sensors associated with max u(w)
9

0

1

s _qal gz T
Construct 8, 1 =[S, , 5,41]

Set 20 = 2{7) and (") = él(\;z,[SE

: end for

H:1(f|8r+1,2,0). Given 8., we write

HT+1(f‘éT+13z70) = HT(f|éT7z70)

S [ pE O )0, (50)
o'’

z'eZ T+1
with ¢(z,6, w) :=1In (1 + (¢2)
w1 by solving

(P1) mV\E}X IE‘:z 0|5, [ <z70aw)]

741

= Z/ (2,05, )q(2',0',w)d0'  (51)

z'eZ

w X 05 W) /2, and seek

where W, | is a set of weight vectors found from locations of
available sensing radio pairs at time slot 7 + 1 (see Appendix V-
B for derivation of (P1)). Note that solving (P1) to find w, 1
does not require p(z’, 8|S, 1), which means the joint posterior
in (15) does not need to be retrained for adaptive data acquisition.

Apparently, solving (P1) is not an easy task since evaluating
E. o5, [4(2,6,w)] is intractable especially for large N, since
|Z| = 27 Fortunately, the samples from Algorithm 1 can be
used to approximate

]Vher
1
Ez,@\éf [q(Z,G,W)] x~ W q(z(l),G(l),w)
l= NBum-in+ 1
=: u(w). (52)

Therefore, $, 1 can be obtained from the pair of sensors corre-
sponding to w with the maximum value of 4(w) in (52).

The steps involved for adaptive Bayesian radio tomography
are listed in Algorithm 5.

Remark 3 (Mini-batch setup): The proposed adaptive data
acquisition method can be easily extended to a mini-batch
setup of size Npuen per time slot 7 as follows: i) find
weight vectors {w“)}f\f{‘““ C W, associated with Npaen
largest values of ﬁ( ) in (52), and collect the corresponding
measurements {ST |1 }¥euen (steps 78 in Algorithm 5); and ii)
aggregate those measurements below s, to construct §; 1 :=

87, §7('1<21’ . .,s(TAf“““ " (step 9 in Algorithm 5). Numerical

(®)

Fig. 4. True fields for synthetic tests: (a) hidden label field Z( and (b) spatial
loss field Fy with N = 120 sensor locations marked with crosses.

tests will be performed to assess the mini-batch operation of
Algorithm 5.

IV. NUMERICAL TESTS

Performance of the proposed algorithms was assessed
through numerical tests using both synthetic and real datasets.
A few existing methods were also tested for comparison, in-
cluding the ridge-regularized SLF estimate given by }.LS =
(WWT + oy C;l)‘1Wét [12], where C; is a spatial covari-
ance matrix modeling the similarity between points X; and X;
in area A. We further tested the total variation (TV)-regularized
LS scheme in [30], which solves the regularized problem in (6)
with

N, N, N, -1
Z Z | fiv1,j —fi,j|+z Z | fij+1 — figls

(53)
where F := unvec(f) € RY*Ns and f; ; denotes the (i, j)-
th element of F. As a competing alternative of the proposed
adaptive sampling, simple random sampling was considered
for both regularized LS estimators, by selecting {é(;’ll } ¥ bachy
uniformly at random. Particularly, Algorithm 5 after replacing
steps 7-8 with random sampling is named as the non-adaptive
Bayesian algorithm, and will be compared with the proposed
method throughout synthetic and real data tests.

A. Test With Synthetic Data

This section validates the proposed algorithm through syn-
thetic tests. Random tomographic measurements were taken
by N =120 sensors uniformly deployed on boundaries of
A :=10.5,40.5] x [0.5,40.5], from which the SLF defined over
a grid {xl}1 690 .— {1,...,40}2 was reconstructed. To gen-
erate the ground truth SLF fo, the hidden label field z
was obtained first via the Metropolis algorithm [25] by us-
ing the prior of z in (8) with § = 1.3. Afterwards, f, was
constructed to have f(x;) ~ N(0.2,1)Vx; € A and f(X;) ~
N (5,0.2)Vvx; € A; resulting in 6; = [0.2,5,1,0.2]", respec-
tively, based on labels in zg. True F := unvec(f,) € R10*40
and Z := unvec(zg) € {0, 1}19*40 are depicted in Fig. 4 with
sensor locations marked with crosses. The effects of calibration
are not accounted for this section, meaning that gy and v are
assumed to be known, and the fusion center directly uses shad-
owing measurements S,. Under the mini-batch operation, each
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TABLE I
HYPER-HYPERPARAMETERS OF O FOR SYNTHETIC TESTS

Bmax | mo | m1 ai,Vk ay by ar,Vk | bg,Vk
10 0.5 4.5 0.1 0.1 0.1 0.1 0.1

measurement §(TZ)VT,i was generated according to (5), where
sr was obtained by (4) with w set to the normalized ellipse
model in (3), while v, was set to follow zero-mean Gaus-
sian with 03 =5 x 1072, To construct W, per time slot 7,
[W: 1] = 100 pairs of sensors were uniformly selected at ran-
dom with replacement. Then, Ngyen, = 40 shadowing measure-
ments corresponding to {w(?) 1V < W, | were collected to
execute Algorithm 5 for7 =0,...,15.

In all synthetic tests, the following simulation parameters
were used: Ncp = 2, Npume-in = 200, Nyer = 500, and 0'3 =
0.03 were used to run the proposed algorithm; and hyper-

hyperparameters of @ were set as listed in Table I. For initial-

T

ization, 8(°) was set to have 3(0) = 0.1, u(f? = [mg, m1]', and

randomly initialized o7, and o}, . Vector 2(%) was obtained by
drawing PN Bern(0.5) fori =1, ..., Ny, where Bern(0.5)

1
denotes the Bernoulli distribution with mean equal to 0.5. Fur-
thermore, 5(°) was collected from randomly selected 100 pairs
of sensors. To find py of the competing alternatives, the L-
curve [21, Chapter 26] was used for the ridge regularization,
while the generalized cross-validation [10] was adopted for the
TV regularization.

The first experiment was performed to validate the efficacy of
Algorithm 5. The estimates F = unvec(f) and Z = unvec(%)
at 7 = 15 are displayed in Figs. Sc and 5d, respectively, together
with the estimated SLFs from the regularized-LS estimators in
Figs. 5a and 5b. The most satisfactory result was obtained by the
proposed method since piecewise homogeneous regions of the
SLF were separately reconstructed by introducing the hidden
label field.

To test the proposed adaptive data acquisition method, F and
7 reconstructed by the non-adaptive Bayesian algorithm are
shown in Figs. 5e and 5f, respectively. Comparison between
Figs. 5c and 5e visually demonstrates that improved SLF recon-
struction performance could be achieved through adaptive data
acquisition with the same number of measurements. Accuracy
of z was also quantitatively measured by the labeling-error, de-
fined as ||zp — 2|1 /N,. Fig. 6 displays the progression of the
labeling-error averaged over 20 independent Monte Carlo runs.
It shows that the proposed adaptive method consistently out-
performs the non-adaptive one, which implies that selection of
informative measurements to decrease uncertainty of f given
current estimates of z and € could lead to more accurate es-
timates of f and z in the next time slot. Meanwhile, average
estimates of @ and associated standard deviation denoted with +
are listed in Table II, where every hyperparameter was accurately
estimated. Together with the result in Fig. 5, the accurate esti-
mates of the hyperparameters confirm that the proposed method
can faithfully capture patterns of objects in area of interest, and
also reveal the underlying statistical properties.
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Fig. 5. Estimated SLFs Far=15 (with 700 measurements) via (a) ridge-
regularized LS (p1p = 8.9 x 10~* and C; =TI 600); (b) TV-regularized LS

(11 = 10712); (c) Algorithm 5 through (d) estimated hidden label field Z: and
(e) non-adaptive Bayesian algorithm, through (f) estimated Z.
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Fig. 6. Progression of error in estimation of z.

. TABLE 1T
TRUE 6@ AND ESTIMATED 0 VIA ALGORITHM 5 (SETTING OF FIGS. 5 C AND 5 D);
AND NON-ADAPTIVE BAYESIAN ALGORITHM (SETTING OF FIGS. 5 EAND 5 F)
AVERAGED OVER 20 INDEPENDENT MONTE CARLO RUNS

] True Est. (Alg. 5) Est. (non-adaptive)
[E; 1.3 | 1.309+2x 1072 | 1.309+3 x 10~2
a2 | 0.05 0.058 + 10—2 0.053 + 1.3 x 10~ 2
fo | 02 [0.289£2x10"% [ 0.289£1.8x 10~

I
By 5 [ 4996+7x10"3 [ 4.996£7 x 10~3

o‘?o 1 0931+£5x10"2 | 094+9.8x102
0?1 0.2 | 0198+2x10"2 | 0.193+£2.8 x 102
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Fig. 7. Reconstruction error vs. noise variance (7;2, for (a) the SLF f; and (b)
the hidden label field z.
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Fig. 8. True SLFs for (a) 7 € {0,...,5};and (b) 7 € {6,...,15}; and esti-
mated SLFs at (¢) 7 = 5 (300 measurements); and (d) 7 = 15 (700 measure-
ments) via Algorithm 5. Dynamic objects are marked with dotted circles.

The next experiment tests robustness of the proposed algo-
rithms against measurement noise v,;. The normalized error
I fo — Fll2/ll foll2 and the labeling-error for z averaged over
sensor locations and realizations of {v; }. _, were used to quan-
tify the reconstruction performance. Fig. 7 depicts the progres-
sion of those errors as a function of o averaged over 20 Monte
Carlo runs. Note that Figs. 5c—5e and 5d—5f correspond to the
leftmost points of the x-axis of Figs. 7a and 7b, respectively.
The reconstruction performance is not severely degraded as o2
increases, even in a high noise regime when o2 = 10, which
suggests that the proposed algorithms are reasonably robust to
measurement noise.

To assess the tracking capability of the proposed algorithm,
slow variations in the SLF were simulated by introducing a
moving object. The same setting used for Figs. 5S¢ and 5d was
adopted. Measurements were generated with the SLF in Fig. 8a
for 7 =0,...,5, and that in Fig. 8b for the rest. The change
in the SLF was assumed to happen once at 7 = 6. The recon-
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Fig. 9. Progression of channel-gain estimation error.

structed SLFs at 7 = 5 and 7 = 15 are shown in Figs. 8c and 8d,
respectively. It is seen that only the SLF reconstructed at 7 = 5
correctly captures the moving object, while the stationary ob-
jects are estimated more clearly as 7 increases, which reveals
the trade-off between spatial and temporal resolution.

The rest of this section tests the performance of the proposed
algorithm in channel-gain cartography. To this end, the same
setting used to produce Figs. 5c and 5d was adopted. From
the estimate }'MMSE obtained through Algorithm 5, an estimate
of the shadowing attenuation 5(x,x’) between two arbitrary
points x and x’ in A is obtained through (4) by replacing f with
Favse- Subsequently, an estimate of the channel-gain §(x, x')
is obtained after substituting §(x, x’) into (1).

Since gy and « are known, obtaining s(x,x’) amounts to
finding g(x,x’); cf. (1). This suggests adopting a performance
metric quantifying the mismatch between s(x,x’) and §(x, x’),
using the normalized mean-square error

]E[fA (s(x,x) — §(X,X’))2dXdX/}
E[ [, s?(x, x')dxdx’]

where the expectation is over the set {x, })_, of sensor lo-

cations and realizations of {v;},. Simulations estimated the
expectations by averaging over 20 independent Monte Carlo
runs. The integrals are approximated by averaging the integrand
over 300 pairs of (x,x’) chosen independently and uniformly at
random over the boundary of A.

Fig. 9 compares the NMSE of the proposed method with
those of the competing alternatives using the settings in Fig. 5.
Evidently, the proposed method achieves the lowest NMSE for
every 7. Observe that both Bayesian approaches outperform the
regularized LS methods, which suggests the proposed method
as a viable alternative of a conventional solution adopted for
radio tomography and channel-gain cartography.

NMSE :=

B. Test With Real Data

This section validates the proposed method using the real
data set in [12]. The test setup is depicted in Fig. 10, where
A =[0.5,20.5] x [0.5,20.5] is a square with sides of 20 feet (ft),
over which a grid {%;}%" .= {1,...,41}% of N, = 1,681
points is defined. A collection of N = 80 sensors measure
the channel attenuation at 2.425 GHz between pairs of sen-
sor positions, marked with the N = 80 crosses in Fig. 10. To
estimate gp and < using the approach in [12], a first set of
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Fig. 10.  Configuration of the testbed with N = 80 sensor locations marked
with crosses.

TABLE III
HYPER-HYPERPARAMETERS OF 0 FOR REAL DATA TESTS.

O']% N Vk ay bu
0.01 1 0.01

ay,Vk
0.01

by, Vk
0.01

IBmax mo mi
2 0 1

2,400 measurements was obtained before placing the artificial
structure in Fig. 10. Estimates gy = 54.6 (dB) and 4 = 0.276
were obtained during the calibration step. Afterwards, the struc-
ture comprising one pillar and six walls of different materials
was assembled, and 7" = 2, 380 measurements {gr/}f,zl were
acquired. Then, the calibrated measurements {3,/}7,_, were
obtained from {g, }%,_, by substituting gy and 4 into (5). In
addition, {w, }Z,_, were constructed with w in (3) by using
known locations of sensor pairs. Note that 7’ is introduced to
distinguish indices of the real data from 7 used to index time
slots in numerical tests.

We randomly selected 1,380 measurements from {3,/ }7,_,
to initialize §(9), and used the remaining 1,000 measurements
to run the proposed algorithm under the mini-batch operation
fort =0,...,5, where every W, | was formed by uniformly
selecting |W: 11| = 200 weight vectors at random from {w .} ./
associated with the remaining 1,000 measurements without re-
placement. Parameters of the proposed algorithm were set to,
NCL = 2, NBurn—in = 300, Nlter = 1,000, 0'2 = 10_5, and the
hyper-hyperparameters of @ used are listed in Table III. For
initialization, z(°) was found by drawing zf/o) ~ Bern(0.5)Vi.
Vector (%) was set to have 5(*) = 0.1 and ;L}-Z) = [mo,m1]",
while 2 and 0'2“ were initialized at random.

Following [1], [12], a spatial covariance matrix was used
for C; of the ridge-regularized LS estimator, which mod-
els the similarity between points %; and X; as [Cy] =
o2 exp[—||%; — %Xj||2/k] [1], with 02 = k =1, and py = 6 x
1072; see also [31]. On the other hand, the TV-regularized LS
estimator was tested with yy = 4.3 used in [31].

Fig. 11 displays estimated SLFs F and associated hidden
fields Z at 7 =5 obtained by the proposed method and its
competing alternatives. The pattern of the artificial structure
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Fig. 11.  Estimated SLFs Fatr=5 (with 1,880 measurements) via (a) ridge-
regularized LS; (b) TV-regularized LS; (c) Algorithm 5 through (d) estimated
hidden label field Z; and (e) non-adaptive Bayesian algorithm, through (f)

estimated Z, together with one-shot estimates (g) ﬁ‘full and (h) quu obtained
by using the full dataset (with 2,380 measurements) via Algorithm 5.

is clearly delineated on Fin Fig. 11c estimated by the proposed
method, while the regularized LS estimators are not able to cap-
ture such pattern without post-processing of the estimated SLFs
in Figs. 11a and 11b. Although the non-adaptive Bayesian algo-
rithm reconstructed the visually satisfying SLF for radio tomog-
raphy as shown in Fig. 11e, F from the proposed method depicts
the artificial structure more clearly; see e.g., object patterns in
Figs. 11c and 11e corresponding to the dry wall in Fig. 10. As a
benchmark, an one-shot estimate of the SLF, denoted as f‘full, is
also displayed in Fig. 11g, which was obtained via Algorithm 5
by using the entire set of 2,380 measurements. Comparison of F
in Fig. 11c with Fru shows that the proposed algorithm enables
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Fig. 12.  Progression of a mismatch between 2z and Zyyj.

. TABLE IV
ESTIMATED 6 VIA BENCHMARK ALGORITHM (SETTING OF FIGS. 11 G AND 11
H); ALGORITHM 5 (SETTING OF FIGS. 11 ¢ AND 11 D); AND NON-ADAPTIVE
BAYESIAN ALGORITHM (SETTING OF FIGS. 11 E AND 11 F), AVERAGED
OVER 20 INDEPENDENT MONTE CARLO RUNS

] Est. (benchmark) Est. (Alg. 5) Est. (non-adaptive)
B 0499+2x10~% | 0.5+£5x 10~ % 05+6x10"%
o2 9.984 + 0.05 10.60 £ 0.20 9.957 +0.23
e fq —0.275 +£0.02 —0.278 +0.02 —0.301 £ 0.03
ry 0.463 +0.03 0.447 +0.03 0.504 £ 0.03
ofco 0.629 + 0.12 0.457 +0.13 0.456 £ 0.22
ofcl 0.171 +0.10 0.145 +0.10 0.325 + 0.43

one to reconstruct the SLF close to the benchmark by using
fewer, but more informative measurements.

The second experiment investigated the efficacy of the pro-
posed adaptive data acquisition method in estimating z. By
considering Zean = unvec(Zgy) in Fig. 11h as a benchmark, the
labeling error ||Zpn — 2|1 /N, was used as a performance met-
ric. Fig. 12 compares the labeling error of the proposed method
with that of the non-adaptive algorithm, which are averaged
over 20 independent Monte Carlo runs. The proposed method
exhibits lower labeling errors than the non-adaptive one except
when 7 = 2. This illustrates that the proposed data acquisition
criterion delineates object patterns more accurately while also
reducing the measurement collection cost.

To corroborate the hyperparameter estimation capability of
the proposed algorithm, the estimates of 6 averaged over 20
independent Monte Carlo runs were listed in Table IV. The
estimate 6 obtained by using the full dataset was considered as
abenchmark, to demonstrate that the prg[\)osed method estimates
0 closer to the benchmark. The scale of o2 in Table IV is different
from that in Table II. This can be explained by that the high noise
level in {3,/}1,_, due to the imperfect data calibration present
in 02 to produce visually pleasing SLFs as shown in Fig. 11.

The last simulation assesses the performance of the pro-
posed algorithm and competing alternatives for channel-gain
cartography. The same set of shadowing measurements and
simulation setup as in first simulations of this section were
used. A channel-gain map is constructed to portray the gain
between any point in the map, and a fixed receiver location
Xx. Particularly, the proposed algorithm is executed and es-

timates {§(>~ci,xrx)}f;ﬂ1 are obtained by substituting f and w
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Fig. 13. Estimated shadowing maps S and corresponding channel-gain maps
Gatr=5via (a)—(b) ridge-regularized LS (setting of Fig. 11a); (¢)—(d) TV-
regularized LS (setting of Fig. 11b); (e)—(f) Algorithm 5 (setting of Fig. 11c);
and (g)—(h) non-adaptive Bayesian algorithm (setting of Fig. 1le), with the
receiver location at xx = (10.3,10.7) (ft) marked with the blue cross.

into (4). Subsequently, {g(fq,xrx)}f\gl are obtained by sub-
stituting {§(ii,xrx)}£vj1 into (1) with gy and 4. After defin-
ing g := [§(X1,%Xxx), .-, §(Xn, ,Xr)] ', ONE can construct the
channel-gain map G := unvec(g) with the receiver located
at Xx.

Let S := unvec(8) denote the shadowing map with & :=
[8(%1,%x), -, 8(Xn, ,Xrx)] . Fig. 13 displays the estimated

~

shadowing maps S and corresponding channel-gain maps G,
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obtained via various methods, when the receiver is located at

= (10.3,10.7) (ft) marked by the cross. In all channel-gain
maps in Fig. 13, stronger attenuation is observed when a signal
passes through either more building materials (bottom-right side
of G) or the concrete wall (left side of G) In contrast, only
the channel-gain maps in Figs. 13f and 13h reconstructed by the
Bayesian methods exhibit less attenuation along the entrance of
the artificial objects (top-right side of G), while channel-gain
tends to drop quickly within the vicinity of the receiver in the
channel-gain maps obtained by the regularized LS estimators,
as shown in Figs. 13b and 13d. This stems from the fact that
free space and objects are more distinctively delineated in F by
the Bayesian approaches. Note that slightly different observa-
tions were made in Figs. 13f and 13h since the shadowing map
in Fig. 13g introduces stronger attenuation in free space below
the receiver, which would disagree with intuition. All in all,
the simulation results confirm that our approach could provide
more specific CSI of the propagation medium, and thus endow
the operation of cognitive radio networks with more accurate
interference management.

V. CONCLUSION

This paper developed a novel adaptive Bayesian radio to-
mographic algorithm that estimates the spatial loss field of
the radio tomographic model, which is of interest in imaging
and channel-gain cartography applications, by using measure-
ments adaptively collected based on the uncertainty sampling
criterion. Different from conventional approaches, leveraging a
hidden label field contributed to effectively account for inho-
mogeneities of the spatial loss field. The effectiveness of the
novel algorithm was corroborated through extensive synthetic
and real data experiments. Future research will include an on-
line approach to Bayesian radio tomography to further reduce
computational complexity.

APPENDIX
A. Distribution of the Proportionality of p(f|$:, z, 0)

Recalling  that  p(3|f,02) ~N(WTf 02L;) and
p(flz,07) ~ N (g, Ag.), one can expand p(f[s;,2,0)
in (22) to arrive at (cf. (23))

p(f[8¢, 2, 0) o< p(s:| £, 07 )p(f|2, O5)

S L
x exp | — ﬁ”st -W'rl; - §Hf - H’fz||2Af'::|
o< exp fTE feos (St W'+ “szfz>f}
B [ 1 o T -1
=exp | — §f frosf TR 082505 f

- ] )
X exp | — §Hf — l‘f\Z,G,ét ||2;\Iz.aé ) (54)

which shows that the proportionality of p(f|$;, z,0) follows
N(p’f\z,e,émzﬂz,e,ét) [ |
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B. Derivation of (P1)

At time slot 7, we seek Ww.;; minimizing
H. . 1(f|87+1, 2, 0) in (50), which amounts to solving
max p(s,,q,2,0")q(2,0' ,w)do'ds. .
weEW: 1 9.5
z'eZ Pl
(35)

Then, one can show that

/p( 7+17z 0)d87+1

=[] sz easas,

541

el . ' ol el ol ’
D[l OO 0 S

— [tz pi6 s ds, = [ =080, s,

(56)
where (el) holds due to independence between &, | and s/
after conditioning on { f, z, 6}. By substituting (56) into (55)
and recalling that S, is given at time slot 7, finding w, . boils
down to solving

/ / /
. zejz/ (2,015 )q(z', 0, w)d®',  (57)
which is (P1). |
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