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Abstract—Radio tomographic imaging (RTI) is an emerging
technology to locate physical objects in a geographical area cov-
ered by wireless networks. From the attenuation measurements
collected at spatially distributed sensors, radio tomography cap-
italizes on spatial loss fields (SLFs) measuring the absorption of
radio frequency waves at each location along the propagation path.
These SLFs can be utilized for interference management in wire-
less communication networks, environmental monitoring, and sur-
vivor localization after natural disaster such as earthquakes. Key
to the success of RTI is to model accurately the shadowing effects
as the bi-dimensional integral of the SLF scaled by a weight func-
tion, which is estimated using regularized regression. However, the
existing approaches are less effective when the propagation en-
vironment is heterogeneous. To cope with this the present paper
introduces a piecewise homogeneous SLF governed by a hidden
Markov random field model. Efficient and tractable SLF estima-
tors are developed by leveraging Markov chain Monte Carlo tech-
niques. Furthermore, an uncertainty sampling method is developed
to adaptively collect informative measurements in estimating the
SLF. Numerical tests using synthetic and real datasets demonstrate
capabilities of the proposed algorithm for radio tomography and
channel-gain estimation.

Index Terms—Radio tomography, channel-gain cartography,
Markov chain Monte Carlo, active learning, Bayesian inference.

I. INTRODUCTION

T
OMOGRAPHIC imaging is a technique widely appreci-

ated by natural sciences, notably in medical imaging [33].

The principles underpinning radio tomographic methods have

been carried over to construct underlying spatial loss fields

(SLFs), which are maps quantifying the attenuation experienced

by electromagnetic waves in radio frequency (RF) bands at every

spatial position [28]. To this end, pairs of collaborating sensors

are deployed over the area of interest to estimate the attenua-

tion introduced by the channel between those pairs of sensors.

Different from conventional methods, radio tomography relies

on incoherent measurements containing no phase information;

see also [20] for another application of incoherent measurements

to cognitive radio networks. Such simplification saves costs
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incurred for synchronization that is necessary to calibrate phase

differences among waveforms received at different sensors.

SLFs are instrumental in various problems including radio

tomography [36] and channel-gain cartography [19]. The ab-

sorption captured by the SLF allows one to discern objects

located in the area of interest, thus enabling radio tomographic

imaging (RTI). Benefiting from the ability of RF waves to pene-

trate physical structures such as trees or buildings, RTI provides

a means of device-free passive localization [37], [38], and has

found diverse applications in disaster response situations for

e.g., detecting individuals trapped in buildings or smoke [35].

SLFs are also useful in channel-gain cartography to provide

channel-state information (CSI) for links between arbitrary lo-

cations even where no sensors are present [19]. Such maps can

be employed in cognitive radio setups to control the interfer-

ence that a secondary network inflicts to primary users that

do not transmit–a setup encountered with television broadcast

systems [6], [18], [40]. The non-collaborative nature of these

primary users precludes training-based channel estimation be-

tween secondary transmitters and primary receivers. Other ap-

plications of channel-gain maps include network planning, and

interference management in cellular networks.

The key premise behind RTI is that spatially close radio links

exhibit similar shadowing due to the presence of common ob-

structions. This shadowing correlation is related to the geome-

try of objects present in the area waves propagate through [1],

[28]. As a result, shadowing is modeled as the weighted line

integral of the underlying two-dimensional SLF. The weights

in the integral are determined by a function depending on the

transmitter-receiver locations [12], [28], [31], which models

the SLF influence on the shadowing over a link between those

transceivers. Inspired by this SLF model, various tomographic

imaging methods were proposed [17], [34]–[36]. To detect loca-

tions of changes in the propagation environment, the difference

between the SLF at consecutive time slots was employed [34],

[36]. To cope with multipath fading in a cluttered environment,

multiple channel measurements were utilized to enhance lo-

calization accuracy [17]. Although these are calibration-free

approaches, they cannot reveal static objects in the area of in-

terest. It is also possible to replace the SLF with a label field

indicating presence (or absence) of objects in motion on each

voxel [35], and leverage the influence moving objects on the

propagation path have on variance in RSS measurements. On

the other hand, the SLF was directly reconstructed in [11], [12]

to depict the static structure in the area of interest, but calibra-

tion was necessary by using extra measurements (e.g., collected

without the structure). One can avoid additional data collection
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for the calibration by estimating the SLF together with pathloss

components [3], [31].

A different body of works inspired by the SLF model is

available for channel-gain cartography [5], [19], [22], [31]. Lin-

ear interpolation techniques such as kriging were employed to

estimate shadowing effects based on spatially correlated mea-

surements [5], and the spatio-temporal dynamics were tracked

by using Kalman filtering approaches [19]. SLFs with ‘regular

patterns’ of objects have also been modeled as a superposition

of a low-rank matrix plus a sparse matrix capturing structure

irregularities [22]. While the aforementioned methods rely on

heuristic criteria to choose the weight function, [31] provides

a suite of blind algorithms to learn the weight function using a

non-parametric kernel regression method.

Conventionally, the SLF is learned via regularized least-

squares (LS) methods tailored to the propagation environ-

ment [12], [22], [34]. A ridge-regularized solution can be in-

terpreted as a maximum a posteriori (MAP) estimator provided

that the SLF is statistically homogeneous and modeled as a

zero-mean Gaussian random field. However, these approaches

are less effective when the propagation environment is spatially

heterogeneous due to a combination of free space and objects

in different sizes and materials (e.g., as easily seen in urban

areas), which subsequently induces statistical heterogeneity in

the SLF. To account for environmental heterogeneity, the novel

method here leverages the Bayesian framework to learn the

piecewise homogeneous SLF through a hidden Markov random

field (MRF) model [15], which captures spatial correlations of

neighboring regions exhibiting related statistical behavior. Ef-

ficient field estimators will be derived by using Markov chain

Monte Carlo (MCMC) sampling [9], which is a powerful tool

for Bayesian inference when analytical solutions of the mini-

mum mean-square error (MMSE) or the MAP estimators are not

available. Furthermore, hyperparameters are estimated as well,

instead of being fixed a priori.

Besides accounting for heterogeneous propagation, another

contribution here is an adaptive data acquisition technique, with

the goal of reducing SLF uncertainty, by cross-fertilizing ideas

from the fields of experimental design [7] and active learn-

ing [24]. The conditional entropy of the SLF is considered as

an uncertainty measure in this work, giving rise to a novel data

acquisition criterion. Although such criterion is intractable es-

pecially when the size of the SLF is large, its efficient proxy can

be obtained thanks to the availability of posterior samples from

the proposed MCMC-based algorithm. Note that the proposed

technique is appealing for a practical scenario constrained to

incur low communication overhead, since the data collection

cost can be reduced by using a minimal number of selective

measurements to learn the SLF.

The rest of the paper is organized as follows. Section II

reviews the radio tomography model and states the problem.

The Bayesian model and the resultant field reconstruction are

the subjects of Section III. Numerical tests with synthetic as

well as real measurements are provided in Section IV. Finally,

Section V summarizes the main conclusions.

Notations: Bold uppercase (lowercase) letters denote matri-

ces (column vectors). Calligraphic letters are used for sets; In

is the n × n identity matrix; while 0n and 1n denote n × 1 vec-

tors of all zeros and ones, respectively. Operators (·)� and tr(·)
represent the transpose and trace of a matrix X ∈ R

Nx ×Ny ,

respectively; | · | is used for the cardinality of a set, and the

magnitude of a scalar; and vec(X) produces a column vector

x ∈ R
Nx Ny by stacking the columns of a matrix one below

the other (unvec(x) denotes the reverse process). For a vector

y ∈ R
n and an n × n weight matrix ∆, the weighted norm of

y is ‖y‖2
∆ := y�∆y.

II. BACKGROUND AND PROBLEM STATEMENT

Consider a set of sensors deployed over a two-dimensional

geographical area indexed by a set A ⊂ R
2 . After averaging out

small-scale fading effects, the channel-gain measurement over

a link between a transmitter located at x ∈ A and a receiver

located at x′ ∈ A can be represented (in dB) as

g(x,x′) = g0 − γ10 log10 d(x,x′) − s(x,x′) (1)

where g0 is the path gain at unit distance; d(x,x′) := ‖x − x′‖
is the Euclidean distance between the transceivers at x and x′;

γ is the pathloss exponent; and s(x,x′) is the attenuation due

to shadow fading. For radio tomography, a tomographic model

for the shadow fading is [12], [22], [28]

s(x,x′) =

∫

A
w(x,x′, x̃)f(x̃)dx̃. (2)

where f : A → R denotes the spatial loss field (SLF) capturing

the attenuation at location x̃, and w : A×A×A → R is the

weight function modeling the influence of the SLF at x̃ to the

shadowing experienced by link x–x′. Typically, w confers a

greater weight w(x,x′, x̃) to those locations x̃ lying closer to

the link x–x′. Examples of the weight function include the

normalized ellipse model [34]

w(x,x′, x̃) :=

⎧
⎪⎪⎨
⎪⎪⎩

1/
√

d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + λ/2

0, otherwise

(3)

where λ > 0 is a tunable parameter. The value of λ is commonly

set to the wavelength to assign non-zero weights only within the

first Fresnel zone. In radio tomography, the integral in (2) is

approximated as

s(x,x′) � c

Ng∑

i=1

w(x,x′, x̃i)f(x̃i) (4)

where {x̃i}
Ng

i=1 is a grid of points over A and c is a constant that

can be set to unity without loss of generality by absorbing any

scaling factor in f . Clearly, (4) shows that s(x,x′) depends on

f only through its values at the grid points.

The model in (2) describes how the spatial distribution of

obstructions in the propagation path influences the attenuation

between a pair of locations. The usefulness of this model is

twofold: i) as f represents absorption across space, it can be

used for imaging; and ii) once f and w are known, the gain

between any two points x and x′ can be recovered through

(1) and (2), which is precisely the objective of channel-gain

cartography.
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The goal of radio tomography is to obtain a tomogram by es-

timating f . To this end, N sensors located at {x1 , . . . ,xN } ∈ A
collaboratively obtain channel-gain measurements. At time slot

τ , the radios indexed by n(τ) and n′(τ) measure the channel-

gain ǧτ := g(xn(τ ) ,xn ′(τ )) + ντ by exchanging training se-

quences known to both transmitting and receiving radios, where

n(τ), n′(τ) ∈ {1, . . . , N} and ντ denotes measurement noise.

It is supposed that g0 and γ have been estimated during a cal-

ibration stage. After subtracting these from ǧτ , the shadowing

estimate is found as

šτ := g0 − γ10 log10 d(xn(τ ) ,xn ′(τ )) − ǧτ

= s(xn(τ ) ,xn ′(τ )) − ντ . (5)

Having available št := [š1 , . . . , št ]
� ∈ R

t along with the set of

links {(xn(τ ) ,xn ′(τ ))}
t
τ =1 (either known at the sensor deploy-

ment stage or acquired using GPS), and the weight function w
at the fusion center, the problem is to estimate f , or equivalently

f := [f(x̃1), . . . , f(x̃Ng
)]� ∈ R

Ng using (4).

Regularized least-squares (LS) estimators of f solve [12],

[22], [34]

min
f

t∑

τ =1

⎛
⎝šτ −

Ng∑

i=1

w(xn(τ ) ,xn ′(τ ) , x̃i)f(x̃i)

⎞
⎠

2

+ µfR(f)

(6)

where R : R
Ng → R is a generic regularizer to promote a

known attribute of f , and µf ≥ 0 is a regularization weight

to reflect compliance of f with this attribute. Although (6) has

been successfully applied to radio tomographic imaging tasks

after customizing the regularizer to the propagation environ-

ment, how accurate approximation is provided by a regularized

solution of (6) is unclear when the propagation environment

exhibits inhomogeneous characteristics.

To overcome this and improve estimation performance of the

SLF, a priori knowledge on the heterogeneous structure of f
will be exploited next, under a Bayesian framework.

III. ADAPTIVE BAYESIAN RADIO TOMOGRAPHY

In this section, we view f as random, and forth propose a

two-layer Bayesian SLF model, along with an MCMC-based

approach for inference. We further develop an adaptive data

acquisition strategy to select informative measurements.

A. Bayesian Model and Problem Formulation

Let A consist of two disjoint homogeneous regions A0 :=
{x|E[f(x)] = µf0

, Var[f(x)] = σ2
f0

,x ∈ A}, and A1 := {x|

E[f(x)] = µf1
, Var[f(x)] = σ2

f1
,x ∈ A}, giving rise to a hid-

den label field z := [z(x̃1), . . . , z(x̃Ng
)]� ∈ {0, 1}Ng with bi-

nary entries z(x̃i) = k if x̃i ∈ Ak∀i, and k = 0, 1. The two

separate regions can be used to model heterogeneous environ-

ments. For instance, if A corresponds to an urban area, A1 may

include densely populated regions with buildings, whileA0 with

µf0
< µf1

may capture the less obstructive open spaces. In such

a paradigm, we model the conditional distribution of f(x̃i) as

f(x̃i)|z(x̃i) = k ∼ N (µfk
, σ2

fk
), (7)

Fig. 1. Four-connected MRF with z(x̃i ) marked red and its neighbors in
N (x̃i ) marked blue.

Fig. 2. Mixture of independent Gaussians (MIG) with Potts prior model for
radio tomography, together with the measurement model for sensors located at
(xn , xn ′ ).

while the Ising prior [32], which is a binary version of the

discrete MRF Potts prior [15], is assigned to z in order to cap-

ture the dependency among spatially correlated labels. By the

Hammersley-Clifford theorem [13], the Ising prior of z follows

a Gibbs distribution

p(z|β) =
1

C(β)
exp

⎡
⎣β

Ng∑

i=1

∑

j∈N (x̃ i )

δ(z(x̃j ) = z(x̃i))

⎤
⎦ (8)

where N (x̃i) is a set of indices associated with 1-hop neigh-

bors of x̃i on the rectangular grid in Fig. 1, β is a granularity

coefficient controlling the degree of homogeneity in z, δ(·) is

Kronecker’s delta, and

C(β) :=
∑

z∈Z

exp

⎡
⎣β

Ng∑

i=1

∑

j∈N (x̃ i )

δ(z(x̃j ) = z(x̃i))

⎤
⎦ (9)

is the partition function with Z := {0, 1}Ng . By assuming con-

ditional independence of {f(x̃i)}
Ng

i=1 given z, the resulting

model is referred to as the mixture of independent Gaussians

(MIG) with Potts prior model [2] with two labels. The MIG with

Potts prior model for radio tomography is depicted in Fig. 2 with

the measurement model in (2).

To describe priors of other parameters, let νt be inde-

pendent and identically distributed (i.i.d) Gaussian with

zero mean and variance σ2
ν , and θ denote a hyperparameter
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vector comprising σ2
ν , β, and θf := [µf0

, µf1
, σ2

f0
, σ2

f1
]�.

The weight matrix W ∈ R
Ng ×t is formed with columns

wτ := [w(xn(τ ) ,xn ′(τ ) , x̃1),. . . , w(xn(τ ) ,xn ′(τ ) , x̃Ng
)]� ∈

R
Ng of the link xn(τ )–xn ′(τ ) for τ = 1, . . . , t. Assuming the

independence among entries of θ, p(θ) can be expressed as

p(θ) = p(σ2
ν )p(β)p(µfk

)p(σ2
fk

) (10)

with p(µfk
) = p(µf0

)p(µf1
) and p(σ2

fk
) = p(σ2

f0
)p(σ2

f1
),

where the individual priors p(σ2
ν ), p(β), p(µfk

), and p(σ2
fk

)
are specified next.

1) Granularity Coefficient β: To cope with the variability

of β in accordance with structural patterns of the propagation

medium, β is viewed as an unknown random variable that is to be

estimated together with f and z under the Bayesian framework.

Similar to e.g., [29], the uniform distribution is adopted for the

prior of β as

p(β) = U(0,βm a x )(β) :=

{
1/βmax , if β ∈ [0, βmax ]

0, otherwise.
(11)

2) Noise Variance σ2
ν : In the presence of the additive Gaus-

sian noise with fixed mean, it is common to assign a conjugate

prior to σ2
ν , which reproduces a posterior distribution in the same

family of its prior. The inverse gamma (IG) distribution serves

this purpose for σ2
ν ∈ R

+ as follows:

p(σ2
ν ) = IG(aν , bν ) :=

baν
ν

Γ(aν )
(σ2

ν )−aν −1 exp

(
−

bν

σ2
ν

)

(12)

where aν is referred to as the shape parameter, bν as the scale

parameter, and Γ(·) denotes the gamma function.

3) Hyperparameters of the SLF θf : While the prior for µfk

is assumed to be Gaussian with mean mk and variance σ2
k

(see also [2]), the inverse Gamma distribution parameterized

by {ak , bk} is considered for the prior of σ2
fk

:

p(µfk
) = N (mk , σ2

k ), k = 0, 1, (13)

p(σ2
fk

) = IG(ak , bk ), k = 0, 1. (14)

In addition to analytical tractability provided by the conjugate

priors in (13) and (14), no constraint is imposed on the support

of p(µfk
) in (13). This facilitates estimating µfk

via a data-

driven approach given shadowing measurements št . Note that

a truncated Gaussian prior for µfk
can be adopted when the

support of µfk
is known a priori.

Together with the priors for {f ,z,θ}, our joint posterior is

p(f ,z,θ|št) ∝ p(št |f , σ2
ν )p(f |z,θf )p(z|β)p(θ) (15)

where p(št |f , σ2
ν ) is the data likelihood. Note that Fig. 3 summa-

rizes the proposed hierarchical Bayesian model for {št ,f ,z,θ}
as a directed acyclic graph, where the dependency between (hy-

per) parameters is indicated with an arrow.

We will pursue the the conditional MMSE estimator

f̂MMSE := E[f |z = ẑMAP, št ] (16)

where the marginal MAP estimate is

ẑMAP := arg max
z

p(z|št). (17)

Fig. 3. Graphical representation of the hierarchical Bayesian model for (hy-
per) parameters (those in boxes are fixed).

Furthermore, the marginal MMSE estimates of the θ entries are

found as

σ̂2
ν MMSE := E[σ2

ν |št ] (18)

β̂MMSE := E[β|št ] (19)

µ̂fk MMSE
:= E[µfk

|št ], k = 0, 1 (20)

σ̂2
fk MMSE

:= E[σ2
fk
|št ], k = 0, 1. (21)

B. Sampling via Markov Chain Monte Carlo

While approximate estimators have been proposed for

Bayesian inference (see e.g., [16], [39]), analytical solutions

to (16)−(21) are not tractable due to the complex form of the

posterior in (15) that does not permit marginalization or max-

imization. To bypass this challenge, one can generate samples

from (15), and then numerically approximate the desired esti-

mators from those samples. MCMC is a class of methods used

to generate samples from a complex distribution [9].

Among MCMC methods, Gibbs sampling [8] is particularly

suitable for this work. It draws samples following the target dis-

tribution (e.g., the posterior in (15)) by sweeping through each

variable to sample from its conditional distribution while fixing

the others to their up-to-date values. Although the samples at

early iterations of Gibbs sampling with random initialization are

not representative of the desired distribution (such duration is

called the burn-in period NBurn-in), the theory of MCMC guar-

antees that the stationary distribution of those samples matches

with the target distribution [9].

Gibbs sampling requires only the conditional distribution

within a proportionality scale. When a given conditional dis-

tribution is not easy to simulate, one can resort to a Metropolis-

Hastings (MH) sampler [14], which generates a candidate from

a simple proposal distribution of such conditional distribution,

and accepts (or rejects) the candidate as a sample of interest

under a certain acceptance ratio α. The substitution of MH

sampling for some sampling steps inside the Gibbs sampler re-

sults in a Metropolis-within-Gibbs (MwG) sampler, as listed in

Algorithm 1. Posterior conditionals considered in this work and

associated sampling methods will be described next.

1) Spatial Loss Field f : It is easy to show that

p(f |št ,z,θ) ∝ p(št |f , σ2
ν )p(f |z,θf )

∼ N (µ̌f |z ,θ,št
,Σf |z ,θ,št

) (22)
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Algorithm 1: Metropolis-within-Gibbs sampler for

{f ,z,θ}.

Input: z(0) , θ(0) , št , NCL, NBurn-in, and NIter

1: for l = 1 to NIter do

2: Generate f (l) ∼ p
(
f |št ,z

(l−1) ,θ(l−1)
)

in (22)

3: Generate z(l) ∼ p
(
z|št ,f

(l) ,θ(l−1)
)

via Algorithm 2

4: Generate β(l) ∼ p
(
β|št ,f

(l) ,z(l) , σ2
ν

(l−1)
,θ

(l−1)
f

)

via Algorithm 4

5: Generate σ2
ν

(l)
∼ p
(
σ2

ν |št ,f
(l) ,z(l) , β(l) ,θ

(l−1)
f

)

in (32)

6: Generate µ
(l)
fk

∼ p
(
µfk

|št ,f
(l) ,z(l) , σ2

ν
(l)

, β(l) ,

σ
2(l−1)
fk

)
in (34) for k = 0, 1

7: Generate σ
2(l)
fk

∼ p
(
σ2

fk
|št ,f

(l) ,z(l) , σ2
ν

(l)
, β(l) ,

µ
(l)
fk

)
in (38) for k = 0, 1

8: end for

9: return S(t) :=
{
f (l) ,z(l) ,θ(l)

}N Iter

l=NBurn-in+1

where

Σf |z ,θ,št
:=
(
(σ2

ν )−1WW� + ∆−1
f |z

)−1

(23)

µ̌f |z ,θ,št
:= Σf |z ,θ,št

(
(σ2

ν )−1Wšt + ∆−1
f |zµf |z

)
(24)

since p(f |z,θf ) follows N (µf |z ,∆f |z ) by (7), with µf |z :=

E[f |z] and ∆f |z := diag({Var[fi |zi ]}
Ng

i=1) with fi := f(x̃i)
and zi := z(x̃i) (see Appendix V-A for derivation). Hence, f

can be easily simulated by a standard sampling method.

2) Hidden Label Field z: A Gibbs sampler is required to

simulate p(z|št ,f ,θ) ∝ p(f |z,θf )p(z|β) while avoiding the

intractable computation of C(β) in (8). Let z−i and zN (x̃ i )

represent replicas of z without its i-th entry, and only with the

entries of N (x̃i), respectively. By the Markovianity of z and

conditional independence between fi and fj ∀i 
= j given z, the

conditional distribution of zi is

p(zi |z−i , št ,f ,θ) ∝ exp

⎡
⎣
(zi) + β

∑

j∈N (x̃ i )

δ(zj − zi)

⎤
⎦

(25)

where 
(zi) := ln p(fi |zi ,θf ). After evaluating (25) for zi =
0, 1 and normalizing, one can obtain p(zi = 1|z−i , št ,f ,θ) =
(1 + hi)

−1 , where

hi := exp

[

(zi = 0) − 
(zi = 1) +

∑

j∈N (x̃ i )

β(1 − 2zj )

]

(26)

with δ(zj = 0) − δ(zj = 1) = 1 − 2zj . Then, the sample of z

can be obtained via the single-site Gibbs sampler by using (26),

as summarized in Algorithm 2. It is worth stressing that the

sampling criterion with hi in (26) does not require the evaluation

of C(β).

Algorithm 2: Single-site Gibbs sampler for z.

Input: f (l) and z(l−1)

1: Initialize ζ(l) :=
[
ζ

(l)
1 , . . . , ζ

(l)
Ng

]�
= z(l−1)

2: for i = 1 to Ng do

3: Obtain hi in (26) with z = ζ(l) and f = f (l)

4: Generate u ∼ U(0,1)

5: if u < (1 + hi)
−1 then

6: Set ζ
(l)
i = 1

7: else

8: Set ζ
(l)
i = 0

9: end if

10: end for

11: return z(l) = ζ(l)

3) Granularity Coefficient β: The conditional distribution

of β satisfies the following proportionality relation

p(β|št ,f ,z, σ2
ν ,θf ) ∝ p(z|β)p(β)

∝
1

βmaxC(β)
exp

⎡
⎣β

Ng∑

i=1

∑

j∈N (x̃ i )

δ(zj − zi)

⎤
⎦ (27)

for β ∈ [0, βmax ], simply by the Gibbs distribution in (8) and

the uniform prior of β in (11). Unfortunately, sampling of β is

formidably challenging because evaluating the partition func-

tion C(β) in p(z|β), incurs exponential complexity. To address

this, one may resort to auxiliary variable MCMC methods that

do not require exact evaluation of p(z|β), including the single

auxiliary variable method (SAVM) [26] and the exchange algo-

rithm [27]. Those methods replace C(β) with its single-point

importance sampling estimate by using an auxiliary variable,

which unfortunately must be generated via exact sampling that

is generally expensive for statistical models with intractable

partition functions. To bypass exact sampling for generating

this auxiliary variable, we will leverage a double-MH sampling

method for β; also [23].

Let z∗ and β∗ denote the auxiliary variable of z and a can-

didate of β for MH sampling, respectively. The idea behind the

double-MH algorithm is to generate z∗ through NCL cycles of

MH updates from the current sample z(l) , instead of using exact

sampling from p(z∗|β∗). As the name suggests, the double-MH

sampling includes two nested MCMC samplers: the inner one

to generate a chain of the auxiliary variable at each step of the

outer sampler for β. It is instructive to mention that NCL is not

necessarily large by initializing the chain with z(l) at the l-th
iteration [23], [29], which means that additional complexity to

generate the auxiliary variable is not necessarily high. In this

work, z∗ is obtained via another single-site Gibbs sampler, as

described in Algorithm 3:

p(z∗i |z
∗
−i , β

∗) ∝ exp

⎡
⎣β∗

∑

j∈N (x̃ i )

δ(z∗j − z∗i )

⎤
⎦∀i (28)
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Algorithm 3: Single-site Gibbs sampler for z∗.

Input: z(l) , β∗, and NCL

1: Initialize ζ∗ := [ζ∗1 , . . . , ζ∗Ng
]� = z(l)

2: for m = 1 to NCL do

3: for i = 1 to Ng do

4: Obtain h∗
i in (29) with z∗ = ζ∗

5: Generate u ∼ U(0,1)

6: if u < (1 + h∗
i )

−1 then

7: Set ζ∗i = 1
8: else

9: Set ζ∗i = 0
10: end if

11: end for

12: end for

13: return z∗ = ζ∗

Algorithm 4: Double-MH sampler for β.

Input: β(l−1) , z(l) , and NCL

1: Generate β∗ ∼ q(β∗|β(l−1)) in (30)

2: Generate z∗ ∼ p(z∗|β∗) via Algorithm 3

3: Set α′ := p(β ∗)q(β ( l−1 ) |β ∗)p(z∗|β ( l−1 ) )p(z( l ) |β ∗)
p(β ( l−1 ) )q(β ∗|β ( l−1 ) )p(z( l ) |β ( l−1 ) )p(z∗|β ∗)

4: Obtain α = min {1, α′}
5: Generate u ∼ U(0,1)

6: if u < α then

7: β(l) = β∗

8: else

9: β(l) = β(l−1)

10: end if

11: return β(l)

and a sample of z∗i is generated by utilizing p(z∗i = 1|z∗
−i , β

∗) =
(1 + h∗

i )
−1 with

h∗
i := exp

[ ∑

j∈N (x̃ i )

β(1 − 2z∗j )

]
. (29)

The overall double-MH sampler for β is summarized in

Algorithm 4. A proposal distribution of β∗ is the truncated Gaus-

sian

q(β∗|β(l−1)) =

{
N (β(l−1) , σ2

q )/c, if β∗ ∈ [0, βmax ]

0, otherwise
(30)

with a tunable variable σ2
q and a normalizing constant

c :=

∫ βm a x

0

1√
2πσ2

q

exp

[
−

1

2σ2
q

(
β∗ − β(l−1)

)2
]
dβ∗. (31)

4) Noise Variance σ2
ν : With p(σ2

ν ) in (12), we have the pos-

terior conditional of σ2
ν satisfying

p(σ2
ν |št ,f ,z, β,θf ) ∝ p(št |f , σ2

ν )p(σ2
ν )

∝ IG(aν +
t

2
, bν +

1

2
‖št − W�f‖2

2).

(32)

Therefore, a sample of σ2
ν can be generated by a standard sam-

pling method.

5) Means of the SLF µfk
: Let f k be the Nk × 1 vector

formed by concatenating f(x̃i) for x̃i ∈ Ak , for k = 0, 1. By

recalling the priori independence between the parameters of dis-

joint homogeneous regionsA0 andA1 , the posterior conditional

of µfk
:= [µf0

, µf1
]� can be expressed as

p(µfk
|št ,f ,z, σ2

ν , β, σ2
f0

, σ2
f1

)

∝ p(f |z,θf )p(µfk
) ∝ p(µf0

|z,f 0 , σ
2
f0

)p(µf1
|z,f 1 , σ

2
f1

)

(33)

with

p(µfk
|z,f k , σ2

fk
) ∝ p(f k |z, µfk

, σ2
fk

)p(µfk
),∀k. (34)

Since a sample of each µfk
can be independently drawn accord-

ing to p(µfk
|z,f k , σ2

fk
) in (34), the sampling method for µfk

will be described.

To efficiently simulate a sample of µfk
, the likelihood

p(f k |z, µfk
, σ2

fk
) is recast as an univariate distribution with

respect to the sample mean f̄k := (
∑

i fk,i)/Nk as

p(f k |z, µfk
, σ2

fk
) ∝ exp

[
−

1

2σ2
fk

Nk∑

i=1

(fk,i − µfk
)2

]

∝ exp

[
−

1

2σ2
fk

(
−2µfk

Nk∑

i=1

fk,i + Nkµ2
fk

)]

∝ exp

[
−

Nk

2σ2
fk

(f̄k − µfk
)2

]

∝ N (µfk
, 2σ2

fk
/Nk ). (35)

Since p(µfk
) is the Gaussian conjugate prior, one can show that

p(µfk
|z,f k , σ2

fk
) is Gaussian as well, parameterized by

E
[
µfk

|z,f k , σ2
fk

]
=

σ2
k f̄k

σ2
k + (σ2

fk
/Nk )

+
σ2

fk
/Nk

σ2
k + (σ2

fk
/Nk )

mk

Var
[
µfk

|z,f k , σ2
fk

]
=

(
1

σ2
k

+
Nk

σ2
fk

)−1

. (36)

Therefore, a sample of µfk
can be generated for k = 0, 1 by

using a standard sampling method.

6) Variances of the SLF σ2
fk

: Similar to µfk
, the statistical

independence between A0 and A1 leads to the following pro-

portionality of the posterior conditional for σ2
fk

:= [σ2
f0

, σ2
f1

]�

p(σ2
fk
|št ,f ,z, σ2

ν , β,µfk
) ∝ p(f |z,θf )p(σ2

fk
)

∝ p(σ2
f0
|z,f 0 , µf0

)p(σ2
f1
|z,f 1 , µf1

) (37)

where

p(σ2
fk
|z,f k , µfk

) ∝ p(f k |z, µfk
, σ2

fk
)p(σ2

fk
)

∝ IG

(
ak +

Nk

2
, bk +

1

2
‖f k − µfk

1Nk
‖2

2

)
,∀k. (38)

Therefore, a sample of each σ2
k can be independently drawn

according to p(σ2
fk
|z,f k , µfk

) in (38).

C. Efficient Estimators for f , z, and θ.

In this section, efficient sample-based estimators for f , z, and

θ are derived, by using a set of samples S(t) from Algorithm 1.
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Building on [16], the elementwise marginal MAP estimator of

z and its sample-based approximation are

ẑi,MAP = arg max
z i ∈{0,1}

p(zi |št)

� arg max
z i ∈{0,1}

1

|S(t) |

N Iter∑

l=NBurn-in+1

δ(z
(l)
i − zi) (39)

for i = 1, . . . , Ng . After obtaining ẑMAP, the sample-based ele-

mentwise conditional MMSE estimator of f follows as

f̂i,MMSE �
1

|S
(t)
i |

N Iter∑

l=NBurn-in+1

f
(l)
i δ(z

(l)
i − ẑi,MAP),∀i (40)

where S
(t)
i ⊂ S(t) is a subset of samples such that z

(l)
i = ẑi,MAP

for l = NBurn-in + 1, . . . , NIter. To estimate θ, the following

marginal MMSE estimators are employed

β̂MMSE �
1

|S(t) |

N Iter∑

l=NBurn-in+1

β(l) (41)

σ̂2
ν MMSE �

1

|S(t) |

N Iter∑

l=NBurn-in+1

σ2
ν

(l)
(42)

µ̂fk MMSE
�

1

|S(t) |

N Iter∑

l=NBurn-in+1

µ
(l)
fk

, k = 0, 1 (43)

σ̂2
fk MMSE

�
1

|S(t) |

N Iter∑

l=NBurn-in+1

σ2
fk

(l)
, k = 0, 1. (44)

Remark 1 (Monitoring sampler-convergence): The pro-

posed sampler in Algorithm 1 generates a sequence of samples

from the desired distribution in (15), after a burn-in period to

diminish the influence of initialization. By recalling that the

stationary distribution of those samples is matched with the de-

sired distribution, monitoring convergence of sample-sequences

guides the choice of NBurn-in.

Let ψ denote a generic scalar random variable of interest. Sup-

pose that NSeq parallel sequences of length NIter are available,

and let ψ(l,m ) denote the l-th sample of ψ in the m-th sequence

for l = 1, . . . , NIter and m = 1, . . . , NSeq. Then, the following

potential scale reduction factor (PSRF) estimate is adopted for

convergence diagnosis [9]

PSRF(ψ) :=
N ′

Iter − 1

N ′
Iter

+
σ2

Between

σ2
Within

(45)

where N ′
Iter := NIter − NBurn-in, the within-sequence variance:

σ2
Within :=

1

NSeq

NSeq∑

m=1

1

N ′
Iter − 1

N Iter∑

l=NBurn-in+1

(
ψ(l,m ) − ψ̄(m )

)2

(46)

with ψ̄(m ) :=
∑N Iter

l=NBurn-in+1 ψ(l,m )/(N ′
Iter − 1)∀m, and the

between-sequence variance:

σ2
Between :=

1

NSeq

NSeq∑

m=1

(
ψ̄(m ) − ψ̄

)2
(47)

with ψ̄(m ) :=
∑NSeq

m=1 ψ̄(m )/NSeq. As those sequences con-

verge while NIter → ∞, the PSRF declines to 1. In prac-

tice, each sequence is supposed to follow the desired distri-

bution when PSRF ≤ 1.2 [9, p. 138]. For synthetic data tests,

NBurn-in and NIter were found to have PSRF ≤ 1.06 for f , z,

and θ over NSeq = 20 independent sequences. On the other

hand, NBurn-in and NIter for real data tests were found to have

PSRF ≤ 1.04 for f and z, while the PSRF < 1.5 for θ, over

NSeq = 20 independent sequences. It allows to have moderate-

sized NBurn-in and NIter for real data tests. Note that elementwise

{PSNR(fi), PSNR(zi)}
Ng

i=1 were monitored for f and z.

Remark 2 (Computational complexity): For the proposed

MCMC method in Algorithm 1, the complexity order to gener-

ate a sample of f is O(N 3
g ) per iteration l to compute Σf |z ,θ,št

in (23). While sampling of z incurs complexityO(Ng ), that of θ

has complexity O(NgNCL) dominated by the sampling required

for β via Algorithm 4. Therefore, the overall computational

complexity per iteration l is O(N 3
g + Ng (NCL + 1)) ≈ O(N 3

g )
for NCL � Ng . Note that NCL = 2 is used for numerical tests,

while Ng ≈ 1.6 × 103 .

For conventional methods to estimate f , the ridge regularized

LS [12] has a one-shot (non-iterative) complexity of O(N 3
g ),

while the total variation (TV) regularized LS via the alternating

direction method of multipliers (ADMM) in [30] incurs com-

plexity of O(N 3
g ) per iteration l; see also [22], [31] for details.

This shows that the computational complexity per iteration of

the proposed algorithm is comparable with that of the TV regu-

larized solution that relies on the ADMM.

Extra complexity is needed to decide NBurn-in by checking

the PSRF as described in Remark 1, which is computed by us-

ing multiple sample-sequences generated in parallel. However,

sample-sequence generation through parallel processing saves

the delay from serially generating multiple sample sequences.

Furthermore, the computational burden is kept low by the data-

adaptive sensor selection strategy, which will be introduced in

Section III-D, by reducing the number of measurements to re-

construct the SLF eligible for the tomogram.

D. Adaptive Data Acquisition via Uncertainty Sampling

The proposed Bayesian radio tomography accounts for the

uncertainty of f , through the variance in (23). Using the latter,

our idea is to adaptively collect a measurement (or a mini-batch

of measurements) from the set of available sensing radio pairs,

with the goal of reducing the uncertainty of f . To this end, we

will rely on the conditional entropy [4] that in our context is

given by

Hτ (f |šτ ,z,θ) =
∑

z′∈Z

∫

θ′,š′τ

p(š′τ ,z′,θ′)

× Hτ (f |šτ = š′τ ,z = z′,θ = θ′)dθ′dš′τ
(48)

where

Hτ (f |šτ = š′τ ,z = z′,θ = θ′)

:= −

∫
p(f |š′τ ,z′,θ′) ln p(f |š′τ ,z′,θ′)df

=
1

2
ln(
∣∣Σf |z ′,θ′,š′t

∣∣) +
Ng

2

(
1 + ln(2π)

)
(49)

and | · | denotes matrix determinant. To obtain šτ +1 , one

can choose a pair of sensors, for which wτ +1 , minimizes
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Algorithm 5: Adaptive Bayesian radio tomography.

Input: z(0) , θ(0) , š(0) , NCL, NBurn-in, and NIter.

1: Set š0 = š(0)

2: for τ = 0, 1, . . . do

3: Obtain S(τ ) via Algorithm 1(z(0) ,θ(0) , šτ , NCL,
NBurn-in, NIter)

4: Obtain ẑ
(τ )
MAP from (39) by using S(τ )

5: Obtain f̂
(τ )

MMSE from (40) by using ẑ
(τ )
MAP and S(τ )

6: Obtain θ̂
(τ )

MMSE from (41)–(44) by using S(τ )

7: Calculate ū(w) in (52) for w ∈ Wτ +1 by using S(τ )

8: Collect šτ +1 from sensors associated with max ū(w)
9: Construct šτ +1 = [š�τ , šτ +1 ]

�

10: Set z(0) = ẑ
(τ )
MAP and θ(0) = θ̂

(τ )

MMSE

11: end for

Hτ +1(f |šτ +1 ,z,θ). Given šτ , we write

Hτ +1(f |šτ +1 ,z,θ) = Hτ (f |šτ ,z,θ)

−
∑

z′∈Z

∫

θ′,š′τ + 1

p(š′τ +1 ,z
′,θ′)q(z′,θ′,wτ +1)dθ′dš′τ +1 (50)

with q(z,θ,w) := ln
(
1 + (σ2

ν )−1w�Σf |z ,θ,št
w
)
/2, and seek

wτ +1 by solving

(P1) max
w∈Wτ + 1

Ez,θ|šτ
[q(z,θ,w)]

=
∑

z′∈Z

∫

θ′

p(z′,θ′|šτ )q(z′,θ′,w)dθ′ (51)

where Wτ +1 is a set of weight vectors found from locations of

available sensing radio pairs at time slot τ + 1 (see Appendix V-

B for derivation of (P1)). Note that solving (P1) to find wτ +1

does not require p(z′,θ′|šτ +1), which means the joint posterior

in (15) does not need to be retrained for adaptive data acquisition.

Apparently, solving (P1) is not an easy task since evaluating

Ez,θ|šτ
[q(z,θ,w)] is intractable especially for large Ng since

|Z| = 2Ng . Fortunately, the samples from Algorithm 1 can be

used to approximate

Ez,θ|šτ
[q(z,θ,w)] �

1

|S(τ ) |

N Iter∑

l=NBurn-in+1

q(z(l) ,θ(l) ,w)

=: ū(w). (52)

Therefore, šτ +1 can be obtained from the pair of sensors corre-

sponding to w with the maximum value of ū(w) in (52).

The steps involved for adaptive Bayesian radio tomography

are listed in Algorithm 5.

Remark 3 (Mini-batch setup): The proposed adaptive data

acquisition method can be easily extended to a mini-batch

setup of size NBatch per time slot τ as follows: i) find

weight vectors {w(i)}NBatch

i=1 ⊂ Wτ +1 associated with NBatch

largest values of ū(w) in (52), and collect the corresponding

measurements {š
(i)
τ +1}

NBatch

i=1 (steps 7–8 in Algorithm 5); and ii)

aggregate those measurements below šτ to construct šτ +1 :=

[š�τ , š
(1)
τ +1 , . . . , š

(NBatch)
τ +1 ]� (step 9 in Algorithm 5). Numerical

Fig. 4. True fields for synthetic tests: (a) hidden label field Z0 and (b) spatial
loss field F0 with N = 120 sensor locations marked with crosses.

tests will be performed to assess the mini-batch operation of

Algorithm 5.

IV. NUMERICAL TESTS

Performance of the proposed algorithms was assessed

through numerical tests using both synthetic and real datasets.

A few existing methods were also tested for comparison, in-

cluding the ridge-regularized SLF estimate given by f̂LS =
(WW� + µf C

−1
f )−1Wšt [12], where Cf is a spatial covari-

ance matrix modeling the similarity between points x̃i and x̃j

in area A. We further tested the total variation (TV)-regularized

LS scheme in [30], which solves the regularized problem in (6)

with

R(f) =

Nx −1∑

i=1

Ny∑

j=1

|fi+1,j − fi,j | +
Nx∑

i=1

Ny −1∑

j=1

|fi,j+1 − fi,j |,

(53)

where F := unvec(f) ∈ R
Nx ×Ny , and fi,j denotes the (i, j)-

th element of F. As a competing alternative of the proposed

adaptive sampling, simple random sampling was considered

for both regularized LS estimators, by selecting {š
(i)
τ +1}

NBatch

i=1 ∀τ
uniformly at random. Particularly, Algorithm 5 after replacing

steps 7–8 with random sampling is named as the non-adaptive

Bayesian algorithm, and will be compared with the proposed

method throughout synthetic and real data tests.

A. Test With Synthetic Data

This section validates the proposed algorithm through syn-

thetic tests. Random tomographic measurements were taken

by N = 120 sensors uniformly deployed on boundaries of

A := [0.5, 40.5] × [0.5, 40.5], from which the SLF defined over

a grid {x̃i}
1,600
i=1 := {1, . . . , 40}2 was reconstructed. To gen-

erate the ground-truth SLF f 0 , the hidden label field z0

was obtained first via the Metropolis algorithm [25] by us-

ing the prior of z in (8) with β = 1.3. Afterwards, f 0 was

constructed to have f(x̃i) ∼ N (0.2, 1)∀x̃i ∈ A0 and f(x̃j ) ∼
N (5, 0.2)∀x̃j ∈ A1 resulting in θf = [0.2, 5, 1, 0.2]�, respec-

tively, based on labels in z0 . True F0 := unvec(f 0) ∈ R
40×40

and Z0 := unvec(z0) ∈ {0, 1}40×40 are depicted in Fig. 4 with

sensor locations marked with crosses. The effects of calibration

are not accounted for this section, meaning that g0 and γ are

assumed to be known, and the fusion center directly uses shad-

owing measurements šτ . Under the mini-batch operation, each
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TABLE I
HYPER-HYPERPARAMETERS OF θ FOR SYNTHETIC TESTS

measurement š
(i)
τ ∀τ, i was generated according to (5), where

sτ was obtained by (4) with w set to the normalized ellipse

model in (3), while ντ was set to follow zero-mean Gaus-

sian with σ2
ν = 5 × 10−2 . To construct Wτ +1 per time slot τ ,

|Wτ +1 | = 100 pairs of sensors were uniformly selected at ran-

dom with replacement. Then, NBatch = 40 shadowing measure-

ments corresponding to {w(i)}NBatch

i=1 ⊂ Wτ +1 were collected to

execute Algorithm 5 for τ = 0, . . . , 15.

In all synthetic tests, the following simulation parameters

were used: NCL = 2, NBurn-in = 200, NIter = 500, and σ2
q =

0.03 were used to run the proposed algorithm; and hyper-

hyperparameters of θ were set as listed in Table I. For initial-

ization, θ(0) was set to have β(0) = 0.1, µ
(0)
fk

= [m0 , m1 ]
�, and

randomly initialized σ2
ν and σ2

fk
. Vector z(0) was obtained by

drawing z
(0)
i ∼ Bern(0.5) for i = 1, . . . , Ng , where Bern(0.5)

denotes the Bernoulli distribution with mean equal to 0.5. Fur-

thermore, š(0) was collected from randomly selected 100 pairs

of sensors. To find µf of the competing alternatives, the L-

curve [21, Chapter 26] was used for the ridge regularization,

while the generalized cross-validation [10] was adopted for the

TV regularization.

The first experiment was performed to validate the efficacy of

Algorithm 5. The estimates F̂ = unvec(f̂) and Ẑ = unvec(ẑ)
at τ = 15 are displayed in Figs. 5c and 5d, respectively, together

with the estimated SLFs from the regularized-LS estimators in

Figs. 5a and 5b. The most satisfactory result was obtained by the

proposed method since piecewise homogeneous regions of the

SLF were separately reconstructed by introducing the hidden

label field.

To test the proposed adaptive data acquisition method, F̂ and

Ẑ reconstructed by the non-adaptive Bayesian algorithm are

shown in Figs. 5e and 5f, respectively. Comparison between

Figs. 5c and 5e visually demonstrates that improved SLF recon-

struction performance could be achieved through adaptive data

acquisition with the same number of measurements. Accuracy

of ẑ was also quantitatively measured by the labeling-error, de-

fined as ‖z0 − ẑ‖1/Ng . Fig. 6 displays the progression of the

labeling-error averaged over 20 independent Monte Carlo runs.

It shows that the proposed adaptive method consistently out-

performs the non-adaptive one, which implies that selection of

informative measurements to decrease uncertainty of f given

current estimates of z and θ could lead to more accurate es-

timates of f and z in the next time slot. Meanwhile, average

estimates of θ and associated standard deviation denoted with±
are listed in Table II, where every hyperparameter was accurately

estimated. Together with the result in Fig. 5, the accurate esti-

mates of the hyperparameters confirm that the proposed method

can faithfully capture patterns of objects in area of interest, and

also reveal the underlying statistical properties.

Fig. 5. Estimated SLFs F̂ at τ = 15 (with 700 measurements) via (a) ridge-
regularized LS (µf = 8.9 × 10−4 and Cf = I1 ,600 ); (b) TV-regularized LS

(µf = 10−12 ); (c) Algorithm 5 through (d) estimated hidden label field Ẑ; and

(e) non-adaptive Bayesian algorithm, through (f) estimated Ẑ.

Fig. 6. Progression of error in estimation of z.

TABLE II
TRUE θ AND ESTIMATED θ̂ VIA ALGORITHM 5 (SETTING OF FIGS. 5 C AND 5 D);
AND NON-ADAPTIVE BAYESIAN ALGORITHM (SETTING OF FIGS. 5 E AND 5 F )

AVERAGED OVER 20 INDEPENDENT MONTE CARLO RUNS
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Fig. 7. Reconstruction error vs. noise variance σ2
ν for (a) the SLF f ; and (b)

the hidden label field z.

Fig. 8. True SLFs for (a) τ ∈ {0, . . . , 5}; and (b) τ ∈ {6, . . . , 15}; and esti-
mated SLFs at (c) τ = 5 (300 measurements); and (d) τ = 15 (700 measure-
ments) via Algorithm 5. Dynamic objects are marked with dotted circles.

The next experiment tests robustness of the proposed algo-

rithms against measurement noise ντ . The normalized error

‖f 0 − f̂‖2/‖f 0‖2 and the labeling-error for z averaged over

sensor locations and realizations of {ντ }t
τ =1 were used to quan-

tify the reconstruction performance. Fig. 7 depicts the progres-

sion of those errors as a function of σ2
ν averaged over 20 Monte

Carlo runs. Note that Figs. 5c–5e and 5d–5f correspond to the

leftmost points of the x-axis of Figs. 7a and 7b, respectively.

The reconstruction performance is not severely degraded as σ2
ν

increases, even in a high noise regime when σ2
ν = 10, which

suggests that the proposed algorithms are reasonably robust to

measurement noise.

To assess the tracking capability of the proposed algorithm,

slow variations in the SLF were simulated by introducing a

moving object. The same setting used for Figs. 5c and 5d was

adopted. Measurements were generated with the SLF in Fig. 8a

for τ = 0, . . . , 5, and that in Fig. 8b for the rest. The change

in the SLF was assumed to happen once at τ = 6. The recon-

Fig. 9. Progression of channel-gain estimation error.

structed SLFs at τ = 5 and τ = 15 are shown in Figs. 8c and 8d,

respectively. It is seen that only the SLF reconstructed at τ = 5
correctly captures the moving object, while the stationary ob-

jects are estimated more clearly as τ increases, which reveals

the trade-off between spatial and temporal resolution.

The rest of this section tests the performance of the proposed

algorithm in channel-gain cartography. To this end, the same

setting used to produce Figs. 5c and 5d was adopted. From

the estimate f̂MMSE obtained through Algorithm 5, an estimate

of the shadowing attenuation ŝ(x,x′) between two arbitrary

points x and x′ in A is obtained through (4) by replacing f with

f̂MMSE. Subsequently, an estimate of the channel-gain ĝ(x,x′)
is obtained after substituting ŝ(x,x′) into (1).

Since g0 and γ are known, obtaining s(x,x′) amounts to

finding g(x,x′); cf. (1). This suggests adopting a performance

metric quantifying the mismatch between s(x,x′) and ŝ(x,x′),
using the normalized mean-square error

NMSE :=
E
[ ∫

A

(
s(x,x′) − ŝ(x,x′)

)2
dxdx′

]

E
[ ∫

A s2(x,x′)dxdx′
]

where the expectation is over the set {xn}N
n=1 of sensor lo-

cations and realizations of {ντ }τ . Simulations estimated the

expectations by averaging over 20 independent Monte Carlo

runs. The integrals are approximated by averaging the integrand

over 300 pairs of (x,x′) chosen independently and uniformly at

random over the boundary of A.

Fig. 9 compares the NMSE of the proposed method with

those of the competing alternatives using the settings in Fig. 5.

Evidently, the proposed method achieves the lowest NMSE for

every τ . Observe that both Bayesian approaches outperform the

regularized LS methods, which suggests the proposed method

as a viable alternative of a conventional solution adopted for

radio tomography and channel-gain cartography.

B. Test With Real Data

This section validates the proposed method using the real

data set in [12]. The test setup is depicted in Fig. 10, where

A = [0.5, 20.5] × [0.5, 20.5] is a square with sides of 20 feet (ft),

over which a grid {x̃i}
1,681
i=1 := {1, . . . , 41}2 of Ng = 1, 681

points is defined. A collection of N = 80 sensors measure

the channel attenuation at 2.425 GHz between pairs of sen-

sor positions, marked with the N = 80 crosses in Fig. 10. To

estimate g0 and γ using the approach in [12], a first set of
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Fig. 10. Configuration of the testbed with N = 80 sensor locations marked
with crosses.

TABLE III
HYPER-HYPERPARAMETERS OF θ FOR REAL DATA TESTS.

2,400 measurements was obtained before placing the artificial

structure in Fig. 10. Estimates ĝ0 = 54.6 (dB) and γ̂ = 0.276
were obtained during the calibration step. Afterwards, the struc-

ture comprising one pillar and six walls of different materials

was assembled, and T = 2, 380 measurements {ǧτ ′}T
τ ′=1 were

acquired. Then, the calibrated measurements {šτ ′}T
τ ′=1 were

obtained from {ǧτ ′}T
τ ′=1 by substituting ĝ0 and γ̂ into (5). In

addition, {wτ ′}T
τ ′=1 were constructed with w in (3) by using

known locations of sensor pairs. Note that τ ′ is introduced to

distinguish indices of the real data from τ used to index time

slots in numerical tests.

We randomly selected 1,380 measurements from {šτ ′}T
τ ′=1

to initialize š(0) , and used the remaining 1,000 measurements

to run the proposed algorithm under the mini-batch operation

for τ = 0, . . . , 5, where every Wτ +1 was formed by uniformly

selecting |Wτ +1 | = 200 weight vectors at random from {wτ ′}τ ′

associated with the remaining 1,000 measurements without re-

placement. Parameters of the proposed algorithm were set to,

NCL = 2, NBurn-in = 300, NIter = 1, 000, σ2
q = 10−5 , and the

hyper-hyperparameters of θ used are listed in Table III. For

initialization, z(0) was found by drawing z
(0)
i ∼ Bern(0.5)∀i.

Vector θ(0) was set to have β(0) = 0.1 and µ
(0)
fk

= [m0 , m1 ]
�,

while σ2
ν and σ2

fk
were initialized at random.

Following [1], [12], a spatial covariance matrix was used

for Cf of the ridge-regularized LS estimator, which mod-

els the similarity between points x̃i and x̃j as
[
Cf

]
ij

=

σ2
s exp[−‖x̃i − x̃j‖2/κ] [1], with σ2

s = κ = 1, and µf = 6 ×
10−2 ; see also [31]. On the other hand, the TV-regularized LS

estimator was tested with µf = 4.3 used in [31].

Fig. 11 displays estimated SLFs F̂ and associated hidden

fields Ẑ at τ = 5 obtained by the proposed method and its

competing alternatives. The pattern of the artificial structure

Fig. 11. Estimated SLFs F̂ at τ = 5 (with 1,880 measurements) via (a) ridge-
regularized LS; (b) TV-regularized LS; (c) Algorithm 5 through (d) estimated

hidden label field Ẑ; and (e) non-adaptive Bayesian algorithm, through (f)

estimated Ẑ, together with one-shot estimates (g) F̂full and (h) Ẑfull obtained
by using the full dataset (with 2,380 measurements) via Algorithm 5.

is clearly delineated on F̂ in Fig. 11c estimated by the proposed

method, while the regularized LS estimators are not able to cap-

ture such pattern without post-processing of the estimated SLFs

in Figs. 11a and 11b. Although the non-adaptive Bayesian algo-

rithm reconstructed the visually satisfying SLF for radio tomog-

raphy as shown in Fig. 11e, F̂ from the proposed method depicts

the artificial structure more clearly; see e.g., object patterns in

Figs. 11c and 11e corresponding to the dry wall in Fig. 10. As a

benchmark, an one-shot estimate of the SLF, denoted as F̂full, is

also displayed in Fig. 11g, which was obtained via Algorithm 5

by using the entire set of 2,380 measurements. Comparison of F̂

in Fig. 11c with F̂full shows that the proposed algorithm enables
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Fig. 12. Progression of a mismatch between ẑ and ẑfull.

TABLE IV
ESTIMATED θ̂ VIA BENCHMARK ALGORITHM (SETTING OF FIGS. 11 G AND 11
H); ALGORITHM 5 (SETTING OF FIGS. 11 C AND 11 D); AND NON-ADAPTIVE

BAYESIAN ALGORITHM (SETTING OF FIGS. 11 E AND 11 F), AVERAGED

OVER 20 INDEPENDENT MONTE CARLO RUNS

one to reconstruct the SLF close to the benchmark by using

fewer, but more informative measurements.

The second experiment investigated the efficacy of the pro-

posed adaptive data acquisition method in estimating z. By

considering Ẑfull = unvec(ẑfull) in Fig. 11h as a benchmark, the

labeling error ‖ẑfull − ẑ‖1/Ng was used as a performance met-

ric. Fig. 12 compares the labeling error of the proposed method

with that of the non-adaptive algorithm, which are averaged

over 20 independent Monte Carlo runs. The proposed method

exhibits lower labeling errors than the non-adaptive one except

when τ = 2. This illustrates that the proposed data acquisition

criterion delineates object patterns more accurately while also

reducing the measurement collection cost.

To corroborate the hyperparameter estimation capability of

the proposed algorithm, the estimates of θ averaged over 20

independent Monte Carlo runs were listed in Table IV. The

estimate θ̂ obtained by using the full dataset was considered as

a benchmark, to demonstrate that the proposed method estimates

θ closer to the benchmark. The scale of σ̂2
ν in Table IV is different

from that in Table II. This can be explained by that the high noise

level in {šτ ′}T
τ ′=1 due to the imperfect data calibration present

in σ̂2
ν to produce visually pleasing SLFs as shown in Fig. 11.

The last simulation assesses the performance of the pro-

posed algorithm and competing alternatives for channel-gain

cartography. The same set of shadowing measurements and

simulation setup as in first simulations of this section were

used. A channel-gain map is constructed to portray the gain

between any point in the map, and a fixed receiver location

xrx. Particularly, the proposed algorithm is executed and es-

timates {ŝ(x̃i ,xrx)}
Ng

i=1 are obtained by substituting f̂ and w

Fig. 13. Estimated shadowing maps Ŝ and corresponding channel-gain maps

Ĝ at τ = 5 via (a)–(b) ridge-regularized LS (setting of Fig. 11a); (c)–(d) TV-
regularized LS (setting of Fig. 11b); (e)–(f) Algorithm 5 (setting of Fig. 11c);
and (g)–(h) non-adaptive Bayesian algorithm (setting of Fig. 11e), with the
receiver location at xrx = (10.3, 10.7) (ft) marked with the blue cross.

into (4). Subsequently, {ĝ(x̃i ,xrx)}
Ng

i=1 are obtained by sub-

stituting {ŝ(x̃i ,xrx)}
Ng

i=1 into (1) with ĝ0 and γ̂. After defin-

ing ĝ := [ĝ(x̃1 ,xrx), . . . , ĝ(x̃Ng
,xrx)]

�, one can construct the

channel-gain map Ĝ := unvec(ĝ) with the receiver located

at xrx.

Let Ŝ := unvec(ŝ) denote the shadowing map with ŝ :=
[ŝ(x̃1 ,xrx), . . . , ŝ(x̃Ng

,xrx)]
�. Fig. 13 displays the estimated

shadowing maps Ŝ and corresponding channel-gain maps Ĝ,
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obtained via various methods, when the receiver is located at

xrx = (10.3, 10.7) (ft) marked by the cross. In all channel-gain

maps in Fig. 13, stronger attenuation is observed when a signal

passes through either more building materials (bottom-right side

of Ĝ), or the concrete wall (left side of Ĝ). In contrast, only

the channel-gain maps in Figs. 13f and 13h reconstructed by the

Bayesian methods exhibit less attenuation along the entrance of

the artificial objects (top-right side of Ĝ), while channel-gain

tends to drop quickly within the vicinity of the receiver in the

channel-gain maps obtained by the regularized LS estimators,

as shown in Figs. 13b and 13d. This stems from the fact that

free space and objects are more distinctively delineated in F̂ by

the Bayesian approaches. Note that slightly different observa-

tions were made in Figs. 13f and 13h since the shadowing map

in Fig. 13g introduces stronger attenuation in free space below

the receiver, which would disagree with intuition. All in all,

the simulation results confirm that our approach could provide

more specific CSI of the propagation medium, and thus endow

the operation of cognitive radio networks with more accurate

interference management.

V. CONCLUSION

This paper developed a novel adaptive Bayesian radio to-

mographic algorithm that estimates the spatial loss field of

the radio tomographic model, which is of interest in imaging

and channel-gain cartography applications, by using measure-

ments adaptively collected based on the uncertainty sampling

criterion. Different from conventional approaches, leveraging a

hidden label field contributed to effectively account for inho-

mogeneities of the spatial loss field. The effectiveness of the

novel algorithm was corroborated through extensive synthetic

and real data experiments. Future research will include an on-

line approach to Bayesian radio tomography to further reduce

computational complexity.

APPENDIX

A. Distribution of the Proportionality of p(f |št ,z,θ)

Recalling that p(št |f , σ2
ν ) ∼ N (W�f , σ2

ν It) and

p(f |z,θf ) ∼ N (µf |z ,∆f |z ), one can expand p(f |št ,z,θ)
in (22) to arrive at (cf. (23))

p(f |št ,z,θ) ∝ p(št |f , σ2
ν )p(f |z,θf )

∝ exp

[
−

1

2σ2
ν

‖št − W�f‖2
2 −

1

2
‖f − µf |z‖

2
∆−1

f |z

]

∝ exp

[
−

1

2
f�Σ−1

f |z ,θ,št
f +

(
1

σ2
ν

š�t W� + µ�
f |z∆

−1
f |z

)
f

]

= exp

[
−

1

2
f�Σ−1

f |z ,θ,št
f + µ̌�

f |z ,θ,št
Σ−1

f |z ,θ,št
f

]

∝ exp

[
−

1

2
‖f − µ̌f |z ,θ,št

‖2
Σ−1

f |z , θ, š t

]
, (54)

which shows that the proportionality of p(f |št ,z,θ) follows

N (µ̌f |z ,θ,št
,Σf |z ,θ,št

). �

B. Derivation of (P1)

At time slot τ , we seek wτ +1 minimizing

Hτ +1(f |šτ +1 ,z,θ) in (50), which amounts to solving

max
w∈Wτ + 1

∑

z′∈Z

∫

θ′,š′τ + 1

p(š′τ +1 ,z
′,θ′)q(z′,θ′,w)dθ′dš′τ +1 .

(55)
Then, one can show that∫

p(š′τ +1 ,z
′,θ′)dš′τ +1

=

∫

š′τ + 1

∫

f ′

p(š′τ +1 ,f
′,z′,θ′)df ′dš′τ +1

(e1)
=

∫∫
p(š′τ +1 |f

′,z′,θ′)p(š′τ |f
′,z′,θ′)p(f ′,z′,θ′)df ′dš′τ +1

=

∫∫
p(f ′,z′,θ′|š′τ )p(š′τ )df ′dš′τ =

∫
p(z′,θ′|š′τ )p(š′τ )dš′τ

(56)

where (e1) holds due to independence between š′τ +1 and š′τ
after conditioning on {f ,z,θ}. By substituting (56) into (55)

and recalling that šτ is given at time slot τ , finding wτ +1 boils

down to solving

max
w∈Wτ + 1

∑

z′∈Z

∫

θ′

p(z′,θ′|šτ )q(z′,θ′,w)dθ′, (57)

which is (P1). �
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