
Noname manuscript No.
(will be inserted by the editor)

Chaotic Dynamics of the Chaplygin sleigh with a passive internal rotor

Vitaliy Fedonyuk · Phanindra Tallapragada

Received: date / Accepted: date

Abstract The Chaplygin sleigh is a classic example of a
nonholonomically constrained mechanical system. The sleigh’s
motion always converges to a straight line whose slope is
entirely determined by the initial configuration and velocity
of the sleigh. We consider the motion of a modified Chap-
lygin sleigh that contains a passive internal rotor. We show
that the presence of even a rotor with small inertia modifies
the motion of the sleigh dramatically. A generic trajectory of
the sleigh in a reduced velocity space exhibits two distinct
transient phases before converging to a chaotic attractor. We
demonstrate this through numerics. In recent work the dy-
namics of the Chaplygin sleigh have also been shown to be
similar to that of a fish like body in an inviscid fluid. The in-
fluence of a passive degree of freedom on the motion of the
Chaplygin sleigh points to several possible applications in
controlling the motion of the nonholonomically constrained
terrestrial and aquatic robots.

Keywords nonholonomic systems · passive internal
degrees of freedom · Chaplygin sleigh · chaotic attractor

1 Introduction

Internal degrees of freedom occur naturally in many biolog-
ical systems. A classic example is of a falling cat that uses
internal degrees of freedom between the joints of its spine to
consistently land on its feet, [9,10]. Internal degrees of free-
dom in the form of internal momentum wheels also find use
in the attitude control of satellites, [16]. In both of these ex-
amples, however, the internal degrees are actuated and can
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be useful for closed loop control. In contrast passive degrees
of freedom cannot be actuated but can add a passive con-
trol layer embodied within the system. Such a phenomenon
is observed in many flying insects that use passive twisting
of the wing along the leading edge to generate lift during
hovering flight, [5, 23].

In the context of application to robots, it is important
to extend the concept of passive degrees of freedom to me-
chanical systems with nonholonomic constraints, which are
ubiquitous in many wheeled, legged and snake like robots,
[11, 22]. When a mechanical system is nonholonomically
constrained, the motion of internal degrees of freedom do
change the linear and angular momentum of the system.
Nonholonomic systems with even unactuated or passive in-
ternal degrees of freedom can behave very differently due to
the exchange of momentum between the different degrees
of freedom. In this paper we study the motion of a Chaply-
gin sleigh, a well known nonholonomic system [1, 2, 4, 12],
with the addition of a passive unbalanced internal rotor. Be-
ginning with any initial velocity and angular velocity, the
dynamics of the Chaplygin sleigh are such that the angu-
lar velocity converges to zero and the sleigh asymptotically
attains a constant velocity, while preserving the kinetic en-
ergy. The sleigh’s trajectory in the plane would converge to
a straight line.

The addition of a ‘small’ internal passive rotor changes
the dynamics in two ways, the velocities of the sleigh and the
internal rotor converge to a chaotic attractor and a trajectory
of the sleigh in the plane remains bounded. This significant
effect that a passive internal degree of freedom can have on a
nonholonomic system inspires questions of passive mechan-
ical control of robotic systems. The addition of dissipative
and stiff elements can produce limit cycles such as those ob-
served in [7] which could passively direct the dynamics of
the robot to a desired invariant state. A further significant
feature of the dynamics of systems with internal degrees of
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freedom is that the linear and or the angular momentum of
the system is unaffected by the motion of an internal degree
of freedom.

An additional motivation for our investigation into the
role of a passive degree of freedom is due to the close anal-
ogy between the dynamics of a Chaplygin sleigh and a fish-
like body moving in an inviscid fluid. It has been shown re-
cently that the Kutta Joukowski condition that determines
vortex shedding past a sharp tip of a body in an inviscid
fluid is equivalent to an affine nonholonomic constraint on
the motion of the body, [17, 21]. It has also been shown
that both a Chaplygin sleigh and a fish like body could be
propelled and steered by the periodic motion of an internal
rotor, [13, 14, 19, 20]. More interestingly small passive tail
like segments have been shown to dramatically improve the
rapid turning maneuvers of such a swimming robot, [15].
Understanding the influence of a passive internal rotor on the
motion of the Chaplygin sleigh can aid in the understanding
of the role played by passive segments in the locomotion of
a fish like body in water.

This paper is organized as follows: in section 2 we de-
rive the equations of motion for the Chaplygin sleigh with
an internal degree of freedom. In section 3 we present some
results of the simulation of the equations of motion to high-
light the differences in the dynamics due to the passive in-
ternal rotor. In section 4 we analyze the transient phase of
the motion of the sleigh using a regular perturbation expan-
sion of the equations of motion. In section 5 we explore the
convergence of trajectories to a chaotic attractor through nu-
merical simulations.

2 Equations of Motion

A schematic of the Chaplygin sleigh is shown in Fig. 1. The
sleigh has a runner or a slender wheel at the rear that contacts
the ground at the point P. The runner is assumed to able
to slide smoothly in its longitudinal direction but not in a
transverse direction. The mass of the sleigh is denoted by mc
and the moment of inertia about its center by Ic. An internal
rotor of mass mr and moment of inertial Ir are hinged to
the center of the sleigh, such that the rotor can rotate freely
without any resistance. The configuration of the Chaplygin
sleigh is parameterized by the location its the center of mass,
(x,y) and its orientation θ , with respect to an inertial frame
of reference. The configuration of the internal rotor an be
parameterized by the angle β ∈ S1. The configuration space
of the system is Q = SE2× S1. The tuple (x,y,θ ,β ) will
be represented by q = (q1,q2,q3,q4) for convenience. The
body axes attached to point C are denoted by Xb−Yb.

The Lagrangian for the system can be written as

L =
1
2

mc(ẋ2 + ẏ2)+
1
2

mr(ẋ2
r + ẏ2

r )+
1
2

Icθ̇
2 +
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Fig. 1 The Chaplygin sleigh consists of a sleigh of mass mc with a rear
wheel or a sharp runner at a distance of b from the center of mass. The
runner makes contact with the ground at point P. An internal rotor of
mass mr is attached to the center of the sleigh. The center of mass of
the rotor is at a distance of a from the center of the sleigh.

where (xr,yr) are the coordinates of the center of the rotor
in the inertial frame of reference.

The rear wheel or runner is not allowed slip in the trans-
verse (Yb) direction, i.e.

−ẋsinθ + ẏcosθ −bθ̇ = 0 (1)

with Pfaffian one form being

−sinθdx+ cosθdy−bdθ = 0. (2)

The nonholonomic constraint, (1) requires the use of the
Lagrange multiplier method to derive the equations of mo-
tion. Such calculations for the Chaplygin sleigh can be found
in, [6,18] and these can be extended to the case of the Chap-
lygin sleigh with a passive internal rotor. As a first step the
velocity of internal rotor is expressed in terms of its angu-
lar velocity and velocity of the sleigh to obtain a reduced
Lagrangian

L =
1
2

m(ẋ2 + ẏ2)+mraβ̇ (ẏcosβ − ẋsinβ )

+
1
2

Icθ̇
2 +

1
2
(Ir +mra2)β̇ 2 (3)

where m = mr +mc.
The Euler-Lagrange equations are

d
dt

(
∂L

∂ q̇k

)
− ∂L

∂qk
=Ckλ (4)

where λ is the Lagrange multiplier and Ck is the coefficient
of the one form dqk in (2).
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Straight forward calculations yield the Euler-Lagrange
equations as

mẍ−mrβ̈ sinβ −mraβ̇
2 cosβ = −λ sinθ

mÿ+mrβ̈ cosβ −mraβ̇
2 sinβ = λ cosθ

Icθ̈ = −λb

mra(ÿcosβ − ẍsinβ − ẏβ̇ sinβ − ẋβ̇ cosβ )

+(Ir +mra2)β̈ = 0.
(5)

In order to reduce the Euler-Lagrange equations and elim-
inate the constraint force, the velocities and accelerations of
the tail may be expressed in terms of the longitudinal veloc-
ity of the wheel, u, and θ ,

ẋ = ucosθ − θ̇bsinθ (6)

ẏ = usinθ + θ̇bcosθ (7)

and

ẍ = u̇cosθ −uθ̇ sinθ −Ω
2bcosθ − θ̈bsinθ (8)

ÿ = u̇sinθ +uθ̇ cosθ −Ω
2bsinθ + θ̈bcosθ . (9)

After substituting the above expressions into (5) and elim-
inating λ the following reduced equations are obtained.

[
I 0
0 1

]
u̇
Ω̇

ω̇

δ̇

=


mcbΩ 2 +mraω2 cosδ

−mcbuΩ −mrabω2sinδ

−mrauω cosδ

Ω −ω

 (10)

where Ω = θ̇ , ω = β̇ , δ = θ−β is the angle made by the in-
ternal rotor with respect to the body Xb axis and I represents
the locked inertia tensor,

I =

 mc 0 mrasinδ

0 Ic +mb2 mrabcosδ

mrasinδ mrabcosδ Ir +mra2

 . (11)

We consider the special case where the mass, moment of
inertia and length of the internal rotor are small compared to
the corresponding parameters of the sleigh. We choose the
small parameter

mr

m
=

a
b
= ε � 1. (12)

The reduced equations of motion are then defined by the
dynamical system

u̇ =
K4bΩ 2 + ε(K2−1)(bΩ 2 cos2 δ +uΩ sinδ cosδ )

ε(K2−1)cos2 δ +K4

+
bω2ε(ε(K2−1)+K2))cosδ

ε(K2−1)cos2 δ +K4 (13)

Ω̇ =− K2(ε2bω2 sinδ +uΩ)

b(ε(K2−1)cos2 δ +K4)
(14)

ω̇ =− (K2−1)cos(δ )(ε2bω2 sinδ +uΩ)

εb(ε(K2−1)cos2 δ +K4)
(15)

δ̇ = Ω −ω (16)

where K2 = 1+ Ir
mb2 . This is a dynamical system that defines

a flow on the manifold M = R3× S1. We will denote the
flow map of this dynamical system by ΦT

t : M 7→M . Note
that the only set of fixed points for eqs (13)-(16) is Ω = ω =
0.

3 Simulation Results

The equations of motion of the Chaplygin sleigh without the
internal rotor, [6, 12, 18] can be obtained from (13) and (14)
by setting ε = 0,

u̇ = bΩ
2 (17)

Ω̇ =− uΩ

bK2 . (18)

The phase portrait for this two dimensional dynamical sys-
tem is shown in fig. 2(a). Since the right hand side of (17)
is always non negative, u is a non decreasing function. In
the reduced (velocity) state space defined by (17) and (18),
Ω = 0 is a set of non isolated fixed points. The fixed points
(u < 0,Ω = 0). The set (u > 0,Ω = 0) is stable in the sense
that any perturbation in the velocity from a fixed point in
this set produces a trajectory that converges to the set (u >

0,Ω = 0), but not necessarily to the original fixed point. The
kinetic energy of the sleigh is constant since the friction at
point P on the sleigh does not do any work, it can be shown
that the kinetic energy is an integral of motion, [12, 18]. A
decrease in the angular velocity of the sleigh leads to a corre-
sponding increase in the longitudinal velocity of the sleigh.
Since the angular velocity, Ω converges to zero, the sleigh’s
trajectory in the physical plane converges to a straight line
that is unbounded, as shown in fig. 2(b) for generic initial
conditions.

A direct simulation of the equations of motion of the
sleigh with an internal rotor shows dramatically different
dynamics. A sample simulation of (13), (14) and (15) for
generic initial conditions is shown in Fig. 3. The evolution of
u and Ω occurs with two distinct transient stages before con-
vergence to a nearly periodic solution. These transient stages
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Fig. 2 A phase portrait of the Chaplygin sleigh is shown in a) with
sample trajectories shown as solid curves. A generic trajectory of the
sleigh is shown in b). Initial conditions are (u(0) = 0,Ω(0) = 1).

of dynamics are common to any initial condition, with vari-
ations in the time periods associated with these individual
stages.
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Fig. 3 Simulation of the Chaplygin sleigh with a small internal rotor
with ε = 0.1 and initial conditions u(0) = 0, Ω(0) = 0.1, ω(0) = 1.
Energy is E = 0.1127

In the first transient phase highlighted in Fig. 3(a) and
(b) it can be seen that for a short duration of time (t < 100),
the dynamics of the sleigh are nearly the same as that of a
Chaplygin sleigh without the internal rotor. In this short in-
terval the angular velocity of the sleigh becomes very small
and the longitudinal velocity and u reaches a nearly constant
value.

In the second transient stage (100 < t < 8,700), u(t)
decays with oscillations and Ω(t) oscillates about zero but
with an increasing amplitude. The angular velocity of the ro-
tor increases, but with very small amplitude oscillations. At
about t = 8700 a steady state is reached and as will be dis-
cussed later, a trajectory converges to an attractor A ⊂M .
From here on the longitudinal velocity of the sleigh has a
nearly oscillatory behavior with two frequencies of oscilla-

tion. The longitudinal velocity is the sum of two periodic
functions, one with a large time period of about 2200 and
zero mean and the other a periodic function with a very
small time period. The angular velocity of the sleigh oscil-
lates about zero, but with sudden spikes occuring at intervals
of about t = 2200. The angular velocity of the passive rotor
show small oscillations around a non zero mean. The head-
ing angle of the sleigh, θ , is nearly piecewise constant with
sudden jumps at time intervals of about 2200.

The transient dynamics of the sleigh and convergence
to the attractor follow the same pattern for any initial con-
ditions. Initial conditions of the sleigh with distinct kinetic
energies converge to distinct attractors. Conversely all ini-
tial conditions with the same kinetic energy converge to a
unique attractor. This is shown most clearly in fig. 4 where
the angular velocity of the rotor for two sample sets of ini-
tial conditions on the same energy level is seen to converge
to the same function for all initial conditions with the same
energy. Furthermore, the initial transient dynamics are qual-
itatively the same for all the initial conditions shown in fig.4.
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Fig. 4 Trajectory of the sleigh for different initial conditions on a level
set of kinetic energy. (a) E = 0.1184 and (b) E = 0.2313.

4 Transient dynamics of the sleigh and regular
perturbation expansion

The first transient stage of the dynamics of the sleigh can
be explained using a regular perturbation analysis of (13) -
(16). Such regular perturbation analysis has been employed
for the analysis of other nonholonomic systems such as the
twist car, [3, 8, 24]. We expand the states into a power series
in ε .

u(t) =u0(t)+ εu1(t)+ ε
2u2(t)+ ... (19)

Ω(t) =Ω0(t)+ εΩ1(t)+ ε
2
Ω2(t)+ ...

ω(t) =ω0(t)+ εω1(t)+ ε
2
ω2(t)+ ...

δ (t) =δ0(t)+ εδ1(t)+ ε
2
δ2(t)+ ...

The right hand side of the preceding equations are expanded
in a power series of ε . We first note that K2−1 = O(ε). The
denominators in each of the right hand side of the equations
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can then be expanded in a power series in ε ,

1
ε(K2−1)cos2 δ +K4 =

1
K4 (1− ε

K2−1
K4 cos2

δ

+ ε
2 (K

2−1)2

K8 cos4
δ ). (20)

We will also use the following,

sinδ =sinδ0 +(εδ1 + ε
2
δ2 + ...)cosδ0 + ... (21)

cosδ =cosδ0− (εδ1 + ε
2
δ2 + ...)sinδ0 + ...

Substituting equations (20), (21) and the assumed power
series expansion for u, Ω and ω into the (13), (14) and (15)
and equating the coefficients of the corresponding powers of
ε , one obtains the following equations for the three leading
orders,

u̇0 =bΩ
2
0 (22)

u̇1 =2bΩ0Ω1 (23)

u̇2 =
1

K6 u0Ω0 sinδ0 cosδ0

+bΩ
2
1 +2bΩ0Ω2 +bK2

ω
2
0 cosδ0

(24)

Ω̇0 =−
u0Ω0

bK2 (25)

Ω̇1 =−
u1Ω0

bK2 −
Ω1u0

bK2 (26)

Ω̇2 =
1

bK6 u0Ω0 cos2
δ0

− u2Ω0

bK2 −
u1Ω1

bK2 −
u0Ω2

bK2

− 1
K2 ω

2
0 sinδ0

(27)

ω̇0 =−
u0Ω0

bK4 cosδ0 (28)

ω̇1 =−
1

bK4 (u1Ω0 +u0Ω1)cosδ0 (29)

ω̇2 =
( 1

bK8 u0Ω0 cos2
δ0−

u2Ω0

bK4 −
u1Ω1

bK4 −
u0Ω2

bK4

− 1
K4 ω

2
0 sinδ0

)
cosδ0 +

1
K4b

u0Ω0δ2 sin(δ0).

(30)

The validity of the regular perturbation expansion for
short time periods is borne from the close match between the
solution u0(t)+εu1(t)+ε2u2(t) with the solution of (13) as
shown in Fig. 5(a). A similar comparison for the angular
velocities is shown in Fig. 5(b) and (c). The initial condi-
tions for a direct numerical simulation of (13), (14) and (15)
are (u(0) = 0,Ω(0) = 0.1,ω(0) = 1). Since the perturba-
tion expansion, (19) is valid for any arbitrarily small value
of ε , the initial conditions for simulation of the perturbation
expansion equations are (u0(0) = 0,u1(0) = 0,u2(0) = 0),
(Ω0(0)= 0.1,Ω1(0)= 0,Ω2(0)= 0) and (ω0(0)= 1,ω1(0)=
0,ω2(0) = 0).
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Fig. 5 Simulation of the Chaplygin sleigh with a small internal ro-
tor for initial conditions u(0) = 0, Ω(0) = .1, ω(0) = 1 (u0(0) = 0,
Ω0(0) = .1, ω0(0) = 1 and other initial conditions are zero for the
regular expansion). The solution due to the perturbation expansion is
shown as a dashed line and the exact solution as a solid line.

In Fig. 5 (a) and (b) we see that the longitudinal velocity
of the sleigh increases from zero and begins to show small
oscillations with a non zero mean. The angular velocity of
the sleigh, Ω , decays to zero with small oscillations. Except
for the oscillations in the growth of u and the decay of Ω ,
the evolution of these velocities is similar to those of the
regular Chaplygin sleigh. But more significantly there is a
transfer of kinetic energy to the motion of the internal rotor,
with ω(t) experiencing slow growth with oscillations. The
oscillations in u(t), Ω(t) and ω(t) can be explained by the
regular perturbation expansion equations. The error between
the perturbation solution for ω and a direct numerical simu-
lation grows faster and even on a time scale of 100s the error
is about 2%. This can be expected since the angular velocity
ω(t) can have secular growth as seen in fig. 3

Equations (22) and (25) represent the leading order equa-
tions for the evolution of the velocity of the sleigh. These
equations are the same as those that describe the motion of
the Chaplygin sleigh without an internal rotor, (17), (18).
The leading order solutions u0 and Ω0 are shown in Fig.
6(a) and (c). The O(ε0) solutions exhibit the behavior of a
regular Chaplygin sleigh without an internal rotor.

The right hand sides of equations (23) and (26) are zero
since the initial conditions (u1(0) = 0,Ω1(0) = 0,ω1(0) =
0) are the fixed points of the O(ε) equations. Therefore the
O(ε) solution is always zero.

The first term on the right hand side of (28) decays to
zero since Ω0 decays to zero. Therefore ω0 converges to
a constant value as shown in Fig. 6(e). The first term on
the right hand side of (24) decays to zero since Ω0 decays
to zero. The second term bΩ 2

1 is zero and the third term
2bΩ0Ω2 decays to zero. Therefore the equation (24) can be
approximated as

u̇2 ≈ bK2
ω

2
0 cosδ0. (31)
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We next make a series of approximations for the relative
angle δ by first noting that

δ (t) =δ (0)+
∫ t

0
(Ω −ω)dt

=δ (0)+
∫ t

0
(Ω0−ω0)dt + ε

2
∫ t

0
(Ω2−ω2)dt + ....

(32)

Since Ω0 decays to zero rapidly and ω0 reaches a constant
value rapidly, we will make the approximation

δ0 ≈ δ (0)−ω0t (33)

Assuming δ (0) = 0, it is clear from (31), u2 shows oscil-
latory behavior, with the oscillations becoming nearly peri-
odic after a short transient, as shown in Fig. 6(b).

A similar argument can be made for the right hand side
of (27). First we set u1(t) = 0, Ω1(t) = 0 and let Ω0→ 0 to
obtain

Ω̇2 ≈−
u0Ω2

bK2 −
1

K2 ω
2
0 sinδ0. (34)

The stable solutions to the leading order equations are such
that u0 > 0. Therefore first term on the right hand side of (34)
causes a decay of Ω2→ 0. The second term causes periodic
oscillations around zero, as shown in Fig. 6(f). Equation (34)
is a linear differential equation with a periodic forcing, the
steady state solution for which is also periodic with the same
frequency as the forcing frequency,

Ω2 =−

 1√
ω2

0 +
u2

0
b2K4

 ω2
0

K2 sin(δ +φ1) (35)

where φ1 = tan−1(−ω0bK2

u0
) = 0.4705π ≈ π/2. The ampli-

tude of the steady solution of Ω2 is 0.892.
The evolution of u2 and Ω2 by the simulation of (22)-

(30) is shown in Fig. 6(b) and (d). The two velocities con-
verge to oscillatory solutions with a time period of T1 =
6.276 that is nearly equal to 2π

ω0
= 6.277, which bears out

the validity of the series of approximations we made leading
to (35).

The steady state behavior of ω2 , seen in fig. 6(f) is a
periodic function with time period T2 = 3.138 which is half
that of T1. This can be understood by examining the sev-
eral terms on the right hand side of (30). Since Ω0→ 0 and
u1 = 0 and Ω1 = 0, the steady state evolution of ω2 is ap-
proximately governed by the equation

ω̇2 =−
u0Ω2

bK2 cosδ0−
1

K2 ω
2
0 sinδ0 cosδ0

≈ u0A
bK2 cos2

δ0−
1

2K2 ω
2
0 sin2δ0.
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Fig. 6 Order ε0 and order ε2 solutions for the velocities of the sleigh
with initial conditions u0 = 0, Ω0 = .1, ω0 = 1, δ0 = 0 and all other
initial conditions zero. Order one ε1 solutions remain zero for all time.

where we substituted for the steady state solution of Ω2 from
(35) with the further approximation that the phase angle φ1,
in (35) is approximately π/2. It is straightforward to show
that

ω̇2 =
u0A

2bK2 +
u0A

2bK2 cos2δ0−
ω2

0
2K2 sin2δ0

=
u0A

2bK2 −Bsin(2δ0−φ2)

≈ u0A
2bK2 +Bsin(2ω0t +φ2) (36)

where

B =

√(
u0A

2bK2

)2

+

(
ω2

0
2K2

)2

and φ2 = tan−1
(

u0A
bω2

0

)
. The constant term and the periodic

term on the right hand side of (36) produce respectively a
linear growth in ω2 and an oscillatory response with time
period T2 =

π

ω0
. Using the previously obtained values of ω0

and u0 we find that T2 = 3.135, B = 0.238 and the average
value of Ω2 grows linearly at a rate of 0.0415. A direct sim-
ulation of equation (30) shown in fig. 6(f) show that time
period T2 = 3.138, B = 0.241 and the linear growth rate is



Chaotic Dynamics of the Chaplygin sleigh with a passive internal rotor 7

0.0445 which are in very good agreement with the values
obtained through the analytical approximations. Note that
the growth rate is approximate and any discrepancy from
the true growth rate causes the error in ω to accumulate.
This is why in Fig. 5 (c) we see the approximate and actual
solutions slowly growing apart.

As fig. 3 (a) shows the longitudinal velocity decays with
oscillations after about t > 100 until about t = 8,700. In the
same time period the angular velocity of the sleigh oscil-
lates about zero with the amplitude steadily increasing until
it reaches a nearly steady value as seen in fig. 3 (b). This sec-
ond transient phase is generic to any initial conditions with
positive longitudinal velocity, although the time period as-
sociated with this transient behavior changes with the initial
conditions.

This second transient phase cannot be explained through
a perturbation analysis. The third order perturbation solu-
tions, u3, Ω3 and ω3 turn out to be zero. The equations for
the fourth order variables contain many secular terms, lead-
ing to unbounded solutions. It is however easy to see that
the velocities, u, Ω and ω should remain bounded since the
kinetic energy is invariant. We first point out that the second
order solution, ω2 itself grows without a bound. Therefore
in the second transient stage the decay of the longitudinal
velocity u is due to the conservation of the kinetic energy of
the sleigh.

5 Chaotic Dynamics of the sleigh on the attractor

Numerical simulations show that for all initial conditions,
except those of a zero measure, the longitudinal velocity
of the sleigh converges to a periodic function with multi-
ple frequencies. This is shown in fig. 3(a) where from about
t = 8,700 the velocity u undergoes rapid oscillations, with
the mean value of u itself oscillating at a much lower fre-
quency. The angular velocity of the sleigh also undergoes
high frequency oscillations with zero mean, along with a
spike that occurs between much longer time intervals, fig.
3(b). The angular velocity of the rotor also oscillates with
a high frequency with the mean value oscillating at a lower
frequency, fig. 3(c). We will denote this state of motion of
the sleigh as the steady state. To explain this steady state
behavior we show in fig. 7 the kinematic variables over a
smaller time window along with the trajectory of the sleigh
in the plane during this time window.

In fig. 7(a) at about t = 9,800, despite the oscillations,
the maximum longitudinal velocity of the sleigh is negative,
i.e. the cart moves backwards. As shown in the phase por-
trait for the zeroth order dynamics, the motion of the Chap-
lygin sleigh in the backward direction is unstable. Therefore
at about t = 10,000 u increases, resulting in an increase in
magnitude of Ω . This sudden increase in the angular veloc-
ity of the sleigh is reflected in the spike in fig. 7(b). Figure
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Fig. 7 Steady State behavior of the sleigh. Initial conditions are u0 = 0,
Ω = .1, and ω = 1. Subfigures a), b), d) and e) show the parameters of
the sleigh over time. Subfigure c) shows the trajectory of the sleigh for
the time window t = 9,000s to t = 11,500.

7(c) shows the trajectory of the sleigh in the physical plane
during this spike in angular velocity. In the first transition,
between position A and position B, shown in fig. 7(c) the
sleigh’s orientation changes by a large amount (nearly π ra-
dians) due to the spike in the angular velocity of the sleigh.
The motion of the sleigh changes from the backward (in
body frame) direction to forward direction, i.e. u becomes
positive. At about t = 12,000 the longitudinal velocity of
the sleigh is once again wholly negative. The average mo-
tion of the cart is once again in the backward direction (in
the body frame). What appears to be a sharp turn in the tra-
jectory of the sleigh in the x− y plane is actually the second
transition which is characterized by the average longitudinal
velocity becoming negative. So the sleigh does not execute
a turn at this point, it simply changes the direction of travel.
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Fig. 8 Path of the sleigh after t = 100,000s. Initial conditions are taken
after the transient phase to capture the steady state trajectory.

As the mean value of the longitudinal velocity itself un-
dergoes low frequency oscillations (fig. 7(a)) the trajectory
of the sleigh in the x− y plane undergoes what seem like
many sharp turns. Figure 8 shows a generic trajectory of the
sleigh in the x− y plane. This trajectory of the sleigh in the
x− y plane is in sharp contrast to the trajectory of the Chap-
lygin sleigh without the internal rotor, whose angular veloc-
ity converges to zero for almost all initial conditions. The
trajectory of a Chaplygin sleigh without the internal rotor
converges asymptotically to a straight line in the x− y plane
and the trajectory is not bounded, see fig. 2(b). In contrast
the trajectory of the sleigh with even a small passive rotor
is bounded as shown in fig. 8. Moreover numerical simula-
tions suggest that the path of the sleigh is not periodic. To
illustrate the non periodic nature of the trajectories of the dy-
namical system (13)-(16), we consider the Poincare section,
Σ2π = {u,Ω ,ω,δ = 2nπ} where n = 0,1,2,3... and the first
return Poincare map to the Poincare section,

P2π : (un,Ωn,ωn,2nπ) 7→Φ
tn+1
tn (un,Ωn,ωn,2(n+1)π). (37)

Figure 9(a) shows the Poincare map for a large number of
iterations. The Poincare map is not periodic for thousands
of iterations and fills out a closed curve. We further consider
the Poincare section, Σπ/2 = {u,Ω ,ω,δ = nπ/2} and the
first return Poincare map, Pπ/2 to this section Σπ/2. figure
9(b) shows a large number of iterations of this map, which
form four distinct closed loops. In the steady state the trajec-
tory of the dynamical system (13)-(16) lies on an attractor
A . The iterations of these Poincare maps lie on the projec-
tion of the attractor, πA ⊂ R3 which is the projection of the
flow map πΦ : R3× S1 7→ R3. The attractor, πA , is shown
by the small dots in fig. 9(b).

The reduced equations of motion of the sleigh, (13) -
(16) are dissipative in the sense of decreasing phase space
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Fig. 9 (a) Iterations of the Poincare map P2π . (b) Iterations of the
Poincare map Pπ/2 shown by the large filled circles forming four closed
loops lie on the attractor πΦA shown by the smaller dots, energy is
E0 = 0.1127 and ε = 0.1 (c) attractor πΦA for ε = 0.1 and an energy
of E = 0.8313 and (d) for ε = 0.01 and E = 0.1127.

volumes. The trace of the Jacobian obtained by linearizing
these reduced velocity equations is nonzero for almost any
(u,Ω ,ω,δ ). However the kinetic energy of the sleigh is an
invariant. The manifold M is foliated by level sets of the
kinetic energy. Trajectories that lie on a level set of the ki-
netic energy converge to an attractor that is a subset of this
level set. The attractor and its projection shown in fig.9(b)
are subsets of an invariant level set of the kinetic energy. The
attractor is dependent on the kinetic energy of the sleigh as
well as the value of ε . However the topology of the attrac-
tor persists across a broad range of values of ε , and E. For
example fig. 9(c) shows the attractor for a different energy
E = 0.8313 and the same ε = 0.1 while fig. 9(d) shows the
attractor for the same energy and ε = 0.01. For the combina-
tion of larger values of ε and smaller values of total energy
E, the attractor πA can be flatter with smaller variations in
the range of the ω .

The dynamics on the attractor have sensitive dependence
on initial conditions. This can be seen through the compu-
tation of the Lyapunov exponents. Adopting the algorithm
proposed in [25], we computed the four Lyapunov expo-
nents for the dynamical system, (13)-(32). The four Lya-
punov exponents are 2.9e−4, 2.203e−4,−2.2e−4 and 2.02e−5.
The Lyapunov exponents were computed for a simulation
time of 4000s at intervals of 0.01s. A pre simulation for an
initial run time of 10000s performed first to allow the tran-
sient dynamics to decay to very small values. We verified the
convergence of the computation of the Lyapunov exponents
by checking the variation in the computed values of these ex-
ponents. This variation of the Lyapunov exponents between
time steps oscillated between 7× 10−8 and −9× 10−8 for
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Fig. 10 Maximum Lyapunov exponent for energies ranging from E =
10−3 to E = 103 with ε = 0.1. The smallest value of leading Lyapunov
exponent in the above graph is about 1.1×10−4.

the last 200s of the simulation. This variation is of the order
of 0.01% in the values of the positive Lyapunov exponents.

The leading Lyapunov exponents are calculated for dif-
ferent energy levels, E, holding the values of ε = 0.1 and
b = 1, to verify that the chaotic behavior does not depend on
the energy on the system. The highest Lyapunov exponent
plotted against the energy is shown in fig. 10. The high-
est Lyapunov exponent increases with the energy associ-
ated with the system and the LE is positive for energy as
low as 10−4. Similarly changes to the parameters ε and b
across a range of values of the energy E produce chaotic
dynamics, with the largest Lyapunov exponent always be-
ing positive. The leading Lyapunov exponent is shown in
fig. 11 for a range of values of b and ε with E = 0.1127.
The smallest value of the leading Lyapunov exponent in fig.
11 is greater than 10−4. The calculations of the Lyapunov
exponents strongly suggest the existence of sensitive depen-
dence of initial conditions, positive Lyapunov exponents and
a chaotic attractor for the dynamical system (13)-(16) for a
broad range of parameters ε , b and E.

In order to further verify the aperiodic behavior of flow
of (13)-(16) we plot the return times for the map P2π . The
return times for two different values of ε are shown in fig.
12 for a large number of iterations of the map P2π are shown.
The return times for both the cases in fig. 12 are such that
they are bounded in an interval. Furthermore, no two return
times are the same upto a precision of 10−7. Return time
computations for the map P2π for a broad range of values of
ε , E and b show a similar behavior, suggesting the presence
of a large or infinite number of frequencies for the function
δ (t).

The dynamics on the attractor are also aperiodic. A power
spectral density plot of u(t) and Ω(t) reveal that a very
large number of frequencies are present clustered into two
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Fig. 11 Maximum Lyapunov exponent for E = 0.1127 for a range of
ε and b. The largest Lyapunov exponent is always positive.

n
0 2000 4000 6000 8000

t n

1.64

1.66

1.68

1.7

1.72

(a)
n × 10 5

0 2 4 6 8

t n

0.0536

0.0537

0.0538

0.0539

0.054

(b)

Fig. 12 Return times tn of the Poincare map P2π for (a) ε = 0.1 and (b)
ε = 0.01 with an energy of E = 0.1127.

regions of the frequency spectrum. These plots for the case
of ε = 0.1 is shown in fig. 13 and for the case of ε = 0.01 in
fig. 14. In fig. 13(a)-(b) the clustering of the power spectrum
for the u(t) and Ω(t) around the frequency zero has many
distinct well defined peaks, which broaden as the frequency
increases, suggestive of quasiperiodic behavior. The power
spectrum away from zero is clustered in a broadband on a
frequency interval that is approximately f ∈ [1.45,1.8]. The
frequency spectra are computed in MATLAB using the f f t
function with an input signal on a time interval 5000s with
time steps of 10−3. As in the computation of the Lyapunov
exponents a pre simulation for 10000s was performed to al-
low the transient dynamics to decay to negligible values.

For a smaller value of ε = 0.01, fig. 14, the frequency
spectra of u(t) and Ω(t) have a narrower the frequency in-
terval [0.56,0.6] in which a very large number of frequencies
are present in a continuous band. At the zero frequency the
frequency spectra has many but distinct peaks, suggestive of
quasiperiodic behavior in this small frequency band.

The power spectrum plots for u(t) and Ω(t) together
with the return times suggest that within a small interval
all frequencies are present demonstrating the aperiodic be-
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Fig. 13 Power spectral density plots for u and Ω . Amplitude S( f ) is
plotted against frequency f . ε = 0.1 and E = 0.1127.

havior. At the same time, the presence of fat peaks in the
frequency spectra for smaller ε (fig. 14) along with the the
smaller difference in the return times of the map ¶2π (fig.
12) suggest a possible quasiperiodic route to chaotic behav-
ior. Such chaotic behavior can be verified numerically for
values of ε as small as 10−5. However the numerics become
unreliable for as the parameetr ε becomes smaller. Similarly
for very large values of ε , exceeding 20, the leading Lya-
punov exponents become smaller than 10−5 suggesting that
the chaotic behavior could disappear in atleast some win-
dows as the parameters of the system vary.

An analytical approach to the possible bifurcations in
the dynamical system (13)-(16) present many challenges be-
cause of the singular nature of ε . In the absence of the inter-
nal rotor, i.e. ε = 0, the dynamical system (13)-(16) reduces
to a two dimensional system. The solution to this case is that
the angular velocity of the sleigh, Ω , decays to zero and the
longitudinal velocity of the sleigh, u, converges to a con-
stant value. For any small but finite ε , the dimension of the
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Fig. 14 Power spectral density plots for u and Ω . Amplitude S( f ) is
plotted against frequency f . ε = 0.01 and E = 0.1127.

system increases to four. This singular nature of ε does not
allow a traditional analysis of bifurcations (if any) of the in-
variant sets of the dynamical system (13)-(16) and the route
to chaos. The numerical analysis however indicates that the
system follows a quasiperiodic route to chaos around ε = 0.

6 Conclusion and Discussion

In this paper we analyzed the dynamics of the Chaplygin
sleigh with a passive internal rotor. We found that the sleigh
exhibits very rich and nonintuitive dynamics with the addi-
tion of an internal degree of freedom. The motion of the clas-
sical Chaplygin sleigh without a passive rotor approaches
a straight line asymptotically. The angular velocity of the
sleigh decays to zero for almost all initial conditions. With
the addition of a passive internal rotor, the motion of the
sleigh becomes chaotic for almost all initial conditions. The
trajectory of the sleigh in the x− y plane is bounded but not
periodic.
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The significant effect that a passive internal degree of
freedom can have on a nonholonomic system inspires ques-
tions of passive mechanical control of robotic systems. The
potential applications are geared towards robots with non-
holonomic constraints which are not purely kinematic. For
instance the trajectory of the Chaplygin sleigh shown in fig.
8 can be used as a basis for the problem of coverage, with-
out additional sensing and control. This is very interesting
because even a small rotor can change the dynamics of the
Chaplygin sleigh from an asymptotic straight line motion in
the plane to the possibly chaotic and ergodic motion in the
plane. The addition of dissipative and stiff elements can pro-
duce limit cycles such as those observed in [7] which could
passively direct the dynamics of the robot to a desired in-
variant state. The ability of switching on or off an internal
degree of freedom could further offer efficient ways to con-
trol the motion of robots with nonholonomic constraints.
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