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Abstract

We propose a novel way of using videos to obtain high
precision object proposals for weakly-supervised object de-
tection. Existing weakly-supervised detection approaches
use off-the-shelf proposal methods like edge boxes or selec-
tive search to obtain candidate boxes. These methods pro-
vide high recall but at the expense of thousands of noisy pro-
posals. Thus, the entire burden of finding the few relevant
object regions is left to the ensuing object mining step. To
mitigate this issue, we focus instead on improving the preci-
sion of the initial candidate object proposals. Since we can-
not rely on localization annotations, we turn to video and
leverage motion cues to automatically estimate the extent of
objects to train a Weakly-supervised Region Proposal Net-
work (W-RPN). We use the W-RPN to generate high preci-
sion object proposals, which are in turn used to re-rank high
recall proposals like edge boxes or selective search accord-
ing to their spatial overlap. Our W-RPN proposals lead to
significant improvement in performance for state-of-the-art
weakly-supervised object detection approaches on PASCAL
VOC 2007 and 2012.

1. Introduction
Object detection has seen tremendous progress in recent

years [11, 23, 16, 22]. We now have detectors that can accu-
rately detect objects in the presence of severe clutter, scale
changes, viewpoint/pose changes, occlusion, etc. However,
existing state-of-the-art algorithms require expensive and
error-prone bounding box annotations for training, which
severely limits the number of categories that they can be
trained to recognize.

To tackle this issue, researchers have proposed to use
only weak-supervision in which image-level object pres-
ence labels (like ‘dog’ or ‘no dog’) are provided rather than
bounding box annotations [33, 6, 32, 27, 17, 25, 1, 28, 34].
In this setting, object detection is often formulated as mul-
tiple instance learning and solved using non-convex op-
timization in which the predicted object localizations on
the training set and model learning are iteratively updated.

(a) Weakly-labeled image (b) Edge box proposals (c) Our proposals

Figure 1. Given a weakly-labeled image (a), standard weakly-
supervised object detection methods start by generating hundreds
to thousands of object proposals (b). The ensuing object localizer
must then perform the extremely difficult task of mining the one or
two relevant object regions out of all the noisy proposals. We in-
stead generate a few high-precision proposals (c), using a weakly-
supervised region proposal network (W-RPN) trained without any
bounding box annotations.

Most existing methods start off by using an off-the-shelf
object proposal method like selective search [31] or edge
boxes [37] to generate thousands of candidate object pro-
posals (Fig. 1 (b)). They then perform the extremely diffi-
cult data mining task of localizing the few relevant object
regions among the thousands of noisy proposals in each im-
age (i.e., akin to finding a needle in a haystack). Since there
is no supervisory signal other than the image class label,
this process often results in inaccurate initial object bound-
ing box guesses which either correspond to only an object
part or include background. Ultimately, these errors lead to
inaccurate object detectors.

Rather than creating yet another approach that tries to
mine through the thousands of noisy candidate object pro-
posals to find the few relevant regions, we instead pro-
pose to take a step back and improve the initialization step:
specifically, to generate a much smaller yet reliable initial
candidate object proposal set such that we can turn an ex-
tremely difficult data mining problem into a more manage-
able one (Fig. 1 (c)). In principle, this sounds straight-
forward: create a new object proposals method that pro-
duces higher precision compared to existing methods. How-
ever, the key challenge is to create such an algorithm in the
weakly-supervised setting without any bounding box anno-
tations.

To address this challenge, we turn to weakly-labeled



video, as motion-based segmentation can often provide ac-
curate delineations of objects without any localization an-
notation. Furthermore, even when trained in the fully-
supervised setting, today’s object proposal approaches gen-
erate hundreds of object proposals to ensure high recall
e.g., [23]—which is fine when ground-truth bounding box
annotations are provided—but would still be too many for
our weakly-supervised object localization setting. Thus, in-
stead of optimizing for recall, we instead optimize for pre-
cision; i.e., we aim to generate∼10 candidate proposals per
image while maximizing the chance that the relevant object
regions are present in them, which will make the job of the
ensuing mining step much easier. But in order to detect all
objects, the proposals also need to have high recall, which
with ∼10 proposals would not be attainable. We therefore
use our proposals to rank existing high recall object pro-
posals (e.g., computed using edge boxes [37] or selective
search [31]), based on their spatial overlap. To train the
weakly-supervised object detector, we formulate a princi-
pled end-to-end learning objective that combines: (1) min-
ing class-relevant object regions and (2) ranking of object
proposals.

1.1. Contributions

We have three main contributions: 1) Unlike existing
weakly-supervised object detection approaches, we focus
on improving the initial object proposal step to generate a
few high precision candidate regions using weakly-labeled
videos. To also ensure high recall, we use spatial overlap
with our proposals to rank the (noisy) high recall proposals
of methods like edge boxes or selective search. 2) We for-
mulate the above two objectives with a principled learning
objective that can be optimized end-to-end. 3) Our propos-
als lead to significant improvement in the performance of
state-of-the-art weakly-supervised detection methods on the
PASCAL VOC datasets. Our approach generalizes to dif-
ferent weakly-supervised approaches [1, 28] and network
architectures. Code and models are available at https:
//github.com/kkanshul/w-rpn

2. Related work
Weakly-Supervised object detection. In contrast to
fully-supervised methods [11, 23, 16, 22], weakly-
supervised methods [33, 6, 26, 27, 5, 25, 17, 1, 28, 34]
alleviate the need for expensive bounding box annota-
tions, which make them more scalable. However, exist-
ing weakly-supervised methods often suffer from the com-
mon drawback of localizing only the most discriminative
object part or including co-occurring background regions.
This is largely due to these methods solving the very dif-
ficult task of mining a small number of true object regions
from thousands of noisy proposals per image. In our work,
we focus our efforts on finding a few but highly-precise

object proposals. We demonstrate that using these pro-
posals to rank the proposals of existing methods [37, 31]
can lead to significant improvements in the performance of
weakly-supervised object detectors. While most weakly-
supervised detection algorithms learn using images, some
also leverage videos, similar to our approach. In particu-
lar, [20] learns a static image object detector using weakly-
labeled videos but is limited by the domain gap between
images and videos. To overcome this, [25] instead trans-
fers tracked boxes from weakly-labeled videos to weakly-
labeled images as pseudo ground-truth to train the detec-
tor directly on images. However, the transferring is done
through non-parametric nearest neighbor matching, which
is slow and requires highly-similar video instances for each
image instance. In our work, we propose to instead train a
weakly-supervised region proposals network (W-RPN) us-
ing videos, which (in theory) can generate candidate boxes
even for loosely-similar image instances. In practice, we
find that our W-RPN leads to significant improvement in
detection performance over [25].

Learning object proposals. Object proposal methods
aim to generate candidate object regions for an ensuing de-
tector or segmentation model; see a great survey by [13].
Early models based on hand-crafted features [2, 7, 4] as well
as recent CNN based models [23, 15, 19] require bounding
box or segmentation annotated data. Weakly-supervised ob-
ject detection methods typically use selective search [31] or
edge boxes [37], since these methods do not require bound-
ing box annotations. These proposals have high recall but
are noisy in nature. We show that our proposals—which
also do not require bounding box annotations but are opti-
mized for precision—can help a weakly-supervised detec-
tor down-weight the noisy proposals while focusing on the
most relevant ones. Recent work [29] also proposes to learn
a weakly-supervised region proposal network. But unlike
our approach, it only relies on images and does not make
use of videos. Furthermore, it optimizes for recall rather
than precision (∼2000 proposals generated per image).

3. Approach

We are given an image dataset I = {I1, . . . , IN}, in
which each image is weakly-labeled with object presence
labels (e.g., image contains a “dog”). We are also given
a video collection V = {V1, . . . , VM}. In some of these
videos, we have video-level labels (analogous to image-
level labels) and in others, we have no labels whatsoever.

There are three main steps to our approach: (1) learning
a weakly-supervised region proposal network (W-RPN) on
video collection V ; (2) using the trained W-RPN to gener-
ate a few high-precision proposals in the training images in
I; (3) using those proposals to bias the selection of relevant
object regions when training a weakly-supervised object de-

https://github.com/kkanshul/w-rpn
https://github.com/kkanshul/w-rpn
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Figure 2. (a) Framework for training a weakly-supervised region proposal network (W-RPN) using videos. Given frames from a video

(Vm), we first compute segments using motion cues, and then rescore them according to an automatic measure of segment quality. High

scoring motion segments are used to compute pseudo ground-truth boxes to train the W-RPN. (b) Once trained, the W-RPN can be used

to generate high precision proposals (O) for an input weakly-labeled image (In). These high precision proposals are used to rank the high

recall proposals of edge boxes or selective search (R) according to their spatial overlap during the training of a weakly-supervised object

detector.

tector. Fig. 2 shows our entire framework.

3.1. Learning a W-RPN using videos

The first step is to train a weakly-supervised region pro-

posal network (W-RPN) without any bounding box anno-

tations. For this, we make use of motion cues in video to

automatically identify the extent of objects.

3.1.1 Motion segmentation in videos

It is well-known that in videos, motion cues can be used

to segment objects without any supervision. Thus, to train

our W-RPN without any bounding box annotations, we

first generate motion segments in each video, and then

treat the resulting segmentations as pseudo ground-truth

(Fig. 2 (a)). A similar idea has been explored previously

for self-supervised feature learning [18] and for transferring

boxes from videos to images for weakly-supervised detec-

tion [25]. However, to our knowledge, this idea has not

been explored for learning object proposals in the weakly-

supervised setting.

We start by generating unsupervised motion segments in

a video. We adapt the unsupervised variant of the Non-

Local Consensus Voting (NLC) video segmentation ap-

proach by [18]1. Briefly, NLC computes a per-pixel motion

saliency in which pixels that move differently from their

1The difference between this and the original NLC [10] is that [10]

relies on an edge detector trained on labeled edge images, whereas the

implementation of [18] that we use is completely unsupervised.

surroundings are considered salient. The per-pixel saliency

scores are averaged over superpixels, and then propagated

to other frames via a nearest neighbor voting scheme where

the neighbors are determined by appearance and spatial po-

sition features. We refer the reader to [10] for more details.

We apply NLC on the YFCC100m video dataset [30] and

on the YouTube-Bounding Boxes video dataset [21]. For

the latter, we apply it only on videos that have the same

weak-labels as our weakly-labeled images in I .

Given the motion segmentations produced by NLC, we

then train a deep convolutional motion segmentation net-

work, similar to [18]. However, in [18], the network is

based on the AlexNet architecture, and the final output layer

is a fully-connected layer that produces a motion predic-

tion for a fixed grid size (56 × 56). We instead use the

Pyramid Scene Parsing Network [35] which has a fully-

convolutional output layer rather than a fully-connected

one. This allows us to take in arbitrary resolution video

frames, which we find to produce more reliable motion seg-

mentations.

3.1.2 Rescoring of motion segments

Although the motion segmentation network produces good

segmentations in frames in which the objects are salient in

terms of motion, it does not perform well on frames that

are either very blurry or noisy due to compression artifacts.

Thus, to automatically choose the good frames on which to

train our W-RPN, we perform the following operations.



First, we train an image classifier on our weakly-labeled

images I using their corresponding weak object labels, and

then fire the classifier on each video frame. We take the

frames that produce the highest classification scores (in our

experiments, we take the top 1000 frames per category-of-

interest) for the corresponding object classifier. This not

only chooses frames that have relevant objects that we ul-

timately care about, but it also tends to choose image-like
frames, which can be beneficial when we apply our W-RPN

on images since these video frames will have a smaller do-

main difference to images and thus will generalize better.

Second, for each selected frame, we score how well

the object-of-interest is segmented. Since we do not have

ground-truth, we cannot know for sure how good the seg-

mentation actually is. However, we can assume that a frame

in which the object “stood-out” in terms of motion with re-

spect to its surrounding background would likely have re-

sulted in a more reliable motion segmentation. To this end,

we sort the frames according to the outlier score proposed

in [12]. Specifically, for each frame with per-pixel mo-

tion prediction scores, we treat as an outlier any pixel p
whose motion prediction score mp is either > 1.25 × Q1
or < 1.25×Q3, where Q1 and Q3 denote the first and third

quantile motion score, respectively. Then the outlier score

mf for frame f is computed by summing the outlier mo-

tion scores and normalizing by the sum of all pixel motion

scores in the frame: mf =
∑

p∈Outlier(mp)/
∑

p(mp).
If the motion prediction scores are uniformly distributed,

the frame outlier score will be low, whereas if the motion

prediction scores have a peaky distribution, the frame out-

lier score will be high. We choose the top 500 frames per

category-of-interest with the highest scores. Figure 3 shows

some video frames and corresponding thresholded motion

masks with high and low outlier scores.

3.1.3 Training W-RPN

We train our W-RPN on the final selected frames. For each

frame, we threshold the motion prediction mask to produce

a binary segmentation image, and fit a tight bounding box to

the largest connected component. We then treat each box as

pseudo ground-truth to train the model. Our network archi-

tecture is identical to that of the RPN in Faster-RCNN [23]:

it produces a binary foreground/background classification

score for each candidate proposal and performs bounding

box regression. To further refine our proposals, we also

pass them through an additional bounding-box regressor

module. (We found this extra refinement step to produce

tighter boxes.) We apply NMS for the initial generated

boxes, but do not perform NMS for the final refined out-

puts. This is mainly because in the weakly-supervised set-

ting, our pseudo ground-truth boxes cannot be completely

trusted; thus, we do not want to suppress a box just because

Figure 3. Visualization of thresholded motion masks for video

frames with high vs. low outlier scores. The frames on the left

whose motion masks have higher outlier scores have more ac-

curate motion masks compared to the frames on the right with

lower outlier scores. We use the outlier score to decide the reli-

able frames for training the W-RPN.

there is another box nearby with a higher score since the

lower scoring box could in fact be a better proposal for the

object. Although this produces some redundant boxes (as

shown in Fig. 1 (c)), overall, we find that this leads to higher

precision.

3.2. Generating high precision proposals on weakly-
labeled images

We next use our trained W-RPN to generate high preci-

sion candidate object regions in the weakly-labeled image

set I .

Since we care more about precision than recall, we pur-

posely take only a handful of confident object proposals in

each image. To maximize the chance that those proposals

are fired on the relevant objects, we take the image classifier

from above, and produce a class activation map (CAM) [36]

for the corresponding class for each image. CAM produces

high-scores for regions that contributed to the final classifi-

cation; i.e., regions that are relevant to the class. We mask

out very low scoring regions, and fire the W-RPN on the

masked image. To account for any noise in the CAM pre-

dictions, we also fire the network on the original image. Our

final candidate list of proposals for an image is the top-k
(where k ≈ 10) proposals computed on the original image

and the masked image.

3.3. Training a weakly-supervised object detection
and ranking network

Now that we have a set of high precision object propos-

als in each image in I , the final step is to train a weakly-

supervised detector. Our proposals can be incorporated

into any existing weakly-supervised approach, but in this

work, we build upon the Weakly-Supervised Deep Detec-

tion Network (WSDDN) [1] as many recent state-of-the-art



approaches use it as initialization.2 Fig. 2 (b) depicts how
we use our proposals for training a weakly-supervised ob-
ject detector.

WSDDN takes p proposals of a training image as input
and outputs the probability for each of them to belong to C
classes. By minimizing a binary log loss summed over each
class, it learns to detect objects while being trained for the
image classification task:

Lcls(In) = −
C∑

j=1

cj log(sj) + (1− cj) log(1− sj), (1)

where sj is the score for class j obtained by summing the
class probabilities across all proposals in image In and cj is
a binary label whose value is 1 if In contains class j.

Compared to the standard setting of having thousands of
object proposals, in our setting, we only have a few (k) high-
precision proposals for each image. Although this makes
the job of WSDDN much easier, it will miss a lot of objects
in the dataset since the proposals have low recall. To allevi-
ate this issue, instead of using our proposals directly, we use
them to rank the region candidates of an existing proposal
approach that has high recall.

Concretely, let R = {r1, r2, ...., rp} be the p candi-
date regions generated using a high recall proposals method
like edge boxes [37] or selective search [31], and O =
{o1, o2, ...., ok} be our k proposals for image In. We would
like to modify the WSDDN objective such that it not only
selects relevant object regions in R that belong to a partic-
ular class cj , but also enforces that those selected regions
have high spatial overlap to relevant object proposals in O.
To this end, we first compute a class-specific priority score
for each region ri and label cj pair:

P (ri, cj) = cj · IoU(ri, oi∗) · sj(oi∗ |WO), (2)

where IoU denotes spatial intersection-over-union, and
oi∗ = argmaxok∈O IoU(ri, ok) is the highest overlapping
proposal in O for ri. sj(oi∗ |WO) is the score for class
cj for proposal oi∗ which is obtained by first training WS-
DDN using only our proposals in O. Since an image can
be highly-cluttered and contain multiple objects, not every
proposal in O will be relevant to class cj . Thus, this class
score modulates the priority so that only those regions in R
that have high overlap to class-relevant proposals in O end
up receiving high priority. Finally, multiplying the prior-
ity by cj ensures that only the classes present in the image
produce a non-zero priority score. The priority scores are
normalized for every present class to sum to 1.

2To demonstrate the generalizability of our approach, we also use our
proposals with OICR [28], a recent state-of-the-art weakly-supervised de-
tection method based on WSDDN.

Using the class-specific priority scores, we then formu-
late the following rank loss:

Lrank(In) = −
C∑

j=1

∑
ri∈R

P (ri, cj) · log(sj(ri|WR)), (3)

where sj(ri|WR) is the score for class cj for region ri,
computed by re-training WSDDN using only the regions
in R. This ranking loss is inspired by [3] and enforces
that the above class specific priority order for the regions
in R is maintained. Specifically, this loss function takes
two lists of the scores and minimizes the cross-entropy be-
tween them. In our case, for regions ri in R, we have two
lists of scores in the form of class specific priority P (ri, cj)
and class score sj(ri|WR). Hence, this loss will enforce
the class scores of the ri regions to follow the ordering of
the class-specific priority scores. As a result, over training,
any ri with a high class-specific priority score will likely
end up getting a high class score. Similarly, any ri with a
low class-specific priority score will likely get a lower class
score.

Our final loss is the combination of the classification loss
and rank loss:

Lfinal(In) = Lcls(In) + λ · Lrank(In), (4)

where λ balances the terms.
Ultimately, the rank loss Lrank influences which regions

in R should get high class probability while minimizing the
classification loss Lcls. As a result, WSDDN learns to pro-
vide higher class probabilities to proposals ri in R which
have high overlap with our proposals in O; i.e., those that
are more likely to contain the whole object. Due to this,
during testing, we only need the R candidate regions and
our proposals O are no longer needed, as the network will
have learned to incorporate the class-specific priorities.

4. Results
We quantitatively measure three different aspects of our

W-RPN proposals: 1) how precisely they cover the rele-
vant objects, 2) improvement in weakly-supervised object
detection performance by using them, and 3) generalizabil-
ity across different network architectures and approaches.
We also show qualitative detection results.

4.1. Datasets

We evaluate on the PASCAL VOC 2007 [8] dataset,
which is the most widely used dataset for weakly-
supervised object detection. It consists of 20 object cate-
gories. For training, we use the trainval set (5011 images)
and evaluate on the test set (4952 images). We also compute
results on PASCAL VOC 2012 [9]. We again train using
the trainval set (11,540 images) and evaluate on the test set
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Figure 4. Average IoU of our top-n W-RPN proposals (red) and
edge box proposals (blue) with the ground-truth boxes. Our top
proposals localize the objects much more accurately.

(10,991 images). For evaluation, a predicted box is correct
if it has more than 50% IoU with the ground-truth box. We
compute Average Precision (AP) on the test set, and Cor-
Loc on the trainval set which measures the percentage of
training images of a class for which the most confident de-
tected box has at least 50% overlap with at least one of the
ground-truth instances.

4.2. Implementation details

We randomly choose 500 video clips per class from the
YouTube-Bounding Boxes video dataset [21] to train the
motion segmentation network. There are only 14 overlap-
ping classes between YouTube-Bounding Boxes and PAS-
CAL VOC 2007, so for the remaining 6 PASCAL classes,
we download videos (500 for each class) from YouTube.
We train the image classifier on the PASCAL dataset to
choose good video frames for training the W-RPN. To en-
sure diversity, we add constraints that the selected frames
are at least 3 seconds apart from one another and at max 5
frames per video are chosen. For motion prediction, we use
Pyramid Scene Parsing Network [35] with Resnet34 and di-
lated convolution for the encoder, and pyramid pooling with
bilinear upsampling for the decoder.

We threshold the motion prediction mask at 0.05 motion
score to create a binary mask. For W-RPN training, any
proposal with IoU greater than 0.7 with a pseudo ground-
truth box is considered positive, and any proposal with IoU
less than 0.3 is considered negative. We use VGG16 [24]
as the base architecture for the W-RPN. For Lrank, we only
consider regions in R whose maximum IoU with our pro-
posals (O) is greater than 0.7 or below 0.3 but greater than
0. This avoids providing any priority to uncertain proposals
in R which have neither too high nor too low overlap with
our proposals in O. We also do not want to assign prior-
ity to a region which does not overlap with our proposals at
all because O has very few proposals and it is possible that
we could have missed some objects. For all experiments,

(a) Weakly-labeled 
image

(b) Edge boxes 
proposals

(d) Our top-10 
proposals

(c) Edge boxes 
top-10 proposals

Figure 5. Visualization of our and edge boxes top-10 proposals.
Red boxes denote the proposal. Out proposals (d) localize the ob-
ject tightly more often than the highest scoring edge box proposals
(c). Our proposals are used to rank the edge boxes proposals (b).

we set k = 10; i.e., top-10 proposals (O) for every image
in I . For training WSDDN [1] and OICR [28], we use the
publicly available codes and follow their paper protocols.

4.3. Precision of W-RPN proposals

We first measure how well our W-RPN proposals (O)
wholly contain the object-of-interest compared to edge
box [37] proposals (R). For both our approach and edge
boxes, we take the highest scoring proposal in each training
image, and then sort the resulting proposals in descending
order of their score. For each proposal, we then compute its
IOU with the highest-overlapping ground-truth box. Fig. 4
shows the average IoU for the top-n proposals (where n
varies from 1 to number of training images). We can see
that our W-RPN proposals (red) have a much higher aver-
age IoU with the ground-truth boxes compared to the edge
box proposals (blue). This indicates that our top proposals
are much more precise and more likely to fully contain the
object-of-interest. For 18 out of 20 classes (including both
moving and stationary objects), our proposals get much bet-
ter average ground-truth IoU compared to edge boxes; see



Method aero bike bird boat bottl bus car cat chair cow table dog horse mbk per plan she sofa train tv mean
Track and Transfer [25] 53.9 - 37.7 13.7 - - 56.6 51.3 - 24.0 - 38.5 47.9 47.0 - - - - 48.4 - -

WSDDN [1] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
WSDDN + W-RPN (Ours) 55.9 52.6 27.4 20.7 7.8 63.6 54.8 55.7 4.9 37.6 35.6 59.4 52.0 54.8 19.6 12.9 31.9 44.2 57.4 39.2 39.4

Table 1. Detection mAP of WSDDN [1] with and without our W-RPN proposals on PASCAL VOC 2007 test set. Using our proposals with
WSDDN results in a significant boost in detection performance (second row vs. third row). We also compare to ‘Track and Transfer’ [25]
(first row), which like our approach also makes use of weakly-labeled videos to improve detection in weakly-labeled images. For most of
the 10 classes that ‘Track and Transfer’ reported results on, our approach outperforms it by a big margin.

supplementary material for per-class IoU curves. The rea-
son why our W-RPN can work well even for stationary ob-
jects is that in the videos that the W-RPN is trained on, as
long as the background is changing with respect to the fore-
ground stationary object e.g., due to camera motion, it can
be segmented out.

In Fig. 5, we visualize the top-10 proposals of our W-
RPN vs. edge boxes. In most cases, our proposals tightly
fit the object-of-interest whereas edge box proposals fre-
quently localize object parts or focus on the background.
For example, in the third row, our proposals tightly fit the
dog’s body whereas edge box proposals focus on the dog’s
face. Overall, our proposals have much higher precision
than edge boxes, and can significantly improve weakly-
supervised object detection performance as we show next.

4.4. Quantitative object detection results

We next evaluate the impact of our W-RPN proposals
for weakly-supervised object detection. As described in the
approach, we build upon the WSDDN [1] detector as it is
the basis of many recent weakly-supervised approaches [14,
28, 34]. In Table 1, we show the results of training WSDDN
(base model VGG L, which is same as VGG16) using edge
boxes only (WSDDN) vs. training WSDDN using our W-
RPN proposals to rank edge box proposals (WSDDN + W-
RPN).

Our proposals give a significant boost of 4.6% in mAP.
The boost is especially large for objects with distinct dis-
criminative parts (e.g., the face) like person, cat, horse, and
dog. For these objects, with thousands of noisy object pro-
posals, the weakly-supervised detector easily latches onto
the most discriminative part. In contrast, our W-RPN pro-
posals down-weight such noisy proposals, which in turn
leads to significant improvement in detection performance.

We also compare our results with ‘Track and Trans-
fer’ [25] which like our approach, also uses weakly-labeled
videos to improve weakly-supervised object detection. In
Table 1, we show our results for the 10 classes reported by
‘Track and Transfer’. Again, we obtain a significant boost
of 5.7% mAP for these 10 classes (47.6 vs. 41.9). Unlike
our approach, ‘Track and Transfer’ relies on a noisy object
proposal method like selective search [31], and transfers
tracked boxes from videos to images using non-parametric
nearest neighbor matching. This is not only slow, but also

VOC 2007 VOC 2012
Method CorLoc mAP CorLoc mAP

OICR [28] 60.6 41.2 62.1 37.9
OICR + LP [29] 63.8 45.3 64.9 40.8

OICR + W-RPN (Ours) 66.5 46.9 67.5 43.2
Table 2. OICR [28] performance with and without our W-RPN
proposals. Using our W-RPN proposals, OICR gets a signifi-
cant boost on PASCAL VOC 2007 and 2012. We also outper-
form OICR + LP [29] which also learns proposals in the weakly-
supervised setting but does not make use of videos.

less likely to generalize to novel instances as the direct
matching requires a very similar video instance for each im-
age instance.

In order to evaluate the importance of Lrank, we tried
simply combining our top-10 proposals with edge box pro-
posals when training WSDDN (instead of re-ranking the
edge boxes with Lrank). This baseline only gives a minor
boost of 0.6% over using only edge box proposals (WS-
DDN), which shows that re-ranking the edge box proposals
with our proposals is important. Lastly, our approach does
not require computing Lrank during inference; i.e., as men-
tioned in Sec. 3.3, we do not need to compute our proposals
during testing since the detector will have learned to highly
score the high recall object proposals that are more likely
to contain the whole object. Hence, it does not change the
runtime speed of weakly-supervised detection methods like
WSDDN and OICR [28].

4.5. Generalizability of W-RPN proposals

We measure the generalizability of our W-RPN pro-
posals across different network architectures, weakly-
supervised approaches, and datasets. We first measure
the improvement obtained by our proposals for WSDDN
with three different base network architectures (S:small,
M:medium, and L:large) [1]. Using our proposals with WS-
DDN, we obtain a significant boost of 3.8%, 4.1%, and
4.6% for the S, M, and L model, respectively. This shows
that our proposals can generalize across different network
architectures.

Next, we evaluate how our proposals perform with a
different weakly-supervised detection method. Specifi-
cally, we take OICR [28], which to our knowledge is the
best performing weakly-supervised detection approach with
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Figure 6. Detection results of WSDDN with (green box) and without (red box) our proposals. Our proposals often lead to better detections
as the network learns to detect the whole object rather than focusing only on a discriminative part or co-occurring context. In these
examples, by using our proposals, WSDDN is able to detect the full extent of cat, dog, and person whereas it only focuses on their faces
without our proposals.

publicly-available code. As OICR is based on WSDDN, we
apply Lrank with OICR in the same way as with WSDDN.
We use selective search proposals and VGG16 [24] as the
base model, following the original OICR paper. Table 2 left
shows that for PASCAL VOC 2007 [8], we obtain a sig-
nificant boost of 5.7% mAP and 5.9% CorLoc using our
W-RPN proposals (OICR + W-RPN) over OICR with only
selective search proposals (OICR). This shows that our pro-
posals are not tied to a specific method, and can generalize
to different weakly-supervised approaches.

In Table 2 right, we also measure our performance on
the PASCAL VOC 2012 dataset [9]. We show the perfor-
mance of OICR with and without our proposals. We can
see that our approach provides a significant boost of 5.4%
and 5.3% for CorLoc and mAP, respectively. This shows
that our approach generalizes across different datasets. We
also compare to the approach of [29] (OICR + LP), which
also trains a weakly-supervised region proposal network but
only relies on images. We significantly outperform OICR +
LP which shows that using motion cues in videos can lead to
higher-quality proposals for weakly-supervised detection.

4.6. Qualitative results

Finally, Fig. 6 shows example detections of WSDDN [1]
with (green box) and without (red box) our proposals. With-

out our proposals, WSDDN tends to focus only on the dis-
criminative part of an object (like the head of a person and
cat) rather than the entire object. Also, in the cases of air-
plane and car, it localizes the co-occurring background. In
contrast, our proposals bias the detector to downweight the
noisy regions and to instead focus on full object regions.

5. Conclusion

We presented a novel method of using motion infor-
mation in weakly-labeled videos to learn high precision
object proposals. The proposals are used to rank can-
didate object regions of existing high recall proposal ap-
proaches like edge boxes and selective search. Our experi-
ments showed that incorporating our proposals into existing
weakly-supervised detection approaches lead to substantial
improvement in detection performance. We hope this work
will inspire further work on generating good object propos-
als without strong supervision.
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