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1. Introduction

Nonlinear optics is the study of the behavior of light in nonlinear media. This field has developed into a significant
branch of physics since the introduction of intense lasers with high peak powers. In nonlinear media, the material response
depends nonlinearly on the optical field, and many interesting physical phenomena, such as frequency mixing and sec-
ond/third-harmonic generation have been observed and harnessed for practical applications. We refer to classical textbooks
[4,6,38] for a more detailed review of the field of nonlinear optics.

Our interest here is in the development of novel numerical schemes for the Maxwell’s equations in nonlinear optical me-
dia. Relative to the widely used asymptotic and paraxial wave models derived from Maxwell’s equations, such as nonlinear
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Schrodinger equation (NLS) and beam propagation method (BPM) [4,6], simulations of the nonlinear Maxwell’s system in
the time domain are more computationally intensive. However, these simulations have the advantage of being substantially
more robust because they directly solve for fundamental quantities, the electromagnetic fields in space and time. These sim-
ulations also avoid the simplifying assumptions that lead to conventional asymptotic and paraxial propagation analyses, and
are able to treat interacting waves at different frequencies directly [29]. Recent optics and photonics research has focused on
phenomena at smaller and smaller length scales or multiple spatial scales. For such phenomena simulating the full Maxwell
PDE models is important in adequately capturing useful optical effects [21,29,42].

When Maxwell’s equations are considered to model the electromagnetic (EM) waves propagating through a nonlinear
optical medium, the medium response is described by constitutive laws that relate the electric field E and the electric flux
density D through the polarization P of the medium. In this work, we focus on a macroscopic phenomenological description
of the polarization, which comprises both linear and nonlinear responses. Specifically, the linear response is modeled by a
single resonance Lorentz dispersion, while the nonlinear response is cubic and incorporates the instantaneous Kerr effect
and the delayed nonlinear Lorentz dispersion called Raman scattering. Within this description, we will follow the auxiliary
differential equation (ADE) approach, where the linear and nonlinear Lorentz dispersion is represented through a set of ODEs,
describing the time evolution of P (hence of D) forced by E, appended to Maxwell’s equations. An alternative representation
is via a recursive convolution method, where D is computed from E through a time convolution integral [41].

In the literature, finite difference time domain (FDTD) based, finite element (FEM) based, pseudospectral based methods,
finite volume (FV) based, among others, are available for the integration of the full Maxwell’s equations in nonlinear media,
along with appended ODEs for the material response. The Yee scheme [44] is an FDTD method for Maxwell’s equations that
has long been one of the gold standards for numerical simulation of Maxwell’s equations in the time domain, especially for
linear problems [41]. Maxwell’s equations in a linear Lorentz medium with a nonlinear Kerr response are investigated in
[26,40], while in [20], additional effects due to Raman scattering are studied through a 1D FDTD analysis. More references
for linear and nonlinear Lorentz dispersion, can be found in [5,23,39] for the 1D case, and in [18,30,45] for 2D and 3D cases.
Yee based FDTD approaches result in second order schemes which accumulate significant errors over long time modeling of
wave propagation [13,14]. While higher order FDTD methods can alleviate this issue, they can be cumbersome in modeling
complex geometries. On the other hand, though the FEMs are well suited for modeling complex geometries, they have not
been well developed for nonlinear Maxwell models. FEM analysis for some nonlinear models can be found in [17]. In [43]
a pseudospectral spatial domain (PSSD) approach is presented for linear Lorentz dispersion and nonlinear Kerr response,
and in [31] optical carrier wave shock is studied using the PSSD technique. FV based methods for nonlinear Kerr media
are addressed in [2,15] in which the Maxwell-Kerr model is approached as a hyperbolic system and approximated by a
Godunov scheme, and a third order Roe solver, respectively, in one and two spatial dimensions.

In this work, we use high order discontinuous Galerkin (DG) methods for the spatial discretization of our nonlinear
Maxwell models. This is motivated by various properties of DG methods, including high order accuracy, excellent dispersive
and dissipative properties in standard wave simulations, flexibility in adaptive implementation and high parallelization, and
suitability for complicated geometry (e.g., [11,25]). DG methods differ from classical finite element methods in their use
of piecewise smooth approximate functions, while inter-element communication is achieved through the use of numerical
fluxes, which are consistent with the physical fluxes and play a vital role in accuracy, stability, energy conservation, and
computational efficiency. For the nonlinear Maxwell models that we consider, with the numerical fluxes chosen to be either
central or alternating, the solutions to the semi-discrete DG methods satisfy an energy equation just as the exact solutions
do, hence the methods are energy stable, even in the presence of both the Kerr and Raman nonlinear effects. Another
dissipative flux, inspired by the upwind flux for Maxwell’s equations in a linear nondispersive dielectric [24], called “upwind
flux” in this paper, is also considered with the respective energy stability established. For the semi-discrete methods with
all three types of numerical fluxes, error estimates are carried out under some additional assumptions on the strength of
the nonlinearity in the underlying model.

In addition to the error estimates, the nonlinearity in the model poses challenges to the design of fully discrete schemes
with provable energy stability. As one major contribution, we propose in this work a novel strategy to discretize the nonlin-
ear terms within the commonly used second-order leap-frog and implicit trapezoidal temporal discretizations. The resulting
fully discrete methods are proved to be stable. More specifically, the method with the modified leap-frog time discretization
is conditionally stable under a CFL condition, which is the same as the one for Maxwell’'s equations without Kerr, linear
and nonlinear Lorentz dispersion; while the fully implicit method with the modified trapezoidal temporal discretization is
unconditionally stable. In both cases, we find it important, at least from the theoretical point of view, to discretize the ODE
part of the system implicitly. To our best knowledge, the temporal discretizations that are adapted to nonlinear models and
with provable stability are not yet available. In the present work, the methods and numerical verification are presented for
the model in one dimension, and their extension to higher dimension will be explored in a separate paper.

DG methods have grown to be broadly adopted for EM simulations in the past two decades. They have been developed
and analyzed for time dependent linear models, including Maxwell’s equations in free space (e.g., [9,12,24]), dispersive me-
dia (e.g., [19,28,33,37]), as well as metamaterials (e.g., [8,34-36]). However, there exists only limited study for DG methods
for nonlinear Maxwell models. For example, in [3,16], Kerr nonlinearity is investigated, where the entire Maxwell PDE-
ODE system is cast as a nonlinear hyperbolic conservation law, for which DG methods have long been known for their
success. A relaxed version of the Kerr model, called the Kerr-Debye model, was examined in [27], where a second-order
asymptotic-preserving and positivity-preserving DG scheme is designed and analyzed.
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The rest of this paper is organized as follows. In Section 2, Maxwell’s equations in an optical medium with a non-
linear dispersive response are introduced. In Section 3, DG spatial discretizations are formulated, where energy stability
is established for the resulting semi-discrete schemes. Error estimates are further carried out in Section 4. In Section 5,
temporal discretizations are presented within the framework of the second-order leap-frog and trapezoidal method, with
a novel treatment of the nonlinear terms in the models aimed at obtaining energy stability for the fully discrete schemes.
The performance of the overall algorithms are demonstrated in Section 6 through numerical simulations of the propagating
kink and antikink waves, and third harmonic generation in soliton propagation. Finally, concluding remarks are made in
Section 7.

2. Physical model: Maxwell’s equations and polarization

We begin with the Maxwell’s equations, that govern the time evolution of the electric field E and magnetic field H in a
non-magnetic nonlinear optical medium,

#B+V xE=0, in(0,T) x 2, (2.1a)
#D+Js—V xH=0, in (0, T) x £, (2.1b)
V.B=0,V-D=p, in(0,T) x £, (21¢)

along with initial and boundary data in the domain © c R, d = 1,2, 3. The variable Js is the source current density, and
p is the charge density. The electric flux density D and the magnetic induction B are related to the electric and magnetic
field, respectively, via the constitutive laws

D = €o(€xE+P), B=oH, (2.2)

where P is the polarization. The dielectric parameters are €, the electric permittivity of free space, €., the relative electric
permittivity in the limit of the infinite frequency, and (o, the magnetic permeability of free space. We will assume here
that all model parameters are constant, and the material is isotropic. The term €peoE captures the linear instantaneous
response of the material to the EM fields.

To model the linear and nonlinear dispersion in the material we use the auxiliary differential equation (ADE) approach
as presented in [20,41]. A thorough discussion of the modeling of Raman and Kerr effects in optical (silica) fibers can be
found in [1]. The linear (L) delayed or retarded response of the material to the EM field is captured in the polarization, P,
via a linear single resonance Lorentz response, which, in the form of a second order ODE, is given as,

a%pL 1 9Pt
delay delay 2pl 2
a2 + P + WyPgelay = @pE. (2.3)

Here wp and w), are the resonance and plasma frequencies of the medium, respectively, and 771 is a damping constant. In
addition, a)‘zJ = (&5 — eoo)a)cz), with € as the relative permittivity at zero frequency.

For pulse widths that are sufficiently short (for e.g., shorter than 1 pico-second (ps) for Silica) [26], the nonlinear re-
sponse has an instantaneous as well as a delayed component. For the nonlinear (NL) response of the medium, we will
consider a cubic Kerr-type instantaneous response, and a retarded Raman molecular vibrational response called Raman scat-
tering. The Kerr effect is a phenomenon in which the refractive index of a material changes proportionally to the square of
the applied electric field. Raman scattering arises from the electric field induced changes in the internal nuclear vibrations
on time scales ~1 to 100 femto-seconds (fs) [22], and is modeled by a nonlinear single resonance Lorentz delayed response.
The two nonlinear responses are given as

PV =P, + P, = a(1 — O)E[E]” +af QE.

Kerr Raman

Here a is a third order coupling constant, & parameterizes the relative strength of the instantaneous electronic Kerr and
retarded Raman molecular vibrational responses, and Q describes the natural molecular vibrations within the dielectric
material that has frequency many orders of magnitude less than the optical wave frequency, responding to the field intensity.
The time evolution of Q is given by the following ODE,

2Q 140 ) 52
— 4+ ——— 4w = w?|E|*, 2.4
at2 +'cv T vQ = oy [E] (24)

where wy is the resonance frequency of the vibration, and 7 T a damping constant. This is essentially a model for a simple

linear oscillator, but coupled to the nonlinear field intensity |E|2.
Taking into account all the effects discussed above, the constitutive law for the electric flux density is given by

D = €g(€xcE + Pl +a(1 — O)EIE|* + a0 QE). (2.5)
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With this, the mathematical model for EM wave propagation in this nonlinear optical medium will be given as a PDE-ODE
system (2.1)-(2.5).

In the present work, the first order form of the second order ODEs, (2.3) and (2.4), will be adopted, and we will focus
our investigation on the model in one spatial dimension, as below,

Moo H = 0xE, (2.6a)
oD = oxH, (2.6b)
P =], (2.6¢c)

1
Bt]:—;]—a)(z)P+a)12,E, (2.6d)
atQ,ZZG, (256)

1
BtG:—T—a—wﬁQ +w3,E2, (2.6f)

v

with the constitutive law

D =¢€o(€xE + P +a(l —0)E> +abQE), (2.7)
where P = Péelay. In this model, we assume uniformity of all the vector fields in the y and z directions. Thus, all derivatives

with respect to y and z in the curl and divergence operators are set to zero. All field quantities are represented by a
single scalar component. The scalar magnetic field H (hence B) represents the 2nd (or the 3rd) component of the vector
magnetic field H, and the scalar electric flux density D (hence E) represents the 3rd (or the 2nd) component of D (hence E).
Gauss’s laws (2.1c) only involve the x derivatives of the 1st components of B and D, and therefore they are decoupled from
the one-dimensional model (2.6)-(2.7) and become irrelevant. Under the assumption of periodic boundary conditions, the
energy £ = £(t) of the system (2.6), defined as

2 2 203 wa, 402 2 4 4

2
€0€ € €W €oaf €oab 3€oa(l1 -6 €pafd
5:[(“0H2+ 0€0p2 . €O 24 O pyy €00 2 €000 2y 3000 =0) s, <O Qz)dx, (2.8)

Q
satisfies the following relation,

d € €0ab
—&= _TO / J2dx — 0—2 / o2dx <0. (2.9)
dt w5T 20Ty
Q Q
Note that £(t) is guaranteed non-negative only when 6 € [0, %].

3. Semi-discrete scheme: discontinuous Galerkin method

In this section, we introduce a semi-discrete DG method in space for the one dimensional model problem (2.6)-(2.7). For
simplicity, periodic boundary conditions are considered in x direction. (See Sect. 6.2 and the appendix for some more general
boundary conditions.) Let = [x;, Xg] be the computational domain, for which a mesh, X, =x1,2 <X3/2 <--- <Xnj1/2 =XR,

P . 1 . .
is introduced. Let I; =[Xj_1,2,X+1/2] be a mesh element, with x; = i(xj_% +x].+%) as its center, h; =xj+% —xj_% as its
length, and h = maxi<j<n hj as the largest meshsize. We now define a finite dimensional discrete space,

VE={v:ivl; e PKUj). j=1.2,--- N}, (31)

which consists of piecewise polynomials of degree up to k with respect to the mesh. For any v € V}’f, let v;rl (resp.
2

) . —yt oy ite i
1 from the element ;1 (resp. Ij), [V]j+% = vj+% Vj+% denote its jump, and

vl = %(vﬁ_] + V;+1) be its average, again at x;, 1. The mesh is assumed to be quasi-uniform, namely, there exists a
2 7 27 2

v ;) denote the limit value of v at x;
J+3 I+

positive constant g, such that #]h} < 8, as the mesh is refined.

The semi-discrete DG method for the system (2.6)-(2.7) is formulated as follows: find Hy(t,-), Dy(t, ), Ex(t,-), Pp(t,-),
Jn(t, ), Qnu(t, ), on(t,-) € VF, such that Vj,

o / dHppdx + / Endxgdx — (End ) jr1/2 + (EngM)jo12=0, Vg e Vf, (3.2a)
Ij Ij

/ 3 Dpepdx + / Hpdxpdx — (Hn¢ ) jr12 + (Hn¢)j_12=0, V¢ eV, (3.2b)
Ij Ij
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0 Ph = Jn, (3.20)
O Jn=— (%waém —wf,Eh>, (3.2d)
0t Qp = O, (3.2e)
/Btahqbdx: —/ (Tivah +w?Qp - wﬁE,%) pdx, Vo eVE. (3.2f)

i i

The constitutive law is imposed via the L% projection, namely,

/Dh¢>dx = / €0 (eoth +a(1—0)E3 + Py +ab QhEh) pdx, Vo e VL. (3.3)
I I
Both terms EAh and 1’171 are numerical fluxes. In this work, we take either central fluxes,
En=1{En}, Hn={Hn), (3.4)
one of the following alternating flux pair
En=E,, Hy=HS; En=Ef, Hy=H, (3.5)

or the dissipative flux inspired by the upwind flux for the Maxwell system without Kerr, linear Lorentz and Raman effects,

_ 1 — 1 o
Bn=En)+ 5| - [y, i = (Ha) + = | L2 ). (3.6)
€0€c0 2 Mo

In the rest of the paper, we will call (3.6) as the upwind flux. It is known that the choice of numerical fluxes is important
for the properties of the schemes, such as in numerical stability, accuracy, and even computational efficiency (see Sections 5
and 6 for more discussions). We emphasize that (3.2c)-(3.2e) hold in strong sense. In the theorem below, we establish
stability of the semi-discrete DG scheme which is consistent with the energy stability (2.8)—(2.9) of the PDE-ODE system
(2.6)-(2.7).

Theorem 3.1 (Semi-discrete stability). Under the assumption of periodic boundary conditions, the semi-discrete DG scheme (3.2)-(3.3)
with central and alternating fluxes, (3.4) and (3.5), satisfies

d €0 5 €pad /‘ 5

— & =—— dx — —— [ o7dx <0,

at " w,%r/]h 2wit, ==
Q Q

and the DG scheme with the upwind flux (3.6) satisfies

€ w €0€00
d =~ /Jh de__v > Z[ Wiz = \/ ; Z[Eh]1+1/2—

where
2
o €0€x0 € o  €owy o,  €ad ,  €oald 5 3€a(1-0) , €pabd ,
Ep = H? E — P E E dx (3.7
h /(2 Wt h+2w%]h+2w% h+4w % T QnEj + 2 [ Qj 3.7)

Q

is the discrete energy. Moreover, &, > 0 when 6 € [0, %].

Proof. Let ¢ = Hy, in (3.2a), ¢ = Ep, in (3.2b) and sum up the two equalities over all elements, we obtain

f oty + ExiDydx + 3 [ aEntinax+ S ElHal + TEnDy 172 —0. (38)
j= 11] j=1

Note that with both central and alternating fluxes, (3.4) and (3.5), we have
En[Hp] + HplEn] = [EpHpl, (3.9)

and with the upwind flux (3.6), we have
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2, €0€0 2
En[Hn) + Hp[En] = [EnHp) + [ hl* + [Eh] (3.10)
while ijl flj x(EpHp)dx = — Zj:1[EhHh]j—1/2. therefore (3.8) becomes
/(Mloath+Eh3ch)dX=M(Eh,Hh), (3.11)

with

0, for flux choices (3.4) and (3.5);
M(Ep, Hp) := - . 3.12
(En. Hp) -1 o Z?I:][Hh]?_uz_% [ Zy:1[Eh]§_]/2, for flux choice (3.6), (3.12)

which is non-positive. Differentiating (3.3) with respect to time, and substituting it into the equation (3.11), we obtain

/(MloatHh + €0En(€codrEn +a(1 — )3 Ej; + 0Py + a0 (QnEn)))dx = M(Ep, Hp), (313)

which, with (3.2c), is equivalent to

d €0€ 3epa(l1 —6
il (“0 H 4+ D2 gp 4 3000 )Eg) dx=—/eth<Jh+aeat<QhEh)>dx+M(Eh,Hh). (3.14)
Q

By (3.2d) and (3.20),

1
f]har]hdx=—/<;1h +w<2)Ph—wf,Eh> Jndx
Q Q

=—/< Jh—w Eh) Jhdx—CUo/PhatPth (3.15)
Q Q

This gives the relation

d 1
dt/( I+ P,,) dx=—/;]ﬁdx+wf,/£h]hdx. (3.16)

Q Q
Similarly, we take ¢ = oy, in (3.2f), sum up over all elements, use (3.2e), and obtain

1

/ahatcrhdx = —/ <T—ah + w% Qn — wﬁ E,Z,) opdx
v

Q Q

1
- _/ (T_o,, - wﬁfﬁ) opdx — w? / Qpd Qndx, (317)
Q Y Q
which yields
d 1 w?
E/ (50]12 + %Qﬁ) / —ofdx+w /E opdx. (3.18)
Q Q
On the other hand,
1 1
/ Ende(QuEn)dx =5 / (% (QnER) + E}3:Qp)dx = 5 / (3 (QnER) + Efon)dx. (3.19)
Q Q Q

Combining the results in (3.14), (3.16), (3.18), (3.19), we now have

J 3¢0a(1—0
dt/(ﬂo”hJFEO;OOEﬁJF an(4 )Eﬁ>dx_M(Eh’Hh)

€0 d 1
:_a)_p dt/( ]h Ph>dx+/;]ﬁdx —GoaG/Ehar(QhEh)dX

Q Q

[\S}
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€ [ d 1, o, fl ) eoaedf 5
=L (2 %P2 axs [ 2 2ax | - L [ g,E2
? dt/(ZJh+ o Pi|dx+ [ 2 Jidx 2 ar ) QEidx
p ) ) )

€oad [ d / 1, o , /1 )
-—— | = oy + — dx —opdx
202 Nt ) \2% T Qir ) dx+ T, N
Q Q
This becomes

d 0 2 €pal 2

—E&p=—— dx — o;dx+ M(Ep, Hp),

" w%t/lh Zw?,rv/ i+ M(En, Hn)
Q

o)

with the discrete energy &, defined in (3.7), which is guaranteed to be nonnegative as long as 6 € [0, %]. Since all model
parameters are positive, clearly we have %&1 <0. O

We have demonstrated in the theorem above that the DG scheme with appropriate flux choices can successfully maintain
the energy stability of the original system on the semi-discrete level.

4. Semi-discrete scheme: error estimates

In this section, we will establish the error estimates of the semi-discrete scheme, formulated in Section 3, up to a given
time T < oo. The following projections, ), (defined from L2($2) onto V;,‘) and n,;t (defined from H!(2) onto V,’;), will be
used in the analysis.

1. L? projection 7y mpw € V,’;, such that Vj

/m,w vdx:/wvdx, Vv e P"(Ij). (41)
I I

2. Gauss-Radau projection 7, : 7, w € V}l‘, such that Vj

/n;wvdx:fwvdx, vv e PK1(1)), (4.2)

I Ij
w, .
J+3
3. Gauss-Radau projection nh’“: 7Th+w € V,’f, such that Vj

and (, w). |, =
7 )j+%

/n,fw vdx = / wvdx,  VvePK()), (4.3)
I I
iy

+.\F +
and (7r;" w)T | =w’
il -

Nl

These projections are commonly used in analyzing DG methods, and the following approximation property and estimate
can be easily established [10]:

lw = Twl* +h Y (W — th);ﬁr%)2 <GP |wlP,,,. YweH(Q), (4.4)
j

with Iy =7, 77, or 7,7, and

CellWlloo, Yw € W1(Q), when I, = 7,5,
HiWloo = y 45
I ”OO_{CI(”W”om Yw e L®(Q), whenTl=m,. (4.5)
Here w — ITpw represents the projection error. In (4.4)-(4.5), | - I, Il - lloo, and || - ||yx+1 stand for the I2-norm, L®-norm,

and H**'-norm on €, respectively. And [|w||yy 1.0 = (Iw[% + 4% 12,)!/? is the W' *°-norm for W!*°(Q). The constant C,
depends on k but not on h or w. Throughout the paper, C, denotes a generic constant which may depend on k and mesh
parameter §. If we want to emphasize the sole dependence of k, this generic constant will be denoted by Ci, which usually
is computable. C is another generic constant, which is independent of h, but may depend on k, mesh parameter §, and
some Sobolev norms of the exact solution of (2.7) up to time T. There is one more generic constant Cpde;, Which depends
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on some or all model parameters. Each type of generic constants may take different values at different occurrences. In the
analysis, the following inverse inequality will also be needed,

hZ/(vx)zdx+h ((v;:l)z + (v;l)Z) < c*f vidx, VveVf (4.6)
2 2
I j

A direct consequence of (4.5) is |[W — [T W||eo < Ck||W|loo, YW € W12°(Q) when T, = nhi (or Yw € L*°(2) when I, = mty,).

We start with decomposing the error in E into two parts, E — E, = ng — ¢g, with ng = E — nhEE, g =Ep — rrhEE, where
JThE is a projection operator onto V,’j. We later also use E — ng = JThEE. Similarly, one can define the decomposition of errors
in other quantities, namely u — up =u — 7} — (up — 7}) = Ny — &y, with u being H, P, Q, J, 0. In the analysis, 7 is taken
to be my,, the L2-projection, for u = E,H, P, Q, J, o, except for the following two cases: when the numerical fluxes are
alternating, we take

+ o~ T
£ _Hy_ | (T . ) when (Ep, Hy) = (Ep Hp),
(”h’”h)_{(n,;,nh*) when (B, ) = (Ey . Hy). (47)
while with the upwind flux, we use
1 [ 1o 1 Mo
E +
m,(E,H)=-m; (E H)+ -m, (E — H), 4.8
l’l( ) 2 h( + €0€00 )+2 h( €0€00 ) ( )
1 €€ 1 €€
H + 0€oo — 0€co
w, (E,H) =-m,"(H E)+ -m (H — E). 4.9
HEH) = ([ 4 S (= [ (49)

See [7] (such as Lemma 2.4) for the properties of such vector-form projection operators. For the a priori error estimate in
next theorem, we assume the following regularity for the exact solutions,

E,H,P,Q,J,0 e W\®([0, T], H*1(Q)), (4.10)
and
EcW'™((0, TLW'®(Q), Qe W!(0,T]L®(Q), (411)

where the former is standard for error analysis of linear models, and the latter are needed to treat nonlinearity. Our methods
are initialized such that {, =0att=0, foru=E,H,P,Q, J,o.

Theorem 4.1 (Error estimates of semi-discrete scheme). Let kerr € (0, 1) and perr € (0, 1) be two arbitrary parameters. Assume the
periodic boundary condition and the exact solutions being as regular as (4.10)-(4.11). The following error estimates hold for the
semi-discrete DG scheme (3.2)-(3.3) with flux choices (3.4), (3.5), or (3.6)

lu — upll < CCrnodetC (Kerr, Perr)h”, u=EH,P,Q,], 0, (412)
where

. k for central flux (3.4), (413)

" | k+1 foralternating flux (3.5) and upwind flux (3.6), ’
under the conditions on 0
1
Condition1: 0 €[0, ———|, (4.14)
3(1 = Perr) ==+ 1

and on the strength of nonlinearity,

Condition 2: afC]lQ lloo < €c0(1 — Kerr), (4.15)

... 3-6 0 €00k
Condition 3: a ( CRIBENS +3(1 = O)CFNRE ol Elloc + 5 Cell o Q ||oo> == (4.16)
err

Here Cy, is a computable constant from (4.5). Given that perr € (0, 1) is arbitrary, Condition 1 essentially implies 6 € [0, }l).

Proof. With the numerical fluxes being consistent, the proposed semi-discrete scheme is consistent. That is, (3.2) holds if
the numerical solutions are replaced by the exact ones, while the test functions are still taken from V;f. From this, one can
get the error equations,
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N N
/LO/3t§H¢dX+Z/C58x¢dx+2(ai[¢])j—l/2

— —
Q = J

= ko / denupdx + Z / NEdxpdx + Z(nswm, 12, Vo eV, (417a)

Q =1y j=1

N N
/ 3 (Dp — D)pdx+ ) / CHoxpdx+ Y (CrlDj-12

Q J=1y; J=1
_Z/UH3x¢dX+Z(UH[¢])1 12, Yo € V, (4.17b)
j= 11] j=1
0lp — &y =2amp — 1y, 0:8Q — Co =0tMQ — No» (4.17c¢)
1 2, 2. 1 2. 2 d
Bré“]—i-t;“]—i—a)otp a)p{g—amj—i—Tnj +wgne — wpNE, (4.17d)

1

/ ¥ o pdx + f (T—;g +witq — wi(E} - EZ>> pdx
v

Q Q

1
= f atn(,([)dx—i-/ (T—ng +a)5nq> ¢dx, Vo € V,’l‘, (4.17e)
Q Q Y
coupled with

/(Dh - D)¢dX=/60(Eoo(CE —nE) +a(1 —0)(E} — E*) + ¢p — np +a0(QuEn — QE))¢dx. Vo e VK. (418)
Q Q

Now we take ¢ = ¢y in (4.17a), ¢ = g in (4.17b), ¢ = ¢y in (4.17e). We then differentiate (4.18) in time t, and take
¢ = ¢g. Following similar steps as in the proof of Theorem 3.1, we get

d Ko 5  €0€oo , €Wi , €ad , €ad , 3ea(l—6) , e€oad ,
dt <_;” G+ 2a)12,§]+2a)§ L ZE" 2 ted 4 TR
Q
d
+6°a(1_9)ﬁ/<2(E NE)E + > (E nE)*¢ >dx+7&/(q nQ)¢Edx (419)
Q

4
€0 €pad
+T/§,2dx+T/;ﬁdx—M(cE,;H)zzM.
T 205 Ty —
7 a Q J=1

Here the non-positive term M(-, -) is defined in (3.12). The four terms on the right are

A1 =110 / @) Ends, (4.20)
N N

A= Z/ Me@x¢ ) + N 0xCE)) dX + Z(ﬁE[CH] + RlCED j=1/2, (4.21)
=1 =1

€ 1 an)2
Az = —2/ (Eimj + =0y +wgne _wf,n5> ¢ydx+ —° / (3cmp —ny) gpdx
w T @
P Pg

€pad 1 €pad 2
Zw% <3tng + Zﬁo‘) é-odx+ T / <T7Q — ZET']E + nE) {gdx, (422)
Q Q
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Ag= eoeoo/(atnE);deJreo/n];de+eoa(1 —9)/at(n§ —3En? 4 3E%ng)edx (4.23)
Q Q Q

+6009/3t(Q’7£ + (E = ne)ng)edx — 60(19/(5 —nE)(0Mg — No)SEdX
Q Q

3
—€0a(1—6) / (at(E —NE)CE + S0 (E — 775)2;“52> dx
Q

€pad €pad

- 9 (Q —no)gfdx+ 5 /(3t77Q — Mg )gqdx — Goagfat(E — NE)Sq Edx.
Q Q Q

Next we will take two steps to estimate the left and the right hand side of (4.19), respectively.

Step 1: Compared with the discrete energy in the stability analysis, the terms in the second row of the left hand side
of (4.19) are new, and they arise from the discretizations of nonlinear terms. With arbitrarily chosen constant parameters
Perr € (0, 1) and kerr € (0, 1), we have

2
& Ho o €€ (S ) €0y 5 60(19 €pad 2 3epa(1 —0) 4 €pad 2
6h':/<7§H oo?E it —=bh+ 10 zfa ¢olE + e+ =% dx

2w 2w 2 4
o P p

3 0
+eoa(l — 9)/ (2(5 e+ S (E - ng)zcé) dx+ % /(Q — n)¢2dx
Q Q

w2
€0w €gad €pa(l1 —0)p €0ab p €0€00k
——/ <—§H+ ZCJ ZOCI% 407 53 errCE err(q = errCE

2w 12
Q p
3epa(l —0)
+7/(E e+ = ;E>2:§dx+ > f(eooa — Kerr) +a6(Q — 1)) ¢Fdx
Q
€oa(l _9)(1 — Perr) .4 €000 2, €0a0(1 — perr) 2
_ d
+f< 1 fE+ ——Sade p X
2
Mo o € o  €0wy o,  €0af 5  €0a(l1 —0)Perr 4 €000 Perr o €0€ooKerr o
> — — d
_/(2CH+2a)IZ,§J+2wIZ,§P+4w12,§G+ 2 et fet T G
Q
= glmed), (4.24)

under the Conditions 1&2 in (4.14)—(4.15). Indeed, under Condition 1,

€0a(1—=0)(1 — perr) 4 = €0ad €0a0 (1 — Perr) 5
]2 err é‘E 2 {Q{E-’- 4 err ;Q >

holds, while Condition 2 is to ensure

€oo(1 = Kerr) +a0(Q —1q) = €oo(1 = Kerr) — 0|74 Q [loo = €00 (1 — Kerr) —a0Ck[|Q [0 = 0.

Step 2: Next we will estimate Aj, j=1,---,4. Cauchy-Schwartz inequality, Young’s inequality, as well as approximation
result and estimate in (4.4)-(4.5) will be used repeatedly. For Aq,

Mo Ho
A1l = solldeny I + - 1u 12 < CCmodeth™ 2 + =~ 12 1. (4.25)
We here have used 9y = d;H — JThH o¢H. As for A, with the choice of the projection operators JThE and n,f, one has
Ay=0 (4.26)
for alternating and upwind flux; while for central flux, we have

N
o~ ~ €
A2l =Y @ElCH] + ARlCED j-1/2 sccmodelc(xen)hz"+%ncHn% OCooert g 2. (4.27)
j=1
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For Ajs,

|1\3|< (||3H71+60077P— opnel? + 14517 + == (—||171|| +1lgy11%)
Wyt

+ 620712?(||3t’7p —nyI” + e lI®) + 2‘:)):2/1” (Z||r;(,||2 111
+ %(IIMU +wy(nq = 2Ene +1)11% + 1150 1. (4.28)
Using the approximation property and estimate in (4.4)-(4.5), as well as the boundedness of E, we have
IEnell < IElolmell. 121 < Inelloolnell < CellElloolinel,

hence get

A3| <CCodeth® 2 + +— + 2% +
[A3] <CCrodel 5 lz)HCJ” pro > lig 12 pr ||CP|| 2a)vtv ||§o 4 2

Term A4 is relatively subtle, and we will proceed as follows.

IICa I (4.29)

L 2 2 L 2 2

|Aal €o€oc (Gl + et Ige 1%) + €ol oy I + e e 1)

+€oa(1—9)( ||3t(775 3Enz +3E%ne) 12 + asligel?)
+eoae<m||at(qnf+(E—nE>nQ>||2+a4||;E||2>

L 2 2 2
+€009( ||E NElsolldeng — noll® +aslIgell”)

2. 3€pa(l —0) 5 2
+eoa(1—9)( IICEII + a9 (E — 1) I3 12 )+ = 118e(E = ne) lloollZEl

60(1
+— -l @ —n)lloolIZEN* + —(—Ilamq — o l* +a7llzg 1)

0 1
+ﬂ(—||af<5 nE)IZICE N + asllgg 1) (4.30)

The constant parameters «j, j=1,---,7, are chosen so that

1 €g€0ok
€0€x0tl1 = €00y = €0a(1 — 0)a3 = €gabay = €gabas = 5 %, (4.31)

€pa(l —06 €oa(l —06 €pad €pad 1 €paf
oa( ): oa( )perr’ 0 a7 = 0 g == 0 perr. (432)
4o 12 2 2 2 4

We then further restrict the strength of the nonlinearity such that

3(1-9)

0 0
oa((@s(1 =0+ 5 ) (E 1) 1%, + 136(E = 1) oo + 5 106(Q = n)loo ) ¢ 12

6 6
< °°"e” C0Cooferr g2, (433)

and this, with the estimate (4.5), can be ensured under Condition 3 in (4.16). Using (4.31)-(4.33) and applying (4.4)-(4.5),
we are able to bound A4

3€0€00k €oa(1—0)p €0a 9,0
|Aa] <CCmoeth™*? + === 1ge I + ————— G 1> + —, =l ca 1> (434)
Now we can combine (4.19), (4.24)-(4.27), (4.29), (4.34), and reach
d~ d~ 1 or
Cltgh = dtgh - _M(ZE {n) < gh + CCrmodel C (Kerr, Perr)h, (4.35)

where r is specified in (4.13). Finally, we apply Gronwall inequality, the facts that Eflm(’d) <&

t =0, as well as the estimation of projection errors in (4.4), and conclude that

from (4.24) and 5Ah =0 at
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lu — upll < I9ull + 11Zull < CCrmodel € (Kerr, Perr)h’ u=EH,P,Q,], o, (4.36)

under the Conditions 1-3. Note that Conditions 2-3 require the smallness of the strength of the nonlinearity. O
5. Fully discrete scheme and energy analysis

In this section, we focus on fully discrete schemes for the nonlinear PDE-ODE system (2.6). A particular focus will be on
designing temporal discretizations, with which the fully discrete methods have provable energy stability. This turns out to
be a nontrivial task for the nonlinear model examined in this work. Common choices, such as the second order leap-frog
or implicit trapezoidal method, may not yield provable stability results as for the linear models. The main difficulties arise
from the nonlinear Kerr and Raman terms. What we will develop in this section can be understood as novel modifications
of leap-frog or implicit trapezoidal method, in the presence of these nonlinear effects. The proposed temporal discretizations
are still of formal second order accuracy. We will establish the energy stability for the resulting fully discrete methods. The
time discretizations developed here can be used not only in conjunction with DG spatial discretizations, but also with other
type discretizations, and this will be addressed in our future work.

We design two second-order time schemes, both implicit in the ODE parts. The first scheme uses the leap-frog staggered
in time for the PDE parts. Given uf'(-) € VF at t", with u=H,D,E, P, Q, J, o, we look for u”“( JeVFkat ™ ="+ A,
withu=H,D,E,P,Q, J, o, satisfying Vj

Hn+1/2 _gn . R
140 f WWM / Epoxgdx — (Efd7)jr1/2+ (Epd™)j12=0, Vg eV, (5.1a)
I I
DZH - DZ 12 /n:-_172 n+1/2 , + k
/T“’d”/ dpdx — (Hy 7297 ) 1o+ (Hy V291 j120=0, Vo e VE, (5.1b)
I I
/Dg“(pdx:/eo (eooEg“ +a(1—0)YHH! + PIH 4 ap Q! E“+‘)¢dx, V¢ e VF, (5.1¢)
I Ij
/ Y pdx = / (yh += ((E"“) + (EH?)(EpH! —E,';)> pdx, Vo e Vf, (5.1d)
I Ij
Qn+] Qn 1
= = op + o, (5.1e)
UITH ~ Oh 1 1 n+1 n+1 2 pnpntl k
/Tqﬁdx— —5/ —(oy + 0oy )+ @2(Q] + Q") — 2wy ERE, T | pdx, Vo eV, (5.11)
I Ij
Pn—H _ Pn
hT —(]h+]n+1), (5.1g)
]nH — ]h 1 1 1 1
Iy - ( UJp+ Ih + 0§ (Pp + PRt — w3 (Ef + EpT )), (5.1h)
yntt _ ynt1/2 o e
po [ e [ R g — 107+ (B8 2 =0, ViV (5.10)
I 1j

The flux terms in the scheme have no ambiguity for the central and alternating fluxes (3.4)-(3.5) with I;"T,j = E";’; and their
expressions are omitted for brevity. For the upwind flux (3.6), the flux terms should be defined as

B} = (ED) + : % [H,’}“/z], h=(Ep+5 /% [H:172], (5.2a)
0€o0 0€oc0
ey 1 [€oemo | EM+ EMHI
HZJrl/Z {H"+1/2}+ 1 [€o€oo [ h T Ey (5.2b)
2 Mo 2

as in the standard leap-frog formulations. Notice that the scheme is implicit for the upwind flux, but for the alternating
and central fluxes, the implicit part is only on the ODEs which can be locally solved in each element. In practice, we use
a Newton’s method to obtain Eft!, Q! o1, PIFT, JM*1 from (5.1b)~(5.1h). The main novelty of the formulation is the
introduction of Y} in (5.1d) as an auxiliary varlable to approximate Y = E3. This is motivated by the fact that dY = 3E2dE



432 V.A. Bokil et al. / Journal of Computational Physics 350 (2017) 420-452

and is defined to achieve energy stability of the fully discrete scheme as shown in Theorem 5.1. One does not need to store
Y}, instead only its temporal difference is needed to be substituted into (5.1b). Another change in the scheme for stability

consideration is the discretization of E2 term in (5.1f) as EEEZ“. This is motivated by theoretical analysis as shown in the

proof of Theorem 5.1.
Similarly, our second formulation, which is a fully implicit scheme writes

— —

Herl _ HZ Eﬂ+1 + E;’; En+1 + En Eﬂ+1 + Eh N L
Mo | ————¢dx+ fa xpdx (705 )j+1/2 +(7¢ )i-12=0, V¢ eVp,

At
I Ij

(5.3a)

Dn+1 _pn Hn+1 4+ H? Hn+1 4+ H? Hn+1 4+ H"
fu(pdﬁ/uaxqsdx—(uwmm(uwn_m=o, Vo e v,

At
I I

2 2 2

/ DI+ padx = / €o (e B +a(l o)V + PI* 4 a0 QI R ) g, Vo eV,
I I

/ Y+l pdx = / (yh+ S(ER? + (EpHERT - Z)) gdx. V9 € Vi,

I Ij

Qn+l Q}? _ 1( +o n+1)

At =2 ’

O_n+1 — 0 1
/%q&dx_—E/( (o +o™h + w(Qf + Q”“)—zwﬁEgEg“)qsdx, V¢ e VF,
I I
Pt — pn
— =—(Jh+1"+‘),

JTI+1 _,] 1
= ( U+ WD + 0 (P + Py — o) (B + Eg+1)> .

(5.3b)

(5.3¢)

(5.3d)

(5.3e)

(5.3f)

(5.3g)

(5.3h)

The scheme is of second order accuracy in time. The flux terms are defined according to their semi-discrete counterparts.

For example, with the upwind flux (3.6), the flux terms are

E Bl [EpTT 4 E] L1 [ Hyt! 4 HY
2 2 2V €€ 2 ’

Hyt' +Hy [ AP+ Hy L1 [eoess Ept! 4 EJ
2 2 Lo 2 '

(5.4a)

(5.4b)

Theorem 5.1 (Fully discrete stability ). Assuming the periodic boundary condition, then the fully discrete scheme (5.1) with central and

alternating fluxes, (3.4) and (3.5), satisfies

€At € aGAt
Gl -g=— = f(]”“-l—]h)d - /( opt o ’dx <0,

where
_ €0€
&= [ B Sy ol Ay %y
Q
eoa49 €pad 360(1(1— 0) €pad
7Qh(E) — (ED*+ 3 ——(QH%dx

is the discrete energy. In addition, &, > 0if 6 € [0, %] and the CFL condition % < C,/Io€p€ IS satisfied.

(5.5)

(5.6)
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The fully discrete scheme (5.1) with the upwind flux (5.2) satisfies

At O At
g = 60 /(]n+l +Jmdx— an /( | 2y

Mo n—-1/2 n+1/2,2 €0€00 n n+142
ot Z[H +H e - ,/ Z[E TE T N2 =

where

Mo 1/2 ,,n—1/2 , €0€ €0W, €oab
& = [ B o g O g °<Ph> o)
v

2 2w 2
Q

eoae 3epa(l —0) €oad

——QMEN? + 2 w)+-4<%fm

Mo —-1/2 —-1/2 2

XM% PUHTY? 4 V) g0
€0€x0
C,pto min(1,, /05

Ho

(v2+min(1,,/ G5))

Similarly, the fully discrete scheme (5.3) with central and alternating fluxes, (3.4) and (3.5), satisfies

is the discrete energy. In addition, &, > 0if 6 € [0, 4] and the CFL condition At < is satisfied.

60a9 At

€oAt
ETH-] gh — _ O f(]ﬂ+1 +Jh)2d _ /( Tl+1 +O';11)2dX§O,

and that with the upwind flux (5.4) satisfies

At 6 At
g1 g — 60 /(]n+l +Jm2dx — an /( | 2y

Mo 1 €0€00 12
\/eoe Z[Hh +HL 2 = \/ Z[E" +E 2 =0,

60600

where

&= / %(Hﬁ)z +

Q

(Ep)? to 2 (Jh) + 2% (Ph)

2w 2

3 1-—
"ED)? + f@%—lw)+——mpw

It is non-negative when 6 € [0, %]. In other words, the scheme (5.3) is unconditionally stable for all three flux choices.

433

(5.7)

(5.10)

(5.11)

Proof. We will only prove the results for scheme (5.1), while the proof for the scheme (5.3) shares great similarity and is

omitted.
Apply two time steps of (5.1a) and (5.1i), we have
Y32 _ yn=1/2

Lo / %qﬁd}(—i— / (E”+1 + Ep)oxpdx — (JT(E"+1 +ED$ ) jr1)2

I I

+(FEMT +EDeT)j12=0, YgpeVf,

where
FE™ 4 EN = E"H + ET, central or alternating fluxes
h L {E"+1 +EP) 4+ 1 [ [H"+3/2+2H”+“2+H” ”2], upwind flux.

Let ¢ = EZ“ +E} in (5.1b), ¢ = HZH/Z in (5.12) and sum up the two equalities over all elements, we obtain

(512)

(5.13)
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/ po(H2 — H7VAHI Y2 4 (D — DIY(EM 4 Edx (5.14)
Q

central or alternating fluxes;

3/2 1/2 1/2 1/2
—4t St N (H P 4 2Hy Y 4 Hy TP )

At /e(;fooo Z] JED 4 En+l]1+]/2 upwind flux

by the identity (3.9) in the proof of Theorem 3.1.
Using (5.1c), we obtain

/ (DI — DY(ERTT + Epydx

:60/600((Ez+1)2 (EMH?) + a(l 9)((Ez+1)4 (M) )+(Pn+1 —Ph)(E”“ +ED)
Q
+a9(Q}T:+]Ez+] Qh El’l)(ETH-] + E )dX (515)
and here (5.1d) is used. By (5.1g) and (5.1h),

/ (PP — PHYERTT + Efydx

1 Jn+1 _]
=/—wz(”ﬁ“—1’ﬁ)< et —(]h+1”“)+wé(P,’}+P,';“)>dx
p
Q

[ At o JnH_Jh ntl) / n+1)2 1,2
_/ﬂuh —l—]h)( - —(] T dx+— (P12 — (PP)2dx

On the other hand,
/(Qn+1En+l QUED(E! 1 Eldx = /QnJrl EIY2 _ QIEN? + EMLEN(QIH — Q).

y (5.1f) and (5.1e), we have

/En-HE (Ql’l+1 Q;;l)dx
Q

1

0,’111+1 — O';: 1 n+1 n+1 n+1 n
Z/a)_ﬁ T+2 (o + oy )+ (Qh-i-Q ) ) QT — Qpdx

At (ot —o 1
=f2 : <—h 5 +a,;1+1)) (o +opdx + = /(Q"+1 — (Qf)%dx
Wy Ty

oft? — (of)?dx+ = /(Q“+1 ) ot + oh2dx. (5.17)

2 2

Substituting (5.15)-(5.17) into (5.14), we have shown the energy stability (5.5) for the scheme (5.1) with the alternating
and central fluxes, where the discrete energy &' is defined in (5.6). When the flux is upwind, we instead get the energy
stability in (5.7), with the discrete energy & defined in (5.8).

The final step is to find the conditions to guarantee the discrete energy to be non-negative. We define two operators

N N
HER¢) =) / Epoxgdx+ Y Epl¢lj11/2, (5.18)

=1, j=1



V.A. Bokil et al. / Journal of Computational Physics 350 (2017) 420-452 435

N N ~
HED, ¢) = Z/ Epdepdx+ Y ER[§]j+1)2- (5.19)

j=1 I j=1
From (5.1a), we have
At ~
/HZH/z(pdx: / Hllpdx — m7-[(15,’},4)), Vo e v, (5.20)

Q Q

and similarly by (5.1i)

At =
/ngsdx:/ H' 2 pdx — o —H(EN, ¢), VoeVf. (5.21)
0
Q Q
Therefore,
f%Hz+1/2H2_1/2dx=/Mlo H'2gx ——H(Eh,H" 12
Q Q
=/ (Hp)?dx + H(E“,Hz)— %(E", Hy ')
Q
:/ (HI )de——°||Hg HI122 4 22 (H(E”, HY ) — Ay, oY), (5.22)
Q

In the last equality, (5.21) has been used.
With the alternating or central fluxes, the last term on the right of (5.22) vanishes, hence

Ho 1/2,n—1/2 Mo -1/2
/714;*/ H;, /dx:/ (Hj)?dx — =7 | Hj — H 22, (5.23)
Q Q

On the other hand, using inverse inequality (4.6), one gets

2 C, k

H(p, $)| = Fllqﬁll loll, Ve, eVy. (5.24)
In addition, we take ¢ = H,'; — H271/2 in (5.21), and reach

ALC
HY — H V2 5.25
I1Hy | < o h ( )

and therefore

- At2C?
[ B e [ e < g iR,
J 2 J 2 8h Mo

This estimate guarantees é‘” being non-negative if 6 € [0, 4] and 3:2 ¢ < €°§°° i.e. the CFL condition At < 2 L0€0€co 1S
At

satisfied. This condition can be also written as 3= < Ci\/0€0€c- Here the generic constant C, depends on k and mesh
regularity parameter § and is independent of h.

With the upwind flux in (5.2), using the definitions of # and H, the last term on the right of (5.22) becomes

At ~ _
(H(E”, HIY2) — FI(ED, HI ”2) Z((E“ EDHY D)2
At [ <
==/ o SoaHy 2 = =TT ) (5.26)
o0 .
j=1

Now taking into account the jump terms in the discrete energy (5.8), and with (5.22) (5.26), we have



436 V.A. Bokil et al. / Journal of Computational Physics 350 (2017) 420-452

N
Mo 172 B 12 o n—1/2,0n—1/2 | ;n+1/2,
/7”h det /@;‘wh JHE2 W
J ~

:/ 20 (H?dx + / “0 Z[H" e - E ||Hh HV2), (5.27)
Q

An analogue of (5.25) for the upwind flux can be obtained

—-1/2 1/2
|H} — H! 2 < AL = (EM + IH] 2.

h _2h

AtC,
210h

We can choose At small enough so that A= satisfies % < 1 min(1, e(l’ff), then

A

S

1/2 1/2
IHE — HI V2 < AIER] + | HR |+ I1HE — 2 ).
Hence
~1/2 A
IHR = Hy ™20 < = (UER I+ IR,
and
Ko 1/2 A €0€
S IR — Hy~ 2?2 < (1—> (M2 + H2) < 22 ||Hh|| e

Combined with (5.27) and (5.8), we have shown that 5,’11 in (5.8) is nonnegative, provided 6 € [0, %] and the CFL condition

20 min(1, 606” C.po min(1,,/ 0%
M<—— V1 jssatisfied. This condition can also be written as 4f < ————V_20_
Co(v/2+min(1,,/ ‘jm”“ (V24min(1,,/€G2))

From the proof, one can see that the fully discrete scheme with the leap-frog temporal discretization is conditionally
stable, under a CFL condition that is the same as the one for Maxwell’s equations without Kerr, linear Lorentz and Raman
effects; while the fully implicit scheme is unconditionally stable.

6. Numerical results

In this section, we demonstrate the behavior of the fully discrete schemes through two numerical examples. The simu-
lations are performed on the rescaled equations with the scaling chosen as follows: let the reference time scale be tg, and
reference space scale be xo with xg = cto and ¢ =1/,/fto€o. Henceforth, the rescaled fields and constants are defined based
on a reference electric field Eg as follows,

(H/Eo)/1t0/€0 — H, D/(€gEq) - D, P/Eq— P,
(J/Eo)to— J, E/Eo—E, Q/Ej—

(0/Edto— o, aEf—a,

woto — wo, wpto —> wWp, wytog —> Wy,

(1/o)to— 1/t, (1/T)to —> 1/7,

where for simplicity, we have used the same notation to denote the scaled and original variables. In summary, we arrive at
the dimensionless Maxwell’s equations

%H=0.E, 8D =0dH, (6.1a)
aP=J.  a=-1)-eiP+wiE, (6.1b)
%Q =0, ata:—rlva—wﬁq + w?2E?, (6.1¢)
D=¢€xE+a(l1—0)E>+P+adQE. (6.1d)

Correspondingly, the energy £(t)
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1 €0,y 1 o, @ 5 ad , ad 5, 3a1—-6)_, ad ,
EO=| (zH+ 2B+ — >+ %P ol + —QE 4+ ——E' 4 Q7 ) dx,
(t) /(2 +- +2w%]+2w% +4w3 + S QE + — +5Q

Q
satisfies the relation

d
—&t)=——— o?dx <0.
dt ® / I Zwv v/ -
Q
For the rescaled system (6.1), all fluxes retain their original definition except for the upwind flux, which is modified to
~ 1 ~ NS
Ep={E ———[Hy]l, Hy={H ~——[Epl. 6.2
h{h}+2\/§[h] h{h}+2[h] (6.2)

We further refer to one alternating flux

Ep=E},

as alternating flux I, and

I~‘Ih = Hh_’

Eh =E,, I‘Nlh = HIT’

as alternating flux II. For numerical simulations in this section, we use a uniform mesh with size hj =h = (xg — x;)/N
for all j. When solving the nonlinear system, we employ a Jacobian-free Newton-Krylov solver [32] with absolute error
threshold € = 10710,

6.1. Kink shape solutions
The first numerical test we consider is originally discussed in [40], where a traveling wave solution was constructed for

the instantaneous intensity-dependent Kerr response neglecting the influence of damping, i.e., 6 =0, T = oo in (6.1). This
yields a simplified system

O%H=0E, 9D =0xH, (6.3)
¥P=],  0]=—wiP+wyE, (6.3b)
D =e€xE +aE3 + P. (6.3c)

We use this example as an accuracy test. As shown in [40], we can find a traveling wave solution E(x,t) = E(£), where
& =x — vt, and similarly for other variables H, D, P and J. Here, E(§) is comprised of a kink and antikink wave, and is
solved based on the following ODE

dE

E =, (6.4a)
Ao 6av2E®? + (end + 0} — F/VA)E + a0} E> (6.4b)
de 1— €xov? — 3av2E? ' ‘

The parameters are
€00 =2.25, €=5.25, B1=¢€ —€c,
wo = 93.627179982222216, wp = wo+/p1,
ad=€x/3, v=0.6545//€c0,
E0)=0, ®(0)=0.24919666777865812. (6.5)

Here, wp and ®(0) are carefully chosen such that E and & are both 6-periodic. The approximate solution of (6.4), as shown
in Fig. 6.1(a), is obtained with 160000 grid points by a third order Runge-Kutta method. This serves as the initial condition
for the electric field in the Maxwell’s system (6.3). Furthermore, with the help of (6.3) and the property that all variables
are traveling waves, we can obtain the initial conditions for other variables:

1 1

H(x, 0) = ——E(), D(X.0)=—E®),
1

P(x,0) = (s — €x)E(®) —aE@)?,

1
J(%,0) = (€acv = )P (&) +3avEE) D (E).
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(2) Initial condition E(z, 0). (b) Reference solution E(z,t).

Fig. 6.1. A traveling kink and antikink wave: the electric field.

Table 6.1
A traveling kink and antikink wave: CFL number.
k Leap-frog scheme Fully implicit scheme
1 0.2/v 5
2 1 10
3 2 20

Numerical results are provided at t =9/v. Time steps are chosen as

At = CFL x h*tD/2

to guarantee (k + 1)-th order accuracy in time, and the CFL numbers are listed in Table 6.1. Since leap-frog scheme uses
staggered time, we set CFL =0.2/v for k =1, such that the last time step has full length At. This can help us avoid the
influence on accuracy caused by time step changes. When k =2 or 3, we do not need to do this because the time steps are
already pretty small. Note that the time steps of the fully implicit scheme are taken to be much larger.

We list the errors and orders of accuracy of E in Tables 6.2-6.4. All calculations give the optimal (k + 1)-th order, except
that for the central flux, if we use the leap-frog scheme, the order of accuracy will be suboptimal when k=1, 3.

Next, we investigate the numerical energy behaviors with N =400 grid points. The results are listed in Fig. 6.2. Since
6 =0 and T = oo, following the proof in Theorem 5.1, we obtain that the discrete energy & with alternating and central
fluxes satisfies

e - gf =

where
1 _
gﬁ:/EHZH/zHZ VS E 2(1h)2+2 2<Ph> +—<E”)4dx
Q
for leap-frog scheme, and
3a
& = / SOHI? + 2D+ (]h) £ (Ph)2 S ED (656)

for fully implicit scheme. Therefore, the schemes are energy-conserving. Fig. 6.2 shows that the numerical results are con-
sistent with our analysis: the leap-frog scheme conserve discrete energy up to the machine error, while the fully implicit
scheme has larger errors, which is caused by larger time steps and the error from the Newton solver (we set the tolerance
as € =10710),

On the other hand, the upwind flux is dissipative. When employing the upwind flux and leap-frog scheme, we have

At
NG

where the discrete energy is

Z[Hn 1/ +Hn+1/ ]2+1/2 A Z[Eh+En+1] +]/2

€n+1 _gh—
h h — )
j=1



V.A. Bokil et al. / Journal of Computational Physics 350 (2017) 420-452 439
Table 6.2
A traveling kink and antikink wave: errors and orders of accuracy of E. k=1. T =9/v.
N Leap-frog scheme Fully implicit scheme
L, errors order Lo error order Ly errors order Loo error order
100 5.20E—04 - 1.97E-03 - 116E—02 - 2.92E—-02 -
200 8.88E—05 2.55 3.82E-04 2.36 5.09E—03 119 1.47E—-02 0.98
Upwind flux 400 1.44E—05 2.63 6.47E—05 2.56 1.67E—-03 1.61 5.82E-03 134
800 2.80E—06 2.36 119E—-05 2.44 4.50E—04 1.89 1.76E—-03 173
1600 6.48E—07 211 2.61E—06 219 1.14E—-04 1.98 4.63E—04 193
100 1.56E—03 - 6.27E—03 - 115E-02 - 2.93E-02 -
200 4.13E-04 1.92 1.89E—-03 1.73 4.95E—03 1.22 1.49E—-02 0.98
Central flux 400 1.05E—04 1.97 5.25E—04 1.85 1.61E-03 1.62 5.89E—03 134
800 2.89E—05 1.87 1.51E-04 1.80 4.31E-04 191 1.77E-03 173
1600 9.75E—06 1.57 4.94E—05 1.61 1.09E—04 1.98 4.77E—04 1.89
100 1.42E—04 - 6.56E—04 - 1.18E—-02 - 2.96E—-02 -
200 3.79E-05 1.90 1.26E—04 2.38 5.12E-03 1.20 1.48E—02 1.00
Alternating flux I 400 1.03E-05 1.88 4.06E—05 1.63 1.68E—03 1.61 5.83E—03 134
800 3.23E-06 1.68 1.18E—05 1.79 4.50E—04 1.90 1.76E-03 173
1600 9.11E-07 1.83 3.13E-06 1.91 114E—-04 1.98 4.63E—-04 193
100 1.27E—-04 - 5.55E—04 - 118E-02 - 2.96E—02 -
200 4.18E—05 1.61 1.86E—04 1.58 5.12E-03 1.20 1.48E—02 1.00
Alternating flux II 400 1.21E-05 179 4.35E—-05 2.10 1.68E—03 1.61 5.83E—03 134
800 3.31E-06 1.87 1.52E—05 1.52 4.50E—04 1.90 1.76E-03 173
1600 7.37E—07 217 3.97E—06 194 1.14E—-04 1.98 4.63E—04 193
Table 6.3
A traveling kink and antikink wave: errors and orders of accuracy of E. k=2. T =9/v.
N Leap-frog scheme Fully implicit scheme
Ly errors order Loo error order L, errors order Lo error order
100 3.61E-05 - 1.87E—04 - 4.98E—03 - 1.44E—02 -
Upwind flux 200 4.44E—-06 3.02 2.32E-05 3.01 8.47E—04 2.55 3.17E-03 218
P 400 5.47E—-07 3.02 2.86E—06 3.02 1.09E—04 2.96 4.45E—04 2.83
800 6.82E—08 3.00 3.70E-07 2.95 1.37E-05 3.00 5.63E—05 2.98
100 3.42E-05 - 1.51E—-04 - 4.98E—03 - 1.44E—02 -
Central flux 200 4.38E—06 2.96 1.98E—05 2.93 8.47E—04 2.55 3.17E-03 219
400 5.51E-07 2.99 2.51E—06 297 1.09E—04 2.96 4.45E—04 2.83
800 6.86E—08 3.01 3.21E-07 2.97 1.37E-05 3.00 5.63E—05 2.98
100 3.51E-05 - 1.52E—-04 - 4.98E—03 - 1.44E—02 -
Alternating flux I 200 4.39E—-06 3.00 1.92E-05 2.98 8.47E—04 2.55 3.17E-03 219
J 400 5.50E—07 3.00 2.41E—-06 3.00 1.09E—04 2.96 4.45E—04 2.83
800 6.89E—08 3.00 311E-07 2.95 1.37E—005 3.00 5.63E—05 2.98
100 3.52E-05 - 1.70E—-04 - 4.98E—03 - 1.44E—02 -
Alternating flux II 200 4.43E—-06 2.99 2.23E-05 2.93 8.47E—04 2.55 3.17E-03 219
J 400 5.54E—07 3.00 2.72E—06 3.03 1.09E—04 2.96 4.45E—04 2.83
800 6.89E—08 3.01 3.45E-07 2.98 1.37E-05 3.00 5.63E—05 2.98
Table 6.4
A traveling kink and antikink wave: errors and orders of accuracy of E. k=3. T =9/v.
N Leap-frog scheme Fully implicit scheme
Ly errors order Loo error order Ly errors order Lo error order
100 8.35E—06 - 3.51E-05 - 1.56E—03 - 5.45E—03 -
Upwind flux 200 5.23E-07 4.00 2.18E—06 4.01 1.05E—04 3.89 4.27E—-04 3.67
400 3.27E-08 4.00 1.52E—-07 3.84 6.57E—06 4,00 2.70E—05 3.98
100 8.40E—06 - 3.60E—05 - 1.55E—03 - 5.45E—03 -
Central flux 200 5.29E-07 3.99 2.37E-06 3.93 1.05E—04 3.89 4.27E—-04 3.67
400 3.38E—08 3.97 1.87E—07 3.67 6.57E—06 4.00 2.70E—05 3.98
100 8.34E—06 - 3.43E-05 - 1.56E—03 - 5.46E—03 -
Alternating flux | 200 5.22E-07 4.00 2.15E—06 4.00 1.05E—04 3.89 4.27E—-04 3.67
400 3.24E-08 4.01 1.47E—-07 3.87 6.57E—06 4.00 2.70E—05 3.98
100 8.34E—06 - 3.47E-05 - 1.56E—-03 - 5.45E—03 -
Alternating flux II 200 5.22E—07 4,00 2.15E—06 4,01 1.05E—04 3.89 4.27E—-04 3.67
400 3.24E-08 4.01 1.51E-07 3.83 6.57E—06 4.00 2.70E—05 3.98
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Fig. 6.2. A traveling kink and antikink wave: the time evolution of the relative deviation in energy. N =400 grid points.
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1 nt+172,,n-1 2 3a
gAT:/EHZ 12y (Eh>2+2 2(1,1)2+2 2(P 2+ (ED)*dx
Q

At
84/

For the fully implicit scheme with upwind flux, the discrete energy (6.6) will satisfy

Z([Hn VR g .

AL/
SI’IH]_SI? \/—Z[Hh Hn+]]]+1/2 Z[En En+]]]+1/2

j=1

We observe the predicted behavior numerically (Fig. 6.2). Note that for k = 3, the initial energy increase is caused by error
from the Newton solver.

6.2. Soliton propagation

In this example, we will consider the soliton propagation in the full Maxwell model (6.1), similar to the setup in [20].
The computational domain is x € [0, 45]. The coefficients in this example are chosen as

€00 =2.25, €,=5.25, B1=¢€5— €,
1/1::1.168><10*5, 1/7y =29.2/32,
a=0.07, 6=0.3, Qp=12.57,

wo=5.84, wy=1.28, wp=wo/p1.

Initially, all fields are zero. The left boundary is injected with an incoming solitary wave, for which the electric field is
prescribed as

E(x=0,0) = f(t) cos(Qt), (6.7)

where f(t) =M sech(¢t —20). M is a constant to be specified later. Similar to [20], the boundary condition of H can be
approximated from the linearized dispersion relation. Assuming a space-time harmonic variation e@—¥9 of all fields, the
exact dispersion relation associated with the linear parts of the system (6.1) is

€ 1
Eoo® — i%oaﬁ — (€oof + @) + kKM + i;kzw +kwi =0. (6.8)

The solution corresponding to the wave propagating to the right is

2
k:w@\/l - _“i‘;)/ff_ o (6.9)
Then we take the approximate value of H as
H(x=0,t) = OOH(w)elwtdwN 1 28: (=" M (m)| (m) iQot
= = f 2 (z) w=0o f™ () ]e"0" +c.c., (6.10)
HVAS m=0

(m)
where c.c. denotes the complex conjugate of the first term, f™(t) is the m-th derivative of f(t), and (%) is the m-th

derivative of 1/Z with respect to w and Z = —w/k.
We treat the right boundary as an absorbing wall corresponding to the linearized system, similar to the procedure
performed in [26]. Neglecting the nonlinear effects and the delayed response in (6.1), we have

1
0t(H + y/€xE) = \/@8)((1'1"‘\/600'5)
1
B[(H - «/GOOE) = _\/TT.QBX(H - «/GOOE)-

Because only waves that propagate to the right are allowed, the left going characteristic variable H 4+ /€E is set to be
zero at the right boundary xg = xn1,2. Therefore, for semi-discrete scheme, we require
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(Hp + «/Goth)Jz\;H/z =0,
(Hh = VésoEn 1172 = (Hn = VeEn)y 412

This corresponds to rewriting the central flux as

~ 3. _ 1 _ ~ 3 _ 00 . _

Enlnt1/2= ZEh|N+1/2 - ﬁHHNH/Z’ HnIn+1/2 = ZthN-H/Z - TEh|N+l/2’ (6.11)
and rewriting the upwind flux as

~ 1. _ 1 _ ~ 1 _ 0 - —

Eh|N+1/2:iE”l|N+]/2_ﬁthN+l/2’ Hh|N+1/2:5Hh|N+1/2_TEh|N+l/2' (6-12)

To guarantee better stability results for the outflowing edge, when using alternating fluxes, we employ the central flux (6.11)
at the right boundary instead. With this boundary condition, the energy relation such as those in Theorem 3.1 should be
adjusted accordingly. For example, we can verify that the semi-discrete scheme with alternating and central fluxes satisfy

1
2 — 2
dt En= /.’h / hdx_4@((Hh_V€wEh)N+]/2) — O < —Ojy (6.13)
with energy
1 € 1 w? a a6 3epa(l — 9)
Eh = SHE 4 SXE2y - 24 O p2, 52y uE24 0 7 e 6.14
h /(2 h+2 h+20)12)1h+2w12) h+4w12/h+2Qh h+ 4 Qh ( )

Q

and the contribution from the inflow boundary

TE(, t)Hh|1/2 + %H(O,t)Ehﬁ/z, for central flux,

®in =1 H(, t)Ehll/z, for alternating flux I, (6.15)
E(0,t)Hp |]/2, for alternating flux II.
The scheme with the upwind flux satisfies
\/e_ N-1
00 2

dt &= /]h / hdx 2\/— Z[Hh]ﬁ.]/z ) Z[Eh]j-H/Z (6.16)

j=1

4/ €00

- 2
2\/—(Hh|N+1/2) (Eh|N+1/2) — O < —Ojy,

with the same energy definition as in (6.14) and

1 + + €oo 1+
®in=—(E(O,f)Hhh/z+H(O,t)Eh|1/2)+ \/—Hh|1/2[Hh]l/2+ > EnlyolEnli 2
+ €0 12
4¢_ (Bl + VemE©.D) +F(H<0,r>+«/_eoo5h|1/z) 4\/_[Hh]1/2+v4 (Enl? 2
1 NG
— —H@O,t)?*-— 6°°E(0,r)2.
2 /€0 2
Therefore,
d V€0 2
Qe <1 nor E(0,1)?,
h_2F 0,0+ Y= 3 0,1

implying energy stability.
For the fully discrete schemes, there is no ambiguity defining the fluxes (6.11), (6.12) for implicit scheme. While for the
leap-frog formulations with the upwind flux (6.12), we use

= 1 .- ynt1/2 = 1., yn-1/2
EpInt1/2= EEmNH/z 2«/_ Hy IN+1/2 EpIn+12 = EEZ|N+1/2 2«/— Hy IN+1/20
n+1
n+1/2 1. n+1/2 Ve Ep +ET
Hy vz = S Hy P = SR e (6.17)
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Table 6.5

Soliton propagation: CFL number.
Leap-frog scheme Fully implicit scheme
Central/upwind flux Alternating flux Central/upwind flux Alternating flux
0.05 0.1 0.3 0.5

While for the other fluxes (6.11),

= 3 - n+1/2,— o 3 - 1 a2

EhINs1/2 = ZEZ|N+1/2 - 4—@ ho g2 EpINti2 = ZEZ|N+1/2 - 4—@}1;1 IN+1/20

— +1

HI12) _%Hn+1/2|_ e E} + E, - (618)
h N+172= 4 5h N+1/27 T4 = o5 INt1/2 :

Implementation-wise, with (6.18), at the rightmost cell Iy = [xN_1/2, XnN+1/2], We need to solve the nonlinear system to
obtain Hp by Newton’s method. The energy relation for the resulting fully discrete scheme is summarized in the appendix.

We take N = 6400, and the time step At = CFL x h. CFL numbers, listed in Table 6.5, are chosen to ensure the conver-
gence of Newton’s method to the correct solution.

We simulate the transient fundamental (M = 1) and second-order (M = 2) temporal soliton evolution using various
schemes with different orders. The plots of the electric field at t =40, 80 are provided in Figs. 6.3-6.6. As shown in [26,20],
a daughter pulse travels ahead the soliton-like pulse, resulting from the third-harmonic generation. This daughter pulse is
much smaller in amplitude than the soliton pulse, and the frequency is about 3 times as that of the soliton pulse. The
daughter pulse is evident in all simulations except with the upwind flux and k = 1, where the numerical dissipation damps
its magnitude significantly. Some reflections from the right boundary is present for the central flux. This is also observed in
[26] for the finite difference scheme due to the approximate boundary conditions. As a consequence, there will be spurious
oscillation near the right boundary, especially for higher order scheme. On the other hand, such oscillations are not observed
for alternating fluxes or the upwind flux.

In Figs. 6.7-6.10, we plot the transient evolution of the total energy and pulse area. Here, the pulse area is obtained
by the composite trapezoidal rule between two extrema points of E. To distinguish the soliton pulse and the daughter
pulse effectively, we only consider the soliton pulse area when |E| > 0.01. Numerical results represent high agreement
between the leap-frog scheme and the fully implicit scheme. Notice that we employ the approximation boundary condition
H(x =0,t), and the two alternating fluxes need different inflow information, which means one uses E(x = 0,t) and the
other one uses H(x =0, t). Hence, there is a slight discrepancy between the total energy with those two fluxes, as well as
the pulse area. When using the central flux, both E(x =0,t) and H(x =0, t) are required, therefore the energy and pulse
area calculated by the central flux stay in between the two alternating fluxes, which is consistent with our analysis in (6.15).
In Figs. 6.7 and 6.8, it is observed that the total energy decreases after the entire wave entering the domain, demonstrating
the energy stability of the schemes. In particular, the energy calculated from upwind flux displays slightly more damping
especially when ¢t is large and k =1.

7. Conclusions

In this paper, we propose fully discrete energy stable schemes for 1D Maxwell’s equations in nonlinear optics. The
schemes use novel treatments in temporal discretizations and discontinuous Galerkin schemes in space with various choices
of fluxes. We prove semi-discrete and fully discrete energy stability of the proposed methods, and provide error estimates
of the semi-discrete schemes with conditions on the strength of the nonlinearity of the system. Numerical results validate
the theoretical predictions, which show that the fully implicit scheme allow larger CFL numbers than the leap-frog schemes.
The upwind flux exhibits more dissipation, which can damp the spurious oscillations from the boundary treatment, but
also in the mean time affect the effective capturing of the daughter pulse for the soliton propagation example for low
order polynomial spaces. From our experience, the alternating fluxes outperform the central and upwind fluxes in the
numerical examples studied in terms of accuracy and resolution of the wave profiles. Future work includes extensions to
higher dimensions, to finite difference schemes, and Fourier analysis of the semi-discrete and fully discrete DG methods for
linearized Maxwell systems in dispersive media.
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Appendix A. Energy relation for the fully discrete schemes with non-periodic boundary conditions in Section 6.2

Here, we list the energy relation for the fully discrete schemes with boundary conditions as discussed in Section 6.2.
The results with fully implicit time discretizations are very similar to the semi-discrete case, i.e. we have that the fully
implicit scheme with alternating and central fluxes satisfies

ab At
8wit,
Q

() +of)?dx — AtO, — AtO}, < — At} (A1)

= in’

At
5n+1 _ 5n - _ /(]H+1 + ]n)zdx_
h h 2 h h
dwpT 2

and that with the upwind flux satisfies
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Fig. 6.9. Pulse area of transient fundamental (M = 1) temporal soliton propagation with the leapfrog scheme and the fully implicit scheme. N = 6400 grid
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0<O!

out —

[ #((H"H HiN 4172 = + fess (EPTT + EZ);,H/Z)Z, for central and alternating fluxes,

8\ﬁ((H"Jrl + HL’),T,JF]/Z)2 + */ETC((EEJrl + EZ);H/Z)Z, for upwind flux,

n n + n n
1 (E(0, 1) + E(0, tM)) (Hh+1 +Hh)1/2 + 1 (H©, 1) + H(0, "))

(EZ+1 + E”)l/z for central flux,
}l (HO, "1y + H(0,t")) (E”Jrl + E”)l/2 for alternating flux I,
Oy = T (E(0, ™) + E(0,tM)) (H"+1 + H”) /2 for alternating flux II,
§(EQ,6™Y) + E©, ) (! +H") Lyt (HO.CFD) 4 HO,)
(Epet+ E;;) + 5oz (HR + Hy O lH] + HE o
+ */Q(E”‘H )1/2[EZJr + EMi2, for upwind flux.
Moreover, for the upwind flux, we have
Oin = BJ/Q[H;}“ +HT ), + Jm_ [ER™! + RS
+ 16\1/5 (HpFt -+ HY, + Ve (E© 67D + EC, t”)))2
)
- V_ (HE 0 +He, 0)) ‘/ZTO (B 0+ Eq, 0))2.
Thus,
e _gn < sja (HE 0+ He", 0))2 + ?At (B 0+ Eq, 0))2.

On the other hand, the leap-frog scheme with alternating and central fluxes satisfies

At 6 At
gt — sh_— /(]"H—i—]h)zdx— d /( M4 ol2dx — AtO, — AtOR, < —AtO}, — At
(A3)
where
1 _
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(qu/z 2Hn+1/2+Hn+3/2) (A4)
Nt1/2’
+
3 (EQ.t" +E0, 7)) (H ”“/2)1/ +1H(, (172 (Eg+52+1)1/2, for central flux,
+
O =1 TH(0,t"+1/2) (Ez + EZ“)]/Z for alternating flux I,
T (E©,t" + E(0, t““))( "+1/2)1/2, for alternating flux II.

Unlike the previous cases, (A.4) cannot be shown as non-negative, which means some energy may be injected at the right
boundary in this case.
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The leap-frog scheme with the upwind flux satisfies
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Note that at fully discrete level, we can only prove energy stability for fully implicit scheme with upwind flux.

(H(t”“/z, 0))2 _ ? (E(t"“, 0) + E(t", 0))2
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