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A NEW PHASE-FIELD APPROACH TO VARIATIONAL IMPLICIT

SOLVATION OF CHARGED MOLECULES WITH THE

COULOMB-FIELD APPROXIMATION∗

YANXIANG ZHAO† , YANPING MA‡ , HUI SUN§ , BO LI¶, AND QIANG DU‖

Abstract. We construct a new phase-field model for the solvation of charged molecules with a
variational implicit solvent. Our phase-field free-energy functional includes the surface energy, solute-
solvent van der Waals dispersion energy, and electrostatic interaction energy that is described by the
Coulomb-field approximation, all coupled together self-consistently through a phase field. By intro-
ducing a new phase-field term in the description of the solute-solvent van der Waals and electrostatic
interactions, we can keep the phase-field values closer to those describing the solute and solvent regions,
respectively, making it more accurate in the free-energy estimate. We first prove that our phase-field
functionals Γ-converge to the corresponding sharp-interface limit. We then develop and implement
an efficient and stable numerical method to solve the resulting gradient-flow equation to obtain equi-
librium conformations and their associated free energies of the underlying charged molecular system.
Our numerical method combines a linear splitting scheme, spectral discretization, and exponential time
differencing Runge-Kutta approximations. Applications to the solvation of single ions and a two-plate
system demonstrate that our new phase-field implementation improves the previous ones by achieving
the localization of the system forces near the solute-solvent interface and maintaining more robustly
the desirable hyperbolic tangent profile for even larger interfacial width. This work provides a scheme
to resolve the possible unphysical feature of negative values in the phase-field function found in the
previous phase-field modeling (cf. H. Sun, et al. J. Chem. Phys., 2015) of charged molecules with the
Poisson–Boltzmann equation for the electrostatic interaction.
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1. Introduction

We consider the solvation of charged molecules in an aqueous solvent (i.e., water
or salted water). The entire region Ω of an underlying solvation system consists of a
solute (i.e., the charged molecule) region Ωm (m stands for charged molecules), a solvent
region Ωw (w stands for water), and a solute-solvent interface Γ that separates these two
regions. cf. Figure 1.1. We assume there are N solute atoms located at x1, . . . ,xN inside
the solute region Ωm, carrying partial charges Q1, . . . ,QN , respectively. This solute-
solvent interface is also treated as a dielectric boundary, as the dielectric coefficient εm
in the solute region is close to 1 and that εw in the solvent region is close to 80.

In a variational implicit-solvent model (VISM) [14,15] (cf. also [38,41,46]), one ob-
tains an equilibrium solute-solvent interface and a free-energy estimate by minimizing a
macroscopic solvation free-energy functional among all solute-solvent interfaces Γ. Such
a functional includes the solute-solvent interfacial energy, solute-solvent van der Waals

∗Received: October 11, 2017; Accepted (in revised form): April 4, 2018. Communicated by John
Lowengrub.

†Department of Mathematics, the George Washington University, 801 22nd St. NW, Phillips 739,
Washington, DC, 20052, USA (yxzhao@email.gwu.edu).

‡Department of Mathematics, Loyola Marymount University, 1 LMU drive, Los Angeles, CA 90045,
USA (yma@lmu.edu).

§Department of Mathematics and Statistics, California State University, Long Beach, CA 90840-
1001, USA (hui.sun@csulb.edu).

¶Department of Mathematics and Quantitative Biology Graduate Program, University of California,
San Diego, 9500 Gilman Drive, Mail code: 0112, La Jolla, CA 92093-0112, USA (bli@math.ucsd.edu).

‖Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
10027, USA (qd2125@columbia.edu).

1203



1204 A NEW PHASE-FIELD APPROACH TO VARIATIONAL IMPLICIT SOLVATION

(b)(a) implicit solvent

Γ

Ωw

Ωm xi

Fig. 1.1. Schematic description of a solvation system. (a) In a fully atomistic model, both
the solute atoms (small and brown dots) and solvent molecules (large and green dots) are degrees of
freedom of the system. (b) In an implicit-solvent model, the solvent molecules are coarse-grained and
the solvent is treated as a continuum. The solvent region Ωw and the solute region Ωm are separated by
the solute-solvent interface (i.e., the dielectric boundary) Γ. The solute atoms are located at x1, . . . ,xN

inside Ωm.

interaction energy, and the electrostatic free energy, all determined by the interface Γ.
The electrostatic part of the free energy is often described by the Poisson–Boltzmann
(PB) theory [5, 12, 30,31,37,46] or the Coulumb-field approximation (CFA) [1, 41].

In this work, we consider the phase-field implementation of VISM [11, 33, 38, 45].
We use a phase field φ :Ω→R to describe the solute-solvent interface with {φ≈1} and
{φ≈0} representing the solute and solvent regions, respectively. The corresponding
solvation free-energy functional of a phase field φ :Ω→R is given by

F ε[φ]=γ

∫

Ω

[

ε

2
|∇φ|2+

1

ε
W (φ)

]

dx+ρw

∫

Ω

f(φ)UvdWdx+

∫

Ω

f(φ)Uele(x)dx. (1.1)

Here, ε>0 is a small parameter that controls the width of solute-solvent interfacial
region. The first term describes the solute-solvent interfacial energy, where γ >0 is the
surface tension (a given constant) and

W (φ)=18(φ2−φ)2.

The specific constant 18 is chosen for convenience of analysis; cf. Section 2.
The second term describes the nonelectrostatic solute-solvent van der Waals inter-

action. In this term, ρw is the bulk solvent density (a given constant) and

UvdW(x)=

N
∑

i=1

U
(i)
LJ (|x−xi|), (1.2)

where each U
(i)
LJ is taken to be a Lennard-Jones potential

U
(i)
LJ (r)=4εi

[

(σi

r

)12

−
(σi

r

)6
]

,

with εi and σi being the corresponding interaction energy and linear size of atomic
excluded volume. The function f(φ) has the property that

f(0)=1 and f(1)=0, (1.3)

indicating that the integral is taken over the solvent region.
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The last term is the electrostatic energy, where Uele is the electrostatic energy den-
sity and the integral is again taken over the solvent region. For the PB electrostatics,
one needs to solve a phase-field dielectric boundary PB equation to obtain the electro-
static energy density Uele [11, 32, 38]. Here, we shall consider the CFA, which yields
a good approximation of the electrostatic free energy when the ionic effect is less sig-
nificant. The CFA makes the computation efficient, and also provides a simple model
for analyzing the geometry of interfacial region. In the CFA [6,41,45], the electrostatic
energy density is given by

Uele(x)=
1

32π2ε0

(

1

εw
−

1

εm

)

∣

∣

∣

∣

∣

N
∑

i=1

Qi(x−xi)

|x−xi|3

∣

∣

∣

∣

∣

2

, (1.4)

where ε0 is the vacuum permittivity, and εm and εw are the dielectric coefficients of the
solutes and solvent, respectively.

The minimization of the free-energy functional (1.1) can be achieved by solving for
a steady-state solution of the corresponding gradient-flow equation

∂tφ=γ

[

εΔφ−
1

ε
W ′(φ)

]

−f ′(φ)(ρwUvdW+Uele) , (1.5)

with a fixed and small ε>0, and some initial and boundary conditions for φ.
The form of the function f(φ) is crucial to capturing the interfacial structure of an

underlying interface system. It should be so constructed that a free-energy minimizing
phase-field function φ takes its values 0 and 1 in most part of the underlying domain
and is monotonic in the small transition layer. If one views a phase-field function as a
normalized solvent density, it is natural to require such monotonicity within a continuum
modeling framework. An ad hoc choice of such a function, such as

f(φ)=(φ−1)2, (1.6)

may lead to some unphysical features, such as the non-monotonicity of the phase-field
functions from 0 to 1 and the loss of localization of the force near the interface [38,45].
In this work, we propose a new form of this function

f(φ)=(φ2−1)2. (1.7)

We will demonstrate numerically that, with such a function f , the energy-minimizing
phase-field approximates better 1 and 0, in the two regions, respectively. Heuristically,
with such a function, we have not only (1.3), but also that

f ′(0)=0 and f ′(1)=0. (1.8)

These will lead to a more localized “boundary force” near the solute-solvent interface
that involves f ′(φ), which is consistent with the force balance equation (Euler–Lagrange
equation) for a sharp interface [33]. Moreover, the localization of force due to the
property (1.8) allows us to use a small computational box that encloses the entire solute
region and solute-solvent interface, thus greatly improving the computational efficiency.

Notice that the issue of non-monotonic artificial interfacial structure does not exist,
if one only minimizes the surface energy, i.e., the first integral in (1.1). This issue arises
from the nonlocality of the van der Waals energy and the electrostatic energy, the last
two integrals in (1.1).
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We shall first prove the Γ-convergence of our new, phase-field free-energy function-
als to the corresponding sharp-interface limit as ε→0. This is similar to the proof
given in [33], cf. also [11]. We then design, implement, and test accurate and efficient
numerical methods for solving the gradient-flow equation. Our methods couple a linear
splitting scheme [13,25,40,42,43], spectral discretization schemes, and exponential time
differencing Runge-Kutta approximations [10, 24, 27, 40]. We finally apply our model
and numerical methods to some charged molecules, such a single ion and a two-plate
system, demonstrating that our proposed new model performs numerically better than
the pervious ones by achieving the force localization near the solute-solvent interface
and maintaining more robustly the desirable hyperbolic tangent profile for even larger
interfacial width.

The variational implicit-solvent model (VISM), implemented with a robust level-set
method, has successfully predicted dry and wet states and dewetting transition, charge
effects, and potential of mean forces, and many other important properties of biological
molecules that have been observed in experiment and in molecular dynamics simulations
[7,8,21,22,36,41,46,47]. The phase-field implementation of VISM provides an alternative
mathematical model for the computation of molecular conformations and free energies.
Moreover, it may be used to include bulk solvent fluctuations that together with the
solute-solvent interface fluctuations enable an underlying system to make transition
from one equilibrium conformation to another [26, 35]. This is particularly important
in terms of hydrophobic interactions [2, 4, 39].

We note that, in most part of our study, we fix all the solute atomic positions.
Our focus here is to determine the stable, equilibrium solute-solvent interfaces and the
solvation free energy for a given state of solute molecules. This is our first step in
attempting to understand complex systems of charged molecules immersed in a solvent,
where solute atoms are constantly in motion and yet the system is often around some
stable equilibrium states.

The rest of the paper is organized as follows: In Section 2, we prove the Γ-
convergence of our phase-field functionals (1.1) to the corresponding sharp-interface
limit. In Section 3, we describe our numerical methods for solving the gradient-flow
dynamics equation of the phase-field free-energy functional. In Section 4, we apply our
theory and methods to the solvation of single ions and a two-plate system. Finally,
in Section 5, we draw our conclusions. The Appendix contains some details of our
numerical methods.

2. Γ-Convergence

In this section, we will briefly discuss the Γ-convergence of the phase-field model
(1.1) to the corresponding sharp-interface model by following the approach similar to
that in [33]. To make our results more general, we consider as in [33] in this section
the following functional of both phase field and the set of solute particles, including the
solute-solute mechanical interactions:

F ε[X,φ]=E[X]+γ

∫

Ω

[

ε

2
|∇φ|2+

1

ε
W (φ)

]

dx+

∫

Ω

f(φ)U(X,x)dx, (2.1)

where

U(X,x)=ρwUvdW(X,x)+Uele(X,x),

and E=E[X] is the potential energy of molecular mechanical interactions of so-
lute atoms located at x1, . . . ,xN inside the solute region Ωm (cf. Figure 1.1) and
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X=(x1, . . . ,xN ). The terms UvdW(X,x) and Uele(X,x) are exactly the same as UvdW(x)
defined in (1.2) and Uele(x) defined in (1.4), respectively, except we explicitly include
X to indicate the dependence on X. The molecular mechanical interactions include
the chemical bonding, bending, and torsion; the short-distance repulsion and the long-
distance attraction; and the Coulombic charge-charge interaction. Note that, if X is
fixed, then the two functionals (2.1) and (1.1) only differ by the constant E[X]. It is in
this sense that the functional (1.1) is a special case of (2.1).

The corresponding sharp-interface model is written as

F [X,Γ]=E[X]+γArea(Γ)+

∫

Ωw

U(X,x) dx, (2.2)

where Γ represents the solute-solvent interface in the sharp-interface setting.
Let Ω be a nonempty, open, connected, and bounded subset of R3 with a Lipschitz-

continuous boundary ∂Ω. Let Ω be the closure of Ω in R3. Let N ≥1 be an integer and
denote

ON =
{

X=(x1, · · · ,xN )∈ (R3)N :xi �=xj if i �= j for 1≤ i,j≤N
}

.

Clearly ON is an open subset of (R3)N . We assume that E :Ω
N
→R∪{+∞} is finite

and continuous in ΩN ∩ON , infinite in Ω
N
\(ΩN ∩ON ), and has a finite lower bound

Emin in Ω
N
. We also assume

E[X]→+∞ as min
1≤i<j≤N

|xi−xj |→0 or min
1≤i≤N

dist(xi,∂Ω)→0.

We shall assume U(X,x) :Ω
N
×Ω→R∪{+∞} is finite and continous in (ΩN ×Ω)∩

ON+1, infinite in Ω
N+1

\
(

(ΩN ×Ω)∩ON+1

)

, and has a finite lower bound Umin in Ω
N
×

Ω. We finally assume

U(X,x)→+∞ as min
0≤i<j≤N

|xi−xj |→0 with x0=x.

We denote

M0=
{

(X,A) :X ∈Ω
N
,A⊆Ω,A is Lebesgue measurable

}

.

For any (X,A)∈M0, we define

F0[X,A]=E[X]+γPΩ(A)+

∫

Ω\A

U(X,x)dx, (2.3)

where PΩ(A), the perimeter of a set A⊂R3, is standardly defined by functions of
bounded variation in BV (Ω) [18,19,48]. Since E and U are bounded below, F0(X,A)>
−∞. If A⊂Ω is open and smooth, with a finite perimeter in Ω, then F0(X,A)=F (X,Γ),
where Γ=∂A and F is defined in (2.2) with Ωw=Ω\A. Therefore, F0 :M0→R∪{+∞}
describes the free energy of a solvation system with A being the solute region.

As shown in [33], we have the existence of a global minimizer of the sharp-interface
free energy functional F0 :M0→R∪{+∞}:

Theorem 2.1. There exists (X,A)∈M0 such that

F0[X,A]= inf
(Y,B)∈M0

F0[Y,B]. (2.4)
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Moreover, this minimum value is finite.

We omit the proof as it is similar to that of Theorem 2.1 in [33]. Additionally,
the minimal energy in Theorem 2.1 can be approximated by free energies of certain
“regular” subsets, see Theorem 2.2 in [33] for details.

We now consider the functional F ε in (2.1). Let M=Ω̄N ×H1(Ω), and ε0∈ (0,1]
be sufficiently small. Then we have the existence of a global minimizer of the functional
F ε :M→R∪{+∞} for small ε>0.

Theorem 2.2. For each ε∈ (0,ε0], there exists (Xε,φε)∈M with Xε∈ΩN ∪ON such

that

F ε[Xε,φε]= inf
(X,φ)∈M

F ε[X,φ], (2.5)

and this infimum value is finite.

Proof. The key to proving the existence of a global minimizer is to obtain the
lower and upper bounds for F ε[X,φ] for any ε∈ (0,ε0]. The upper bound is achieved
easily as we can fix some X∗ and construct an associated φ∗

ε such that F ε[X∗,φ∗
ε ] is

bounded independent of ε (see Theorem 3.1 in [33] for the detailed construction of φ∗
ε ).

For the lower bound, we have

F ε[X,φ]≥Emin+
γε

2
‖∇φ‖2L2(Ω)+

γ

2ε

∫

Ω

W (φ)dx+
γ

2ε0

∫

Ω

W (φ)dx+Umin

∫

Ω

(φ2−1)2dx

=Emin+
γε

2
‖∇φ‖2L2(Ω)+

γ

2ε
‖W (φ)‖L1(Ω)+

γ

2
‖φ‖4L4(Ω)+

∫

Ω

g(φ)dx,

where

g(φ)=
γ

2ε0

[

W (φ)−ε0φ
4
]

+Umin(φ
2−1)2.

Note that g :R→R is continuous, and Umin is finite. Hence, if ε0 is sufficiently small,
then g(s)→+∞ as |s|→+∞. Then we have

F ε[X,φ]≥C+
γε

2
‖∇φ‖2L2(Ω)+

γ

2ε
‖W (φ)‖L1(Ω)+

γ

2
‖φ‖4L4(Ω)

with C=Emin+ |Ω| infs∈Rg(s).
With the lower and upper bounds, we can choose a sequence of (Xk,φk) which is

bounded in Ω̄N ×H1(Ω). Using the standard compactness argument, we can find a
subsequence {(Xk,φk)}

∞
k=1 , not relabeled, such that Xk converges to Xε in ΩN ∩ON ,

and φk converges to φε weakly in H1(Ω), strongly in L2(Ω) and almost everywhere in
Ω. Note that the weak convergence φk⇀φε in H1(Ω) implies that

liminf
k→∞

∫

Ω

|∇φk|
2dx≥

∫

Ω

|∇φε|
2dx.

This together with Fatou’s lemma can be applied to all integral terms in (2.1) to obtain

inf
(X,φ)∈M

F ε[X,φ]= liminf
k→∞

F ε[Xk,φk]≥F ε[Xε,φε]≥ inf
(X,φ)∈M

F ε[X,φ],

which yields (2.5). Alternatively, we can also achieve the existence of global minimizer
(2.5) by the argument of weak lower semi-continuity, which is due to the fact that F ε

is bounded below and convex with respect to ∇φ.
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With the existence of global minimizers for sharp-interface energy F0 and phase-
field one F ε, we have the convergence of the global minimum free energies and the global
free energy minimizers:

Theorem 2.3. Let εk ∈ (0,ε0] (k=1,2, . . .) be such that εk ↓0. For each k≥1, let

(Xεk ,φεk)∈M be such that

F εk [Xεk ,φεk ]= min
(X,φ)∈M

F εk [X,φ]. (2.6)

Then there exists a subsequence of {(Xεk ,φεk)}
∞
k=1, not relabeled, such that Xεk →X0

in (R3)N for some X0∈ΩN ∩ON and φεk →χA0 in L4−λ(Ω) for any λ∈ (0,1) and for

some measurable subset A0⊆Ω that has a finite perimeter in Ω. Moreover,

lim
k→∞

F εk [Xεk ,φεk ]=F0[X0,A0] (2.7)

and

F0[X0,A0]= min
(X,A)∈M0

F0[X,A]. (2.8)

The proof is omitted as it is similar to the one in [33].

3. Numerical methods

3.1. Equivalent reformulation with a linear splitting. We first adopt an
analogous linear splitting scheme that has been used in designing stabilized numerical
methods for the classical Allen–Cahn equation [13, 25, 40, 42, 43] to rewrite W ′(φ)=
36(φ2−φ)(2φ−1) as

W ′(φ)=κφ+[W ′(φ)−κφ] ,

where κ≥0 satisfying

κ≥
1

2
max{0, max

0≤φ≤1
W ′′(φ)}=18.

Similarly, we rewrite f ′(φ) as

f ′(φ)=μφ+(f ′(φ)−μφ) ,

where μ≥0 satisfies

μ≥
1

2
max{0, max

0≤φ≤1
f ′′(φ)}=4.

Note that the potentials UvdW and Uele are unbounded near xi for each xi∈Ωm.
Since the equilibrium phase field φ is expected to vanish in a small neighborhood of xi for
each i, we truncate these potentials with a numerical parameter rcut>0. The truncated

potential UvdW is the sum of the truncated Lennard-Jones potentials U
(i)
LJ,cut(r), defined

by U
(i)
LJ,cut(r)=U (i)(r) if r≥ rcut and U

(i)
LJ,cut(r)=U

(i)
LJ (rcut) otherwise. Similarly, we can

truncate Uele by modifying (x−xi)/|x−xi|
3 to V (i)(|x−xi|)(x−xi)/|x−xi|

2 for each
i, where V (i)(r)=1/r if r≥ rcut and V (i)(r)=1/rcut otherwise.
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For simplicity, let us still denote these modified potentials by UvdW and Uele, re-
spectively. Let us set

ν=sup
x∈Ω

|ρwUvdW+Uele|.

Then the Equation (1.5) in a stabilized form reads

∂tφ=
[

γ
(

εΔφ−
κ

ε
φ
)

−μνφ
]

+
[

−
γ

ε
(W ′(φ)−κφ)−f ′(φ)(ρwUvdW+Uele)+μνφ

]

=L(φ)+N (φ), (3.1)

where the linear term is

L(φ)=γ
(

εΔφ−
κ

ε
φ
)

−μνφ,

and the nonlinear term is

N (φ)=−
γ

ε
(W ′(φ)−κφ)−f ′(φ)(ρwUvdW+Uele)+μνφ.

The new reformulation 3.1 will be used for the time-discretization based on the expo-
nential time differentiation (ETD) Runge-Kutta method (ETDRK).

3.2. Spectral spatial discretization under periodic boundary condition.

We consider a rectangular system domain Ω⊂R3

Ω={−Lx<x<Lx,−Ly <y<Ly,−Lz <z<Lz}

for some positive numbers Lx, Ly, and Lz, and impose the periodic boundary condition.
We discretize Ω by a rectangular mesh which is uniform in each direction as follows:

xijk=(xi,yj ,zk)=(−Lx+ ihx,−Ly+jhy,−Lz+khz)

for 0≤ i≤Nx, 0≤ j≤Ny, and 0≤k≤Nz; hx=2Lx/Nx, hy =2Ly/Ny, and hz =2Lz/Nz.
We choose a time step Δt>0 and set tn=nΔt.

Let φ
(n)
ijk ≈φ(xi,yj ,zk,tn)=φ(xijk,tn) denote the approximate solution at grid

xijk and time tn. Denote the approximate solution in array form as Φ=

(φijk)0:Nx−1,0:Ny−1,0:Nz−1, and denote its discrete Fourier transform (DFT) by Φ̂=

(φ̂ijk)0:Nx−1,0:Ny−1,0:Nz−1. Notice that the Laplacian operator Δ in the spectral space
corresponds to the spectrum

λijk=−λ2
x(i)−λ2

y(j)−λ2
z(k),

where

λx(i)=

{

πi/Lx if 0≤ i≤Nx/2,

π(Nx− i)/Lx if Nx/2≤ i≤Nx−1,

λy(j)=

{

πj/Ly if 0≤ j≤Ny/2,

π(Ny−j)/Ly if Ny/2≤ j≤Ny−1,

λz(k)=

{

πk/Lz if 0≤k≤Nz/2,

π(Nz−k)/Lz if Nz/2≤k≤Nz−1.
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Taking the fast Fourier transform (FFT) [34] on both sides of the Equation (3.1) yields
now

Φ̂t=L� Φ̂+N̂ (Φ), (3.2)

where L� Φ̂ is the FFT of L(φ) and is given by

L� Φ̂=(lijkφ̂ijk)0:Nx−1,0:Ny−1,0:Nz−1,

lijk=γ
(

ελijk−
κ

ε

)

−μν.

Note that, since γ,ε,κ,μ and ν are all positive, and λijk≤0, we have lijk<0. Therefore
the following point-wise version of (3.2) is asymptotically stable:

∂tφ̂ijk= lijkφ̂ijk+
[

N̂ (Φ)
]

ijk
, 0≤ i≤Nx−1, 0≤ j≤Ny−1, 0≤k≤Nz−1. (3.3)

We will develop next high-order Runge-Kutta approximations based on the exponential
time differencing for the time integration of (3.3).

3.3. Exponential time differencing Runge-Kutta approximations. In
this section, we adopt the exponential time differencing (ETD) method [10,24,27,40] to
explicitly and accurately solve the semi-discrete system (3.2) or (3.3). Let Δtn be the
time step size at time tn: tn+1= tn+Δtn. Integrating the Equation (3.3) over a single
time step from tn to tn+1 yields

φ̂ijk(tn+1)= elijk∆tn φ̂ijk(tn)+elijk∆tn

∫ ∆tn

0

e−lijkτ
[

N̂ (Φ)(tn+τ)
]

ijk
dτ, (3.4)

which is exact. We apply various ETD-based methods to this equation as follows: ap-

proximate the nonlinear part [N̂ (Φ)]ijk by polynomial interpolations and then perform
exact integrations on the new integrands [10,25].

Denote by Φ̂n=(φ̂n
ijk) the numerical approximation of Φ̂(tn)=(φ̂ijk(tn)). Then the

first-order scheme by the ETD Euler approximation, ETD1 (or ETD1RK), is given by

Φ̂n+1=ETD1RK(Φ̂n,Δtn,L,N ) :

φ̂n+1
ijk = elijk∆tn φ̂n

ijk+ l−1
ijk(e

lijk∆tn −1)
[

N̂ (Φn)
]

ijk
.

Higher-order ETD schemes can be constructed based on multi-step or Runge-Kutta
approximations. The 2nd, 3rd and 4th order Runge-Kutta schemes, which we refer as
ETD2RK, ETD3RK, and ETD4RK, respectively, can be found in [10]. For the Equation
(3.2) we have the 2nd order scheme (ETD2RK):

Φ̂n+1=ETD2RK(Φ̂n,Δtn,L,N ) :
⎧

⎨

⎩

A=(aijk)=ETD1RK(Φ̂n,Δtn,L,N ),

φ̂n+1
ijk =aijk+Δt−1

n l−2
ijk(e

lijk∆tn −1− lijkΔtn)
[

N̂ (Ǎ)−N̂ (Φn)
]

ijk
,

where Ǎ stands for the inverse discrete Fourier transform (iDFT) of A. The 4th order
scheme (ETD4RK) reads

Φ̂n+1=ETD4RK(Φ̂n,Δtn,L,N ) :
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P =0 pN/Å2 Pressure
T =300 K Tempature
γ0=0.175 kBT/Å

2 Surface tension
ρw=0.0333 Å−3 The constant solvent (water) density
εi= εLJ=0.3 kBT, i=1 :N The depth of the Lennard-Jones potential well asso-

ciated with the ith solute atom
σi=σLJ=3.5 Å, i=1 :N The finite distance at which the Lennard-Jones po-

tential of ith solute atom is zero
rcut=0.7σLJ The radius of truncation for potential
ε0=1.4321×10−4 e2/(kBT Å) Vacuum permittivity
εm=1 Relative permittivity of the solute
εw=80 Relative permittivity of the solvent (water)
Qi in units e Partial charge of the ith solute atom at xi which may

vary in different examples
ε in units Å The interfacial width of the phase field φ, which vary

in different examples

Table 4.1. Parameters in the model.
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⎪

⎪
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A=(aijk)=ETD1RK((Φ̂n,Δtn/2,L,N ),

B=(bijk)= elijk∆tn/2φ̂n
ijk+ l−1

ijk(e
lijk∆tn/2−1)

[

N̂ (Ǎ)
]

ijk
,

C=(cijk)=elijk∆tn/2aijk+ l−1
ijk(e

lijk∆tn/2−1)
[

2N̂ (B̌)−N̂ (Φn)
]

ijk
,

φ̂n+1
ijk = elijk∆tn φ̂n

ijk+Δt−2
n l−3

ijk×
{

(

−4− lijkΔtn+elijk∆tn(4−3lijkΔtn+ l2ijkΔt2n)

)

[

N̂ (Φn)
]

ijk

+2

(

2+ lijkΔtn+elijk∆tn(−2+ lijkΔtn)

)

[

N̂ (Ǎ)+N̂ (B̌)
]

ijk

+

(

−4−3lijkΔtn− l2ijkΔt2n+elijk∆tn(4− lijkΔtn)

)

[

N̂ (Č)
]

ijk

}

.

4. Numerical tests and applications

In this section, we first validate our theory, particularly the incorporation of the new
term f(φ) in the gradient-flow dynamics (1.5), by comparing it to the old model (1.6)
for a one-particle system. For reference, a table of parameter values is listed in Table
4.1. We then apply our ETD-based Runge-Kutta method to a two-plate system. We
compare the ETD1RK, ETD2RK and ETD4RK for the numerical efficiency, and the
corresponding convergence rates. Then for different distances of separation of the two
parallel plates with various charge combinations, we calculate the different components
of the mean-field free-energy with loose and tight initial surfaces.

4.1. One-particle system. We now validate our theory by considering a one-
particle system (N =1). We place a single point charge Q at the origin immersed in
water. As the one-particle system is radially symmetric, the phase-field free-energy
functional (1.1) reduces to that of radially symmetric phase fields φ=φ(r) (N =1 and
Q1=Q):

F ε,rad[φ]=4πγ0

∫ ∞

0

[

ε

2
|φ′(r)|2+

1

ε
W (φ(r))

]

r2dr
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+4πρw

∫ ∞

0

f(φ)UvdW(r)r2dr+
Q2

8πε0

(

1

εw
−

1

εm

)
∫ ∞

0

f(φ)/r2dr, (4.1)

where UvdW(r) is given by (1.2) with N =1, X=0, and ε1 and σ1 are given in Table
4.1.

Taking Q=2e, ε=0.1Å, computational domain = [0,5], Δx=5×10−4 and Δt=
10−6, and other parameter values from Table 4.1, we solve the gradient-flow dynam-
ics ∂tφ=−δF ε,rad[φ]/δφ. The numerical scheme we adapt here is the Crank–Nicolson
method [29] and Thomas algorithm [23] for the corresponding tri-diagonal linear system.

Fig. 4.1. Numerical comparison between the new model 1.7 and the old one 1.6 for the one-
particle system. (a) The two phase-field functions φ at t=10 in which the φ of new model presents a
desirable hyperbolic tangent profile, but the φ of old model displays a deviation of O(10−2) from 0 as
seen in the inset. (b) The three forces in the new model (surface tension, Lennard-Jones force, and
the electrostatic force) are localized only near the interface and the sum is balanced up to O(10−6).
(c) The three forces in the old model make nonzero contributions in the region of {φ≈0}. All the
three subfigures are plotted near the interface [R0−0.5,R0+0.5], where R0=2.4479 is determined
numerically by φ(R0)=0.5 using the new model.

Figure 4.1 presents the numerical comparison between our new model f(φ)=(φ2−
1)2 and the old model f(φ)=(φ−1)2. Our new phase-field implementation improves
the old ones in several aspects. (1) The new model displays a better hyperbolic tangent
profile than the old one as seen in Figure 2 (a). More specifically, the equilibrium phase
field φ in the new model shows a desirable hyperbolic tangent shape which monotonically
changes its value from 1 to 0, while the old model presents some unphysical feature near
the interfacial region, where φ has a deviation of O(0.01)Å away from 0 and takes
negative values. (2) The new model maintains the force localization near the interface
as seen in Figure 2 (b). In the old model, all the three forces have nonzero contributions
in the region of {φ≈0}. (3) The force localization in the new model allows us to use a
much smaller computational box that encloses the entire solute region and solute-solvent
interface which greatly improves the computational efficiency. Of course, the deviation
of φ can be mitigated by letting ε→0 by the theoretical study in [33]. However, in
real applications, especially in the 3D simulations, ε has to remain relatively large to
reduce the computational cost. Therefore, the new model is advantageous for keeping
the hyperbolic tangent profile of φ and localizing the forces only near the interfaces
even for a relatively large ε. It is worth mentioning that the force localization due
to f(φ)=(φ2−1)2 occurs not only at the equilibrium, but in the entire gradient-flow
dynamics. Therefore it can potentially be used to study non-equilibrium dynamics such
as cell motion [3].
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Q Optimal Radii/Energy ε = 0.5 ε = 0.2 ε = 0.05 ε = 0.02 ε=0

Rmin 3.080 3.060 3.055 3.054 3.054
Fsurf 20.904 20.603 20.514 20.510 20.511

0.0 FvdW -2.558 -2.614 -2.627 -2.638 -2.644
Felec 0.000 0.000 0.000 0.000 0.000
Ftot 18.346 17.990 17.887 17.872 17.867

Rmin 2.987 2.967 2.961 2.960 2.960
Fsurf 19.672 19.366 19.275 19.266 19.267

0.5 FvdW -0.980 -1.025 -1.036 -1.042 -1.054
Felec -23.080 -23.162 -23.177 -23.177 -23.173
Ftot -4.388 -4.822 -4.938 -4.953 -4.960

Rmin 2.798 2.779 2.773 2.772 2.771
Fsurf 17.325 16.994 16.904 16.890 16.886

1.0 FvdW 5.104 5.112 5.115 5.115 5.115
Felec -98.542 -98.923 -99.006 -99.011 -99.012
Ftot -76.113 -76.817 -76.99 -77.006 -77.012

Rmin 2.617 2.601 2.594 2.593 2.593
Fsurf 15.315 14.891 14.800 14.786 14.782

1.5 FvdW 17.837 17.950 17.970 17.972 17.971
Felec -236.989 -237.869 -238.087 -238.101 -238.105
Ftot -203.836 -205.028 -205.318 -205.343 -205.354

Rmin 2.468 2.456 2.449 2.449 2.448
Fsurf 13.941 13.304 13.194 13.183 13.178

2.0 FvdW 38.471 38.676 38.764 38.758 38.757
Felec -446.416 -447.827 -448.280 -448.306 -448.317
Ftot -394.004 -395.848 -396.322 -396.365 -396.381

Table 4.2. A comparison of numerical results obtained by the phase-field calculations (solving
the gradient-flow dynamics (4.1) and by the sharp-interface calculations (minimizing numerically the
function F [R] in 4.2) for the solvation of a single-particle system. The sharp-interface (indicated with
ε=0) results are presented in the last column. See the text for the units.

We now compare our results of phase-field computations with those of the sharp-
interface implementation. For a one-particle system, the sharp-interface free-energy
functional 2.2 is a one-variable function of the radius R of the solute sphere centered at
the origin [41]

F [Γ] :=F [R]=4πγ0R
2+16πρwε

(

σ12

9R9
−

σ6

3R3

)

+
Q2

8πε0R

(

1

εw
−

1

εm

)

. (4.2)

This one-variable function can be minimized numerically with a very high accuracy.
We test on a set of Q-values: Q=0.0e,0.5e,1.0e,1.5e,2.0e. We use both the sharp-

interface and phase-field models to calculate the optimal radius Rmin, the total minimum
free energy Ftot, and the corresponding surface energy Fsurf , solute-solvent van der
Waals interaction energy FvdW, and the electrostatic energy Felec, respectively. For our
phase-field calculations, we use different values of the numerical parameter ε. Table 4.2
shows our computational results. It is clear that as ε becomes smaller, the result of the
phase-field model is also closer to that of the sharp-interface model.

4.2. Two parallel plates. We now consider the system of two parallel molecular
plates that has been studied by the molecular dynamics simulations [28] and by the
sharp-interface VISM [41]. Such a system exhibits interesting properties of hydrophobic
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interactions through the existence of its dry and wet states, and charge effects. Here, we
show the efficiency of our computational model as well as the accuracy and stability of
our numerical schemes. In this system, each plate consists of Np×Np fixed CH2 atoms
with Np=6 and the atom-to-atom distance d0=2.1945 Å. The plate has a square length
of about 30 Å. The two plates are placed in parallel with a center-to-center distance d.
We use the parameter values listed in Table 4.1. To study the charge effect, as in [41],
we assign central charges q1 and q2 to the first and second plates, respectively, with
|q1|= |q2|. The total charges of these two plates are 36q1 and 36q2, respectively.

Let us consider the gradient-flow dynamics (3.1) starting with two parallel plates of
separation d=12Å. We choose the uniform spatial mesh 2563 with Lx=Ly =Lz =18Å
(i.e., the mesh size h=2Lx/256) and set ε=0.5. The time step is taken uniformly as
Δt=0.05. We use two types of initial phase-field functions. One is called a loose initial,
such as the characteristic function of a box

{(x,y,z) : |x|≤ (Np−1)d0+σLJ, |y|≤
d

2
+σLJ, |z|≤ (Np−1)d0+σLJ}

that contains the two plates. The other is called a tight initial, which can be the
characteristic function of two boxes that wrap up the two plates separately. We set the
stopping criteria for our time iteration by

F ε
[

φ(n+1)
]

−F ε
[

φ(n)
]

Δtn
<TOL=10−3.

Figure 4.2 shows stable equilibrium solute-solvent surfaces of two-plate system ob-
tained by solving the gradient-flow dynamics (3.1) with loose initials of separation d0=
12Å. The partial charges are (q1,q2)=(0.1e,0.1e),(−0.1e,0.1e),(0.2e,0.2e),(−0.2e,0.2e),
respectively, from left to right. Note that Figure 3 (d) is a dry state, where water
molecules are expelled and are only outside the surface; and Figure 3 (h) is a wet state,
where water molecules fill in between the two plates. These are the two most probable
states in molecular dynamics simulations when the plate-plate separation is in certain
range; cf. [28]. Here we have captured these states with our continuum approach which is
much more efficient than molecular dynamics simulations. Note also that the larger the
partial charges are, the tighter the solute-solvent surfaces wrap the two plates. Mean-
while the surfaces wrap tighter when the partial charges change from +/+ to −/+.

Figure 4.3 shows the energy evolution for the gradient-flow dynamics of the two-
plate system with loose initial of separation d0=12Å and (q1,q2)=(0.2e,0.2e). The
stabilized ETD1RK, ETD2RK, and ETD4RK schemes are adopted with different values
of time step size Δt=1,0.1 and 0.01. The first row compares the energy curves under
different time step sizes for each of the three stabilized ETDRK schemes, while the
second row reorganizes the curves using different schemes but with the same time step
size. It is easy to see that all the schemes work stably with all time step sizes, and
converge as the time step size is decreased. The lower right plot in Figure 4.3 shows
that for Δt=0.01 the energy curves for different schemes are nearly indistinguishable. A
good agreement is also found between the curves for Δt=0.1 and Δt=0.01 for ETD4RK
in the upper right plot of Figure 4.3.

We further test the convergence rates of the stabilized ETDRK schemes. To this
end, we perform the simulations on a small time interval [0,1]. We take the solution
generated by the ETD4RK scheme with Δt=10−4 as the benchmark solution and then
compute the errors in energy for all schemes with larger step sizes. Table 4.3 presents
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Fig. 4.2. Simulation of the gradient-flow dynamics (3.1) for the two-plate system using the
stabilized ETD4RK scheme with ∆t=0.05 and loose initials. The surfaces are defined as the 1/2-level
set of a phase-field function φ. The plate-plate separation is fixed to be d=12Å. From (a) to (d):
the snapshots at t=0,50,500 and 1000 during the gradient-flow dynamics with (q1,q2)=(0.2e,0.2e).
From (e) to (h), the equilibrium states of the solute-solvent interface for different partial charges
(q1,q2)=(0.1e,0.1e),(−0.1e,0.1e),(0.2e,0.2e),(−0.2e,0.2e), respectively.

∆t ETD1RK ETD2RK ETD4RK
Energy Error Rate Energy Error Rate Energy Error Rate

1.0000×10−1 -640.023 14.594 – -646.0728 8.5448 – -653.93952183 3.1e-1 –

5.0000×10−2 -646.118 8.499 0.78 -651.7595 2.8580 1.58 -654.58950486 2.8e-2 3.48

2.5000×10−2 -649.866 4.751 0.84 -653.6880 0.9295 1.62 -654.61527138 2.3e-3 3.58

1.2500×10−2 -652.094 2.522 0.91 -654.3495 0.2680 1.79 -654.61743360 1.8e-4 3.71

6.2500×10−3 -653.316 1.301 0.95 -654.5453 0.0722 1.89 -654.61760092 1.3e-6 3.81

3.1250×10−3 -653.956 0.661 0.98 -654.5987 0.0188 1.94 -654.61761288 9.1e-7 3.82

1.5625×10−3 -654.284 0.333 0.99 -654.6127 0.0048 1.95 -654.61761373 6.0e-8 3.92

10−4 (b.m.) – – – – – – -654.61761379 – –

Table 4.3. The energies, errors and the corresponding convergence rates at time t=1 by the
stabilized ETD1RK, ETD2RK and ETD4RK schemes for the gradient-flow dynamics (3.1) with
(q1,q2)=(0.2e,0.2e).

the energies, errors and the convergence rates based on the data at t=1 for all schemes
with time step sizes being halved from Δt=1×10−1 to 1.5625×10−3. These data are
also used to generate Figure 4.4 which shows energy errors against time step sizes in
a logarithmic plot for different ETD Runge-Kutta schemes. We can see from both the
table and curves that the numerically computed convergence rates all tend to approach
the theoretical values. Moreover, to obtain an energy error comparable to that of
ETD1RK with Δt=1.5625×10−3, we can take a 23-times larger step size for ETD2RK,
or a 26-times larger step size for ETD4RK. Since the computational cost of ETD4RK
scheme is about 4 times of that for ETD1RK per step, the ETD4RK scheme basically
provides a factor of 16 speed-up at this particular accuracy level for this special test
case.

For a given reaction coordinate d, there can be multiple stable equilibrium phase
fields φd that are local minimizers of the phase-field VISM free-energy functional. In
Appendix A, we briefly discuss the Potentials of Mean Force (PMF) which can effectively
describe the solute-solute interaction. The PMF can have multiple branches along the
reaction coordinate d, and hence can lead to hysteresis. Strictly speaking, our PMFs
are different from those defined using a Boltzmann average over all possible minimizers.
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Fig. 4.3. Energy evolution for the gradient-flow dynamics (3.1) for the two-plate system with
loose initial of plate separation d=12Å.
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(0.2e,0.2e).

Rather, our PMFs reflect possible branches of the VISM free energy along the reaction
coordinate d.

In Figures 4.5 and Figures 4.6, we plot the different components of the PMF with
loose and tight initial surfaces, respectively. For the loose initials (Figure 4.5), the
geometric part displays a strong attraction below a critical distance dc at which capil-
lary evaporation begins. The crossover distance decreases from dc�21 Å for (q1,q2)=
(−0.2e, +0.2e) down to 9 Å for (q1,q2)= (0e, 0e). The value 21 Å is larger than 14
Å predicted by the sharp-interface VISM where the curvature correction was included.
Note that the opposite charging has a much stronger effect than like-charging due to
the electrostatic field distribution discussed above. Also the solute-solvent vdW part
of the interaction is strongly affected by electrostatics due to the very different surface
geometries induced by charging. Both curves GPMF

geo (d) and GPMF
vdW (d) demonstrate the

strong sensitivity of nonpolar hydration to local electrostatics when capillary evapora-
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tion occurs and very “soft” surfaces are present. For the surfaces resulting from the
tight initials (Figure 4.6), the situation is a bit less sensitive to electrostatics as the final
surface is closer to the vdW surface for dc�6 Å.
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Fig. 4.5. Different components of the PMF for the two-plate system for different charge combi-
nations (q1,q2) (see legend) obtained by the phase-field VISM with loose initial surfaces.

5. Conclusions

We have presented a new phase-field model to study the implicit solvation of charged
molecules with Coulomb-field approximation. In this new model, we introduce the term
f(φ)=(φ2−1)2 in (1.1) to localize the boundary force near the solute-solvent interface.
In comparison with the old model used in our previous work, the new one keeps the
force localized only around the interface. In addition, the new model displays a better
hyperbolic tangent profile than the old one for a fixed interfacial width ε>0.

We have shown that our new phase-field model Γ-converges to the corresponding
sharp interface model. To make our theory more general, we include the solute-solute
mechanical interactions in the energy functional for our Γ-convergence analysis.

In developing the numerical method for the phase-field gradient-flow dynamics, we
first adopt a linear splitting scheme to reformulate the underlying equation, and then use
an exponential time differencing method coupled with a Runge-Kutta scheme to solve
the system which has been shown recently to be stable and efficient when dealing with
a gradient-flow dynamics [24, 40]. Using the two-plate system as a testing example, we
have tested the efficiency and convergence for the ETD1RK, ETD2RK, and ETD4RK
schemes. Furthermore, we have used the ETD4RK scheme to study the effects of the
separation of two plates and particle charges on the PMF. The simulations indicate
that the two-plate system displays two different steady states obtained from loose and
tight initials, respectively. The loose-initial steady state is energetically more favorable
than the tight-initial steady state for a small distance of separation. When the distance
of separation becomes larger and larger, the tight-initial steady state will become a
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Fig. 4.6. Different components of the PMF for the two-plate system for different charge combi-
nations (q1,q2) (see legend) obtained by the phase-field VISM with tight initial surfaces.

more stable one. Our applications to single ions and two parallel charged plates have
shown that our new theory and method can not only predict qualitatively well the
solvation free energies for the system as in the previous studies [14, 38, 45], but, more
importantly, improve the previous ones better in a few aspects such as maintaining a
desirable hyperbolic tangent profile, keeping the force localized around the interface,
and improving the computational efficiency by allowing a much smaller computational
domain.

We are currently working to incorporate the Poisson–Boltzmann equation into our
new phase-field VISM to better describe the electrostatic interaction. Another possible
direction for our future study is to investigate the minimal energy path between the
two solution branches of the two-plate system by coupling the phase-field VISM with
the string method [16,17,44] which will lead us the dynamics of two-plate system going
from a loose-initial steady state to a tight-initial steady state. Finally, to describe the
molecular dynamics of solute atoms, it is natural and plausible to construct a hybrid
model that couples such dynamics with our implicit-solvent model. The total Hamilto-
nian of the system should then consist of the forcefield (i.e., interaction potential) for
the solute molecular mechanical interactions and the variational implicit-solvent free-
energy functional, as proposed in our previous work [9]. We believe such an approach,
if worked out, will be a promising coarse-graining model.

Appendix A. To reduce the error in approximating the solute-solvent interaction
energy caused by using a finite region Ω, we replace the region of integral Ω in the last
term in (1.1) by the entire space R3. Since the region outside Ω is filled with solvent
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where φ=0, this is equivalent to adding

∫

R3\Ω

ρUvdW(x)+

∫

R3\Ω

Uele(x)dx. (A.1)

We now consider the potential of mean forces (PMF) for the two-plate system with
the reaction coordinate being the plate-plate separation d in Å. Let us denote by φd a
free-energy minimizing phase field corresponding to a given reaction coordinate d. This
phase-field function φd is a local minimizer of the functional (1.1), and φd=0 in R3 \Ω.
The total solvation free energy F ε[φd] is the sum of the geometrical part (the surface
energy) F ε

geo[φd], the solute-solvent van der Waals interaction energy FvdW[φd], and the
electrostatic energy Fele[φd]:

F ε[φd]=F ε
geo[φd]+FvdW[φd]+Fele[φd].

These three terms are the same as those in (1.1), except the integrals are over R3. Since
φd=0 outside Ω, the first term F ε

geo[φd] is exactly the same as the first integral in (1.1)
with φd replacing φ. As in [20,41], we define the (total) PMF by

GPMF,ε
tot (d)=GPMF,ε

geo (d)+GPMF
vdW (d)+GPMF

ele (d),

with

GPMF,ε
geo (d)=F ε

geo[φd]−F ε
geo[φ∞],

GPMF
vdW (d)=FvdW[φd]−FvdW[φ∞]+

∑

i∈Plate I

∑

j∈Plate II

Ui,j(|xi−xj |),

GPMF
ele (d)=Fele[φd]−Fele[φ∞]+

1

4πεmε0

∑

i∈Plate I

∑

j∈Plate II

QiQj

|xi−xj |
.

Here a quantity at ∞ is understood as the limit of that quantity at a coordinate d′

as d′→∞, and Ui,j is the Lennard-Jones interaction potential between xi and xj . A
quantity at ∞ can be calculated by doubling that of a single plate.

For each d and ε>0, we compute φd and φ∞, the latter is obtained by minimizing
(1.1) for a single plate. This is one of the two plates in terms of the solute atomic
positions. Then, we can compute GPMF,ε

geo (d) by evaluating integrals over Ω. The com-

putation of GPMF
vdW (d) is similar, as both F ε

geo[φd] and F ε
geo[φ∞] contain the first integral

in (A.1), so they cancel, and the calculation of double-sum term in GPMF
vdW (d) is rather

straightforward.
We now focus on the calculation of GPMF

ele (d). Again, the double-sum term can be

evaluated directly. Denote τ0=
1

32π2ε0

(

1
εw

− 1
εm

)

. We have for the first two terms in

GPMF
ele (d) that

Fele[φd]−Fele[φ∞]

=τ0

∫

Ω

f(φd)

∣

∣

∣

∣

∣

(

∑

i∈Plate I

+
∑

i∈Plate II

)

Qi(x−xi)

(x−xi)3

∣

∣

∣

∣

∣

2

dx−2τ0

∫

Ω

f(φ∞)

∣

∣

∣

∣

∣

∑

i∈Plate I

Qi(x−xi)

(x−xi)3

∣

∣

∣

∣

∣

2

dx

+τ0

∫

R3\Ω

∣

∣

∣

∣

∣

(

∑

i∈Plate I

+
∑

i∈Plate II

)

Qi(x−xi)

(x−xi)3

∣

∣

∣

∣

∣

2

dx−2τ0

∫

R3\Ω

∣

∣

∣

∣

∣

∑

i∈Plate I

Qi(x−xi)

(x−xi)3

∣

∣

∣

∣

∣

2

dx.
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The integrals over Ω can be evaluated by numerical quadrature. Note that f(φd) and
f(φ∞) vanish in a neighborhood of solute particles xi so that these integrals are well-
defined. By the symmetry and the fact that the single plate that we used for calculating
φ∞ is one of the two plates, the sum of the integrals over R3 \Ω are simplified to

2τ0
∑

i∈Plate I

∑

j∈Plate II

QiQj

∫

R3\Ω

(x−xi) ·(x−xj)

|x−xi|3|x−xj |3
dx. (A.2)

For each pair i and j in the double-sum, we have

∫

R3\Ω

(x−xi) ·(x−xj)

|x−xi|3|x−xj |3
dx=

∫

R3\Ω

∇

(

1

|x−xi|

)

·∇

(

1

|x−xj |

)

dx

=−

∫

∂Ω

1

|x−xi|

∂

∂n

(

1

|x−xj |

)

dSx=

∫

∂Ω

n(x) ·(x−xj)

|x−xi| |x−xj |3
dSx,

where ∂/∂n denotes the normal derivative along the boundary ∂Ω and n(x) is the unit
normal to ∂Ω at x pointing from inside to outside of Ω. By the symmetry again, we
have

2

∫

R3\Ω

(x−xi) ·(x−xj)

|x−xi|3|x−xj |3
dx=

∫

∂Ω

n(x)

|x−xi| |x−xj |
·

(

x−xi

|x−xi|2
+

x−xj

|x−xj |2

)

dSx.

Hence, (A.2) is further simplified to

τ0
∑

i∈Plate I

∑

j∈Plate II

QiQj

∫

∂Ω

n(x)

|x−xi| |x−xj |
·

(

x−xi

|x−xi|2
+

x−xj

|x−xj |2

)

dSx,

and can therefore be calculated by evaluating the surface integrals.
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