Downloaded via RICE UNIV on October 4, 2018 at 18:36:39 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

‘ I ‘ Journal of Chemical Theory and Computation
@& Cite This: J. Chem. Theory Comput. 2018, 14, 3849-3858

pubs.acs.org/JCTC

Learning Effective Molecular Models from Experimental Observables

Justin Chen, Jiming Chen,"® Giovanni Pinamonti,! and Cecilia Clement

o S

"Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
iDepartment of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States

‘ﬂDepartment of Mathematics and Computer Science, Freie Universitit, Berlin, Germany
SCenter for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
J'Department of Chemistry, Rice University, Houston, Texas 77005, United States

© Supporting Information

ABSTRACT: Coarse-grained models are an attractive tool for
studying the long time scale dynamics of large macromolecules
at a level that cannot be studied directly by experiment and is
still out of reach for atomistic simulation. However, coarse
models involve approximations that may affect their predictive
power. We propose a modeling framework that allows us to
design simplified models to accurately reproduce experimental
observables. We demonstrate the approach on the folding
mechanism of a WW domain. We show that when the correct
coarsening resolution is used not only do the optimized

models match the Reference model simulated experimental data accurately but additional observables not directly targeted during
the optimization procedure are also reproduced. Additionally, the analysis of the results shows that localized frustration plays an
important role in the folding mechanism of this protein and suggests that nontrivial aspects of the protein dynamics are

evolutionary conserved.

B INTRODUCTION

Recent advances in experimental technologies"” as well as in
high-performance techniques to simulate molecular systems at a
microscopic level’ have produced significant progress in the
characterization of macromolecular systems and our under-
standing of complex biological processes such as protein
folding, binding, and association. s Experiments and simu-
lations offer complementary views on these processes, and their
synergy is becoming essential to molecular studies. While
experiments can produce accurate measurements of equilibrium
and dynamical properties of biomolecular processes, they
usually provide low resolution information; i.e., they only
measure time evolution of a few order parameters or ensemble
averages rather than the dynamical evolution of the full
microscopic structure. On the other hand, microscopic
simulations can, in principle, resolve details that are inaccessible
to experiments. However, they involve approximations or
empirical terms that usually lead to a systematic, but a priori
unknown, bias.

Additionally, the time and length scales required to study the
dynamic interplay of macromolecular complexes in very large
biological processes, such as the ones bridging molecular and
cellular mechanisms, still go far beyond what is possible to
simulate with the most accurate atomistic molecular models, >’
even on special-purpose computers.”® For this reason, coarse-
grained models that “renormalize” groups of atoms into
“effective” degrees of freedom have become a popular choice
for the study of collective/organizing motions at time scales
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and system sizes inaccessible to atomistic simulations.””"" By
sacrificing the atomistic details, coarse-grained models can
explore significantly larger time and length scales. The
justification for the use of reduced models lies on mathematical
results'? showing that, at least in principle, the behavior of
macromolecular systems over long time scales is regulated by a
small set of slow collective variables and not every single atomic
degree of freedom is per se essential. However, in practice, the
price of coarse-graining is usually paid with the introduction of
additional approximations and uncontrolled biases, and
aggressive coarse-graining can significantly exacerbate the
problem of a direct and quantitative comparison and
integration of simulation and experimental results.

Here, we instead take the following view: we want to find a
“minimalist” molecular model that contains as much physical
detail as necessary to model the process of interest but can be
efficiently sampled and optimized to reproduce a given set of
experimental measurements (and/or results from more
accurate models). We propose a general and computationally
efficient strategy to compute the effective potential associated
with such constrained minimalist models. Our approach is
based on the quantification of the agreement between
simulation and experimental result by a “quality score” Q(¢)
that depends on all the model parameters {€} and takes the
uncertainties in simulation and experiment into account. This
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function Q(€) is always bound between 0 and 1, where 1
indicates perfect agreement with the experiment. An optimal
model can then be obtained by maximizing Q(¢). Different and
heterogeneous sources of experimental data can be used to
incorporate different measured properties. We name our
approach as “Observable-driven Design of Effective Molecular
models” (ODEM).

ODEM presents significant improvements with respect to
previous iterative model optimization schemes (IMOSs). First,
we take a conceptual step forward by proposing an IMOS based
on Markov state models (MSMs). An implied condition for all
IMOSs is that an equilibrium distribution can be sampled,
which is an increasingly difficult requirement for larger
biomolecular systems. Unlike previously proposed
schemes,"*™'® using MSMs allow us to sample the global
equilibrium distribution with short non-equilibrium trajectories
that can be run in parallel, offering a significant speedup for
iterative model optimization.* Furthermore, the concept of
MSMs is also combined with the idea of ensemble
reweighting.'”'® Reweighting ensembles allows us to obtain
an explicit expression for the quantitative agreement of the
simulation results with experimental measurement and allows
the model parameters to iteratively change in order to
maximize such an agreement. Finally, the quantification of
the agreement of a simulation model with experimental
measurements as a function of the different model components
can be used to test the importance of different physicochemical
factors in determining the behavior under observation. This can
in turn lead to the formulation of general principles regulating
biomolecular processes, e.g,, used in combination with bottom-
up coarse-graining methodologies to evaluate the performance
of different modeling choices, such as the coarse-grain
resolution used.

As a proof of principle, and in order to control the sources of
errors, here, we apply this approach on a system where
“experimental measurements” of physical observables are
simulated from long atomistic simulations. We show that by
using a set of simulated single-molecule FRET measurements a
coarse-grained model can be defined that reproduces the
folding mechanism of protein FiP3$ in significant detail, when
compared to the Reference model atomistic simulation. Finally,
by analyzing the frustrated interactions identified by our
approach, we speculate about their functional role and show a
possible link with coevolutionary correlations.

Incorporation of Experimental Data in a Computa-
tional Model. Coarse-grained models are usually designed
either by means of some (qualitative or quantitative) model
reduction from fine-grained or first-principle models'*~*" and/
or by fitting the model parameters to reproduce desired
properties.' > While bottom-up approaches are rigorously
based on the theory of statistical mechanics, they still involve
several empirical choices, and the coarsening can still introduce
significant approximations in the estimates of physical
observables. A different class of reduced models, so-called
structure-based models, eliminate frustration on a protein
energy landscape. These models are frequently used as a sort of
“ideal gas” for protein folding™ and large macromolecular
motion”" and have provided considerable insight into the
physical chemistry of these processes.”> Even if they offer a
solid zeroth order approximation, structure-based models by
themselves are usually not generally applicable to study large
conformational changes in macromolecules quantitatively. In
addition, several methods have been proposed to use
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experimental data to correct the prediction from simulation
for possible modeling biases.”'>'®***” Instead of using
measured data to correct the results, here, we make the
additional step of correcting the model itself. Approaches with a
similar general philosophy have been previously proposed in
the field of force-matching coarse-graining,1 ultracoarse-
graining,w chromosome modeling,28 °" implicit solvent
modeling,”* and disordered proteins.

Here, we propose ODEM as a general procedure for
integrating disconnected pieces of evidence from different
sources into a trained model that can then be used to
investigate properties of the system not directly measurable
experimentally, while also suggesting testable experimental
hypotheses, generating a positive feedback loop. The basic idea
is to first define a model that contains only the physicochemical
components that are considered essential to reproduce some
features of interest, e.g,, the slow time scale processes in the
macromolecular system. If the model is missing important
ingredients, the ODEM procedure will quantify the incon-
sistency between what the model can reproduce and the set of
measurements, thus providing a test for the hypotheses at the
base of the modeling choices. Typically, the model Hamil-
tonian, H(¢), contains a sum of interaction potentials among
the “effective particles™ used to represent the system, e.g.,, C,—
Cy for coarse-grained protein representations. These energy
terms contain parameters, such as force constants, bond
lengths, effective charges, Lennard-Jones parameters, or others.
We call the set of parameters €, and they will be “learned” by
the comparison with the available measurements. Specifically,
the application presented here uses only two-body interactions
in the nonlocal part of the Hamiltonian (see Supporting
Information for details), and the parameters represent the
weights of the linear combination of the different interaction
terms in the Hamiltonian. However, the Hamiltonian could be
designed to include different terms, such as multibody
interactions.”> In principle, the need for more complex
interactions in the Hamiltonian representing a system of
interest could be evaluated with ODEM by determining their
contribution in the improvement of the accuracy of the model.
All the parameters in the Hamiltonian are initially set to some
(generally poor) guess, ().

Given this initial model, experimental observables computed
from molecular dynamics (MD) simulations can be compared
with the true experimental observation. The agreement
between simulation results and experimental data is measured
by a scoring function, Q(€), expressed as a function of the
model parameters, varying between 0 and 1, where the
simulation is in perfect agreement with experiment for Q = 1,
whereas Q =& 0 indicates that the simulation has a poor
agreement with experiment.

While the method can, in principle, account for arbitrary
combinations of thermodynamic and kinetic measurements, we
consider here the case of a given set of K thermodynamic
measurements (f;, .., fx)—e.g, specific residue—residue
distance distributions estimated from FRET measurements—
with associated uncertainties (Afj, .., Afg).

An optimal set of parameters can then be found by the
following iterative approach:

1. The initial parameter values €®, defines a model
Hamiltonian H®(x), where x indicates a configuration
of the system (e.g, the Cartesian coordinates of the
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Figure 1. Pair distance distributions used as observables: (a) Pro6-Argl4, (b) Ser2-Argl17, and (c) Phe21-Ser28 distance for zeroth order, Reference,
and Optimized models, sampled from the equilibrium distribution of the MSM computed on folding and unfolding trajectories of the protein. The
deep red curve indicates the average over the 20 optimized models, while the (very narrow) pale red shaded area around it indicates the standard
deviation over the different models. Green beads on the FiP35 native structure mark the Ca atoms between which the distance is calculated.

effective atoms of the protein system). We run MD a function of the model parameters. Details on the

simulations with H®(x). estimate of ¢, from simulations are presented in the
2. We estimate the equilibrium distribution 79(x) for the Results section.

model for the choice of parameters, ¢© from the MD S. The equilibrium distribution 7Y associated with a new

data. Computationally, the equilibrium distribution is parameter set €V = €© + 8¢, for a small change J¢, can

usually evaluated on discrete states, such that 7(”(x) is be estimated in each discrete set, S, by reweighing as'”*®

not a function but a vector 7%, One practical approach is )

to discretize the state space into N clusters, S, i = 1,-+,N, i

to estimate a maximum-likelihood Markov State model 70

(MSM)** on it and to compute its equilibrium =— Z exp[—pHV(x, V) — HO(x, )]

distribution 7(¥.>*** The use of an MSM allows us to M xes,

obtain an equilibrium distribution from ensembles of 3)

short, nonequilibrium simulations.*® where H indicates the Hamiltonian defined by the

3. For each experimental measurement available, f;, we use parameters ¢, and 8 is the inverse temperature. The

. . . (0) . 0)
the distribution 7'” to estimate the value, e,[7'"], of the reweighing allows us to obtain an ex;)ression for Q as a
(1
)

corresponding observable gi(x), e.g., the probability of a function of the model parameters ¢!, by combining eqs
FRET distance. If the measurement f; is an ensemble 12 and 3
) )

average of that observable, it can be obtained as

O QY =Pl(ex"], ..., elnV])IExp] )

ek[”(O)] - z lT z gk(x) 6. Equation 4 provides an explicit expression of the

Pt xe§, O likelihood as a function of the model parameters. We

where #n; is the number of samples in S, Kinetic can then make a step in the parameter space in the

measurements can be similarly estimated from the MSM. direction that maximizes Q", using a bounded gradient

4. If we treat the measurements as statistically independent descent method (see Supporting Information). New

and normally distributed, we can compute the likelihood simulations are run with the new parameters ¢!, and a

of the simulation prediction in light of the experimental new maximum likelihood equilibrium distribution 7*)(x)

measurements, Q) = Q(¢®). [More sophisticated error is obtained. The steps above are repeated until
models can be used that might better suit a particular convergence to a final Q.

observable.”’] This is given as This formulation presents several improvements with respect

_ © © to previously developed methods to incorporate experimental

Q=P[(e[z™], ..., elm " ])IExp] data into computational models."”'**"***® As shown in the

— (0)7, Supporting Information, the Q value is mathematically related

1:[ Ne =], fk’ Afk) (2) to the regduced 1 score (y2) which has been previously

X used.'**" Here, we introduce the incorporation of MSMs into
12 exp(—(xz_—’:)). That is, each the model (step 2 above), as well as the application of the
i ’ method to distance probability data. The use of MSMs

where N(x; p, 6) =

o

fi observable is considered as the mean, 4, of a Gaussian eliminates the need for long single trajectory equilibrium
distribution N(x; u, 0) and its associated uncertainty simulations, while the use of the advanced reweighting scheme
Af, is used for the variance ¢ of the distribution. The TRAM (Transition-based Reweighting Analysis Method'”)
Gaussian is then evaluated on the value of the extends this capability when using enhanced-sampling
corresponding simulated observable, ¢, that is implicitly techniques. TRAM only requires that a set of short simulations
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are locally equilibrated'” to reproduce the global equilibrium
distribution. This allows us to use a “divide and conquer”
approach with many concurrent short simulations, drastically
reducing the time required for sampling the conformational
space of the system. We show in the following that the
application of ODEM allows us to define a simple C,—Cs CG
model for the folding of FiP35 that reproduces the dynamics of
the protein remarkably well when simulated with extensive all-
atom simulations.

Details on the implementations of the steps above are
provided in the Supporting Information.

B RESULTS

Choice of Models and Observables. In order to
demonstrate the efficacy of ODEM, we show here the
application to a system where simulated experimental
observables are generated from long atomistic simulations in
explicit solvent, that is, the folding of WW domain FiP3S (data
courtesy of D. E. Shaw Research group). This atomistic model
is henceforth referred to as the Reference model.® The goal of
ODEM is to design an optimal coarse-grained model able to
reproduce the long time scale dynamics associated with the
Reference model, by using only a small number of global
observables measured on the latter. By using the Reference
model, the performance of the optimized coarse model can be
cross-validated by comparing more detailed features that have
not been used for its optimization. In order to compare the
dynamics, an MSM was estimated for the Reference model
(details on the analysis and validation are provided in the
Supporting Information). The resulting model is compatible
with previous MSM analyses of this system.*' ~*’

The distributions of three C,—C, pair distances (Pro6-Argl4,
Ser2-Argl7, and Phe21-Ser28, Figure 1a, b, and c, respectively)
are chosen as observables and estimated on the Reference
model. Distribution of FRET probe distances can be inferred in
single molecule FRET experiments by processing and denoising
distributions of FRET efficiency over time.""™ By using
simulated observables (measured in the Reference model), we
avoid introducing spurious effects, such as the influence of the
FRET probes, that can affect the performance of ODEM, and
we are able to “cleanly” evaluate its efficiency. The first residue
pair, Pro6-Argl4, is chosen as its distance correlates well with
the slowest collective coordinate associated with the folding/
unfolding dynamics, while the other two pairs of residues were
chosen based on some structural intuition. Specifically, the
Ser2-Argl7 distance was selected to monitor the flexibility of
the first f-sheet, while the Phe21-Ser28 distance was chosen to
provide information about the second f-sheet (see Supporting
Information). In the following section, we discuss the results
obtained when these distributions are used in the model
optimization (see SI for full details).

It is important to compare the similarities and differences
associated with the use of simulated observables instead of real
experimental measurements. Here, we use the distributions of
multiple backbone pair distances as our simulated observables.
While FRET measurements with multiple probes may not be
standard for small proteins, they are becoming increasingly
common in the study of larger systems.**”* In the particular
example presented here, three C,—C, pair distances are
discretized with a bin spacing of 0.02 nm, where the probability
of each bin, N,/ N,y is treated as the observable f;, and the

associated error Af, is taken to be 1000 X /N, ..c/N,oms
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where each discrete bin in a distance distribution has N,
observed distances, and N,,,, is the normalization of the
probability distribution. The factor 1000 increases the statistical
error significantly in order to take into account additional
sources of errors present in real experimental data, such as
systematic errors (i.e., cross-talk or background noise in FRET
measurements). Some of these errors can be reduced by
accurate postprocessing of the experimental measurements (ie.,
denoising the FRET data), and several techniques have been
proposed toward this goal.*>*" The main source of error that is
not explicitly accounted for in our model stems from the fact
that real experimental FRET measurements report on the
distance distributions between FRET probes, and that can be
different from the distance distributions between backbone
atoms in the protein that are used here as our simulated
observables. In principle, the conversion between these sets of
distances could be more accurately modeled when real FRET
measurements are used in ODEM. For instance, FRET probes
could be explicitly included, as has been done in coarse-grained
models in recent work.”” However, the introduction of FRET
probes in the model would render the simulations more
computationally demanding and would negate most of the
benefits of using a CG model, especially in ODEM where
multiple iterations are required. We note that experiments with
multiple FRET probes have the additional advantage that they
allow us to extrapolate the distribution of backbone pair
distances from the measured FRET efliciencies with a relatively
small error (about 2 A),* and we expect this extrapolation to
provide reliable data to reproduce extended conformational
changes in large proteins with ODEM. Altogether, the
additional sources of uncertainties associated with real
experimental data could increase the error for the different
measurements nonuniformly and that in turn could alter the
position of the optimal solution in parameter space. While a
more accurate incorporation of these additional errors requires
a more complex model for Af}, the use of a large statistical
error in the simulated measurements used here can partially
account for them. Even if the results presented provide a simple
test model for ODEM, we believe the method is still applicable
to real experimental data in the future.

A C,—C; CG model is used here, where the C, atoms of each
residue represent the backbone and the C; atom represents the
center of mass of the side chains.”® For the Co—Cp
Hamiltonian, we use a simple representation with local steric
interactions (bonds, angles, and dihedrals potentials) and
tertiary interactions in the form of Gaussian contact potentials
(see Supporting Information for details). Very short
simulations were performed at various temperatures (11
different simulations, one for each temperature 115, 116 K-
to 125 K) at each ODEM iteration and then reweighted to the
temperature maximizing the agreement with observables
(maximizing Q-value). The temperatures were chosen to
sample structures near the folding temperature which is around
120 K due to the renormalization of the energy scale in the CG
model.

ODEM Optimization. Figure 1 shows the agreement
between the observables computed on the Reference model,
the model used as the starting point, and the models resulting
from the ODEM optimization. We use 20 different starting
points for the ODEM optimization, generated by adding
randomly distributed noise to each of the interaction energy
parameters of a plain structure-based model for a C,—Cy
representation of the FiP3S protein (called the zeroth order
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model in the following). Each of the 20 starting points was
iteratively optimized with ODEM for 10 iterations. We
compare the Optimized coarse-grained models to the zeroth
order model and to the Reference (all-atom) model. The
parameters that are iteratively optimized by ODEM, as
discussed above, are the strength of the interaction between
each pair of effective atom types (C, and Cy of all the different
residue types). All models converge with an increase of 10
orders of magnitude in the likelihood Q" with respect to the
zeroth order model (see Figure 2).

10°
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Figure 2. Convergence of the model likelihood, Q (see eq 4),
computed over the three distance observables, for the C,—Cy coarse-
grained models (blue) as a function of the ODEM iterations. The
average over the different optimized models is reported, while the
shaded area indicates the standard deviation over the models.

Figure 1 shows that while the simulated FRET distributions
computed on the zeroth order model are all quite far from the
Reference model, in the Optimized models these observables
are in agreement with the Reference values. Looking at the
three distance distributions, we see (Figure 1) that while the
zeroth order model has a single sharp peak in the Pro6-Argl4
and Phe21-Ser28 C,—C, distances the distributions exhibit
two-peaks for the Optimized models, mainly a new broad peak
which closely resembles the corresponding behavior in the
Reference model. The fact that the Optimized model cannot fit
all three distances perfectly might be due to the functional form
of the CG Hamiltonian, which is significantly less complex than
an all-atom Hamiltonian. However, the overall agreement of
the Optimized model to the Reference model shows
remarkable improvement (10 orders of magnitude) in Figure
2. Q% converges to a value near 0.0061 in the final iteration.
While this value may at first appear still low as a likelihood, it is
important to note that it is obtained as a product of multiple
Gaussians (see eq 2), and its geometric average per observable
corresponds to a value of 0.988. An alternative way to compare
the results is by means of the reduced y? score. By the
definition of Q, the y? score is proportional to —In(Q") and
decreases by a factor of four from the zeroth order to the
optimized model.

In order to better understand the changes in the dynamics,
an MSM analysis of the Reference, zeroth order, and Optimized
models is performed to identify an Unfolded (U) and Folded
(F) state based on PCCA+ membership,”® and then a
committor probability between U and F is used to define the
Transition State (TS) for each model (see Supporting
Information for details). While the parameter sets of the
ODEM:-optimized C,—C; models are not identical, they are all
essentially equivalent in reproducing the folding process of the
Reference model accurately. Figure 3 shows that while the
zeroth order model is not able to reproduce the folding
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Figure 3. Average contact maps for the 20 models for states U
(unfolded), TS (transition state), and F (folded): (a) Reference, (b)
zeroth order, (c) Optimized. Different shades of blue (red) quantify
the probability of formation of native (non-native) contacts. (a) The
Reference model’s U state shows a weak non-native contact formation
and a weak residual f-sheet structure, while TS presents a formed first
p-sheet with an unformed second f-sheet. (b) Unfolded configurations
of the zeroth order models are all partially collapsed around the second
P-sheet, producing a strong tendency to form the second f-sheet in the
U state and near complete folding of both f-sheets in the TS. (c)
Optimized models present a TS consistent with the one of the
Reference model, where the first f-sheet is formed. Reference and
Optimized models differ only in the formation of a few weakly formed
non-native contacts in the U state.

mechanism of the Reference model, all Optimized models
capture its transition state with remarkable accuracy. The
primary difference between the zeroth order model and the
Reference model is that the first f-sheet is formed in the
transition state of the zeroth order model but not in the
Reference model. From previous studies on FiP35,""** it was
found that while folding can, in principle, initiate with the
formation of either f-sheets the first f-sheet has a strong
preference to form first, and this feature is absent in the zeroth
order model’s transition state but present in the optimized
model. The only difference observed in the contacts maps of
the different (U, F, TS) states between the Optimized and the
Reference model consists in the formation of a few weak and
transient non-native contacts in the unfolded state; in the
Optimized models, these contacts tend to form between the
first and second f-strands, while in the Reference model they
are more delocalized in the contact map. However, this
difference does not affect other properties of the unfolded state,
such as the L,, observable (simulated Trp spectroscopy)
illustrated by Figure 4.

In order to further gauge the ability of the Optimized coarse-
grained models to reproduce the all-atom Reference model, an
additional simulated experimental observable (not used in the
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Figure 4. Histograms for the simulated Trp fluorescence measure-
ments, Lt,.},(t), for each model and for each state (U, TS, F). The red
curve indicates the average over the 20 Optimized models, while the
pale red shaded area indicates the standard deviation over the different
models.

ODEM optimization) is used to compare the different states; to
mimic the results of Trp spectroscopy, we monitor the
formation of tertiary interactions involving residue W8, which
is the only Tryptophan residue in the sequence of FiP35 used
(see Supporting Information for details). We indicate this
quantity as Ly, As the CG beads do not correctly represent the
true size and shape of residues, the number of contacts (both
native and non-native) formed by the Tryptophan is used here
as a proxy for the amount of solvent accessible area for the
Tryptophan residues. It was previously shown® that the
number of contacts formed by a Trp residue computed over a
protein folding trajectory correlates well with Trp spectroscopy.
In each (U, TS, F) state, the values of L, are histogrammed
and compared for the Reference, zeroth order, and Optimized
models in Figure 4. It is clear that while the results for the
zeroth order model present significant deviation from the
Reference model, particularly in the U and TS states, the
Optimized models appear to more closely match the Reference
value in all states. To quantify the difference, we report the y.
for each state and model independently, compared to the
Reference model. While for the unfolded state the y? score
associated with the Optimized and zeroth order model are
comparable (both around a value of 60,000), the shape of the
distribution of the Optimized model is qualitatively much more
similar to the corresponding Reference model for this state. For
the transition state, the y7 score of the Optimized model is 1
order of magnitude smaller than the zeroth order model (114
and 1069, respectively), and it almost a factor of 2 smaller in
the folded state (38,000 and 69,000, respectively). Note that
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the large values of the y; scores are due to the small standard
deviation of the Reference observables, estimated as

Nount / Noorm 0ver the MD long trajectories available for the

Reference model. It is important to stress that, as W8 is not
involved in any of the distance pairs used in the ODEM
optimization, L, provides an independent validation test for
the results of the procedure. Additionally, as W8 is located in
the region in the contact map where a weak cluster of non-
native contacts may form in the U state of the Optimized
models, the matching of L,, in the U state show that such a
small probability of residual non-native structures does not
significantly change the overall behavior of these models with
respect to the Reference model.

The time scale associated with the folding process is slower
for the Optimized models with respect to the zeroth order
model; while the folding time of the zeroth order model is a
factor of ~4000 faster than the Reference model (when the
time is measured in internal units in each model for a direct
comparison), the average folding time over the different
Optimized models is a factor of 2500 =+ 200 faster than the
Reference model. The folding slow-down during the ODEM
optimization is due to the introduction of non-native
interactions and energy heterogeneity.””*° The remaining
~2500 factor speed up of the folding time scale of the
Optimized models with respect to the Reference model arises
from the reduction in degrees of freedom upon coarse-graining,
which eliminates fluctuating forces and produces a much
smoother overall energy landscape.””® Because of this
significant speedup, in addition to the reduced complexity of
the coarse-grained model, multiple folding/unfolding events
can be simulated for the Optimized models in a matter of a few
CPU hours on standard computational facilities. For this
reason, coarse-grained models optimized with experimental
data provide an attractive alternative to characterize molecular
processes still inaccessible to atomistic simulations.

Analysis of Solutions’ Space. As reported above, all the
ODEM Optimized models present similar thermodynamics and
kinetic behavior, although the corresponding parameters are
not identical. Figure S reports the average value (upper
diagonal) and standard deviation (lower diagonal) for the
parameters regulating the strength of the residue—residue
interactions over all Optimized models. How the different
interactions between the C, and Cj pseudoatoms contribute to
the strength of the residue—residue interactions is shown in
Figure S1 in the Supporting Information. The locations of some
of the residue—residue interactions that are consistently
strongly attractive in all models coincide with, or are near to,
native interactions (contacts highlighted by a black box in the
contact maps in Figure S). However, two interesting features
emerge. First, while about half of the native interactions are
always attractive, the other half are not positive in every model
and can be found to be repulsive in different Optimized models.
These fluctuating interactions are not necessary for the correct
folding of this protein. Additionally, a cluster of strongly
attractive interactions are found in a non-native region of the
contact map, between residues 4—9 and residues 16—22. The
propensity of the Optimized models to form non-native
contacts in this region in the unfolded state (Figure 3) is
clearly connected to this cluster of interactions. Many of the
interactions that are found consistently strong in the Optimized
models involve residue W38; the participation of this residue in
both native and non-native strong interactions makes it
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Figure S. Statistics of the parameters for the ODEM optimized C,—Cy
models obtained from 20 different initial values. The average value
(upper diagonal) and standard deviation (lower diagonal) of the
interaction strength between two residues (ij) is reported for each
pair, where the strength is averaged in the case both C,—C, and C4—
Cj interactions exist. Darker shades of blue indicate stronger attractive
interactions, as quantified by the color map. The highlighted black
boxes mark the position of native interactions, while red crosses mark
the positions of strongly coupled pairs found from mfDCA. A
breakdown of each individual interaction in terms of C,—C, and Cys—
Cj contributions (including repulsive interactions) is available in the
Supporting Information.

significantly frustrated. In particular, the interactions of W8
with the loop at the opposite end of its f-strand can not be
satisfied by small perturbations of the native structure and
compete with native interactions. Because of its persistent
presence in all the Optimized models, this frustration is most
probably inherited from the Reference model, and it may be an
important ingredient to reproduce the folding mechanism
correctly, that is, to form the first f-sheet rather than the
second one in the transition state (see Figure 3). Indeed, both
P-sheets are equally likely to be formed in the transition state of
the completely unfrustrated zeroth order model, while this
symmetry is broken in the Reference and Optimized models.
In order to test the role of these strong and frustrated
interactions on FiP35, we use mean-field Direct Coupling
Analysis (mfDCA) to identify residue pairs which are
coevolutionary linked.”” FiP35 belongs to the WW domain
family; a multiple sequence alignment of this protein family
(Pfam ID: PF00397) is obtained from the Pfam domain
database® and used as input for mfDCA to obtain the 48
residue pairs with highest coevolutionary coupling. The number
48 is selected as follows: 50 pairs were obtained from the DCA,
corresponding to around 1.5 times the length of the MSA. This
is a typical cutoff employed in applications of DCA. As two of
the pairs among these 50 included an amino acid present in the
MSA but not in FiP35’s specific sequence, 48 pairs were used.
However, results are robust if a reduced set of pairs is used (see
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Supporting Information, Figure S3). These strongly coupled
pairs are marked with red crosses in Figure 5. Very
interestingly, both clusters of persistently strong non-native
interactions in the ODEM optimized parameter sets are among
the interaction pairs with highest coupling. An additional
cluster of strongly coupled pairs emerge from mfDCA and
involves the interactions of the C terminus (residues 30—35)
with the rest of the protein. The promiscuity of the interactions
of the C terminus in this protein family is not surprising as it is
a flexible linker that can connect the domain to different
structures in larger complexes. On the contrary, the existence of
a cluster of strongly coupled pairs in the region defined by the
interactions between residues 4—9 and residues 16—22 is highly
nontrivial. In particular, W8 is one of the residues most
frequently found among the pairs with high coevolutionary
coupling, and most of the non-native interactions obtained by
mfDCA are close to the interactions emerging from ODEM as
persistently strong across the different Optimized models.

While the ODEM optimization is designed to reproduce the
protein dynamics, mfDCA identifies pairs of residues most
likely to interact by means of coevolutionary considerations. As
frustrated interactions promote the formation of non-native
contacts, they are shaping the folding mechanism but not
driving the folding directly and are therefore absent in any
structure-based model built on this protein domain. This result
suggests that at least some aspects of the folding dynamics of
FiP3$ are not directly encoded in its native structure and are
preserved in the WW domain family.

B CONCLUSIONS

We propose ODEM, a theoretical/modeling framework to
integrate multiple experimental measurements (that could
come from heterogeneous sources) in the definition of optimal
coarse-grained models, for the study of molecular processes
over long time and length scales. We have illustrated the
approach by using simulated FRET measurements to “learn™
different coarse-grained models, using a structure-based model
as starting point, to reproduce the folding mechanism of
protein FiP3S5, as obtained by extensive atomistic simulations.
We note that a similar philosophy was previously used to
generate a model for the study of intrinsically disordered
proteins.14

The results show that a set of C,—Cs; models can be
optimized to faithfully characterize the slow dynamics of this
protein. The analysis of the different optimized C,—Cjs models
reveals that some localized frustration is important to shape the
folding mechanism of this protein. Additionally, frustrated
interactions appear evolutionarily conserved in the protein
family and suggest a link between folding dynamics and
evolutionary preserved features that may have important
functional implications.

The ODEM approach is particularly relevant in light of the
recent advances in experimental key technologies that are now
offering an unprecedented view into the spatial and temporal
organization of proteins and larger macromolecular complexes
in the cellular environment. As experiments are still lacking the
ability to simultaneously resolve structure and dynamics in a
way that would permit a full characterization of the dynamical
mechanisms of large proteins, computer simulations present a
powerful complement to experiment. Because of their empirical
nature, coarse-grained models are generally less predictive, and
it is often unclear a priori whether a chosen coarse-grained
model possesses sufficient physicochemical detail to model the
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protein interactions under investigation. The ODEM approach
allows us to design molecular models constrained to be
consistent with available experimental data, in order to
overcome the intrinsic shortcomings of the coarse-graining
modeling approach.

The ultimate goal of ODEM is its application to model the
dynamics of protein systems with larger length and time scales,
which are difficult to study with all-atom molecular dynamic
simulations. We expect several aspects of the application of
ODEM discussed here to seamlessly translate to the study of
larger systems. For instance, we expect the speed up of time
scales observed in the model of FiP3S$ to be similarly significant
in larger proteins. In addition to the speed up in simulation
time due to the reduced complexity of the model, coarse-
grained models also significantly decrease the time scales by
eliminating the fast fluctuating degrees of freedom, time scales
by eliminating the fast fluctuating degrees of freedom,””*®
allowing us to sample large conformational changes faster. We
also expect the use of MSMs and TRAM in ODEM to be very
effective in the modeling of larger systems. One difference in
the application of ODEM to larger systems consists in the fact
that the Hamiltonian model may have more parameters that
can be optimized. If a larger number of parameters in the
Hamiltonian could introduce more flexibility to reproduce the
experimental data, it could also increase the computational cost
or reduce the interpretability of the model. This problem can
be addressed technically by using parallel computing and more
efficient optimization algorithms or conceptually by selecting a
specific subset of parameters to optimize, guided by physical
intuition or other modeling consideration. The possibility to
integrate experimental data from multiple sources into
mechanistic and quantitative molecular models can provide a
solid bridge between simulation and experiment for the
complete characterization of complex molecular processes.
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