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ABSTRACT: The problems of protein folding and protein
design are two sides of the same coin. Protein folding involves
exploring a protein’s configuration space given a fixed
sequence, whereas protein design involves searching in
sequence space given a particular target structure. For a
protein to fold quickly and reliably, its energy landscape must
be biased toward the folded ensemble throughout its
configuration space and must lack deep kinetic traps that
would otherwise frustrate folding. Evolution has “designed”
the sequences of many naturally occurring proteins, through
an eons-long process of random mutation and selection, to
yield landscapes with a minimal degree of frustration. The task
facing humans hoping to design protein sequences that fold into particular structures is to use the available approximate energy
functions to sculpt funneled landscapes that work in the laboratory. In this work, we demonstrate how to calculate several
localized frustration measures using an all-atom energy function. Specifically, we employ the Rosetta energy function, which has
been used successfully to design proteins and which has a natural pairwise decomposition that is suitably solvent-averaged. We
calculate these newly developed frustration measures for both a mutated WW domain, FiP35, and a three-helix bundle that was
designed completely by humans, Alpha3D. The structure of FiP35 exhibits less localized frustration than that of Alpha3D. A
mutation toward the consensus sequence for WW domains in FiP35, which has been shown unexpectedly in experiment to
disrupt folding, induces localized frustration by disrupting the hydrophobic core. By performing a limited redesign on the
sequence of Alpha3D, we show that some, but not all, mutations that lower the energy also result in decreased frustration. The
results suggest that, in addition to being useful for detecting residual frustration in protein structures, optimizing the localized
frustration measures presented here may be a useful and automatic means of balancing positive and negative design in protein
design tasks.

■ INTRODUCTION

Successful protein design requires both a positive design to
stabilize the target folded structure and a negative design to
destabilize possible traps on the energy landscape that might
result in misfolding.1−3 Traps in the energy landscapes of
proteins can be stabilized by relatively strong non-native
interactions. Thus, simply achieving a stable design does not
guarantee that clean folds will result. Not only must a design be
stable but it must also be separated by an energetic gap from
alternatives. This is one way of stating the minimal frustration
principle of protein folding.3−7 It was shown many years ago
that a protein design based on energy gap could improve the
foldability relative to designing based on stability alone.3 Of
course, designs can fail locally as well as globally. Thus, it is
desirable to be able to localize where frustration exists in
biomolecules.8−14 An algorithm for computing localized
frustration measures in protein structures has been proposed
as a way of identifying frustrated contacts in folded
structures.8,11 The original “frustratometer” is based on the
AMW/AWSEM energy function,8 a coarse-grained solvent-
averaged model, which has been successfully used to predict
the folded structures of proteins and to study mechanisms of

protein misfolding,12 binding,8,13 and aggregation.13 What
residual frustration remains in folded structures is found often
to be related to the function. The AWSEM frustratometer has
been used to show that residual frustration can be found in
parts of protein structures that are involved in protein-binding
interfaces,8 conformational dynamics,14 ligand binding,13

enzyme active sites,9 and other functions.11

Here, we introduce a way to compute localized frustration
using an all-atom model, the Rosetta energy function, which
has been used successfully to design proteins as well as to
predict structures.15 In analogy to what was done with the
AWSEM frustratometer, two types of Rosetta-based frustration
measures are developed here. These algorithms provide
complementary information: one is an atomistic “mutational”
frustration measure and the other is an atomistic “configura-
tional” frustration measure. To estimate localized frustration,
one must first compute the strength of interactions within the
folded ensemble and then compare that strength with the
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strengths of a set of decoy interactions. The two frustration
measures differ primarily in the approach that is used to
compute the decoy energy distribution. In the atomistic
mutational frustration calculation, decoy interactions are
computed by mutating pairs of residues that are in close
contact in the folded structure and computing the pair energy
between the mutated pairs. The atomistic mutational
frustration measure therefore provides information about the
specificity of evolution selecting particular interactions in the
structural context in which they are found in the folded
structure. In the atomistic configurational frustration calcu-
lation, the decoy energy distribution is obtained by computing
the interaction energies of the same pairs of residues when they
interact in an ensemble of non-native structures. Unlike the
atomistic mutational frustration measure, which can be
computed using only structural information about the native
backbone configuration, computing the atomistic configura-
tional frustration requires a means of generating non-native
decoy configurations. The AWSEM frustratometer solves this
problem by sampling randomly from the distribution of
configurational parameters within the folded structure when
computing decoy interactions. Here, we compute the atomistic
configurational frustration measure by obtaining an ensemble
of non-native structures from long molecular dynamics
simulation trajectories.
We apply the new Rosetta-based frustration measures to the

two proteins that are shown in Figure 1. The first protein we

consider is FiP35 (Figure 1a), which is a fast-folding β-sheet
protein in the WW domain family that was originally a
designed variant of the hPin1 WW domain.16,17 We pay special
attention to two residues, W8 and F30, both of which show a
high degree of conservation in the WW domain family.18 The
second protein is a human-designed α-helical protein, Alpha3D
(Figure 1b), one of the first de novo designed proteins with a
well-packed hydrophobic core.19−21

■ METHOD: ALL-ATOM LOCALIZED FRUSTRATION
CALCULATIONS

The pairwise frustration index is defined as follows8

∑= ⟨ ⟩ − − ⟨ ⟩
=

F E E N E E( )/ 1/ ( )ij ij ij
k

N

ij
k

ij
decoy native

1

decoy, decoy 2

(1)

The pairwise frustration index, Fij, is a Z-score of the native
pair energy (Eij

native) compared with a distribution of N decoy
energies (Eij

decoy,k, for k = 1, ... N) for the pair of residues i and j.
Frustration measures differ primarily in how the decoy energy
distribution is generated, and all measures compute the
pairwise frustration index, Fij, as shown in eq 1. Large and
positive frustration indices indicate that a pair of residues are
minimally frustrated, whereas large and negative frustration
indices indicate that the pair of residues is highly frustrated.
The pairwise energies Eij entering eq 1 are computed using

the Rosetta energy function as follows

∑ μ μ=E w V ( , )ij
k

k k i j
(2)

We employed the REF2015 version of the Rosetta energy
function, which has a set of well-tested default weights, wk, for
each energy term type, Vk, which depend on residue identities
μi and μj.

15 The full Rosetta energy function includes many
energy terms, but for this work we use only the energy terms
that directly contribute to the pairwise residue interactions,
which are the attractive and repulsive Lennard-Jones
interactions, electrostatics, and an orientation-dependent
solvation term. The individual energy terms entering eq 2
are themselves computed as a sum of interactions between
atoms i′ and j′ in residues i and j, at positions ri′ and rj′,
respectively, as follows

∑ ∑μ μ μ μ=
′ ′

′ ′V v r r( , ) ( , , , )k i j
i j

k i ji j
(3)

where vk is the pairwise interaction energy for the atoms
between a pair of residues. We compute the pairwise
frustration indices for pairs of residues i and j that satisfy j ≥
i + 3 and that interact in at least 5% of the native
conformations. Decoy energy distributions are generated
using two different methods, both of which are described
below.
The thermally occupied folded ensemble is not necessarily

well-represented by a single static structure. We therefore
chose to compute native interaction energies using an average
of over 100 randomly chosen structures from within an
ensemble of structures that were generated during long
molecular dynamics simulations. This approach provides a
better estimate of the pairwise interaction energies within the
native ensemble than would a single evaluation of the pairwise
energy in, for example, the protein’s X-ray crystal structure.
Representatives of the native ensemble were taken from
trajectories provided by the Shaw group.22,23 The limits of the
native ensemble were determined previously using a Markov
state model.24 Alternative means of generating native-like
structures exist2,25 and would likely be suitable for performing
frustration calculations. The average native interaction energy
for a pair of residues is estimated as follows

∑=
=

E E
1

100ij
k

ij
knative

1

100

(4)

Figure 1. Folded structures of (a) FiP35 and (b) Alpha3D. β-Strands
are shown in yellow, α-helices are shown in purple, and loops are
shown in white and cyan. The side-chains of select residues are shown
in an all-atom representation and are labeled with their corresponding
one-letter amino acid-type code and sequence index. (a) Side-chains
of residues that are highly conserved across WW domains (W8 and
F30) are shown. (b) N-terminus is on the top left of the structure and
residues L18, Y45, P51, E52, and L56 are shown.
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where Eij
k is the energy between the pair of residues i and j in

the representative structure with index k in the native
ensemble.
As mentioned above, two methods were employed for

generating the decoy energy distributions. To compute the
atomistic mutational frustration measure, we generate decoy
energies by starting from a set of native-like structures and
mutating one or both of the residues in the pair of residues for
which the frustration index is being calculated. Because
mutating the side-chain without allowing the backbone to
relax is likely to result in steric clashes, we take steps to avoid
such clashes. The flexibility of the backbone is taken into
account through the use of multiple native structures, and a
local side-chain repacking is employed to try to avoid steric
clashes. Rosetta has built-in methods for performing a
mutation with local repacking. We used a “pack_radius” of
10 Å, meaning that Rosetta attempts to repack side-chains that
are within 10 Å of the mutated side-chain to avoid steric
clashes. Each decoy energy was obtained by randomly selecting
a native-like structure from within a prespecified pool,
mutating residues within the pair that is being examined, and
then discarding the energy if the pairwise interactions were still
unphysically large (≥10 Rosetta Energy Units) due to an
inability to avoid clashes by repacking. Furthermore, in
situations where the decoy energy standard deviation was
unnaturally small due to the small number of acceptable
mutants, the standard deviation was raised to 0.1 Rosetta
Energy Units. The atomistic mutational decoy pairwise energy
Eij
mut,kis obtained as follows

μ μ μ μ μ μ= | ≠ ≠E E ( , OR )ij
k

ij s l s i l j
mut,

(5)

where the mutations of residues i and j to μs and μl must be
done in such a way that at least one of the residues is different
from the original identities μi and μj. Equation 5 can be
substituted into eq 1 to compute the atomistic mutational
pairwise frustration Fij

mut for Nmut mutational decoys (Nmut =
1000 for this work).

∑= ⟨ ⟩ − − ⟨ ⟩
=
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k

N

ij
k

ij
mut mut native

mut
1
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mut

(6)

To compute the atomistic configurational frustration, we used
decoys that were directly taken from long molecular dynamics
trajectories that include folding and unfolding events.22,23

Interactions between any given pair of residues i and j can be
observed throughout the protein trajectory. For the purpose of
computing decoy energy distributions, we looked specifically at
the conformations in the nonfolded states (fraction of native
contacts <0.2). Furthermore, for a given residue pair, the
interaction energies are included in the decoy energy
distribution if and only if the their closest heavy-atom distance
R satisfies R ≤ 3 Å. Longer distance thresholds lead to strongly
bimodal decoy energy distributions due to the inclusion of a
large number of essentially noninteracting residue pairs with Eij
∼ 0. We therefore chose to use a relatively short cutoff distance
and attempt to correct for any bias that is introduced by using
this cutoff distance as discussed below. In effect, the atomistic
configurational frustration measure then becomes a compar-
ison between the residue pair’s interaction energy in native-like
states and their interaction energies in an ensemble of non-
native states where they are nonetheless in close contact. Much

as was done for the atomistic mutational frustratometer,
configurations having pairwise energies above 10 Rosetta
Energy Units were removed from the distribution. Also, when
the resultant distribution was anomalously narrow, the
standard deviation was set to 0.1 Rosetta Energy Units,
which only affected a minority of interactions. The average
value for the decoy energy, ⟨Eij

indiv⟩, between residue pair i and j
is then obtained as follows

∑⟨ ⟩ =E
N

E
1

ij
ij k

N

ij
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ij

(7)

for the Nij close interactions are found for the residue pair in
the pool of all non-native decoy structures. The frustration
from the individual pairs, Fij

indiv, is then given as follows:

∑
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To account for the bias in the computed decoy energies that
results from choosing a shorter cutoff distance, a group
frustration is computed. The group energies Egroup’s are
computed by summing pairwise residue interaction energies
over all residue pairs, i and j, and normalizing this sum by the
total number of interactions that are included in the
computation, Ntotal = ∑i∑j≥iNij, to derive the following
equation

∑ ∑ ∑⟨ ⟩ =
≥

E
N

E
1

i j i k

N

ij
kgroup

total

ij

(9)

Then, the group frustration Fgroup is defined as follows

∑= ⟨ ⟩ − ⟨ ⟩
=

F E N E E( )/ 1/ ( )
k

N
kgroup group

total
1

group, group 2
total

(10)

and the atomistic configurational frustration index is then given
by uniformly shifting Fij

indiv by Fgroup, giving the following
equation

= −F F Fij ij
config indiv group

(11)

Further discussion of the configurational frustration index
computation is given in the Supporting Information.

■ RESULTS
Localized Frustration in FiP35: A Fast-Folding and

Minimally Frustrated WW Domain. FiP35 is a fast-folding
WW domain.26 Its structure consists of a single β-sheet, which
is shown in Figure 2. An analysis of the folding trajectory of
FiP35 has indicated that the folding of FiP35 is unfrustrated.27

Multiple sequence alignments of WW domains show that W8
is a conserved residue and position 8 shows strong mutational
coupling to nearby residues according to direct-coupling
analysis calculations.28 Mutations of the conserved tryptophan
at position 8 to other amino acids often result in variants that
fail to fold.18,29 The importance of W8 to the folding can be
understood by examining the structure of FiP35; W8 appears
to form the basis of the hydrophobic core. The first two β-
strands, which includes W8, are structured in the transition
state of FiP35.24
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Panels a and b in Figure 2 show three-dimensional
representations of the localized frustration patterns on the
structure of FiP35 computed using the atomistic recipes. In
these “frustratograms”, green and red lines are used to indicate
particularly unfrustrated and frustrated interactions, respec-
tively. The Fij values are also shown in a contact map style in

Figure 2. Frustratograms for FiP35 using the atomistic (a) mutational
and (b) configurational frustratometer. A green line is drawn between
residue pairs whose frustration index Fij satisfies Fij > 0.78. Such
residue pairs are said to be “minimally frustrated”. A red line is drawn
between residue pairs with Fij < −1, and these residue pairs are said to
be “highly frustrated”. Residue pairs that are in close contact in the
native structure and have −1 < Fij < 0.78 are said to be “neutrally
frustrated” and are not indicated on the frustratogram for visual
clarity. (c) FiP35 Fij values for the atomistic mutational (top left) and
configurational (bottom right) frustration measures. According to
both frustration measures, FiP35 has very few highly frustrated
interactions, which, when present, usually involve at least one residue
in the flexible termini. The network of minimally frustrated
interactions is more dense according to the atomistic configurational
frustration measure than it is for the atomistic mutational frustration
measure.

Figure 3. Top half shows the change in frustration upon mutation and
the bottom half shows the resultant frustration. For the W8G
mutation, both the atomistic (a) mutational and (b) configurational
results show a mutation of the hydrophobic core surrounding W8G,
and, as expected, it increases the frustration. The F30W mutation is
shown for the atomistic (c) mutational and (d) configurational
frustratometers.

Figure 4. FiP35 frustratograms for the corresponding Fij values in
Figure 3 for the W8G mutation with the atomistic (a) mutational and
(b) configurational frustratometers and the F30W mutation for the
atomistic (c) mutational and (d) configurational frustratometers.
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Figure 2c. Both frustration measures indicate that FiP35 is
overall minimally frustrated, consistent with the experimental
finding that it is a fast-folding protein. In particular, the
conserved W8 residue forms a particularly large number of
minimally frustrated interactions. According to the atomistic
mutational frustration measure, most of the minimally
frustrated interactions in the hydrophobic core involve W8
(Figure 2a,c), explaining the experimental observation of the
immutability of W8. Most interactions throughout the
structure are minimally frustrated according to the atomistic
configurational frustratometer, which is in harmony with a
previous simulational analysis27 that suggested that FiP35 has a
relatively unfrustrated landscape with very few non-native
interactions that form during folding.
WW domains other than FiP35 often have a tryptophan

both at position 8, as does FiP35, and also at position 30,

where FiP35 instead has a phenylalanine. W30 is apparently
more amenable to mutation than W8.18 Below, we compare
the localized frustration measures of the standard FiP35
sequence to those with either the W8G mutation or the F30W
mutation.
Avoiding steric clashes that would otherwise be introduced

when generating mutated structures at the all-atom level of
detail requires, at a minimum, a repacking of side-chains
around the mutated site. In this work, we opted for a relatively
simple method for avoiding steric clashes, where we performed

Figure 5. Frustratograms for Alpha3D using the atomistic (a)
mutational and (b) configurational methods. (c) Fij values for the
atomistic mutational (top half) and configurational (bottom half)
methods for Alpha3D. Alpha3D is one of the first de novo designed
proteins. During the folding of Alpha3D, non-native contacts that are
formed on the interface between helices cause some frustration.
Notice the important interactions between the N-terminus and the
turn regions of the α-helices, likely explaining why Alpha3D was more
stable than its predecessor, Alpha3C.

Figure 6. Atomistic configurational frustration for two proposed
Alpha3D mutants with the difference (top half) and net result
(bottom half). (a) Alpha3D-m1 and (b) Alpha3D-m2 are shown.
Despite Alpha3D-m1 being the lowest-energy mutant found, it
increases the frustration significantly, whereas Alpha3D-m2 is another
low-energy mutant where despite its higher total energy compared
with Alpha3D-m1, it has significantly less local frustration.
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mutations on the native structures and then carried out a local
repacking of the side-chains. When studying the mutated
variants of FiP35 that are discussed below, we must also
account for the other residue pair interactions that are nearby
that might be needlessly repacked in this procedure. Therefore,
we attempted to isolate the effects of repacking from the effects
of performing the mutation itself when redesigning the
sequences. To accomplish this, in addition to performing a
frustration calculation on the mutated variants (Fij

mutated), we
also performed a frustration calculation on a repacked structure
that did not have the mutation (Fij

repacked). We then took the
difference between these two results as a measure of frustration
in the mutated variant (Fij

change). The expression for Fij
change is

then represented as follows

Δ = −F F Fij ij ij
change mutated repacked

(12)

The resultant frustration value can then be recovered by
adding the difference ΔFijchange to the original frustration result
(either the atomistic mutational or configurational frustra-
tometer)

= Δ +F F Fij ij ij
mutant change unmutated

(13)

Figure 3a,b demonstrate the effects of the W8G mutation for
the atomistic mutational and configurational methods,
respectively. The changes in frustration are plotted in the
top halves of the figures, whereas the net frustration values are
shown in the bottom halves. For the W8G mutation, there is a
significant increase in the frustration specifically for residue 8.
This increase is seen using either the atomistic mutational or
the atomistic configurational recipes. The increase in
frustration specifically affects the hydrophobic core of FiP35,
where any local frustration can disrupt the folding behavior.
The W8 residue is buried inside the hydrophobic core of
FiP35. Conservative mutations to glycine or alanine are known
to cause major disruptions to the stability of the hydrophobic
core.18 Our results for the W8G mutation clearly show that this
mutation significantly increases the frustration specifically for
residue 8 in the difference plots in the top half of Figure 3a,b.
The net result of the mutation is an increase in frustration in
the hydrophobic core of FiP35, as seen in the bottom half of
Figure 3a. We also note that there is a significant loss of
stabilizing interactions, as evident in the frustratograms of
Figure 4a,b, which likely is the reason why W8G mutations
often result in WW domains that do not fold.29

For the F30W mutation shown in Figure 3c,d, the changes
are more subtle for the indices computed using either the
atomistic mutational or configurational method. Overall, since
this residue is far away from the main hydrophobic core, there
is a very minimal, but slight, increase to the frustration of the
W8 residue. On balance, it appears that the overall stability of
the protein remains roughly the same according to the
atomistic mutational frustratometer. There are some improve-
ments for a few residue interactions, whereas the main
hydrophobic core around W8 still remains overall unfrustrated
for the frustratogram in Figure 4c. For the atomistic
configurational frustratometer, the overall difference suggests
that many interactions will become less frustrated when the
protein folds. In general, W30F mutations for the WW domain
typically result in stable proteins.18 The results from the
atomistic mutational and configurational frustratometers
suggest that a mutation of FiP35’s 30th residue back to a
tryptophan should result in an overall stable folded state. There
is the potential for further improvement to the folding rate as
there are a few residue interactions that are made less
frustrated with this mutation in the atomistic configurational
frustratometer. Since the first two strands of FiP35 generally
initiate folding, the changes in frustration here might have very
little effect on the overall folding dynamics for FiP35. Clearly
though, further mutational studies on FiP35 could potentially
yield a faster-folding β-sheet.

Localized Frustration in Alpha3D: Configurational
Frustration Leads to Transiently Populated Intermedi-
ate States. Alpha3D was one of the first de novo designed
protein structures.21 It has a three-helix bundle structure, with
its tertiary structure held together by well-packed hydrophobic
side-chains.20,21 The predecessor to Alpha3D, Alpha3C, differs
from Alpha3D by only a few changes. In going from Alpha3C
to Alpha3D, two residues, M1 and G2, were added to the N-
terminus. Three other mutations were also made: E9Q, S16T,
and S65D. These three additional internal mutations, however,
are not believed to significantly change the folding behavior of
the three-helix bundle, as they are all along the solvent-exposed
surface and were added to decrease the sequence similarity
among the three helices.21 The resultant protein, Alpha3D, is a
fast folder, which primarily folds by nucleation around the
hydrophobic core.20 Interestingly, despite its high folding rate,
Alpha3D does exhibit signs of frustration in its folding
mechanism. Several studies show that Alpha3D visits many
intermediate states during folding, wherein multiple non-native
interactions are formed.19,20

Figure 5a,b show frustratograms for the frustration indices
found using the atomistic mutational and configurational
methods, respectively. The Fij values are shown in Figure 5c.
The atomistic configurational method indicates that there is
some frustration along the interfaces between the α-helices,
which is very evident in the frustratogram of Figure 5b. This
indication of frustration is consistent with what was observed
in the laboratory and in the simulation, where the nearby
hydrophobic residues in the separate α-helices interact strongly
with each other. These interactions lead to many frustrated
intermediates being populated as the protein folds.19,20,27 The
atomistic mutational frustratometer instead does not indicate
frustration along the α-helical interfaces or in the turn region.
Instead, it suggests that most of those interactions are
unfrustrated in Figure 5a. The α-helical interfaces, which
form the hydrophobic core, are instead extremely unfrustrated,
demonstrating that the packing of the core was well-

Figure 7. Alpha3D frustratograms corresponding to the Fij values in
Figure 6 for (a) Alpha3D-m1 and (b) Alpha3D-m2.
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designed.21 The lack of frustration along the α-helices in the
atomistic mutational frustratometer could indicate that the α-
helices themselves are actually less frustrated once formed and
are relatively stable in the native state. In contrast, frustration
around the turn regions is observed in the atomistic
configurational frustratometer. This would seem to confirm
the idea that Alpha3D primarily folds by nucleation of the
hydrophobic core rather than by forming three separate α-
helices that then latch together.20 The high frustration in the
turn region seen in the atomistic configurational frustratometer
prevents the helices from coming together readily when
folding, and instead Alpha3D must rely on the highly
stabilizing interactions in the hydrophobic core to drive
folding.
As mentioned above, one of the main changes incorporated

in Alpha3D following the design of its predecessor, Alpha3C,
was the addition of two residues to its N-terminus.21

Particularly in the atomistic configurational frustratometer,
many of the N-terminus interactions are highly unfrustrated,
with the residues in the turn region having a high frustration.
The additions to the N-terminus seem to have provided more
unfrustrated interactions to help with the overall folding of
Alpha3D.19−21,27 To analyze this further, we performed
random mutations to Alpha3D in its turn regions to see if a
new sequence can be found that would reduce the overall
frustration and possibly help speed up the folding process.
To find this redesign, we employed a simple procedure

where 10 000 random mutations were first generated for
residues in the turn regions of Alpha3D. These were then
sorted by energy. Two of the generated mutants with a lower
average native-energy than Alpha3D are shown in Figures 6
and 7: Alpha3D-m1 and Alpha3D-m2. Alpha3D-m1 was the
lowest-energy mutant found and consists of the four mutations
L18A, Y45A, P51S, and L56G from Alpha3D, whereas
Alpha3D-m2 consists of three mutations Y45K, E52N, L56K.
Despite Alpha3D-m1 being the lowest-energy mutant, it
displays a significant increase in frustration for not only the
N-terminus but also the loop region. Alpha3D-m2, however,
has a similar but slightly higher energy than Alpha3D-m1.
Nevertheless, this redesign lowers the frustration involving the
key N-terminus as well as parts of the loop region. Given the
importance of the N-terminus’ interactions with the loop
region, this redesign could potentially improve folding by
providing less frustrated interactions around the loop region of
Alpha3D. The procedure we have just outlined illustrates that
minimizing the energy of a design does not necessarily result
also in minimizing the frustration. We thus see how pairing
energy minimization with a frustratometer can help select a
sequence that both stabilizes the molecule and also decreases
local frustration, leading to cleaner folding.

■ CONCLUDING REMARKS
Here, we have presented a way to localize frustration in
proteins based on an all-atom model. The atomistic mutational
and configurational frustration measures yield complementary
results. Although the analyses that we have presented here
make use of the Rosetta force field for computing localized
frustration, the frustration measures described herein can be
similarly calculated using other all-atom force fields as long as
they are appropriately solvent-averaged and have a pairwise
decomposition. Optimizing localized frustration is a means of
automating design against potential traps on folding land-
scapes. Given the functional importance of locally frustrated

sites in proteins, for the purposes of redesigning proteins with
known and structurally annotated functions, it may be useful to
target only a subset of the frustrated sites: this can be easily
done within the framework of frustratometry.
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