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AN INVITATION TO NONLOCAL MODELING, ANALYSIS
AND COMPUTATION

Qiang Du (杜强)

Abstract
This lecture serves as an invitation to further studies on nonlocal models, their

mathematics, computation, and applications. We sample our recent attempts in the
development of a systematic mathematical framework for nonlocal models, includ-
ing basic elements of nonlocal vector calculus, well-posedness of nonlocal variational
problems, coupling to local models, convergence and compatibility of numerical ap-
proximations, and applications to nonlocal mechanics and diffusion. We also draw
connections with traditional models and other relevant mathematical subjects.

1 Introduction

Nonlocal phenomena are ubiquitous in nature but their effective modeling and simula-
tions can be difficult. In early mathematical and scientific inquiries, making local approx-
imations has been a dominant strategy. Over centuries, popular continuum models are
presented as partial differential equations (PDEs) that are expressed by local information
in an infinitesimal neighborhood and are derived, in their origins, for smooth quantities.
Entering into the digital age, there have been growing interests and capabilities in the
modeling of complex processes that exhibit singularities/anomalies and involve nonlocal
interactions. Nonlocal continuum models, fueled by the advent in computing technology,
have the potential to be alternatives to local PDE models in many applications, although
there are many new challenges for mathematicians and computational scientists to tackle.

While mathematical analysis and numerical solution of local PDEs are well estab-
lished branches of mathematics, the development of rigorous theoretical and computa-
tional framework for nonlocal models, relatively speaking, is still a nascent field. This
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lecture serves as an invitation to further studies on this emerging subject. We refer to Du
[2018], an NSF-CBMS monograph, for a review on the historical development, recent
progress and connections with other mathematical subjects such as multiscale analysis,
calculus of variations, functional analysis, fractional PDEs, differential geometry, graph,
data and image analysis, deep learning, as well as various applications. Instead of a brief
survey, we present here samples of our recent attempts to develop a systematic mathemati-
cal framework for nonlocal models, including some basic building blocks, algorithms and
applications. In particular, our discussions are centered around nonlocal models with a
finite range of interactions typically characterized by a horizon parameter ı. Their local
(ı ! 0) and global (ı ! 1) limits offer natural links to local and fractional PDEs and
their discretization are also tied with graph operators, point clouds and discrete networks.
A few questions on nonlocal modeling, analysis and computation are addressed here: how
do nonlocal models compare with local and discrete models and how are they connected
with each other? what are the ingredients of nonlocal vector calculus? how to develop
robust discretization of nonlocal models that are asymptotically compatible with their lo-
cal limit? how to get well defined trace maps in larger nonlocal function spaces to couple
nonlocal and local models? and, how to explain the crossover of diffusion regimes using
nonlocal in time dynamics? It is our intention to demonstrate that studies on nonlocal
modeling not only provoke the discovery of new mathematics to guide practical model-
ing efforts, but also provide new perspectives to understand traditional models and new
insight into their connections.

2 Modeling choices and emergence of nonlocal modeling

Mathematical models have various types, e.g., discrete or continuum, and deterministic
or stochastic. Historically, influenced by the great minds like Newton, Leibniz, Maxwell
and others, most popular continuum models are those given by PDEs whose simple close-
form or approximate solutions have often been utilized. As more recent human endeavors,
nevertheless, computer simulations have made discrete models equally prominent.

We consider some simple continuum and discrete equations as illustrations. Let u =

u(x) be a function to be determined on a domain (an interval) Ω � R. The differential
equation

�L0u(x) = �
d 2u

dx2
(x) = f (x; u(x)); 8 x 2 Ω

with a prescribed function f = f (x; u), represents a local continuum model: it only in-
volves the value and a few derivatives of the solution at any single point x. By introducing
a set of grid points fxj g in Ω, equally spaced with a grid spacing h and the standard 2nd
order center difference operator Lh = D2

h
on the grid. We then have a discrete difference
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model

�Lhu(xj ) = �D2
hu(xj ) = �

u(xj + h) � 2u(xj ) + u(xj � h)

h2
= f (xj ; u(xj )); 8 xj

that, as h ! 0, approximates the local continuum model. In comparison, we consider

(1) � Lıu(x) = f (x; u(x)); x 2 Ω ;

which is a nonlocal model Du [2015, 2017b] and Du and X. Tian [2015] with a nonlocal
operator Lı defined, for a prescribed nonlocal interaction kernel !ı associated with a
given horizon parameter ı > 0, by

(2) Lıu (x) =

ˆ ı

0

u(x + s) � 2u(x) + u(x � s)

s2
!ı(s)ds:

The model (1) is generically nonlocal, particularly if the support of !ı extends beyond
the origin. It, at any x, involves function values of u at not only x but possibly its ı-
neighborhood. With !ı = !ı(s) a probability density function, Lı can be interpreted as
a continuum average (integral) of the difference operator D2

s over a continuum of scales
s 2 [0; ı]. This interpretation has various implications as discussed below.

First, differential and discrete equations are special cases of nonlocal equations: let
!ı(s) be the Dirac-delta measure at either s = 0 or h, we get L0 = d2

dx2 or Lh = D2
h

respectively, showing the generality of nonlocal continuum models. A better illustration
is via a limiting process, e.g., for smooth u, small ı, and !ı going to the Dirac-delta at
s = 0, we have

Lıu (x) =
d 2u

dx2
(x)

ˆ ı

0

!ı(s)ds + c2ı2
d 4u

dx4
(x) + � � � �

d 2u

dx2
= L0 :

showing that nonlocal models may resemble their local continuum limit for smooth quan-
tities of interests (QoI), while encoding richer information for QoIs with singularity.

In addition, with a special class of fractional power-law kernel !ı(s) = c˛;1jsj1�2˛ for
0 < ˛ < 1 and ı = 1, Lı leads to a fractional differential operator Bucur and Valdinoci
[2016], Caffarelli and Silvestre [2007], Nochetto, Otárola, and Salgado [2016], Vázquez
[2017], and West [2016]:

L1u (x) = c˛;1

ˆ 1

0

D2
s u(x)jsj1�2˛ds =

�

�
d 2

dx2

�˛

u(x):

One may draw further connections from the Fourier symbols of these operators Du [2018]
and Du and K. Zhou [2011].
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Nonlocal models and operators have many variations and extensions. For example,
one may define a nonlocal jump (diffusion) operator for a particle density u = u(x),

Lıu (x) =

ˆ

(ˇ(x; y)u(y) � ˇ0(y; x)u(x)) dy ;

with ˇ = ˇ(x; y) and ˇ0 = ˇ0(y; x) the jumping rates. We can recover (2) if ˇ(x; y) =

ˇ0(y; x) = jx � yj�2!ı(jx � yj), and make connections with stochastic processes Du,
Huang, and R. B. Lehoucq [2014].

Other extensions include systems for vector and tensor fields such as nonlocal mod-
els of mechanics. A representative example is the peridynamic theory S. A. Silling [2000]
which attempts to offer a unified treatment of balance laws on and off materials discontinu-
ities, see Bobaru, Foster, Geubelle, and S. A. Silling [2017] for reviews on various aspects
of peridynamics. We briefly describe a simple linear small strain state-based peridynamic
model here. Let Ω be either R

d or a bounded domain in R
d with Lipshitz boundary, and

Ω� = Ω [ ΩI where ΩI is an interaction domain. Let u = u(x; t) = y(x; t) � x denote
the displacement field at the point x 2 Ω� and time t so that y = x+u gives the deformed
position, the peridynamic equation of motion can be expressed by

�ut t (x; t) = Lıu(x; t) + b(x; t); 8x 2 Ω; t > 0;

where � is the constant density, b = b(x; t) the body force, and Lıu the interaction force
derived from the variation of the nonlocal strain energy. Under a small strain assumption,
for any x; x0 = x+ �, the linearized total strain and dilatational strain are given by

(3) s(u)(x0; x) := e(�) �
�

j�j
and dı(u)(x) :=

ˆ

Ω�

ı

!ı(x0; x)s(u)(x0; x)dx0 :

where e(�) = �/j�j, � = u(x+�)�u(x) and the kernel!ı has its support over a spherical
neighborhood jx0 � xj < ı (with ı being the horizon parameter) and is normalized by

ˆ

Ω�

!ı(x0; x)dx = 1:

The linearized deviatoric strain is denoted by Sı(u)(x0; x) := s(u)(x0; x) � dı(u)(x).
Then, the small strain quadratic last energy density functional is given by

(4) Wı(x; f�; �g) = �jdı(u)(x)j2+�

ˆ

Ω�

!ı(x+�; x) js(u)(x+ �; x) � dı(u)(x)j2 d�

where � represents the peridynamic bulk modulus and � the peridynamic shear modulus.
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For � = �, we get a nondimensionalized bond-based peridynamic energy density
Mengesha and Du [2014] and S. A. Silling [2000]

Wı(x; f�; �g) =

ˆ

Ω�

!ı(x+ �; x)
ˇ

ˇ

ˇ

ˇ

�

j�j
�
u(x+ �) � u(x)

j�j

ˇ

ˇ

ˇ

ˇ

2

d� ;(5)

For a scalar function u = u(x), we get a simple one dimensional energy density

Wı(x; fug) =

ˆ

!ı(jy � xj)
ju(y) � u(x)j2

jy � xj2
dy ;

associated with the nonlocal operator in (1), if a translation invariant and even kernel !ı

is adopted. This special case has often served as a benchmark problem for peridynam-
ics, even though in most practical applications, peridynamic models do take on nonlinear
vector forms to account for complex interactions Du, Tao, and X. Tian [2017].

3 Nonlocal vector calculus and nonlocal variational problems

We introduce the theory through an example, accompanied by some general discus-
sions.

A model equation. The systematic development of the nonlocal vector calculus was
originated from the study of peridynamics Du, Gunzburger, R. B. Lehoucq, and K. Zhou
[2013]. Let us consider a time-independent linear bond-based peridynamic model associ-
ated with the strain energy (5) given by
(6)

� Lıu(x) = �2

ˆ

Ω�

!ı(x+ �; x)
�

u(x+ �) � u(x)
j�j2

� e(�)
�

e(�)d� = b(x) ; 8 x 2 Ω;

where u is a displacement field and b is a body force. Intuitively, (6) describes the force
balance in a continuum body of linear springs, with the spring force aligned with the
undeformed bond direction between any pair of points x and x0 = x + �. This gives a
nonlocal analog of classical linear elasticity model with a particular Poisson ratio, yet it
does not, at the first sight, share the same elegant form of linear elasticity. Nonlocal vector
calculus can make the connections between local and nonlocal models more transparent.

Examples of nonlocal operators. Let us introduce some nonlocal operators as illustra-
tive examples. First, we define a nonlocal two-point gradient operator G for any v : R

d !

R
m such that Gv : Ω� � Ω� ! R

d�n is a two-point second-order tensor field given by,

(7) (Gv)(x0; x) = e(x0�x)˝
v(x0) � v(x)

jx0 � xj
where e(x0�x) =

x0 � x
jx0 � xj

; 8 x0; x 2 Ω�:
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There are two cases of particular interests, namely, n = 1 and n = d . In the latter case,
we also define a nonlocal two-point divergence operator D by

(8) (Dv)(x0; x) = e(x0 � x) �
v(x0) � v(x)

jx0 � xj
= Tr(Gv)(x; x0) ; for n = d:

For peridynamics, (Dv)(x0; x) corresponds to the linearized strain described in (3).
Next, we define a nonlocal two-point dual divergence operator D

� acting on any two-
point scalar fieldΨ : Ω� � Ω� ! R such that D

�
Ψ becomes a vector field given by,

(9) (D�
Ψ)(x) =

ˆ

Ω�

�

Ψ(x; x0) +Ψ(x0; x)
�e(x0 � x)

jx0 � xj
dx0 ; 8 x 2 Ω�:

We may interpret D
� and D as adjoint operators to each other in the sense that

(10)
ˆ

Ω�

v(x) � (D�
Ψ)(x)dx = �

ˆ

Ω�

ˆ

Ω�

(Dv)(x0; x)Ψ(x0; x)dx0dx

for all v andΨ that make integrals in (10) well defined. The duality may also be written
more canonically as (v; D

�
Ψ)�

Ω = �(Dv;Ψ)Ω��Ω� where (�; �)�
Ω and (�; �)Ω��Ω� denote

L2 inner products for vector and scalar fields in their respective domains of definition.
Similarly, we can define a nonlocal two-point dual gradient operator G

� acting on any two-
point vector fieldΨ : Ω� � Ω� ! R

d by the duality that (v; G
�
Ψ)�

Ω = �(G v;Ψ)Ω��Ω�

for G given by (7).
Some basic elements of nonlocal vector calculus are listed in Table 1 in comparison

with the local counterpart. Discussions on concepts like the nonlocal flux and further
justifications on labeling G and D as two-point gradient and divergence can be found in
Du [2018] and Du, Gunzburger, R. B. Lehoucq, and K. Zhou [2013].

Newton’s vector calculus , Nonlocal vector calculus
Differential operators, local flux , Nonlocal operators, nonlocal flux
Green’s identity, integration by parts
ˆ

Ω

u � ∆v� v � ∆u =

ˆ

@Ω

u � @nv� v � @nu
,

Nonlocal Green’s identity (duality)
¨

Ω��Ω�

u � D
�(Dv) � v � D

�(Du) = 0

Table 1: Elements of vector calculus: local versus nonlocal.
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Reformulation of nonlocal models. Let the kernel in (6) !ı = !ı(x0; x) = !ı(x; x0)

be symmetric. We consider D
�
Ψ withΨ(x0; x) = !ı(x0; x)(Du)(x0; x). This leads to

�Lıu = �D
�(!ıDu) = b

a concise reformation of (6) that starts to resemble, in appearance, the PDE form of clas-
sical elasticity, with local differential (gradient and divergent) operators replaced by their
nonlocal counterparts. Analogously, a scalar nonlocal diffusion equation for a translation
invariant !ı , i.e., !ı(x0; x) = !ı(x0 �x) = !ı(x�x0), and its reformulation can be given
by
(11)

�Lıv(x) = �

ˆ

Ω�

!ı(�)
v(x+ �) � 2v(x) + v(x � �)

j�j2
d� = f (x) , �G

�(!ıG v) = f:

similar to the one-dimensional version (2). Moreover, not only nonlocal models can be
nicely reformulated like classical PDEs, their mathematical theory may also be developed
in a similar fashion along with interesting new twists Du, Gunzburger, R. B. Lehoucq, and
K. Zhou [2013, 2012] and Mengesha and Du [2014, 2015].

Variational problems. Let Ω � R
d be a bounded domain with Lipshitz boundary and

ΩI be where constraints on the solution are imposed. We consider an energy functional
(12)

Eı(u) :=
1

2
juj2

S
ı
2

� (b;u)L2(Ω�) with juj2
S

ı
2

:=

¨

Ω��Ω�

!ı(x
0 � x) (Du(x0; x))2dx0dx

for a prescribed body force b = b(x) 2 L2(Ω�
ı
)d and a kernel !ı = !ı(�) satisfying

(13)

8

<

:

!ı(�) � 0 is radially symmetric, B�ı(0) � supp(!ı) � Bı(0) � R
d

for 0 < � < 1, and
ˆ

Bı(0)

!ı(�) d� = 1 :

Let S
ı
2 be the set of u 2 L2(Ω�)d with kuk2

S
ı
2

= kuk2
L2(Ω�)d

+ juj2
S

ı
2

finite, which is a
separable Hilbert space with an inner product induced by the norm k � k

S
ı
2
Mengesha and

Du [2014]. For a weakly closed subspace V � L2(Ω�)d that has no nontrivial affine maps
with skew-symmetric gradients, we let Vc;ı = S

ı
2 \ V . One can establish a compactness

result on Vc;ı Mengesha and Du [2014] and Mengesha [2012]:

Lemma3.1. For a bounded sequence fung2Vc;ı , limn!1 junj
S

ı
2
= 0 gives kunkL2(Ω�) !

0.

This leads to a nonlocal Poincaré inequality and the coercivity of the energy functional.



3530 QIANG DU (杜强)

Proposition 3.2 (Nonlocal Poincaré). There exists a positive constant C such that

kukL2(Ω�)d � C juj
S

ı
2
; 8 u 2 Vc;ı :

The well-posedness of the variational problem then follows Mengesha and Du [2014].
Moreover, one can get a uniform Poincaré constant, independent of ı as ı ! 0, if the
nonlocal interaction kernels behave like a Diract-delta sequence. More specifically, they
satisfy that

(14) lim
ı!0

ˆ

j�j>�

!ı(�)d� = 0; 8 � > 0:

The assumption is particularly true for a rescaled kernel !ı(�) = ı�d !(�/ı) Du [2018]
and Mengesha and Du [2014].

Note that the above line of analysis can be carried out by extending similar results
for the scalar function spaces originated from the celebrated work Bourgain, Brezis, and
Mironescu [2001] and further studied in Ponce [2004]. One complication for vector fields
is that the energy seminorm only uses a projected difference Du instead of the total dif-
ference, see Mengesha [2012] and Mengesha and Du [2014, 2015, 2016] for detailed dis-
cussions.

The nonlocal Poincaré inequality and energy coercivity then imply a well-posed vari-
ational formulation of the nonlocal model through minimizing Eı(u) over u 2 Vc;ı . The
weak form of the Euler-Lagrange equation is given by

Bı(u; v) := (!ıDu; Dv)L2(Ω��Ω�) = (u;b)L2(Ω�); 8 v 2 Vc;ı :

We note a special case with Vc;ı = S0;ı , the closure of C 1
0 (Ω)d in S

ı
2 with all of its

elements satisfying u(x) = 0 onΩI = Ωı = fx 2 R
d nΩ j dist(x;Ω) < ıg, corresponding

to a problem with a homogeneous nonlocal Dirichlet constraint on a ı-layer aroundΩ, see
Figure 1.

�Lıu = �D
�(!ıD)u = b; in Ω;

u = 0; in ΩI = Ωı :
(15)

Ω

ΩI = Ωı

x x0ı

Ω

u = 0 on @Ω

�L0u = bı ! 0

Figure 1: A nonlocal constrained value problem and its local PDE limit

Furthermore, under the assumption (14), we can show that as ı ! 0, the solution
of (15), denoted by uı , converges in L2(Ω) to the solution u0 2 H 1

0 (Ω) of the equation
�L0u = �(d+2)�1(∆u+2r(r�u)) = b inΩMengesha andDu [2014], thus compatible
with linear elasticity.
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Elements of mathematical foundation of nonlocal models. Without going into details,
we summarize some basic elements in Table 1. For brevity, the illustration is devoted to
the case of nonlocal diffusion model and its local limit, with K denoting a generic 2nd
order positive definite coefficient tensor, and the same notation (�; �) for L2 inner products
of scalar, vector and tensor fields over their respective domains.

Local variational problems , Nonlocal variational problems
Local energy: (ru; ru) , Nonlocal energy: (!ıGu; G u)

Sobolev space H 1(Ω) , Nonlocal function space S
ı
2

Local balance (PDE):
� r � (Kru) = f

�

,

(

Nonlocal balance:

�G
�(!ıG u) = f

Boundary conditions on @Ω , Volumetric constraints on ΩI

Local weak forms:
(Kru; ru) = (f; v); 8 v

�

,

�Nonlocal weak forms:
(!ıGu; Gv) = (f; v); 8 v

Classical Poincaré: kukL2 � ckrukL2 , Nonlocal Poincaré: kukL2 � cjuj
S

ı
2

Table 2: Elements of variational problems: local versus nonlocal.

Other variants of nonlocal operators and nonlocal calculus. As part of the nonlocal
vector calculus, there are other on possible variants to the nonlocal operators introduced
here, e.g., the one-point nonlocal divergence and nonlocal dual gradient givend by

D�v(x) =
ˆ

Ω

�ı(x0�x)(Dv)(x0; x)dx0; G
�
�v(x) =

ˆ

Ω

�ı(x0�x)e(x0�x)˝
v(x0) + v(x)

jx0 � xj
dx0

for an averaging kernel �ı . With �ı approaching a Dirac-delta measure at the origin as
ı ! 0, D� and G

�
� recover the conventional local divergence and gradient opertors Du,

Gunzburger, R. B. Lehoucq, and K. Zhou [2013] and Mengesha and Du [2016]. They
also form a duality pair and have been used for robust nonlocal gradient recovery Du,
Tao, X. Tian, and J. Yang [2016]. Their use in the so-called correspondence peridynamic
materials models could be problematic butmore clarifications have been given recentlyDu
and X. Tian [2017b]. Moreover, these one-point operators are needed to reformulate more
general state-based peridynamics Du, Gunzburger, R. B. Lehoucq, and K. Zhou [2013]
and Mengesha and Du [2015, 2016] where the equation of motion is often expressed by
S. A. Silling [2010], S. A. Silling, Epton, Weckner, Xu, and Askari [2007], and S. A.
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Silling and R. Lehoucq [2010]

�ut t =

ˆ

fT[x;u]hx0 � xi � T[x0;u]hx � x0igdx0

with T[x;u]hx0 � xi and T[x0;u]hx � x0i denoting the peridynamic force states. In fact,
D�u can be used to represent the linear dilational strain in (3). Thus, we once again see
that the study of nonlocal models of mechanics further enriches the mathematical theory
of nonlocal operators and makes nonlocal vector calculus highly relevant to applications.

4 Numerical discretization of nonlocal models

There are many ways to discretizef nonlocal models Du [2017a], such as mesh-free
Bessa, Foster, Belytschko, and Liu [2014], Parks, Seleson, Plimpton, S. A. Silling, and
R. B. Lehoucq [2011], and Parks, Littlewood, Mitchell, and S. Silling [2012], quadrature
based difference or collocation Seleson, Du, and Parks [2016], H. Tian, H. Wang, and
W. Wang [2013], and X. Zhang, Gunzburger, and Ju [2016a,b], finite element Tao, X.
Tian, and Du [2017], H. Tian, Ju, and Du [2017], and K. Zhou and Du [2010] and spectral
methods Du and J. Yang [2017]. In particular, finite difference, finite element and collo-
cation schemes in one dimension were considered in X. Tian and Du [2013], including
comparisons and analysis of the differences and similarities. Discontinuous Galerkin ap-
proximations have also been discussed, including conforming DG Chen and Gunzburger
[2011] and Ren, C. Wu, and Askari [2017] nonconforming DGX. Tian and Du [2015] and
local DG Du, Ju, and Lu [2018].

Since nonlocal models are developed as alternatives when conventional continuum
PDEs can neither capture the underlying physics nor have meaningful mathematical so-
lutions, we need to place greater emphasis on verification and validation of results from
the more tortuous simulations. A common practice for code verification is to consider the
case where the nonlocal models can lead to a physically valid and mathematically well-
defined local limit on the continuum level and to check if one can numerically reproduce
solutions of the local limit by solving nonlocal models with the same given data. Such
popular benchmark tests may produce surprising results as discussed here.

Asymptotical compatibility. Addressing the consistency on both continuum and dis-
crete levels and ensuring algorithmic robustness have been crucial issues for modeling and
code development efforts, especially for a theory like peridynamics that is developed to
capture highly complex physical phenomena. In the context of nonlocal models and their
local limits, the issues on various convergent paths are illustrated in the diagram shown
in Figure 2 X. Tian and Du [2014] (with smaller discretization parameter h representing
finer resolution).
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uh
ı uh

0

uı u0

Discrete
Nonlocal

Continuum
Nonlocal

Discrete
Local

Continuum
Local PDE

ı ! 0

~

h
!

0}

ı ! 0

�

h
!

0 |ı !
0

h
!

0

Figure 2: A diagram of possible paths between uı , uh
ı
, uh

0 and u0 via various limits.

The paths along the diagram edges are for taking limit in one of the parameters while
keeping the other fixed: � shows the convergence of solutions of nonlocal continuum
models to their local limit as ı ! 0, which has been established for various linear and
nonlinear problems; | is a subject of numerical PDE; } assures a convergent discretiza-
tion to nonlocal problem by design;~ is more intriguing, as it is not clear whether the local
limit of numerical schemes for nonlocal problems would remain an effective scheme for
the local limit of the continuum model. An affirmative answer would lead to a nice com-
mutative diagram, or asymptotic compatibility (AC) X. Tian and Du [ibid.], one can follow
either the paths through those marked with } and � or ones marked with ~ and | to get
the convergence of uh

ı
to u0.

AC schemes offer robust and convergent discrete approximations to parameterized
problems and preserve the correct limiting behavior. While the variational characteriza-
tion and framework are distinctive, they are reminicent in spirit to other studies of conver-
gent approximations in the limiting regimes, see for example Arnold and Brezzi [1997],
Guermond and Kanschat [2010], and Jin [1999].

Getting wrong solution from a convergent numerical scheme. To motivate the AC
schemes, we consider a 1d linear nonlocal problem �Lıuı(x) = b(x) for x 2 (0; 1),
where Lı is given by (2) with a special kernel, i.e.,

(16) Lıu (x) =
3

ı3

ˆ ı

0

�

u(x + s) � 2u(x) + u(x � s)
�

ds =
3

ı3

ˆ ı

0

h2D2
hu(x)dh ;

We impose the contraint that uı(x) = u0(x) for x 2 (�ı; 0) [ (1; 1 + ı) where u0

solves the local limiting problem �u
00

0(x) = b(x) in R. On the continuum level, we have
uı ! u0 as ı ! 0 in the appropriate function spaces, as desired. For (16), we may obtain
a discrete system if we replace the continuum difference Lı by discrete finite differences
through suitable quadrature approximations (leading to the quadrature based finite differ-
ence discretization as named in X. Tian and Du [2013]). For example, following Du and
X. Tian [2015] and X. Tian and Du [2013], we consider a scheme for (16) obtained from
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a Riemann sum quadrature: for 1 � i � N = 1/h, ı = rh,

(17) � L
h
ı ui = �

3h

ı3

r
X

m=1

(D2
mhu)i = b(xi ) ;

where fui g are approximations of fu(xi )g at nodal points fxi = ihgN+r
i=�r . For any given

ı > 0, we can show the convergence of the discretization as h ! 0 for any given ı by
combining both stability with consistency estimates X. Tian and Du [2013]. However, by
considering a special case with r = 1 in (17), we end up with a scheme �3(D2

h
u)i = bi ,

which converges to the differential equation �3u00(x) = b(x) as h = ı ! 0, but not
to the correct local limit. In other words, if we set h and ı to zero proportionally, the
numerical solution of the discrete scheme for the nonlocal problem yields a convergent
approximation to a wrong local limit associated with, unfortunately, a consistently over-
estimated elastic constant!

The possibility of numerical approximations converging to a wrong solution is alarm-
ing; if without prior knowledge, such convergence might be mistakenly used to verify or
disapprove numerical simulation, and we see the risks involved due to the wrong local lim-
its produced by discrete solutions to nonlocal models. Although illustrated via a simple
example here, it has been shown to be a generic feature of discretizations represented by
(17) and other schemes such as the piecewise constant Galerkin finite element approxima-
tions, for scalar nonlocal diffusion models and general state-based peridynamic systems
Du and X. Tian [2015], X. Tian and Du [2013], and X. Tian and Du [2014].

Robust discretization via AC schemes. On a positive note, the complications due to
the use of discrete schemes like (17) can be resolved through other means. For example,
it is proposed in X. Tian and Du [2013] that an alternative formulation works much more
robustly by suitably adjusting the weights for the second order differences fD2

mh
ug so

that the elastic constant always maintain its correct constant value 1, independently of r!
Hence, as shown in X. Tian and Du [ibid.], we have a scheme that is convergent to the
nonlocal model for any fixed ı as h ! 0 and to the correct local limit whenever ı ! 0

and h ! 0 simultaneously, regardless how the two parameters are coupled. Moreover,
for a fixed h, it recovers the standard different scheme for the correct local limit models
as ı ! 0. Thus, we have a robust numerical approximation that is free from the risk of
going to the wrong continuum solution. Naturally, it is interesting to characterize how
such schemes can be constructed in general.

Quadrature based finite differenceAC scheme. Approximations formultidimensional
scalar nonlocal diffusion equations have been developed Du, Tao, X. Tian, and J. Yang
[2018], which are not only AC but also preserve the discrete maximum principle. We
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consider a set of nodes (grid points) fxjg of a uniform Cartesian mesh with a mesh size
h and a multi-index j corresponding to xj = hj. It is natural to approximate the nonlocal
operator in (11) by

(18) Lıu(xi) �

ˆ

Ih

�

u(xi + z) � 2u(xi) + u(xi � z)
jzj2W (z)

�

W (z)!ı(z)dz;

where Ih represents the piecewise d -multi-linear interpolation operator in z associated
with the uniform Cartesian mesh fxj = hjg, but the key that is crucial for the AC property
and the discrete maximum principle is to choose a properly defined nonnegative weight
W = W (z). The choice adopted in Du, Tao, X. Tian, and J. Yang [ibid.] corresponds
to W (z) = 1/jzj1 where jzj1 denotes the `1 norm in R

d . This particular weight makes
the quadrature exact for all quadratic functions. One can then show, through a series of
technical calculations, that the resulting numerical solution converges to the solution of
the nonlocal model on the order of O(h2) for a fixed ı > 0, and converges to that of
the local limit model on the order of O(ı2 + h2) as both h; ı ! 0 simultaneously, thus
demonstrating the AC property.

AC finite element approximations. For multidimensional systems, one can extend, as
in X. Tian and Du [2014], to more general abstract settings using conforming Galerkin
finite element (FE) methods on unstructured meshes. In particular, the concept and theory
of asymptotically compatible schemes are introduced for general parametrized variational
problems. A special application is to pave a way for identifying robust approximations to
linear nonlocal models that are guaranteed to be consistent in the local limit. Specifically,
we have the following theorem that agrees with numerical experiments reported in the
literature Bobaru, M. Yang, Alves, S. A. Silling, Askari, and Xu [2009] and X. Tian and
Du [2013].

Theorem 4.1. Let uı be the solution of (15) and uı;h be the conforming Galerkin FE
approximation on a regular quasi-uniform mesh with meshing parameter h. If the FE
space Vı;h contains all continuous piecewise linear elements, then kuı;h �u0kL2(Ω) ! 0

as ı ! 0 and h ! 0. If in addition, the FE subspace is given by a conformingFE space
of the local limit PDE model with zero extension outside Ω, then on each fixed mesh,
kuı;h �u0;hkL2 ! 0 as ı ! 0. On the other hand, if Vı;h is the piecewise constant space
and conforming for (15), then kuı;h � u0kL2 ! 0 if h = o(ı) as ı ! 0.

The above theorem, proved under minimal solution regularity, remains valid for nonlo-
cal diffusion and state-based peridynamic models. The same framework of AC schemes
can establish the convergence of numerical approximation to linear fractional diffusion
equations (that correspond to ı = 1) via the approximation of a nonlocal diffusion model
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with a finite horizon X. Tian, Du, and Gunzburger [2016]. For example, consider a scalar
fractional diffusion model, for ˛ 2 (0; 1),

(�∆)˛u = f; on Ω; u = 0; on R
d nΩ; where (�∆)˛u(x) = Cd;˛

ˆ

Rd

u(x) � u(x0)

jx � x0jd+2˛
dx0;

and Cd;˛ is a positive constant dependent on d and ˛. We have that X. Tian, Du, and
Gunzburger [ibid.],

Theorem 4.2. Let uı be the solution of the above fractional diffusion model with the
integral truncated to a spherical neighborhood of radius ı > 0. Let uh

ı
be a conforming

Galerkin FE approximation with the discretization parameter h, then kuh
ı

� uıkH ˛ ! 0

as h ! 0 for any given ı and kuh
ı

� u1kH ˛ ! 0 as ı ! 1 and h ! 0.

We note that studies of AC schemes have been extended to nonconforming DG FE X.
Tian and Du [2015], local DG FE Du, Ju, and Lu [2018], spectral approximation Du and
J. Yang [2016] and nonlocal gradient recoveries Du, Tao, X. Tian, and J. Yang [2016].
There were also extensions to nonlinear nonlocal models Du and Huang [2017] and Du
and J. Yang [2016].

5 Nonlocal and local coupling

Nonlocal models can be effective alternatives to local models by accommodating sin-
gular solutions, which makes nonlocal models particularly useful to subjects like fracture
mechanics. Yet treating nonlocality in simulations may incur more computation. Thus,
exploring localization and effective coupling of nonlocal and local models can be helpful
in practice. Nevertheless, nonlocal models, unlike local PDEs, generically do not employ
local boundary or interface conditions imposed on a co-dimension-1 surface, hence mo-
tivating the development of different approaches for local-nonlocal coupling Li and Lu
[2017] and Du, Tao, and X. Tian [2018].

Heterogeneous localization. A particular mathematical quest for a coupled local and
nonlocal model is through heterogeneous localization, as initiated in X. Tian and Du
[2017].

The aim is to characterize subspaces of L2(Ω), denoted by S(Ω), that are significantly
larger than H 1(Ω) and have a continuous trace map into H 1/2(Γ). One such example is
defined as the completion of C 1(Ω) with respect to the nonlocal norm for a kernel 
ı ,

kukS(Ω) =
�

kuk2L2(Ω)+juj2
S(Ω)

�
1
2

; with juj2
S(Ω) =

ˆ

Ω

ˆ

Ω\Bı(x)

ı(x; y)

(u(y) � u(x))2

jy � xj2
dydx:
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The main findings of X. Tian and Du [ibid.] are that the trace map exists and is contin-
uous on a nonlocal function space S(Ω) if the radius of the support of 
ı , i.e., the horizon,
is heterogeneously localized as x ! Ω. By considering such a class of kernels, the study
departs from many existing works, such as Bourgain, Brezis, and Mironescu [2001], cor-
responding to typical translate-invariant kernels. In X. Tian and Du [2017], the class of
kernels under consideration is given by

(19) 
(x; y) =
1

jı(x)jd

̂

�

jy � xj

ı(x)

�

where 
̂ = 
̂(s) is a non-increasing nonnegative function defined for s 2 (0; 1) with a
finite d � 1 moment. The heterogeneously defined horizon ı = ı(x) approaches zero
when x ! Γ � @Ω. A simple choice taken in X. Tian and Du [ibid.] is ı(x) = � dist(x;Γ)

for � 2 (0; 1].
The following proposition has been established in X. Tian and Du [ibid.], which is of

independent interests by showing the continuous imbedding of classical Sobolev space
H 1(Ω) in the new heterogeneously localized nonlocal space S(Ω). The result generalizes
a well-known result of Bourgain, Brezis, andMironescu [2001] for the case with a constant
horizon and translation invariant kernel.

Proposition 5.1. For the kernel in (19) and the horizon ı(x) = �dist(x;Γ) with � 2

(0; 1), H 1(Ω) is continuously imbedded in S(Ω) and for any u 2 H 1(Ω), kukS(Ω) �

C kukH1(Ω) where the constant C = C (Ω) is independent of � for � small.

New trace theorems. A key observation proved in X. Tian and Du [2017] is that, with
heterogeneously vanishing interaction neighborhood when x ! @Ω, we expect a well
defined continuous trace map from the nonlocal space S(Ω), which is larger than H 1(Ω),
to H 1/2(@Ω).

Theorem 5.2 (General trace theorem). Assume that Ω is a bounded simply connected
Lipschitz domain in R

d (d � 2) and Γ = @Ω, for a kernel in (19) and the heterogeneously
defined horizon given by ı(x) = � dist(x;Γ) for � 2 (0; 1]. there exists a constant C

depending only on Ω such that the trace map T for Γ satisfies kT uk
H

1
2 (Γ)

� C kukS(Ω),
for any u 2 S(Ω).

By Proposition 5.1, we see that the above trace theorem is indeed a refinement of the
classical trace theorem in the space H 1(Ω), with the latter being a simple consequence.

An illustrative example with a simple kernel on a stripe domain. A complete proof
of the trace Theorem 5.2 is presented in X. Tian and Du [ibid.]. To help understanding



3538 QIANG DU (杜强)

what the result conveys and how it compares with other relevant works, it is suggestive to
consider a special case.

For Ω and Γ, we take a special stripe domain Ω = (0; r) � R
d�1 and a portion of its

boundary Γ = f0g � R
d�1 for a constant r > 0, see equation (20) and Figure 3.

(20)
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:


(x; y) =
�(0;1)(jy � xj)jy � xj2

jı(x)jd+2
;

where ı(x) = dist(x;Γ) = x1;

8 x = (x1; x̃); x̃ 2 R
d�1:

x1

r

Ω=(0; r)�R
d�1Γ = f0g � R

d�1

x̃

Figure 3: Nonlocal kernel and depiction of the stripe geometry.

This case serves as not only a helpful step towards proving the more general trace
Theorem 5.2 but also an illustrative example on its own. Indeed, this special nonlocal
(semi)-norm is

(21) juj2
S(Ω) =

ˆ

Ω

ˆ

Ω\fjy�xj<jx1jg

(u(y) � u(x))2

jx1j2+d
dydx :

Clearly, the denominator x1 penalizes the spatial variation only at x1 = 0, thus S(Ω)

contains all functions in L2(Ω̃) (and possibly discontinuous) for any domain Ω̃ with its
closure being a compact subset of Ω. Hence, functions in S(Ω) are generally not expected
to have regularity better than L2(Ω0) over any strict subdomain Ω0. Yet, as elucidated in
X. Tian and Du [2017], due to the horizon localization at the boundary, the penalization
of spatial variations provides enough regularity for the functions in S(Ω) to have well-
defined traces just on the boundary itself. Intuitively, this is a natural consequence of
the localization of nonlocal interactions on the boundary. In contrast, a standard norm
associated with fractional Sobolev space is defined by

juj2H ˛(Ω) =

ˆ

Ω

ˆ

Ω

(u(y) � u(x))2

jy � xj2˛+d
dydx :

The regularity of the functions is effected by the denominator which vanishes at x = y.
We now state the special trace theorem, see X. Tian and Du [ibid.] for a complete proof.

Theorem 5.3 (Special trace theorem). ForΩ = (0; r)�R
d�1 and Γ = f0g�R

d�1, there
exists a constant C depends only on d such that for any u 2 C 1(Ω̄) \ S(Ω),

kukL2(Γ) � C
�

r�1/2kukL2(Ω) + r1/2jujS(Ω)

�

; for d � 1;

jujH1/2(Γ) � C
�

r�1kukL2(Ω) + jujS(Ω)

�

; for d � 2:

where the nonlocal semi-norm of S(Ω) is as given in (20).



NONLOCAL MODELS 3539

Coupled local and nonlocal models. We useΩ� andΩ+ to denote two open domains in
R

d that satisfyΩ�\Ω+ = Γ, a co-dimension-1 interface, andΩ to denote their union. We
consider the coupling of a local model on Ω� with a nonlocal model on Ω+, see Figure 4.
Let S(Ω+) be the nonlocal space with heterogeneous localization on the boundary. By the
trace theorem, we define the energy (solution) space and the test function space as

W(Ω) = fu 2 H 1(Ω�)\S(Ω+) j u� = u+ on Γg; W0(Ω) = fu 2 W(Ω) j u = 0 on @Ωg;

where fu˙(x)g denotes the traces of u defined from Ω˙ respectively. From Proposi-
tion 5.1, we have the space H 1(Ω) continuously imbedded in W(Ω) and H 1

0 (Ω) is also
continuously imbedded in W0(Ω). For u 2 W(Ω), its norm is defined as kukW(Ω) =

kukH1(Ω�)+kukS(Ω+). For g 2 H 1/2(@Ω) and f 2 L2(Ω), we have a coupled nonlocal-
to-local model (22).

(22)
min

˚

1
2
juj2

H1(Ω�) +
1
2
juj2

S(Ω+) � (f; u)Ω
	

;

subject to u 2 W(Ω) and uj@Ω = g:

�∆u = f

u 2 H 1(Ω�)
Γ

�Lu = f

u 2 S(Ω+)

Figure 4: Variational formulation of a coupled local-nonlocal model.

Well-posedness of the coupled model. For (22) to be well-posed, the coercivity of the
energy functional is the key, which is consequence of a Poincaré inequality on W0(Ω).
The latter can be established in a similar fashion as that on the nonlocal space with the
constant horizon (and the local Sobolev space H 1

0 (Ω) as well). We thus have

Proposition 5.4. The coupled variational problem (22) has a unique minimizer u 2

W0(Ω).

The seamless coupling of the nonlocal and local model means that one could use the
same numerical discretization to solve the coupled problems if the heterogenous localiza-
tion of horizon can be handled effectively. Indeed, this is where we can circle back to
utilize the concept of robust asymptotically compatible schemes X. Tian [2017], Du, Tao,
and X. Tian [2018], and X. Tian and Du [2014].

6 Nonlocal in time dynamics

Spatial nonlocality is often accompanied by temporal correlations and memory effects.
The latter involves nonlocality in time. Let us note first that a major difference in time and
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space nonlocality is perhaps the generic time irreversibility. While a local time derivative
may be defined by an infinitesimal change either backward to the history or forward to the
future, it is more natural to view nonlocal time derivative as only dependent on past history.
Thus, it is ofmuch interests to reconsider the basic operators of the nonlocal vector calculus
to accommodate the nonlocal interactions that are not symmetric. Of course, the issue of
symmetry does not only pertain to changes in time. In earlier works, nonlocal gradients
of the upwind type, variants of the operators given in Section 3, have been utilized in the
modeling of convective effects H. Tian, Ju, and Du [2017] and in the nonlocal formulation
of conservation laws Du and Huang [2017] and Du, Huang, and LeFloch [2017]. They
have also been used to perform nonlocal gradient recovery Du, Tao, X. Tian, and J. Yang
[2016]. The first rigorous treatment of a nonlocal in time dynamics with a finite memory
span, in the spirit of nonlocal vector calculus, was given in Du, J. Yang, and Z. Zhou
[2017], which we follow here.

Nonlocal time derivative and nonlocal-in-time dynamics. We take the operator

(Gıu)(t) = lim
�!0

ˆ ı

�

u(t) � u(t � s)

s
�ı(s) ds; for t > 0;

as the nonlocal time derivative for a nonnegative density kernel �ı that is supported in the
interval [0; ı). This leads to the study of an abstract nonlocal-in-time dynamics:

(23) Gıu+Au = f; 8 t 2 ΩT = (0; T ) � R+; u(t) = g(t); 8 t 2 (�ı; 0) � R�:

for a linear operatorA in an abstract space, together with some nonlocal initial (historical)
data g = g(t). We recall a well-posedness result for (23) corresponding to A = �∆ on a
bounded spatial domainΩwith a homogeneous Dirichlet boundary condition Du, J. Yang,
and Z. Zhou [ibid.].

Theorem 6.1. For f 2 L2(0; T ;H �1(Ω)), the problem (23) for A = �∆ on Ω with the
homogeneous Dirichlet boundary condition and g(x; t) � 0 has a unique weak solution
u 2 L2(0; T ;H 1

0 (Ω)). Moreover, there is a constant c, independent of ı, f and u, such
that. kukL2(0;T ;H1

0 (Ω)) + kGıukL2(0;T ;H �1(Ω)) � ckf kL2(0;T ;H �1(Ω)).

The nonlocal-in-time diffusion equationmay be related to fractional in time sub-diffusion
equations like @˛

t u � ∆u = 0 for ˛ 2 (0; 1) Du, J. Yang, and Z. Zhou [2017], Metzler
and Klafter [2004], and Sokolov [2012] by taking some special memory kernels Allen,
Caffarelli, and Vasseur [2016]. Such equations have often been used to describe the con-
tinuous time random walk (CTRW) of particles in heterogeneous media, where trapping
events occur. In particular, particles get repeatedly immobilized in the environment for a
trapping time drawn from the waiting time PDF that has a heavy tail Metzler and Klafter
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[2004]. In general though, (23) provides a new class of models, due to the finite memory
span, that serves to bridge anomalous and normal diffusion, with the latter being the limit
as ı ! 0. Indeed, the model (23) can also be related to a trapping model, see Du [2018],
Du, J. Yang, and Z. Zhou [2017], and Du and K. Zhou [2018] for more detailed studies.

Crossover of diffusion regimes. Diffusions in heterogeneous media have important
implications in many applications. Using single particle tracking, recent studies have
revealed many examples of anomalous diffusion, such as sub-diffusion with a slower
spreading process inmore constricted environment Berkowitz, Klafter, Metzler, and Scher
[2002], He, Song, Su, Geng, Ackerson, Peng, and Tong [2016], and Jeon, Monne, Ja-
vanainen, and Metzler [2012]. Meanwhile, the origins and models of anomalous diffusion
might differ significantly Korabel and Barkai [2010], McKinley, Yao, and Forest [2009],
and Sokolov [2012]. On one hand, new experimental standards have been called for Sax-
ton [2012]. On the other hand, there are needs for in-depth studies ofmathematical models,
many of which are non-conventional and non-local Du, Huang, and R. B. Lehoucq [2014],
Du, Gunzburger, R. B. Lehoucq, and K. Zhou [2012], and Sokolov [2012].

Motivated by recent experimental reports on the crossover between initial transient
sub-diffusion and long time normal diffusion in various settings He, Song, Su, Geng,
Ackerson, Peng, and Tong [2016], the simple dynamic equation (23) with A = �∆ pro-
vides an effective description of the diffusion process encompassing these regimes Du
and K. Zhou [2018]. For model (23), the memory effect dominates initially, but as time
goes on, the fixed memory span becomes less significant over the long life history. As
a result, the transition from sub-diffusion to normal diffusion occurs naturally. This phe-
nomenon can be illustrated by considering the mean square displacement (MSD) m(t)

which can be explicitly computed Du and K. Zhou [ibid.]. In Figure 5, we plot a solution
of Gım(t) = 2, i.e., the mean square displacement of the nonlocal solution for f � 0

and �ı(s) = (1 � ˛)ı˛�1s�˛ with ˛ = 0:2 and ı = 0:5. The result again illustrates the
analytically suggested transition from the early fractional anomalous diffusion regime to
the later standard diffusion regime. This ”transition” or ”crossover” behavior have been
seen in many applications, e.g. diffusions in lipid bilayer systems of varying chemical
compositions Jeon, Monne, Javanainen, and Metzler [2012, Fig.2], and lateral motion of
the acetylcholine receptors on live muscle cell membranes He, Song, Su, Geng, Ackerson,
Peng, and Tong [2016, Figs.3, 4].

7 Discussion and conclusion

Nonlocal models, arguably more general than their local or discrete analogs, are de-
signed to account for nonlocal interactions explicitly and to remain valid for complex
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mechanics and differential geometry, one expects to find deep and intrinsic connections
between nonlocal mechanics and geometry.

Nonlocal models, kernel methods, graph and data. Discrete, graph, network models
and various kernel based methods in statistics often exhibit nonlocality. Exploring their
continuum limits and localization can offer fundamental insights. In this direction, we
mention some works related to graph Laplacians, diffusion maps, spectral clustering and
so on Coifman and Lafon [2006], Singer and H.-T. Wu [2017], Spielman [2010], Trillos
and Slepčev [2016], and van Gennip and A. L. Bertozzi [2012]. These subjects are also
connected with the geometric analysis already mentioned and applications such as image
and data analysis and learning Buades, Coll, and Morel [2010], Gilboa and Osher [2008],
and Lou, X. Zhang, Osher, and A. Bertozzi [2010]. For instance, one can find, for appli-
cations to image analysis, the notion of nonlocal means Buades, Coll, and Morel [2010]
and nonlocal (NL) gradient operator Gilboa and Osher [2008] together with a graph di-
vergence all defined for scalar fields. Indeed, there have been much works on nonlocal
calculus for scalar quantities, see Du [2018] for more detailed comparisons.

Nonlocal function spaces, variational problems and dynamic systems. While there
have been a vast amount of studies on nonlocal functional spaces, related variational prob-
lems and dynamic systems, such as Ambrosio, De Philippis, and Martinazzi [2011], Bour-
gain, Brezis, and Mironescu [2001], Bucur and Valdinoci [2016], Caffarelli and Silvestre
[2007], Silvestre [2014], and West [2016], the majority of them have focused on scalar
quantities of interests and are often associated with fractional differential operators, frac-
tional calculus, fractional Sobolev spaces and fractional PDEs having global interactions.
On the other hand, motivated by applications in mechanics, our recent works can serve as a
starting point of further investigations on nonlocal functional analysis of vector and tensor
fields and systems of nonlocal models. For example, one may consider nonlocal exten-
sions to the variational theory of nonlinear elasticity Ball [2010] and use them to develop
better connections with atomistic modeling. One may further consider nonlocal spaces
that can account for anisotropies and heterogeneities in both state and configuration vari-
ables. Extensions of the new trace theorems on heterogeneously localized nonlocal spaces
to various vector field forms are also topics of more subsequent research. For instance,
one may investigate possible nonlocal generalization of the trace theorems on the normal
component of vector fields in theH (div) space Buffa and Ciarlet [2001]. Moreover, there
are also interesting questions related to nonlocal models of fluid mechanics, including the
nonlocal Navier-Stokes equations involving fractional order derivatives Constantin and
Vicol [2012] and more recently analyzed nonlocal analogs of the linear incompressible
Stokes equation as presented in the following forms, together with a comparison with
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their classical form in the local limit:

(24)
�

�Lıu+ Gıp= b;

�Dıu = 0;
or

�

�Lıu+ Gıp = b;

�Dıu � ı2L̂ıp= 0;
and

�

�∆u + rp= b;

r � u = 0;

where Lı and L̂ı are nonlocal diffusion operators, Gı and Dı are (one-point nonlocal
gradient and divergence operators, similar to ones described in Section 3. There are surely
more questions about the extensions to time-dependent and nonlinear systems.

Nonlocal, multiscale and stochasticmodeling. Nonlocality arises naturally frommodel
reductions and has appeared (either knowingly or implicitly) in many early works (such
as the Mori-Zwanzig formalism Chorin, Hald, and Kupferman [2002]). Nonlocal model-
ing could play more prominent roles in multiscale and stochastic modeling, ranging from
bridging atomistic and continuum models, to data-driver model reductions of dynamic
systems. There are also strong connections of nonlocal models with hydrodynamic de-
scriptions of collective behavior and flocking hydrodynamics Motsch and Tadmor [2014]
and Shvydkoy and Tadmor [2017]. Exploring nonlocal models in diffusion and dispersal
processes has also received much attention Fuentes, Kuperman, and Kenkre [2003], Kao,
Lou, and Shen [2010], and Massaccesi and Valdinoci [2017], with the resulting nonlo-
cal models having strong ties with stochastic processes, particularly, non-Gaussian and
non-Markovian behaviors Kumagai [2014] and Zaburdaev, Denisov, and Klafter [2015].
Stochastic nonlocal modeling is certainly an interesting subject on its own. In addition,
inverse problems related to nonlocal models are also essential research subjects of both
theoretical and practical interests and they can also be connected with various design and
control problems.

Nonlocal modeling, numerical analysis and simulation. Numerical simulations of
nonlocalmodels bring new computational challenges, from discretization to efficient solvers.
To elevate the added cost associated with nonlocal interactions, it is of interests to explore
a whole host of strategies, including local and nonlocal coupling Li and Lu [2017] and
Du, Tao, and X. Tian [2018], adaptive grids Du, L. Tian, and Zhao [2013], multigrid and
fast solvers Du and K. Zhou [2017] and H. Wang and H. Tian [2012], some of them are
less examined than others and most of topics remain to be further studied. The subject is
naturally linked to sparse and low rank approximations that would allow one to explore
the nonlocal structure to achieve efficient evaluation of nonlocal interactions as well as the
solution of associated algebraic systems. Scalable algorithms via domain decomposition
or other strategies that can particularly handle the information exchange (communications
between processors) involving nonlocal interactions are interesting and important research
questions. Let us also mention that nonlocal models can also become effective tools to
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analyze numerical schemes that were initially developed to solve local PDEs. For exam-
ple, to understand the interplay between the smoothing length and the particle spacing
in the context of smoothed particle hydrodynamics Gingold and Monaghan [1977] and
Monaghan [2005], nonlocal continuum systems (24) can help providing a rigorous mathe-
matical foundation for improving the stability and robustness of the discretization Du and
X. Tian [2017a]. Another example is concerned with discretization schemes for multidi-
mensional local diffusion equations through the nonlocal integral formulation Du, Tao,
X. Tian, and J. Yang [2018] and Nochetto and W. Zhang [2017], a topic linked with ap-
proximations of fully nonlinear elliptic equations such as the Monge-Ampére. An open
question there is whether or not there are discretization schemes on unstructured meshes
which can preserve the discrete maximum principles and are asymptotically compatible
for general anisotropic and heterogeneous diffusion equations.

Thinking nonlocally, acting locally. The pushes for nonlocal modeling come from sev-
eral fronts. Foremost, the development of nonlocal models is driven by the interests in
studying singular/anomalous/stochastic/multiscale behavior of complex systems where
nonlocal models can potentially unify and bridge different models. Nowadays, the im-
minent growth of nonlocal modeling may also be attributed to the inescapable presence
of nonlocality in the daily human experience. The emergence of augmented reality, infor-
mation technology and data science as well as intelligent computing has been fueling the
popularity of nonlocal modeling as the world is getting more than ever remotely and non-
locally networked together. With extreme computing capabilities beyond doing simple
analytical approximations, we could be ready to tackle nonlocal interactions directly. Yet,
despite the huge lift in computing power, exploring simple representations and closure
relations via local, sparse, low rank or low dimensional approximations is still of great
theoretical interest and practical significance. We thus conclude by saying that promoting
the role of nonlocal modeling is to not only argue for the need to think nonlocally and to
retain nonlocal features wherever necessary, but also point out the importance in utilize
local models wherever feasible, hence to act locally, as our goal is to have the efficiency
and robustness of mathematical modeling and numerical simulations while maintaining
their generality and predicability.
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