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AND COMPUTATION
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Abstract

This lecture serves as an invitation to further studies o nonlocal models, their
mathematics, computation, and applications. We sampiz our recent attempts in the
development of a systematic mathematical framework for nonlocal models, includ-
ing basic elements of nonlocal vector calculus. weli-posedness of nonlocal variational
problems, coupling to local models, converzence and compatibility of numerical ap-
proximations, and applications to nonlocal mechanics and diffusion. We also draw
connections with traditional models aind other relevant mathematical subjects.

1 Introduction

Nonlocal phenomena are ubiquitous in nature but their effective modeling and simula-
tions can be difficult. in: early mathematical and scientific inquiries, making local approx-
imations has been a doininant strategy. Over centuries, popular continuum models are
presented as partial differential equations (PDEs) that are expressed by local information
in an infinitesimal neighborhood and are derived, in their origins, for smooth quantities.
Entering intc the digital age, there have been growing interests and capabilities in the
modeling of complex processes that exhibit singularities/anomalies and involve nonlocal
interactions. Nonlocal continuum models, fueled by the advent in computing technology,
have the potential to be alternatives to local PDE models in many applications, although
there are many new challenges for mathematicians and computational scientists to tackle.

While mathematical analysis and numerical solution of local PDEs are well estab-
lished branches of mathematics, the development of rigorous theoretical and computa-
tional framework for nonlocal models, relatively speaking, is still a nascent field. This
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lecture serves as an invitation to further studies on this emerging subject. We refer to Du
[2018], an NSF-CBMS monograph, for a review on the historical development, recent
progress and connections with other mathematical subjects such as multiscale analysis,
calculus of variations, functional analysis, fractional PDEs, differential geometry, graph,
data and image analysis, deep learning, as well as various applications. Instead of a brief
survey, we present here samples of our recent attempts to develop a systematic mathemati-
cal framework for nonlocal models, including some basic building blocks, algorithms and
applications. In particular, our discussions are centered around noniccal models with a
finite range of interactions typically characterized by a horizon parameter §. Their local
(6 — 0) and global (§ — o) limits offer natural links to local aud fractional PDEs and
their discretization are also tied with graph operators, point clouds and discrete networks.
A few questions on nonlocal modeling, analysis and computation are addressed here: how
do nonlocal models compare with local and discrete moideis and how are they connected
with each other? what are the ingredients of nonioca! vector calculus? how to develop
robust discretization of nonlocal models that ar2 asymptotically compatible with their lo-
cal limit? how to get well defined trace maps in larger nonlocal function spaces to couple
nonlocal and local models? and, how to explain the crossover of diffusion regimes using
nonlocal in time dynamics? It is our intention to demonstrate that studies on nonlocal
modeling not only provoke the discovery of new mathematics to guide practical model-
ing efforts, but also provide new perspectives to understand traditional models and new
insight into their connections.

2 Modeling choices and emergence of nonlocal modeling

Mathematical models have various types, e.g., discrete or continuum, and deterministic
or stochastic. Historically, influenced by the great minds like Newton, Leibniz, Maxwell
and others, most popular continuum models are those given by PDEs whose simple close-
form or approximate solutions have often been utilized. As more recent human endeavors,
nevertheless, computer simulations have made discrete models equally prominent.

We consider some simple continuum and discrete equations as illustrations. Let u =
u(x) be a function to be determined on a domain (an interval) Q C R. The differential
equation

d?u
dx?

with a prescribed function f = f(x,u), represents a local continuum model: it only in-
volves the value and a few derivatives of the solution at any single point x. By introducing
a set of grid points {x;} in 2, equally spaced with a grid spacing / and the standard 2nd
order center difference operator £, = Di on the grid. We then have a discrete difference

—Lou(x) = (x) = f(x,u(x)), VxeQ
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model

Culxj 4 h) —2u(x)) +ulx; —h)
h2

—&pu(x;) = =Dju(x;) = = S (xj.ulx))), Vx;

that, as & — 0, approximates the local continuum model. In comparison, we consider
€)) —Lsu(x) = f(x,ulx)), xeQ,

which is a nonlocal model Du [2015, 2017b] and Du and X. Tian [2315] with a nonlocal
operator £5 defined, for a prescribed nonlocal interaction kernei wg associated with a
given horizon parameter § > 0, by

8 X =3
@) Lsu (x) = /0 u(XH)_?i(szu(“ =9) oy (s)ds.

The model (1) is generically nonlocal, particularly it the support of ws extends beyond
the origin. It, at any x, involves function values of u at not only x but possibly its §-
neighborhood. With wg = wy(s) a probahility density function, £5 can be interpreted as
a continuum average (integral) of the difference operator D over a continuum of scales
s € [0, 8]. This interpretation has various implications as discussed below.

First, differential and discrete equations are special cases of nonlocal equations: let
ws(s) be the Dirac-delta measure at either s = 0 or &, we get £y = j—; or &, = D}
respectively, showing the generality of nonlocal continuum models. A better illustration
is via a limiting process, e.g., for smooth u, small §, and ws going to the Dirac-delta at
s = 0, we have

2 § 4 2
Lsit (x) = %(X)/o ws(s)ds + 0282%()5) NN % = L.

showing that nonlocal models may resemble their local continuum limit for smooth quan-
tities of interests (Qol), while encoding richer information for Qols with singularity.

In addition, with a special class of fractional power-law kernel wg (s) = cg,1|s]'72* for
0 <a <1landé§ = oo, £5 leads to a fractional differential operator Bucur and Valdinoci
[2016], Caffarelli and Silvestre [2007], Nochetto, Otarola, and Salgado [2016], Vazquez
[2017], and West [2016]:

0o d2\¢
Loott (x) = C(m/o D2u(x)|s|'2*ds = (—w) u(x).

One may draw further connections from the Fourier symbols of these operators Du [2018]
and Du and K. Zhou [2011].
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Nonlocal models and operators have many variations and extensions. For example,
one may define a nonlocal jump (diffusion) operator for a particle density u = u(x),

L5u (x) = / (Bx. y)u(y) — B'(y. x)u(x)) dy .

with 8 = B(x,y) and B’ = B/(y, x) the jumping rates. We can recover (2) if 8(x,y) =
B'(y,x) = |x — y|2ws(|]x — y|), and make connections with stochastic processes Du,
Huang, and R. B. Lehoucq [2014].

Other extensions include systems for vector and tensor fields such as nonlocal mod-
els of mechanics. A representative example is the peridynamic theory S. A. Silling [2000]
which attempts to offer a unified treatment of balance laws on and off materials discontinu-
ities, see Bobaru, Foster, Geubelle, and S. A. Silling [2017] for reviews on various aspects
of peridynamics. We briefly describe a simple linear smail strain state-based peridynamic
model here. Let § be either R or a bounded dormain in R with Lipshitz boundary, and
O* = QU Qy where Q is an interaction domain. Let u = u(x, ) = y(x,7) — x denote
the displacement field at the point x € Q* and time ¢ so that y = x 4 u gives the deformed
position, the peridynamic equation of metion can be expressed by

pug(x,1) = Lsu(x, 1) + b(x, 1), VxeQ, >0,
where p is the constant density, b = b(x, ) the body force, and £su the interaction force

derived from the variation of the nonlocal strain energy. Under a small strain assumption,
for any x, X’ = x + &, the linearized total strain and dilatational strain are given by

3  s(w)x,x):=e(§)- % and 05(u)(x) := /Q* ws (X', x)s(u)(x', x)dx’ .

where e(§) = &/|&|, n = u(x+&)—u(x) and the kernel w; has its support over a spherical
neighborhood |x" — x| < § (with § being the horizon parameter) and is normalized by

/ ws(x',x)dx = 1.

The linearized deviatoric strain is denoted by Ss(u)(x’,x) := s(u)(x’,x) — 05 (u)(x).
Then, the small strain quadratic last energy density functional is given by

(@) Ws(x, {8 1) = s ()P [ 05000 [sw)(x+ £,%) —0s(w)(0)]” g

where k represents the peridynamic bulk modulus and p the peridynamic shear modulus.
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For k = p, we get a nondimensionalized bond-based peridynamic energy density
Mengesha and Du [2014] and S. A. Silling [2000]

u(x+£) —u(x) |°
€]

For a scalar function u = u(x), we get a simple one dimensional energy density

_ u(y) —u(x)[?
Ws (x, {u}) = /%(W—XDWGI}’

associated with the nonlocal operator in (1), if a translation invariant and even kernel wg
is adopted. This special case has often served as a benchmaik problem for peridynam-
ics, even though in most practical applications, peridynarmic models do take on nonlinear
vector forms to account for complex interactions Du, Tz, and X. Tian [2017].

) ws(x,{ﬁ,’?}):/ ws(x+§.x '|'§| “

3 Nonlocal vector calculus and nioniocal variational problems

We introduce the theory through an example, accompanied by some general discus-
sions.

A model equation. The systematic development of the nonlocal vector calculus was
originated from the study of peridynamics Du, Gunzburger, R. B. Lehoucq, and K. Zhou
[2013]. Let us consider a time-independent linear bond-based peridynamic model associ-
ated with the strain erergy (5) given by

©) )

Q*
where u is a displacement field and b is a body force. Intuitively, (6) describes the force
balance in a continuum body of linear springs, with the spring force aligned with the
undeformed bond direction between any pair of points x and X’ = x + &. This gives a
nonlocal analog of classical linear elasticity model with a particular Poisson ratio, yet it
does not, at the first sight, share the same elegant form of linear elasticity. Nonlocal vector
calculus can make the connections between local and nonlocal models more transparent.

o(6)|ete)az =bw). vxen

Examples of nonlocal operators. Let us introduce some nonlocal operators as illustra-
tive examples. First, we define a nonlocal two-point gradient operator § for any v: R¢ —
R™ such that §v: Q* x Q* — R¥*" is a two-point second-order tensor field given by,

v(x') — v(x) , X —x

(7) (8v)(¥,x) =e(x' —x)® ] where e(x'—x) = W x]’ VX, x e
X —x X —X
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There are two cases of particular interests, namely, n = 1 and n = d. In the latter case,
we also define a nonlocal two-point divergence operator O by

v(x') —v(x)

X — x|

3) (Dv) (X', x) = e(x' —x) - =Tr(gv)(x,x'), for n=d.

For peridynamics, (Dv)(x’, x) corresponds to the linearized strain described in (3).
Next, we define a nonlocal two-point dual divergence operator D* acting on any two-
point scalar field ¥: Q* x Q* — R such that D* ¥ becomes a vector fieid given by,

) (D*P)(x) = / (T(x,x) +¥(x,x))

* |X

We may interpret D* and D as adjoint operators to each other in the sense that

(10) /Q V(x)-(i)*‘ll)(x)dX:—/ [ (v, x)w(x, x)dxdx

0 Jox

for all vand ¥ that make integrals in (10} well defined. The duality may also be written
more canonically as (v, D*W)g, = —(Dv, ¥)g+xo+ where (-, -)§ and (-, -)o*xo* denote
L? inner products for vector and scalar fields in their respective domains of definition.
Similarly, we can define a nonilocal two-point dual gradient operator §* acting on any two-
point vector field ¥: Q* x 0* — R? by the duality that (v, §*¥)¥ = —(Fv, ¥)grxqx
for g given by (7).

Some basic elements of nonlocal vector calculus are listed in Table 1 in comparison
with the local counterpart. Discussions on concepts like the nonlocal flux and further
justifications on labeling § and D as two-point gradient and divergence can be found in
Du [2018] and Du, Gunzburger, R. B. Lehoucq, and K. Zhou [2013].

Newton’s vector calculus & Nonlocal vector calculus
Differential operators, local flux & Nonlocal operators, nonlocal flux
Green’s identity, integration by parts Nonlocal Green’s identity (duality)

/u-AV—v-Au:/ u-0,v—v-d,u g // u-D*(Dv)—v-D*(Du) =0
Q 0 *XO*

Table 1: Elements of vector calculus: local versus nonlocal.
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Reformulation of nonlocal models. Let the kernel in (6) ws = ws (X', x) = ws(x, x’)
be symmetric. We consider D* ¥ with ¥ (x', x) = ws (X', x)(Du)(x’, x). This leads to

—Lsu=—-D*(wsDu) =b

a concise reformation of (6) that starts to resemble, in appearance, the PDE form of clas-
sical elasticity, with local differential (gradient and divergent) operators replaced by their
nonlocal counterparts. Analogously, a scalar nonlocal diffusion equation for a translation
invariant wg, i.e., ws (X', X) = ws (X' —X) = wg(x—x’), and its reformutation can be given
by

an

~gov) = - [ oy TR g ) 6 5t is0) -
similar to the one-dimensional version (2). Morecver, not only nonlocal models can be
nicely reformulated like classical PDEs, their mathernatical theory may also be developed
in a similar fashion along with interesting new twists Du, Gunzburger, R. B. Lehoucq, and
K. Zhou [2013, 2012] and Mengesha and Du {2014, 2015].

Variational problems. Let Q C R¢ be a bounded domain with Lipshitz boundary and
7 be where constraints on the soluiion are imposed. We consider an energy functional

(12)
1
Ey(u) 1= S ul2y — (b.whysan) with ul?y = // ws(x' = x) (Du(x',x))*dx'dx
2 2 Q*FxO*

for a prescribed body force b = b(x) € Lz(Qg‘)d and a kernel wg = w; (&) satisfying

" w;s(&) > 0is radially symmetric, Bys(0) C supp(ws) C Bs(0) C RY

for0 <o < 1,and / ws(E)dE=1.
Bs(0)

(13)

Let 8¢ be the set of u € L2(Q*)¢ with ||“||§s = ||u||iz(ﬂ*)
2

separable Hilbert space with an inner product induced by the norm || - || 88 Mengesha and

a+ |u|§5 finite, which is a
2

Du [2014]. For a weakly closed subspace V' C L?(€2*)¢ that has no nontrivial affine maps
with skew-symmetric gradients, we let V. 5 = Sg N V. One can establish a compactness
result on V; s Mengesha and Du [2014] and Mengesha [2012]:

Lemma 3.1. For a bounded sequence {u, }€V, s, lim, o0 |“n|sg = Ogives |[up||L2(0*) —
0.

This leads to a nonlocal Poincaré inequality and the coercivity of the energy functional.
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Proposition 3.2 (Nonlocal Poincaré). There exists a positive constant C such that
||l.l||L2(Q*)d < C|u|s§, Yuce Vc,ﬁ-

The well-posedness of the variational problem then follows Mengesha and Du [2014].
Moreover, one can get a uniform Poincaré constant, independent of § as § — 0, if the
nonlocal interaction kernels behave like a Diract-delta sequence. More specifically, they
satisfy that

(14) lim ws(E)dE =0, Ve>0.

§-0J1g|>€
The assumption is particularly true for a rescaled kernel w; (&} = §~¢w(&/8) Du [2018]
and Mengesha and Du [2014].

Note that the above line of analysis can be carried out by extending similar results
for the scalar function spaces originated from the celebrated work Bourgain, Brezis, and
Mironescu [2001] and further studied in Ponce [2004]. One complication for vector fields
is that the energy seminorm only uses a projected difference Du instead of the total dif-
ference, see Mengesha [2012] and Mengesha and Du [2014, 2015, 2016] for detailed dis-
cussions.

The nonlocal Poincaré inequality and energy coercivity then imply a well-posed vari-
ational formulation of the nonlocal model through minimizing Es(u) over u € V, 5. The
weak form of the Euler-Lagrange equation is given by

Bs(u,v) := (0, Du, DV)12(0*x0*) = (W, b) 20y, VY VveETV.;s.

We note a special case with V. 5 = 8., the closure of C§°(Q)¢ in 8§ with all of its
elements satisfying u(x) = 0on Q; = Qs = {x € R?\ Q| dist(x, Q) < §}, corresponding
to a problem with a homogeneous nonlocal Dirichlet constraint on a §-layer around €2, see
Figure 1.

///‘QI__:_QS i u =0 on 92
Lsu=—-D*(wgD)u=Db, in Q, \

15 | 1
A 0 i =0 . 20

Figure 1: A nonlocal constrained value problem and its local PDE limit

Furthermore, under the assumption (14), we can show that as § — 0, the solution
of (15), denoted by ug, converges in L?(Q) to the solution uy € Hg () of the equation
—&ou = —(d+2)71 (Au+2V(V-u)) = bin Q Mengesha and Du [2014], thus compatible
with linear elasticity.
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Without going into details,

we summarize some basic elements in Table 1. For brevity, the illustration is devoted to
the case of nonlocal diffusion model and its local limit, with K denoting a generic 2nd
order positive definite coefficient tensor, and the same notation (-, -) for L2 inner products
of scalar, vector and tensor fields over their respective domains.

Local variational problems
Local energy: (Vu, Vu)
Sobolev space H!((2)
Local balance (PDE):

-V (KVu) = f }

Boundary conditions on 052

Local weak forms:
(KVu, Vu) = (f.v), Vv}

Classical Poincaré: |ul|z2 < c||Vullp: <

Nd
N
g

Nonlocal variational problems
(wgbu,Gu)

Nonlocai function space S8

/

Nonlocal energy:

Nonlocal balance:

-5 (ws8u) = f

Volumetric constraints on §2;

Nonlocal weak forms:
{@ﬁu,ﬁv) — (o). Vv

Nonlocal Poincaré: |ul|z2 < C|”|sg

Table 2: Elements of variational problems: local versus nonlocal.

Other variants of nonlocal operators and nonlocal calculus.

As part of the nonlocal

vector calculus, there are other on possible variants to the nonlocal operators introduced
here, e.g., the one-point nonlocal divergence and nonlocal dual gradient givend by

X — x|

Devlx) = /{;/Os (x'—x)(Dv) (¥, x)dx', G3v(x) = /QPS (x’—x)dx’—x)@w

dx’

for an averaging kernel ps. With ps approaching a Dirac-delta measure at the origin as
§ — 0, D, and G recover the conventional local divergence and gradient opertors Du,
Gunzburger, R. B. Lehoucq, and K. Zhou [2013] and Mengesha and Du [2016]. They
also form a duality pair and have been used for robust nonlocal gradient recovery Du,
Tao, X. Tian, and J. Yang [2016]. Their use in the so-called correspondence peridynamic
materials models could be problematic but more clarifications have been given recently Du
and X. Tian [2017b]. Moreover, these one-point operators are needed to reformulate more
general state-based peridynamics Du, Gunzburger, R. B. Lehoucq, and K. Zhou [2013]
and Mengesha and Du [2015, 2016] where the equation of motion is often expressed by
S. A. Silling [2010], S. A. Silling, Epton, Weckner, Xu, and Askari [2007], and S. A.
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Silling and R. Lehoucq [2010]
puce = [ (T[x.ullx' —x) ~ TIx' ul{x — x)}ax

with T[x, u](x’ — x) and T[x', u](x — x’) denoting the peridynamic force states. In fact,
D ,u can be used to represent the linear dilational strain in (3). Thus, we once again see
that the study of nonlocal models of mechanics further enriches the mathematical theory
of nonlocal operators and makes nonlocal vector calculus highly relevasnt to applications.

4 Numerical discretization of nonlocal models

There are many ways to discretizef nonlocal models Du {2017a], such as mesh-free
Bessa, Foster, Belytschko, and Liu [2014], Parks, Seleson, Plimpton, S. A. Silling, and
R. B. Lehoucq [2011], and Parks, Littlewood, Mitchell. and S. Silling [2012], quadrature
based difference or collocation Seleson, Du, and Parks [2016], H. Tian, H. Wang, and
W. Wang [2013], and X. Zhang, Gunzburger, and Ju [2016a,b], finite element Tao, X.
Tian, and Du [2017], H. Tian, Ju, and Du [2017], and K. Zhou and Du [2010] and spectral
methods Du and J. Yang [2017]. In particular, finite difference, finite element and collo-
cation schemes in one dimension weie considered in X. Tian and Du [2013], including
comparisons and analysis of the differences and similarities. Discontinuous Galerkin ap-
proximations have also been discussed, including conforming DG Chen and Gunzburger
[2011] and Ren, C. Wu, and Askari [2017] nonconforming DG X. Tian and Du [2015] and
local DG Du, Ju, and Lu [2018].

Since nonlocal micdels are developed as alternatives when conventional continuum
PDEs can neither capture the underlying physics nor have meaningful mathematical so-
lutions, we need to place greater emphasis on verification and validation of results from
the more tortuous simulations. A common practice for code verification is to consider the
case where the nonlocal models can lead to a physically valid and mathematically well-
defined local limit on the continuum level and to check if one can numerically reproduce
solutions of the local limit by solving nonlocal models with the same given data. Such
popular benchmark tests may produce surprising results as discussed here.

Asymptotical compatibility. Addressing the consistency on both continuum and dis-
crete levels and ensuring algorithmic robustness have been crucial issues for modeling and
code development efforts, especially for a theory like peridynamics that is developed to
capture highly complex physical phenomena. In the context of nonlocal models and their
local limits, the issues on various convergent paths are illustrated in the diagram shown
in Figure 2 X. Tian and Du [2014] (with smaller discretization parameter /& representing
finer resolution).
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Q
Discrete u? > ug Discrete
Nonlocal e _8_? 0 Local
=N 4\;\\ =
ol 9;5 72N
o AN 0 sl N Vo
Continuum 5 ;; 0" Y Continuum
Nonlocal U§ . > U() Local PDE

Figure 2: A diagram of possible paths between u, ué’, u’(} and ug via various limits.

The paths along the diagram edges are for taking limit in oze of the parameters while
keeping the other fixed: # shows the convergence of soluticuis of nonlocal continuum
models to their local limit as § — 0, which has been estabiished for various linear and
nonlinear problems; & is a subject of numerical PDE; <> assures a convergent discretiza-
tion to nonlocal problem by design; O is more intriguing, as it is not clear whether the local
limit of numerical schemes for nonlocal probiems would remain an effective scheme for
the local limit of the continuum model. An affirmative answer would lead to a nice com-
mutative diagram, or asymptotic compatibility (AC) X. Tian and Du [ibid.], one can follow
either the paths through those marked with <> and # or ones marked with © and & to get
the convergence of u’g to ug.

AC schemes offer robust and convergent discrete approximations to parameterized
problems and preserve the correct limiting behavior. While the variational characteriza-
tion and framework are distinctive, they are reminicent in spirit to other studies of conver-
gent approximatiors in the limiting regimes, see for example Arnold and Brezzi [1997],
Guermond and Kanschat [2010], and Jin [1999].

Getting wrong solution from a convergent numerical scheme. To motivate the AC
schemes, we consider a 1d linear nonlocal problem —£s5us(x) = b(x) for x € (0,1),
where £5 is given by (2) with a special kernel, i.e.,

(16) Lsu(x) = 8%/8 (u(x +s5) —2u(x) +u(x —s))ds = 8%/8 h*>Dju(x)dh,
0 0

We impose the contraint that ug(x) = ug(x) for x € (=§,0) U (1,1 + §) where ug
solves the local limiting problem —u (x) = b(x) in R. On the continuum level, we have
us — ug as 6 — 0 in the appropriate function spaces, as desired. For (16), we may obtain
a discrete system if we replace the continuum difference £ by discrete finite differences
through suitable quadrature approximations (leading to the quadrature based finite differ-
ence discretization as named in X. Tian and Du [2013]). For example, following Du and
X. Tian [2015] and X. Tian and Du [2013], we consider a scheme for (16) obtained from
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a Riemann sum quadrature: for1 <i <N =1/h,§ =rh,

3h
h
(17) — £5u,~ = _8_3

m=1

(Dppw)i = b(xi) .

where {u;} are approximations of {u(x;)} at nodal points {x; = i h}fV: trr For any given

8 > 0, we can show the convergence of the discretization as 4 — 0 for any given § by
combining both stability with consistency estimates X. Tian and Du [2G13]. However, by
considering a special case with » = 1 in (17), we end up with a scheme —S(Dflu)i = b;,
which converges to the differential equation —3u”(x) = b(x) as i = § — 0, but not
to the correct local limit. In other words, if we set 4 and § o zero proportionally, the
numerical solution of the discrete scheme for the nonlocai problem yields a convergent
approximation to a wrong local limit associated with, unfortunately, a consistently over-
estimated elastic constant!

The possibility of numerical approximations converging to a wrong solution is alarm-
ing; if without prior knowledge, such convergence might be mistakenly used to verify or
disapprove numerical simulation, and we see the risks involved due to the wrong local lim-
its produced by discrete solutions to nculocal models. Although illustrated via a simple
example here, it has been shown to be a generic feature of discretizations represented by
(17) and other schemes such as the piecewise constant Galerkin finite element approxima-
tions, for scalar nonlocal diffusion models and general state-based peridynamic systems
Du and X. Tian [2015], X. Tian and Du [2013], and X. Tian and Du [2014].

Robust discretizavion via AC schemes. On a positive note, the complications due to
the use of discrete schemes like (17) can be resolved through other means. For example,
it is proposed in X. Tian and Du [2013] that an alternative formulation works much more
robustly by suitably adjusting the weights for the second order differences {Di pU} S0
that the elastic constant always maintain its correct constant value 1, independently of !
Hence, as shown in X. Tian and Du [ibid.], we have a scheme that is convergent to the
nonlocal model for any fixed § as & — 0 and to the correct local limit whenever § — 0
and 7 — 0 simultaneously, regardless how the two parameters are coupled. Moreover,
for a fixed 4, it recovers the standard different scheme for the correct local limit models
as 6 — 0. Thus, we have a robust numerical approximation that is free from the risk of
going to the wrong continuum solution. Naturally, it is interesting to characterize how
such schemes can be constructed in general.

Quadrature based finite difference AC scheme. Approximations for multidimensional
scalar nonlocal diffusion equations have been developed Du, Tao, X. Tian, and J. Yang
[2018], which are not only AC but also preserve the discrete maximum principle. We
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consider a set of nodes (grid points) {x;} of a uniform Cartesian mesh with a mesh size
h and a multi-index j corresponding to X; = hj. It is natural to approximate the nonlocal
operator in (11) by

N u(xi +z) — 2u(x;) + u(x; — z)
(18) Lsu(xi) ~ /&h ( W (2) ) W(z)ws(z)dz,

where {; represents the piecewise d-multi-linear interpolation operator in z associated
with the uniform Cartesian mesh {x; = hj}, but the key that is crucia! for the AC property
and the discrete maximum principle is to choose a properly defined nonnegative weight
W = W(z). The choice adopted in Du, Tao, X. Tian, and J. Yaiig [ibid.] corresponds
to W(z) = 1/|z|; where |z|; denotes the £; norm in R?. This particular weight makes
the quadrature exact for all quadratic functions. One can then show, through a series of
technical calculations, that the resulting numerical soiution converges to the solution of
the nonlocal model on the order of O(h?) for a fixed § > 0, and converges to that of
the local limit model on the order of O(8? + /%) as both h,§ — 0 simultaneously, thus
demonstrating the AC property.

AC finite element approximations. For multidimensional systems, one can extend, as
in X. Tian and Du [2014], to moie general abstract settings using conforming Galerkin
finite element (FE) methods on unstructured meshes. In particular, the concept and theory
of asymptotically compatible schemes are introduced for general parametrized variational
problems. A special application is to pave a way for identifying robust approximations to
linear nonlocal modiels that are guaranteed to be consistent in the local limit. Specifically,
we have the following theorem that agrees with numerical experiments reported in the
literature Bobaru, M. Yang, Alves, S. A. Silling, Askari, and Xu [2009] and X. Tian and
Du [2013].

Theorem 4.1. Let ug be the solution of (15) and g j, be the conforming Galerkin FE
approximation on a regular quasi-uniform mesh with meshing parameter h. If the FE
space Vs j, contains all continuous piecewise linear elements, then |ug  —uo| r2() — 0
as 6 — 0 and h — 0. If in addition, the FE subspace is given by a conformingFE space
of the local limit PDE model with zero extension outside (), then on each fixed mesh,
llus.n—uonllLz — 0as§ — 0. On the other hand, if Vs j, is the piecewise constant space
and conforming for (15), then ||us , — uo|lLz2 = 0if h = 0(8) as § — 0.

The above theorem, proved under minimal solution regularity, remains valid for nonlo-
cal diffusion and state-based peridynamic models. The same framework of AC schemes
can establish the convergence of numerical approximation to linear fractional diffusion
equations (that correspond to § = o) via the approximation of a nonlocal diffusion model
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with a finite horizon X. Tian, Du, and Gunzburger [2016]. For example, consider a scalar
fractional diffusion model, for @ € (0, 1),

(=A)Yu=f, onQ, u=0, on ]Rd\Q, where (—A)%u(x) = Cd,(,/
R4

and Cy 4 is a positive constant dependent on d and «. We have that X. Tian, Du, and
Gunzburger [ibid.],

Theorem 4.2. Let ug be the solution of the above fractional diffusicn model with the
integral truncated to a spherical neighborhood of radius § > 0. Let uzf be a conforming
Galerkin FE approximation with the discretization parameier I, then ||u§’ —ug||lge — 0
as h — 0 for any given § and ||u§’ —Uso|lge = 0as § — cc and h — 0.

We note that studies of AC schemes have been extended to nonconforming DG FE X.
Tian and Du [2015], local DG FE Du, Ju, and Lu {2018], spectral approximation Du and
J. Yang [2016] and nonlocal gradient recoverics Du, Tao, X. Tian, and J. Yang [2016].
There were also extensions to nonlinear nonlccal models Du and Huang [2017] and Du
and J. Yang [2016].

5 Nonlocal and local coupling

Nonlocal models can be eftective alternatives to local models by accommodating sin-
gular solutions, which inakes nonlocal models particularly useful to subjects like fracture
mechanics. Yet treating nonlocality in simulations may incur more computation. Thus,
exploring localization and effective coupling of nonlocal and local models can be helpful
in practice. Nevertheless, nonlocal models, unlike local PDEs, generically do not employ
local boundary or interface conditions imposed on a co-dimension-1 surface, hence mo-
tivating the development of different approaches for local-nonlocal coupling Li and Lu
[2017] and Du, Tao, and X. Tian [2018].

Heterogeneous localization. A particular mathematical quest for a coupled local and
nonlocal model is through heterogeneous localization, as initiated in X. Tian and Du
[2017].

The aim is to characterize subspaces of L2((2), denoted by 8(12), that are significantly
larger than H*(Q) and have a continuous trace map into H /2(T"). One such example is
defined as the completion of C1(£2) with respect to the nonlocal norm for a kernel ys,

1
3. (u(y) —u(x))?
llls = (Il Zaren e ) with a2 :// ys(x, y) SV T 4
@ ( 12@) 8<m) 3= J Jonsce (x,y) v xP?
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The main findings of X. Tian and Du [ibid.] are that the trace map exists and is contin-
uous on a nonlocal function space $(€2) if the radius of the support of ys, i.e., the horizon,
is heterogeneously localized as x — (). By considering such a class of kernels, the study
departs from many existing works, such as Bourgain, Brezis, and Mironescu [2001], cor-
responding to typical translate-invariant kernels. In X. Tian and Du [2017], the class of
kernels under consideration is given by

1 (ly—x]
(19) yixy) = |8(x)|dy( 8(x) )

where y = p(s) is a non-increasing nonnegative function defined for s € (0,1) with a
finite d — 1 moment. The heterogeneously defined horizen & = §(x) approaches zero
when x — I' C 992. A simple choice taken in X. Tian and Du [ibid.] is §(x) = o dist(x, ")
foro € (0,1].

The following proposition has been established in X. Tian and Du [ibid.], which is of
independent interests by showing the continucus imbedding of classical Sobolev space
H () in the new heterogeneously localized nionlocal space $(£2). The result generalizes
a well-known result of Bourgain, Brezis, and Mironescu [2001] for the case with a constant
horizon and translation invariant kernel.

Proposition 5.1. For the kernel in (19) and the horizon §(x) = odist(x,T") with o €
(0,1), H'(Q) is continuously imbedded in $(2) and for any u € H* (), |lullsi) <
Cllull g1 (o) where the consiant C = C () is independent of o for o small.

New trace theorems. A key observation proved in X. Tian and Du [2017] is that, with
heterogeneouslv vanishing interaction neighborhood when x — 92, we expect a well
defined contirucus trace map from the nonlocal space 8(£2), which is larger than H (),
to H/2(39).

Theorem 5.2 (General trace theorem). Assume that ) is a bounded simply connected
Lipschitz domain in R® (d > 2) and T = 38, for a kernel in (19) and the heterogeneously
defined horizon given by §(x) = o dist(x,T") for o € (0,1]. there exists a constant C
depending only on ) such that the trace map T for I satisfies || Tul| < Clulls@)

Jor any u € 8(Q).

H3 ()

By Proposition 5.1, we see that the above trace theorem is indeed a refinement of the
classical trace theorem in the space H (), with the latter being a simple consequence.

An illustrative example with a simple kernel on a stripe domain. A complete proof
of the trace Theorem 5.2 is presented in X. Tian and Du [ibid.]. To help understanding
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what the result conveys and how it compares with other relevant works, it is suggestive to
consider a special case.

For  and I, we take a special stripe domain Q = (0,7) x R¢~! and a portion of its
boundary I' = {0} x R¥~ for a constant r > 0, see equation (20) and Figure 3.

(20) , X
y(xy) = X1 (ly = XDy — x|
N O

where §(x) = dist(x, ') = x1,
Vx=(x1,X), xe R4,

[ ={0} x R4!

X
Figure 3: Nonlocal kernel and depiction of the siripe geometry. !

This case serves as not only a helpful step towards proving the more general trace
Theorem 5.2 but also an illustrative example on its own. Indeed, this special nonlocal
(semi)-norm is

(u(y) —u(x))?
@1 Ul o = / / ly) w0 oax
) 5o o Jonfly-i<ixpy X124 y

Clearly, the denominator x; penalizes the spatial variation only at x; = 0, thus 8(Q)
contains all functions in LQ(Q) {and possibly discontinuous) for any domain  with its
closure being a compact subsei of €2. Hence, functions in 8(€2) are generally not expected
to have regularity better than £.%(£)’) over any strict subdomain €. Yet, as elucidated in
X. Tian and Du [2017], duc to the horizon localization at the boundary, the penalization
of spatial variations provides enough regularity for the functions in 8§(2) to have well-
defined traces just on the boundary itself. Intuitively, this is a natural consequence of
the localization of nonlocal interactions on the boundary. In contrast, a standard norm
associated with fractional Sobolev space is defined by

s (u(y) —u(x))
|u|H°‘(Q) - /Q /Q ly — x|2e+d dydx.
The regularity of the functions is effected by the denominator which vanishes at x =y.
We now state the special trace theorem, see X. Tian and Du [ibid.] for a complete proof.

Theorem 5.3 (Special trace theorem). For Q = (0,7) x R?™! and T’ = {0} x R4, there
exists a constant C depends only on d such that for any u € C1(Q) N 8(12),

lullzy < C(r_1/2||u||L2(Q) + V1/2|u|3(n)), Jord > 1,

Jul ooy < C(r_1||u||L2(Q) n |u|3(9)), ford > 2.

where the nonlocal semi-norm of $() is as given in (20).
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Coupled local and nonlocal models. Weuse (2_ and €2 to denote two open domains in
R4 that satisfy mﬂm =T, a co-dimension-1 interface, and {2 to denote their union. We
consider the coupling of a local model on )_ with a nonlocal model on €2, see Figure 4.
Let 8(€2.) be the nonlocal space with heterogeneous localization on the boundary. By the
trace theorem, we define the energy (solution) space and the test function space as

W(Q) = {u e HA(OQ)NS(Q) |u— =uronT}  Wo(R) = {u € W) |u = 0 on I,

where {u4(x)} denotes the traces of u defined from Q4 respectively. From Proposi-
tion 5.1, we have the space H'(£2) continuously imbedded in W{{?) and Hj (£2) is also
continuously imbedded in Wy (£2). For u € W(Q), its norm is defined as |[ullw) =
lull zr ooy + lulls(o, ). Forg € H/2(9Q2) and f € L?(€}, we have a coupled nonlocal-
to-local model (22).

22) / o
min{%mﬁ{l(ﬂ_) + %|M|§(Q+) = (fou)al. ~Au=f o o —fu=f
subjectto u € W(N) and ulpo = g ue HY Qo) T ue S(Qy

Figure 4: Variational formulation of a coupled local-nonlocal model.

Well-posedness of the coupied model. For (22) to be well-posed, the coercivity of the
energy functional is the key, which is consequence of a Poincaré inequality on Wy (£2).
The latter can be established in a similar fashion as that on the nonlocal space with the
constant horizon (and the local Sobolev space Hj (£2) as well). We thus have

Proposition 5.4. The coupled variational problem (22) has a unique minimizer u €

Wo ().

The seamless coupling of the nonlocal and local model means that one could use the
same numerical discretization to solve the coupled problems if the heterogenous localiza-
tion of horizon can be handled effectively. Indeed, this is where we can circle back to
utilize the concept of robust asymptotically compatible schemes X. Tian [2017], Du, Tao,
and X. Tian [2018], and X. Tian and Du [2014].

6 Nonlocal in time dynamics

Spatial nonlocality is often accompanied by temporal correlations and memory effects.
The latter involves nonlocality in time. Let us note first that a major difference in time and
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space nonlocality is perhaps the generic time irreversibility. While a local time derivative
may be defined by an infinitesimal change either backward to the history or forward to the
future, it is more natural to view nonlocal time derivative as only dependent on past history.
Thus, it is of much interests to reconsider the basic operators of the nonlocal vector calculus
to accommodate the nonlocal interactions that are not symmetric. Of course, the issue of
symmetry does not only pertain to changes in time. In earlier works, nonlocal gradients
of the upwind type, variants of the operators given in Section 3, have been utilized in the
modeling of convective effects H. Tian, Ju, and Du [2017] and in the noniocal formulation
of conservation laws Du and Huang [2017] and Du, Huang, and LeFioch [2017]. They
have also been used to perform nonlocal gradient recovery Du, Tao, X. Tian, and J. Yang
[2016]. The first rigorous treatment of a nonlocal in time dynamics with a finite memory
span, in the spirit of nonlocal vector calculus, was given in Du, J. Yang, and Z. Zhou
[2017], which we follow here.

Nonlocal time derivative and nonlocal-in-tinze dynamics. We take the operator

8 (s
. u(t) —uli -
(Ssu)(t) = lim L—~—\L—)pg (s)ds, for t>0,
€e—=>0 /¢ N
as the nonlocal time derivative for a iciinegative density kernel pg that is supported in the
interval [0, §). This leads to the study of an abstract nonlocal-in-time dynamics:

23) Ssu+Qu=f, YVtcQr=(0,T)CR;, u(t)=g(), Vte (=60 CR_.

for a linear operator @ in an abstract space, together with some nonlocal initial (historical)
data g = g(¢). We recall a well-posedness result for (23) correspondingto @ = —Aona
bounded sparial domain 2 with a homogeneous Dirichlet boundary condition Du, J. Yang,
and Z. Zhou [ibid.].

Theorem 6.1. For f € L?(0,T; H™1(R)), the problem (23) for @ = —A on Q with the
homogeneous Dirichlet boundary condition and g(x,t) = 0 has a unique weak solution
u € L%(0,T; Hy (). Moreover, there is a constant ¢, independent of §, f and u, such

that. |ullL2(0,7;12(0)) + ISsullL20,m; -1 (2)) = ¢l fllL20,7;H-1(2))-

The nonlocal-in-time diffusion equation may be related to fractional in time sub-diffusion
equations like 0%u — Au = 0 for & € (0,1) Du, J. Yang, and Z. Zhou [2017], Metzler
and Klafter [2004], and Sokolov [2012] by taking some special memory kernels Allen,
Caffarelli, and Vasseur [2016]. Such equations have often been used to describe the con-
tinuous time random walk (CTRW) of particles in heterogeneous media, where trapping
events occur. In particular, particles get repeatedly immobilized in the environment for a
trapping time drawn from the waiting time PDF that has a heavy tail Metzler and Klafter
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[2004]. In general though, (23) provides a new class of models, due to the finite memory
span, that serves to bridge anomalous and normal diffusion, with the latter being the limit
as § — 0. Indeed, the model (23) can also be related to a trapping model, see Du [2018],
Du, J. Yang, and Z. Zhou [2017], and Du and K. Zhou [2018] for more detailed studies.

Crossover of diffusion regimes. Diffusions in heterogeneous media have important
implications in many applications. Using single particle tracking, recent studies have
revealed many examples of anomalous diffusion, such as sub-diffusion with a slower
spreading process in more constricted environment Berkowitz, Klafier, Metzler, and Scher
[2002], He, Song, Su, Geng, Ackerson, Peng, and Tong [2016], and Jeon, Monne, Ja-
vanainen, and Metzler [2012]. Meanwhile, the origins and models of anomalous diffusion
might differ significantly Korabel and Barkai [2010], McKiniey, Yao, and Forest [2009],
and Sokolov [2012]. On one hand, new experimental siandards have been called for Sax-
ton [2012]. On the other hand, there are needs for in-depth studies of mathematical models,
many of which are non-conventional and non-tocat Du, Huang, and R. B. Lehoucq [2014],
Du, Gunzburger, R. B. Lehoucq, and K. Zhou [2012], and Sokolov [2012].

Motivated by recent experimental reporis on the crossover between initial transient
sub-diffusion and long time normai diffusion in various settings He, Song, Su, Geng,
Ackerson, Peng, and Tong [2016), the simple dynamic equation (23) with @ = —A pro-
vides an effective description of the diffusion process encompassing these regimes Du
and K. Zhou [2018]. For modei (23), the memory effect dominates initially, but as time
goes on, the fixed menicry span becomes less significant over the long life history. As
a result, the transition from sub-diffusion to normal diffusion occurs naturally. This phe-
nomenon can be illusirated by considering the mean square displacement (MSD) m(¢)
which can be explicitly computed Du and K. Zhou [ibid.]. In Figure 5, we plot a solution
of Ggm(t) = 2, i.e., the mean square displacement of the nonlocal solution for ' = 0
and ps(s) = (1 —a)8* s~ with « = 0.2 and § = 0.5. The result again illustrates the
analytically suggested transition from the early fractional anomalous diffusion regime to
the later standard diffusion regime. This “transition” or ”crossover” behavior have been
seen in many applications, e.g. diffusions in lipid bilayer systems of varying chemical
compositions Jeon, Monne, Javanainen, and Metzler [2012, Fig.2], and lateral motion of
the acetylcholine receptors on live muscle cell membranes He, Song, Su, Geng, Ackerson,
Peng, and Tong [2016, Figs.3, 4].

7 Discussion and conclusion

Nonlocal models, arguably more general than their local or discrete analogs, are de-
signed to account for nonlocal interactions explicitly and to remain valid for complex
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Figure 5: The MSD plot for (23) and the MSD curve He, Song, Su, Geng. Ackerson,
Peng, and Tong [2016, Fig. 3] showing the crossover from sub-diffusion 1o normal
diffusion for immobile AChRs.

systems involving possibly singular solutions. They have the potential to be alternatives
and bridges to existing local continuum and discrete medels. Their increasing popular-
ity in applications makes the development of a sysiznaiic/axiomatic mathematical frame-
work for nonlocal models necessary and timely. This work attempts to answer a few
questions on nonlocal modeling, analysis and computation, particularly for models in-
volving a finite-range nonlocal interacticus and vector fields, To invite further studies
on the subject, it might be more erricing o identify some issues worthy further investi-
gation and to explore connections with other relevant topics. This is the purpose here,
but before we proceed, we note ihat there are already many texts and online resources
devoted to nonlocal models (scalar fractional equations in particular, see for example
more recent books Bucur and Valdinoci [2016], Vazquez [2017], and West [2016] and
http://www.ma.utexas.edu/mediawiki/index.php/Starting_page). Wealso re-
fer to Du [2018] for more details and references on topics discussed below.

Nonlocal exierior calculus and geometry. While an analogy has been drawn between
traditional local calculus and the nonlocal vector calculus involving nonlocal operators
and fluxes, nonlocal integration by parts and nonlocal conservation laws, the nonlocal
framework still needs to be updated or revamped. For example, a geometrically intrin-
sic framework for nonlocal exterior calculus and nonlocal forms on manifolds is not yet
available. It would be of interests to develop nonlocal geometric structures that are more
general than both discrete complexes and smooth Riemannian manifolds. In connection
with such investigations, there are relevant studies on metric spaces Burago, Ivanov, and
Kurylev [2014] and Fefferman, Ivanov, Kurylev, Lassas, and Narayanan [2015], Laplace-
Beltrami Belkin and Niyogi [2008] and Lévy [2006], and combinatorial Hodge theory
with scalar nonlocal forms Bartholdi, Schick, N. Smale, and S. Smale [2012]. We also
made attempts like Le [2012] to introduce nonlocal vector forms, though more coherent
constructions are desired. Given the close relations between local continuum models of
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mechanics and differential geometry, one expects to find deep and intrinsic connections
between nonlocal mechanics and geometry.

Nonlocal models, kernel methods, graph and data. Discrete, graph, network models
and various kernel based methods in statistics often exhibit nonlocality. Exploring their
continuum limits and localization can offer fundamental insights. In this direction, we
mention some works related to graph Laplacians, diffusion maps, spectral clustering and
so on Coifman and Lafon [2006], Singer and H.-T. Wu [2017], Spieliman [2010], Trillos
and Slepcev [2016], and van Gennip and A. L. Bertozzi [2012]. These subjects are also
connected with the geometric analysis already mentioned and appiications such as image
and data analysis and learning Buades, Coll, and Morel [20:i (), Gilboa and Osher [2008],
and Lou, X. Zhang, Osher, and A. Bertozzi [2010]. For instance, one can find, for appli-
cations to image analysis, the notion of nonlocal mezans Buades, Coll, and Morel [2010]
and nonlocal (NL) gradient operator Gilboa and Osher [2008] together with a graph di-
vergence all defined for scalar fields. Indeed, there have been much works on nonlocal

C

calculus for scalar quantities, see Du [2018&]} for more detailed comparisons.

Nonlocal function spaces, variationa) problems and dynamic systems. While there
have been a vast amount of studies on nonlocal functional spaces, related variational prob-
lems and dynamic systems, such as Ambrosio, De Philippis, and Martinazzi [2011], Bour-
gain, Brezis, and Mironescu [2001], Bucur and Valdinoci [2016], Caffarelli and Silvestre
[2007], Silvestre [2014], and West [2016], the majority of them have focused on scalar
quantities of interests and are often associated with fractional differential operators, frac-
tional calculus, fractional Sobolev spaces and fractional PDEs having global interactions.
On the other hand, motivated by applications in mechanics, our recent works can serve as a
starting point of further investigations on nonlocal functional analysis of vector and tensor
fields and systems of nonlocal models. For example, one may consider nonlocal exten-
sions to the variational theory of nonlinear elasticity Ball [2010] and use them to develop
better connections with atomistic modeling. One may further consider nonlocal spaces
that can account for anisotropies and heterogeneities in both state and configuration vari-
ables. Extensions of the new trace theorems on heterogeneously localized nonlocal spaces
to various vector field forms are also topics of more subsequent research. For instance,
one may investigate possible nonlocal generalization of the trace theorems on the normal
component of vector fields in the H (div) space Buffa and Ciarlet [2001]. Moreover, there
are also interesting questions related to nonlocal models of fluid mechanics, including the
nonlocal Navier-Stokes equations involving fractional order derivatives Constantin and
Vicol [2012] and more recently analyzed nonlocal analogs of the linear incompressible
Stokes equation as presented in the following forms, together with a comparison with
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their classical form in the local limit:

—&su+ G5p=b, or —&Lsu+ Ssp =b, and —Au + Vp=b,
—Dsu =0, —Dsu—82Lsp=0, V-u =0,

24
where £ and 33,; are nonlocal diffusion operators, 95 and g are (one-point nonlocal
gradient and divergence operators, similar to ones described in Section 3. There are surely
more questions about the extensions to time-dependent and nonlinear sysiems.

Nonlocal, multiscale and stochastic modeling. Nonlocality arises naturally from model
reductions and has appeared (either knowingly or implicitly) in many early works (such
as the Mori-Zwanzig formalism Chorin, Hald, and Kupferman [2002]). Nonlocal model-
ing could play more prominent roles in multiscale and stochastic modeling, ranging from
bridging atomistic and continuum models, to datz-driver model reductions of dynamic
systems. There are also strong connections of riorlocal models with hydrodynamic de-
scriptions of collective behavior and flocking hydrodynamics Motsch and Tadmor [2014]
and Shvydkoy and Tadmor [2017]. Exploring nonlocal models in diffusion and dispersal
processes has also received much attention. Fuentes, Kuperman, and Kenkre [2003], Kao,
Lou, and Shen [2010], and Massaccesi and Valdinoci [2017], with the resulting nonlo-
cal models having strong ties with stochastic processes, particularly, non-Gaussian and
non-Markovian behaviors Kuimagai [2014] and Zaburdaev, Denisov, and Klafter [2015].
Stochastic nonlocal modeling is certainly an interesting subject on its own. In addition,
inverse problems related o nonlocal models are also essential research subjects of both
theoretical and praciica!l interests and they can also be connected with various design and
control problems.

Nonlocal modeling, numerical analysis and simulation. Numerical simulations of
nonlocal models bring new computational challenges, from discretization to efficient solvers.
To elevate the added cost associated with nonlocal interactions, it is of interests to explore
a whole host of strategies, including local and nonlocal coupling Li and Lu [2017] and
Du, Tao, and X. Tian [2018], adaptive grids Du, L. Tian, and Zhao [2013], multigrid and
fast solvers Du and K. Zhou [2017] and H. Wang and H. Tian [2012], some of them are
less examined than others and most of topics remain to be further studied. The subject is
naturally linked to sparse and low rank approximations that would allow one to explore
the nonlocal structure to achieve efficient evaluation of nonlocal interactions as well as the
solution of associated algebraic systems. Scalable algorithms via domain decomposition
or other strategies that can particularly handle the information exchange (communications
between processors) involving nonlocal interactions are interesting and important research
questions. Let us also mention that nonlocal models can also become effective tools to
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analyze numerical schemes that were initially developed to solve local PDEs. For exam-
ple, to understand the interplay between the smoothing length and the particle spacing
in the context of smoothed particle hydrodynamics Gingold and Monaghan [1977] and
Monaghan [2005], nonlocal continuum systems (24) can help providing a rigorous mathe-
matical foundation for improving the stability and robustness of the discretization Du and
X. Tian [2017a]. Another example is concerned with discretization schemes for multidi-
mensional local diffusion equations through the nonlocal integral formulation Du, Tao,
X. Tian, and J. Yang [2018] and Nochetto and W. Zhang [2017], a topic linked with ap-
proximations of fully nonlinear elliptic equations such as the Monge-Ampére. An open
question there is whether or not there are discretization schemes on unstructured meshes
which can preserve the discrete maximum principles and are asymptotically compatible
for general anisotropic and heterogeneous diffusion equations.

Thinking nonlocally, acting locally. The pushes for sonlocal modeling come from sev-
eral fronts. Foremost, the development of noniocal models is driven by the interests in
studying singular/anomalous/stochastic/multiscale behavior of complex systems where
nonlocal models can potentially unify and bridge different models. Nowadays, the im-
minent growth of nonlocal modeling may also be attributed to the inescapable presence
of nonlocality in the daily human experience. The emergence of augmented reality, infor-
mation technology and data science as well as intelligent computing has been fueling the
popularity of nonlocal modeling as the world is getting more than ever remotely and non-
locally networked together. With extreme computing capabilities beyond doing simple
analytical approximations, we could be ready to tackle nonlocal interactions directly. Yet,
despite the huge lift 1a computing power, exploring simple representations and closure
relations via local, sparse, low rank or low dimensional approximations is still of great
theoretical interest and practical significance. We thus conclude by saying that promoting
the role of nonlocal modeling is to not only argue for the need to think nonlocally and to
retain nonlocal features wherever necessary, but also point out the importance in utilize
local models wherever feasible, hence to act locally, as our goal is to have the efficiency
and robustness of mathematical modeling and numerical simulations while maintaining
their generality and predicability.
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