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Abstract Predicting the future information and recovering the missing data for time series are two vital tasks faced

in various application fields. They are often subjected to big challenges, especially when the signal is nonlinear and non-

stationary which is common in practice. In this paper, we propose a hybrid 2-stage approach, named IF2FNN, to predict

(including short-term and long-term predictions) and recover the general types of time series. In the first stage, we decompose

the original non-stationary series into several “quasi stationary” intrinsic mode functions (IMFs) by the iterative filtering (IF)

method. In the second stage, all of the IMFs are fed as the inputs to the factorization machine based neural network model

to perform the prediction and recovery. We test the strategy on five datasets including an artificial constructed signal (ACS),

and four real-world signals: the length of day (LOD), the northern hemisphere land-ocean temperature index (NHLTI), the

troposphere monthly mean temperature (TMMT), and the national association of securities dealers automated quotations

index (NASDAQ). The results are compared with those obtained from the other prevailing methods. Our experiments

indicate that under the same conditions, the proposed method outperforms the others for prediction and recovery according

to various metrics such as mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error

(MAPE).

Keywords iterative filtering, factorization machine, neural network, time series, data recovery

1 Introduction

Signal prediction and recovery are two common is-

sues in various fields, such as wind power forecasting[1],

financial stock market prediction[2,3], water quality

prediction[4] and so on[5]. In these applications, the sig-

nals often exhibit dynamical, non-linear or even chaotic

properties, which make the signal forecasting and recov-

ery face significant challenges.

Most of the existing methods for forecasting time

series can be classified into three categories: the ones

based on statistical techniques, those using machine

learning techniques, and the ones using hybrid strate-

gies. In the category of statistical approaches, there are

autoregressive integrated moving average (ARIMA),

generalized autoregressive conditional heteroskedastic-

ity (GARCH) volatility[6], the smooth transition au-

toregressive model (STAR)[7], and Holt-Winters expo-

nential smoothing (HW)[8], just to name a few. These

approaches are primarily based on the assumptions of

stationarity in time series and linearity among normally

distributed variables.

In recent years, machine learning models with-
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out these restrictive assumptions have been proposed,

and they can outperform the statistical methods[9−12].

Thus, machine learning approaches, such as sup-

port vector machine (SVM)[13,14], gradient boosted

decision trees (GBDT)[15,16], genetic algorithm[17],

fuzzy system[18,19], and neural network (NN)[20−22],

have been widely employed in forecasting time se-

ries. Although the machine learning based models have

achieved remarkable results, there are still limitations.

For example, for the neural network models or deep net-

work models, the non-linearities are mainly handled by

the activation functions, and there are few techniques

addressing the non-linear interactions among the in-

puts.

Another emerging trend is the hybrid methods

which apply wavelet analysis, empirical mode decom-

position (EMD) or other signal decomposition tech-

niques to the signal before it is fed to the machine

learning models[23−28]. The signal decomposition tech-

niques produce components that are “quasi stationary”

looking, and therefore can produce better prediction re-

sults. Many of the existing hybrid methods treat each

component as an independent signal which is fed into

a machine learning model that is also trained indepen-

dently. The inter-connections among the components

are not considered. In [29], a hybrid method strategy

called EMD2FNN was proposed, and it exploits the in-

teractions among the components.

Although many of the signal prediction methods can

be adopted to recover missing and damage signals dur-

ing transmission, communication and storage, the tra-

ditional strategies for signal recovery are led by sta-

tistical synthesis[30−32], or spline interpolations[33,34].

Compared with the prediction problems, the task of

signal recovery must match with the existing signal on

both ends of an interval, while the prediction only has

one end to rely on. This gives the recovery some ad-

vantages because the other end of the signal provides

more information to use. On the other hand, it poses

additional challenges to fulfill requirements that do not

exist in the prediction case. For this reason, many of

the existing hybrid strategies cannot be extended to the

signal recovery.

The study in this paper is based on the EMD2FNN

technique proposed in [29]. We aim at extending it

to be applicable to not only the financial datasets but

also other types of real-world signals, and extending it

to cope with not only the one-step forecasting task but

also the multi-step one. For these purposes, we adopt

iterative filtering (IF)[35−37], instead of EMD[38], due

to the simplicity in implementing IF and its robust-

ness in handling different types of signals. We name

the new approach IF2FNN, because a factorization ma-

chine based neural network (FNN) is used in conjunc-

tion with IF. In addition, we design IF2FNN so that it

can be used not only for signal prediction, but also for

signal recovery.

To illustrate the performance of our proposed

method, we test its prediction capability on four time

series including one artificial constructed signal (ACS),

three real datasets, the length of day (LOD), the tro-

posphere monthly mean temperature (TMMT), and

the northern hemisphere land-ocean temperature index

(NHLTI), where the data ACS, LOD and NHLTI are

used to test the one-step forecasting task, and TMMT

is applied to the multi-step forecasting task. Further-

more, to evaluate the ability of data recovery, the data

TMMT, NHLTI and the national association of secu-

rities dealers automated quotations index (NASDAQ)

are used in our experiments. We simulate the damaged

data in a variety of ways, such as removing points in

a given interval, removing points located in two ran-

domly selected intervals, and removing randomly se-

lected points in the series. Our results are compared

with the results obtained by several existing prevailing

approaches, such as the SVM, GBDT, NN and the ones

combining IF to some machine learning models (for con-

venience, we denote them as ML). We use two ways to

combine IF to ML. One is feeding each component from

IF as an independent signal into an ML and training

each model separately. The other is inputting all of the

components from IF into one ML predictor model. For

convenience, we denote the former one as IF2ML-SP,

where SP is the abbreviation of segregation prediction,

and IF2ML for the later choice. In this paper, the SVM,

GBDT, NN models, the Holt-Winters model[39,40] and

the smooth extrapolation approach that can be viewed

as a single-layer perception are treated as ML for our

comparison. The performances of all the methods are

measured by mean absolute error (MAE), root mean

square error (RMSE), and mean absolute percentage

error (MAPE).

The rest of this paper is organized into the following

sections. We review the necessary ingredients includ-

ing IF and FNN in Section 2. Our proposed forecasting

and data recovery techniques based on IF2FNN are pre-

sented in Section 3. We show the simulation results in

Section 4. The paper concludes with a discussion in

Section 5.
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2 Review on IF and FNN

2.1 Iterative Filtering

As an alternative to the traditional methods, such as

Fourier or wavelet transforms, EMD has been proven,

by numerous studies, to be effective in analyzing non-

stationary time series in recent years. It has re-

ceived considerable attention[35,41,42] and been applied

to many disciplines such as ocean science, biomedicine,

speech signal processing, image processing, pattern

recognition, and financial forecasting[43−45].

Many different algorithms have been proposed

to improve EMD. Examples include the strategies

based on moving average[46], partial differential equa-

tion (PDE)[47,48], operators[49,50], filtering[35−37], and

optimizations[42,51]. We adopt the iterative filtering

(IF) 1○[35−37] method in this paper for two reasons.

First, it is simple, intuitive and efficient in computation.

Second, it is robust for complicated non-stationary sig-

nals. In the IF algorithm, each IMF (intrinsic mode

function) is produced by convolving iteratively the sig-

nal with a low pass filter w(t), t ∈ R, for example,

a Fokker-Planck filter which has the nice property of

being compactly supported and smooth on its entire

domain. Algorithm 1 describes the detail steps.

Algorithm 1 . Iterative Filtering

Require: given a signal x(t), IMF = {}
while the number of extrema of x � 2 do

1) x1 = x

while the stopping criterion is not satisfied do

2) compute the filter length ln for xn

3) xn+1(t) = xn(t) −
∫ ln
−ln

xn(t + y)w(y)dy

4) n = n+ 1
end while

5) IMF = IMF ∪ {xn}
6) x = x− xn

end while

7) IMF = IMF ∪ {x}

2.2 FNN Model

In recent few years, neural networks (NNs) have

achieved tremendous success in many fields includ-

ing image processing[52,53], speech recognition[54], com-

puter vision[55], and natural language processing[56].

Although NNs exhibit great advantages in learning pat-

terns from large training data, the use of NNs on small

datasets, such as a few time series, has received less at-

tention, and it is unclear about how to employ NNs for

effectively learning nonlinear interactive features.

Factorizationm machines (FMs), originally intro-

duced for collaborative recommendations[57], are a

popular way to capture feature interactions. Similar

to SVMs, FMs form a general class of predictors that

are able to estimate reliable parameters under the very

high sparsity assumption, and they have strong abilities

to learn the nonlinear interactive features. Motivated

by FM, we proposed an improved NN model by incor-

porating FM ideas and named it FNN for simplicity

in [29]. Compared with the NN model, FNN has two

properties. 1) It is able to capture the role of factorized

interactions between features, which is an advantage

that most of the existing generalized linear models do

not have. 2) FNN has the same level (linear) of com-

putation complexity as that of the NN model. The

architecture of FNN is depicted in Fig.1.

Input Layer 

FM Hidden Layer 

FM Hidden Layer 

     

... 

... ... 

... ... 

... 

Loss

Output Layer 

x1 x2 x3 x4 xn

Fig.1. Architecture of FNN.

With a down-top description, the elements of yI ∈

R
m1 are the activation outputs of the first FM hidden

layer calculated as

yIj = f(

n∑

i=1

wI
i,jxi), j = 1, 2, . . . ,m1 − k1,

yIm1−k1+j = f(
1

2
((

n∑

i=1

vIi,j xi)
2 −

n∑

i=1

(vIi,j)
2 x2

i )),

j = 1, 2, . . . , k1,

where x = {xi}
n
i=1 is the input feature, wI

i,j is the un-

determined linear weight, vI
i ∈ R

k1 is the undetermined

latent weight corresponding to the feature xi, k1 is the

user-specified dimension of {vI
i }

n
i=1, and f is an acti-

vation function that can be taken as Sigmoid[58], tanh,

ReLU[59], PReLU[60], ELU[61] and so on. Similarly, the

1○The code of IF was released in website: https://github.com/Acicone/Iterative-Filtering-IF, Jan. 2019.
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outputs of the second FM hidden layer can be computed

as

yHj = f(

m1∑

i=1

wH
i,jy

I
i ), j = 1, 2, . . . ,m2 − k2,

yHm2−k2+j = f(
1

2
((

m1∑

i=1

vHi,j yIi )
2 −

m1∑

i=1

(vHi,j)
2 (yIi )

2)),

j = 1, 2, . . . , k2,

where wH
i,j is the undetermined linear weight, vH

i ∈ R
k2

is the undetermined latent weight corresponding to yIi ,

and k2 is the user-specified dimension of {vH
i }k1

i=1. The

neurons in the output layer are obtained from

yOj = f(

m2∑

i=1

wO
i,jy

H
i ), j = 1, 2, . . . , o,

where wO
i,j is the undetermined connection weight. At

last, it is the loss layer, where one can choose diffe-

rent loss functions to measure the error for different

tasks. Such as, a commonly used loss function is the

squared loss defined by �(yOi , yi) =
1
2 (y

O
i − yi)

2 for re-

gression task, and the log-loss function, i.e., �(yOi , yi) =

−yi log y
O
i − (1 − yi) log(1 − yOi ), is usually taken for

classification. Furthermore, in order to alleviate the in-

fluence of over-fitting, we take the L2 regularized term

into this layer. Thus, the expression of the loss layer is

computed as follows:

L(yO,y) =

o∑

i=1

�(yOi , yi) +
α

2
(

n∑

i=1

m1−k1∑

j=1

(wI
i,j)

2 +

m1∑

i=1

m2−k2∑

j=1

(wH
i,j)

2 +

m2∑

i=1

o∑

j=1

(wO
i,j)

2 +

n∑

i=1

k1∑

j=1

(vIi,j)
2 +

m1∑

i=1

k2∑

j=1

(vHi,j)
2),

where α > 0 denotes the regularized parameter, and

y = {yi}
o
i=1 is the true observation.

To optimize the FNN model, the back propagation

process is used to iteratively calculate the gradient in

each layer, and then the stochastic gradient descent

(SGD) is adopted to update the weights until conver-

gence.

3 Proposed Approaches

In this section, an improved framework of the

traditional signal decomposition based approach, i.e.,

IF2FNN, is presented to predict and recover the non-

stationary signals. The improved one first decom-

poses the original non-stationary time series into several

“quasi stationary” IMFs by the IF method. And then,

all IMFs are fed as the inputs into the FNN predic-

tor model. Next, we describe the details about using

IF2FNN in forecasting and data recovery.

3.1 IF2FNN for Non-Stationary Signal

Prediction

The process of IF2FNN is similar to that of

EMD2FNN proposed in [29]. The differences between

them are: 1) IF2FNN replaces the signal decomposition

algorithm EMD by IF, which was demonstrated to be

more robust in coping with non-stationary signals; 2)

only the one-step forecasting task in financial field has

been discussed in [29]. In this paper, both one-step and

multi-step forecasting tasks with the IF2FNN technique

will be discussed. Furthermore, the forecasting task is

no longer limited to the financial data, which is also

extended to the general applications. Algorithm 2 lists

the steps of IF2FNN for prediction.

Algorithm 2 . IF2FNN for Prediction

Require: x ∈ R
n is the pre-handle non-stationary time series;

M represents the temporal window size; o denotes the size of

the predicted values, where o = 1 for one-step task, and o > 1

for multi-step task

Step 1. Decompose the data x into a set of IMFs {ck}
L
k=1

by

using the IF method, where ck ∈ R
n represents the k-th IMF.

Step 2. Construct samples from all IMFs {ck}
L
k=1

; we take

the set constituted of M consecutive values from each IMF as

the input features, the set constituted of the next o values of x

is the corresponding label, i.e., {ck,i, . . . , ck,i+M−1}
L
k=1

forms

the features of the i-th sample, and {xi+M , . . . , xi+M+o−1} is

its label, where i = 1, 2, . . . , n−M − o+ 1.

Step 3. Divide the samples into training, validation and test-

ing sets according to a specific proportion.

Step 4. Learn the undetermined FNN predictor from the

training dataset, and use the validation set to select its hyper-

parameters.

Step 5. Carry out the predicting process on the testing set,

i.e., ŷ = FNN [St], where St denotes the input features of the

testing dataset, and ŷ ∈ R
o stands for the predictions.

3.2 IF2FNN for Data Recovery

Another novelty of this paper is to apply IF2FNN

to deal with the task of data recovery. Since the miss-

ing data must match the given data on both sides of

the interval, it complicates the issue of data recovery.

The challenges mainly are as follows. 1) How to effec-

tively model the interactions of the information from
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both sides to better recover the missing data? 2) When

the numbers of IMFs on both sides of the missing in-

terval are not consistent, how to construct the samples

from both sides?

To overcome the challenges, we present a method,

graphically illustrated in Fig.2, by using two models

for data recovery, where the model PL (PR) is empow-

ered the ability of data recovery completely according

to the information of the left (right) side on the missing

data area. The details are listed in steps 2–4 of Algo-

rithm 3. Specially, the samples in training PL (PR) are

constructed from the IMFs of x left (x right), which

are located on the left (right) of the missing data area.

Since both the PL and the PR models are only decided

by the data from one side of the missing data interval,

it eliminates the influence of the inconsistency of the

number of IMFs during the training process.

In the testing phase, i.e., the process of recovering

the missing data by using the learned models PL and

PR, the input features (i.e., the contextual IMFs’ infor-

mation of the missing data) are located in both sides

of the missing data, which is different from the train-

ing process. Since the numbers of IMFs of both sides,

x left and x right, might not be equal, the directly

constructed inputs are not suitable for the PL and the

PR models. We need modify the extracted features

1 2

 

3 …    …    n…  

Data Missing Area  Left Part Right Part  

�  �  

Construct Samples  Construct Samples  

Train Train 

Construct Features  

Predict 

Recovered Values 

Average  

n1 n1⇁1 n1⇁o n1⇁o⇁1 n↩1

L R

Fig.2. Graphical interpretation of the architecture of our proposed data recovery method.

Algorithm 3 . IF2FNN for Data Recovery

Require: x ∈ R
n is the pre-handle non-stationary time series, which contains o continuously missing data points

{xn1+1, xn1+2, . . . , xn1+o}. x left ∈ R
n1 and x right ∈ R

n2 (n1 + n2 = n − o) denote the given data from the left and the

right parts on the missing interval respectively; M represents the temporal window size on each side.

Step 1. Decompose x left and x right into IMFs {c leftk}
L1

k=1
and {c rightk}

L2

k=1
respectively by the IF method, where c leftk,

and c rightk represent the k-th IMF of x left and x right respectively, and L1 might not equal L2.

Step 2. Construct samples from the left and the right sides on the missing data interval respectively; for the left

part, we take the set constituted of o consecutive values from x left as the label; the values, ranged in the closest 2M

points to the label, are composed of the input features, that is to say, {x lefti+1, . . . , x lefti+o} constitutes the label set,

{c leftk,i−M+1, . . . , c leftk,i, c leftk,i+o+1, . . . , c leftk,i+o+M}L1

k=1
are formed as the input features, where i = M,M+1, n1−M−o;

similarly, the samples of the right part can be obtained.

Step 3. Divide the left and the right samples into training and validation datasets as a special proportion respectively.

Step 4. Learn the undetermined FNN PL and PR predictor on the left and the right training datasets respectively, and use the left

and the right validation datasets to select the hyper-parameters in PL and PR respectively.

Step 5. Generate two sets of input features (denoted as S1, S2) to recover the missing data, where S1 is used as the input of PL,

and S2 is used in PR. If L1 = L2, S1 = S2 = {c leftk,n1−M+1, . . . , c leftk,n1
, c rightk,1, . . . , c rightk,M}L1

k=1
; otherwise (might as

well suppose that L1 > L2), we first find the components where the two sides do not have in common according to comparing their

oscillations’ patterns (or the oscillations’ speed). Then, we supplement the trivial components to the right IMFs (compared with the

left, those components originally do not exist) to generate the input features set S1, and delete the components, which do not match

with the right IMFs, from the left IMFs to generate the input features set S2.

Step 6. Carry out the data recovery on the testing dataset, i.e., ŷ = β • PL[S1] + (1− β) • PR[S2], where the operation • denotes

dot product, β ∈ R
o is the weight vector, and the elements of ŷ ∈ R

o stand for the recovered values.
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by either supplementing or deleting certain components

from the left or right IMFs, so that the inputs for PL

and PR are consistent. We describe the details in steps

5 and 6 of Algorithm 3, where we introduce two sets

S1 and S2 to denote the input features for simplicity,

the features in S1 are fed into the model PL, and the

features in S2 correspond to the model PR.

For the parameter vector β = {βi}
o
i=1 appearing in

step 6 in Algorithm 3, there are many different ways

to set its value. We just provide a few alternatives for

reference as follows.

1) Simple average: the simplest way is to set βi =

0.5, for i = 1, 2, . . . , o.

2) Length average: the values of the vector β depend

on the dimensions (lengths) of x left and x right,

e.g., βi =
n1

n1+n2
, for i = 1, 2, . . . , o.

3) Moving average: the principle of this way is that

the recovered data on the left depends more on the

model PL, and the recovered data on the right relies

more on the model PR. Hence, the vector β can be set

to control the variant influence of the models, PL, PR,

on ŷi, e.g., βi =
2o−i+1
3o+1 , for i = 1, 2, . . . , o.

4 Simulation Results and Evaluations

This section first describes the implementation de-

tails including the datasets, experimental setup, and

the evaluation criteria. Then, we analyze and evaluate

the proposed technique in both forecasting and data

recovery tasks.

4.1 Datasets

To test the predicted performance of the proposed

method employed to the general non-stationary time

series, we compare it against the other prevailing ones

in two cases, i.e., one-step and multi-step forecasting.

To make the comparison representative, the datasets we

use include the artificial constructed signal and the real

ones exhibiting different instabilities. In terms of the

instabilities from low to high, they are the artificial con-

structed signal (ACS), x(t) = 0.6t+sin(t)+ sin(3t), t ∈

[0, 35], the length of day 2○ (LOD), the troposphere

monthly mean temperature 3○ (TMMT), the northern

hemisphere land-ocean temperature index 4○ (NHLTI),

and the national association of securities dealers au-

tomated quotations index 5○ (NASDAQ), whose infor-

mation is shown in Table 1. We use the data ACS,

LOD and NHLTI in dealing with the task of one-step

forecasting, and use TMMT in the task of multi-step

forecasting. In our experiments, we divide the data

as training, validation and testing datasets as the ratio

7 : 2 : 1 for one-step forecasting task. For multi-step pre-

dicting, we take the last 10 points of TMMT, which cov-

ers three complete oscillations, as the testing set, and

divide the rest data as training and validation datasets

as the ratio 8 : 2.

Table 1. Data and Their Descriptive Statistical Analysis

Name Size Mean Std. Data Range

ACS 1 167 10.87 6.11 [0, 35]

LOD 1 096 2.21 0.47 1980/1/1−1982/12/31

TMMT 464 0.05 0.25 1978/12−2017/7

NHLTI 1 200 −13.13 26.57 1800/1−1900/12

NASDAQ 1273 4 148.46 826.91 2012/1/3−2016/12/23

Furthermore, to evaluate the proposed technique

in data recovery, the datasets with comparative high

instabilities, i.e., TMMT, NHLTI and NASDAQ, are

used in our experiments. We simulate the damaged

data in three ways. The first is removing the values

in the interval located around the center of the series

of TMMT and NHLTI. Specifically, the missing data

area of TMMT is from the points 228 to 237, covering

two complete oscillations, and points 601 through 612

are that for NHLTI, which covers three complete os-

cillations. Second, it randomly generates two missing

data areas on NHLTI, which contain 6 and 12 points

respectively. At last, we randomly construct the miss-

ing data area just containing single point on NASDAQ,

and repeat it five times to make our experiments more

objective.

4.2 Experimental Setup

Suppose that the pre-handled data is decomposed

into L IMFs via the IF method. For the prediction task,

we take the set constituted of M consecutive values

from each IMF as the input samples. For data recovery

task, the 2M points from all IMFs closest to the tar-

get time point compose of the input samples set. In the

stage of FNN, the activation function f from the hidden

layers is taken as tanh. The activation function f in the

output layer and the loss function in the loss layer are

2○LOD dataset. http://hpiers.obspm.fr/eoppc/eop/eopc04/eopc04.62-now, Sept. 2018.

3○TMMT dataset. https://www.nsstc.uah.edu/data/msu/t2lt/uahncdc lt 5.6.txt, Sept. 2018.

4○NHLTI dataset. https://data.giss.nasa.gov/gistemp, Sept. 2018.

5○NASDAQ dataset. https://finance.yahoo.com, June 2018.
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set as the identity function and the squared loss respec-

tively, i.e., f(x) = x and �(yOi , yi) =
1
2 (y

O
i − yi)

2, where

yi is the true value and yOi denotes the computation

result.

The FNN model will be learned on the training sam-

ples with the input size n = M × L for the prediction

and n = 2M ×L for the data recovery task. In this pa-

per, all undetermined weights are assigned with normal

distributed random values initially, and then updated

according to the back-propagation process on the train-

ing samples. For the hyper-parametersm1, m2, k1, and

k2 mentioned in Subsection 2.2 and the parameter M

representing the size of dependence on the historical

information, to reduce the complexity of FNN model

in our experiments, we fix m2 = �m1

2 �, k1 = m1 − 1,

k2 = m2 − 1, M = 3 × o for the prediction task, and

M = 2 × o for the data recovery. The rest values

of hyper-parameter m1, the learning rate η in back-

propagation process and the regularized parameter α

are obtained by the grid search algorithm, which aims

at finding the optimal parameters from various para-

meter combinations via minimizing the squared loss on

the validation dataset.

4.3 Evaluation Criteria

Three accuracy measures are chosen to evaluate the

predicted values ŷ ∈ R
o×N relative to the actual values

y ∈ R
o×N , where N is the sample size. They are mean

absolute error (MAE), root mean square error (RMSE),

and mean absolute percentage error (MAPE) 6○. Their

definitions are given in Table 2. In our experiments, we

use all three measures to judge the prediction perfor-

mance. Smaller values of these indexes indicate more

accurate forecast. When the results are not consistent

among the indexes, we choose the relatively more stable

one, MAPE as suggested by Makridakis[62], to be the

main reference criterion.

Table 2. Evaluation Indexes

Measure Expression

MAE 1

N

∑N
n=1

∑o
i=1

|ŷi,n − yi,n|

RMSE
√

1

N

∑N
n=1

∑o
i=1(ŷi,n − yi,n)2

MAPE 1

N

∑N
n=1

∑o
i=1 |

ŷi,n−yi,n
yi,n

|

4.4 Discussion of Predicted Accuracy

The experimental data for prediction and their

IMFs are shown in Fig.3. Figs.3(a)–3(d) depict the

original signals and their IMFs by the IF technique cor-

responding to the ACS, LOD, TMMT and NHLTI re-

spectively. We can observe that they exhibit different

instabilities from low to high. The rest panels are their

IMFs extracted from the original signals by IF as the

frequencies changing from high to low.

After obtaining the IMFs by the IF method, we first

employ our proposed FNN technique to one-step fore-

casting task on the time series including ACS, LOD

and NHLTI. To evaluate the performance, we com-

pare the results with those obtained by the IF2NN

techniques, where the IF2FNN and the IF2NN tech-

niques have one point in common that they receive

all of the IMFs as their inputs. We also compare the

IF2FNN technique against the prevailing models, such

as SVM 7○, GBDT 8○, and the other traditional signal

decomposition based forecasting models including Holt-

Winters 9○ (HW), and neural network (NN). Since these

traditional signal decomposition based techniques are

achieved through separately predicting for each IMF,

they will be referred to as “segregation prediction (SP)”

for convenience. Thus, we denote the traditional signal

decomposition based Holt-Winters and neural network

models as IF2HW-SP and IF2NN-SP respectively.

In addition, a simple and natural model, called

smooth extrapolation approach (denoted by EA), is

presented to predict for each IMF. We denote it by

IF2EA-SP for convenience. Suppose c ∈ R
n denotes

an IMF, m represents the window size. Similar to the

form of moving average, the expression of the (n+1)-th

value of c by EA is predicted as follows:

ĉ =

m∑

i=1

wi × cn−m+i,

where the undetermined vector w := {wi}
m
i=1 is de-

cided by c itself. From the expression, EA essentially

can be seen as a single-layer perception. The weights

are learned as Algorithm 4. The results obtained from

IF2FNN are compared with those from IF2EA-SP as

well.

6○MAPE would be meaningless if any true observation is trivial. Hence, we add the maximum of the true observations to the

denominator at the case.

7○SVM package. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html, Nov. 2018.

8○GBDT package. https://xgboost.readthedocs.io/en/latest/python/python intro.html, Nov. 2018.

9○HW package. https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/HoltWinters, Nov. 2018.
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Fig.3. Original signals (top panel) and their IMFs (from the second to the last panels) by the IF approach. (a) ACS. (b) LOD. (c)

TMMT. (d) NHLTI.
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Algorithm 4 . Smooth Extrapolation Approach (EA)

Step 1. Given the signal c ∈ R
n, set the window dimension

as m.

Step 2. Set h = n−m, and then find the undetermined weight

vector w by the following optimal model:

w = argminw α‖w‖2 + ‖A ·w − y‖2,

where A ∈ R
h×m, whose elements are defined as A(i, j) =

ci+j−1, and y ∈ R
h, and y(i) = ci+m.

The results of one-step forecasting obtained from all

of the predictors on ACS, LOD and NHLTI are depicted

in Figs.4–6 respectively, where the top panels depict the

predicted values covering the whole testing dataset, and

the bottom panels give the details with the errors be-

tween the true observations and the results obtained

from the predicted models including SVM, GBDT,

IF2HW-SP, IF2EA-SP, IF2NN-SP, IF2NN, EMD2FNN

and IF2FNN. From the plots, we have the following

findings.

• For the predictions on ACS depicted in Fig.4,

all techniques except SVM and GBDT are able to

grasp the evolutionary trend according to the top panel,

where the predictions of GBDT are all the same, fixed

to around 13. This is because the overall trend of ACS
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Fig.4. Results and errors of the models in one-step forecasting task on ACS. (a) Predicted values covering the whole testing dataset.

(b) Errors between the true observations and the predictions of all models. As it can be seen from (a) that the results of the SVM and

GBDT models are clearly poor, we omit their errors in (b).
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data goes up, and the values of leaf nodes of each tree

in the trained GBDT model cannot exceed this pre-

dicted value. From the detailed error panels, the errors

located in peaks and troughs are larger than those lo-

cated in the other places. Visually, we can order the

techniques as IF2FNN > IF2EA-SP > IF2HW-SP >

IF2NN > EMD2FNN > IF2NN-SP > SVM > GBDT

according to the performance.

• According to Fig.5(a), the predicted results of

IF2HW-SP display obvious hysteresis, and the results

obtained from both SVM and IF2EA-SP have compar-

atively significant discrepancy with the true observa-

tions especially on the peaks and troughs. Moreover,

the techniques can be visually ranked as {IF2FNN,

EMD2FNN, IF2NN, IF2NN-SP} > IF2EA-SP > SVM

> IF2HW-SP from the errors depicted in Fig.5(b).

• With regard to the predicted performance on

NHLTI shown in Fig.6, the results from IF2HW-SP also

exhibit obvious hysteresis according to Fig.6(a). Fur-

thermore, the increased instability of NHLTI compared

with ACS and LOD increases the discrepancies between

the true observations and results from the predicted ap-

proaches. According to Fig.6(b), we can approximately

order the techniques by {IF2FNN, IF2NN, IF2NN-SP,

IF2EA-SP} > EMD2FNN > SVM > GBDT > IF2HW-

SP following their performance.

For the multi-step predicting task on TMMT, the

results are depicted in Fig.7, where Fig.7(a) shows
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Fig.5. Results and errors of the models in one-step forecasting task on LOD. (a) Predicted values covering the whole testing dataset.

(b) Errors between the true observations and the predictions of all models.
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Fig.6. Results and errors of the models in one-step forecasting task on NHLTI. (a) Predicted values covering the whole testing dataset.

(b) Errors between the true observations and the predictions of all models.

the true data and the predictions obtained from the

models including SVM, GBDT, IF2HW-SP, IF2EA-SP,

IF2NN-SP, IF2NN, EMD2FNN and IF2FNN. The er-

rors between the predictions and the true observations

are depicted in Fig.7(b). According to the figure, we

can roughly conclude that {IF2FNN, IF2NN, IF2NN-

SP} > SVM > IF2HW-SP > GBDT > EMD2FNN >

IF2EA-SP.

In order to know more clearly about the effects from

the proposed approach in both one-step and multi-step

prediction tasks, we evaluate the models with the in-

dexes listed in Table 2. The values are listed in Ta-

ble 3–Table 6. From the results, we have the following

findings.

• The values listed in Table 3–Table 6 are basically

consistent with our conclusions above, i.e., the models

can be ordered as IF2FNN > IF2EA-SP > IF2HW-SP

> IF2NN > EMD2FNN > IF2NN-SP > SVM >GBDT

according to their performances for ACS, by IF2FNN

> IF2NN > IF2NN-SP > EMD2FNN > GBDT >

IF2EA-SP > SVM > IF2HW-SP for LOD, by IF2FNN

> IF2NN > IF2NN-SP > IF2EA-SP > EMD2FNN

> SVM > GBDT > IF2HW-SP for NHLTI, and by

IF2FNN > IF2NN > IF2NN-SP > SVM > IF2HW-SP

> GBDT > EMD2FNN > IF2EA-SP for TMMT.

• According to the metric of MAPE in one-step

forecasting task, as the instability of the time series in-

creases, the prediction errors from all techniques except

SVM and GBDT also increase. However, the proposed

one always performs the best. For the results in Table 6,
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Fig.7. Results and errors of the models in multi-step forecasting task on TMMT. (a) Predicted values covering the whole testing

dataset. (b) Errors between the true observations and the predictions of all models.

IF2FNN is also the best among the models. Hence, the

proposed technique performs the best not only in the

one-step prediction task, but also in the multi-step one.

Table 3. Performances of Different Models for

One-Step Prediction on ACS

Model MAE RMSE MAPE

SVM 2.332 9 2.455 1 0.112 3

GBDT 7.460 0 7.497 9 0.361 9

IF2HW-SP 0.094 3 0.106 0 0.004 6

IF2EA-SP 0.085 4 0.101 7 0.004 2

IF2NN-SP 0.362 5 0.363 8 0.017 6

IF2NN 0.100 6 0.115 6 0.004 9

EMD2FNN 0.188 7 0.210 3 0.009 1

IF2FNN 0.052 7 0.061 2 0.002 6

Table 4. Performances of Different Models for

One-Step Prediction on LOD

Model MAE RMSE MAPE

SVM 0.119 4 0.133 2 0.050 9

GBDT 0.058 0 0.068 3 0.025 0

IF2HW-SP 0.240 5 0.267 5 0.102 3

IF2EA-SP 0.092 3 0.108 8 0.039 5

IF2NN-SP 0.016 4 0.020 3 0.007 0

IF2NN 0.015 4 0.018 4 0.006 6

EMD2FNN 0.018 9 0.023 9 0.008 1

IF2FNN 0.014 6 0.018 7 0.006 1

• From the results of the IF-based approaches, i.e.,

IF2FNN, IF2NN and IF2NN-SP, we have IF2FNN >

IF2NN > IF2NN-SP. It reflects that the predictors can

be ranked as FNN > NN > NN-SP.
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Table 5. Performances of Different Models for

One-Step Prediction on NHLTI

Model MAE RMSE MAPE

SVM 12.030 0 16.276 5 0.101 8

GBDT 12.942 8 17.008 7 0.110 2

IF2HW-SP 14.848 2 19.692 5 0.201 3

IF2EA-SP 3.732 6 4.856 9 0.049 1

IF2NN-SP 3.683 3 4.793 1 0.048 6

IF2NN 3.292 2 4.253 3 0.043 9

EMD2FNN 7.188 3 9.543 6 0.081 5

IF2FNN 2.998 1 3.966 8 0.039 6

Table 6. Performances of Different Models for

Multi-Step Prediction on TMMT

Model MAE RMSE MAPE

SVM 0.129 0 0.149 7 0.309 3

GBDT 0.186 9 0.212 5 0.411 2

IF2HW-SP 0.139 2 0.164 1 0.354 1

IF2EA-SP 0.450 9 0.517 3 1.068 1

IF2NN-SP 0.100 6 0.132 8 0.269 1

IF2NN 0.095 4 0.126 9 0.242 8

EMD2FNN 0.173 5 0.207 5 0.445 8

IF2FNN 0.093 9 0.121 2 0.241 1

• Comparing the results of IF2FNN with those of

EMD2FNN, we can obtain that the decomposition tech-

niques have an important role in forecasting. And the

results imply that IF > EMD.

4.5 Discussion of Recovered Accuracy

In this part, we first use the damaged data, which

are generated by removing one missing area of TMMT

and NHLTI respectively, to illustrate the IF2FNN ap-

proach for data recovery. The data on both ends of the

missing data area are decomposed into IMFs by the IF

method, and the results are shown in Fig.8. From it,

we can see that the numbers of IMFs on both the left

and the right sides are 7 for TMMT, however, they are

8 and 9 respectively for NHLTI, which are inconsistent.

After comparing the oscillatory patterns of the left com-

ponents with those of the right ones, we find the fifth

IMF appearing in Fig.8(d) is a particular one, whose

oscillating pattern is quite different from the compo-

nents in Fig.8(c). Hence, we delete the fifth component

from Fig.8(d) before generating the testing data’s in-

put features S1, which is fed into the left model PL, and

supplement a trivial component between the fourth and

the fifth components of Fig.8(c) before constructing the

testing data’s features set S2 that is transmitted into

the right model PR.

According to step 6 in Algorithm 3, we provide three

ways of selecting the parameter vector β for reference,

which are called the simple average, length average and

moving average approaches respectively in Subsection

3.2. Next, we compare their performances. Table 7

lists the values of the error metrics on the damaged

data of TMMT and NHLTI with one missing data area

respectively. Since the missing data are taken from the

middle of the series TMMT, the values by both the

simple average and the length average approaches on

TMMT are the same. Moreover, the results obtained

from the moving average approach on both TMMT and

NHLTI datasets are the best. Hence, we decide to use

the moving average method in our experiments below.

To evaluate the performance of our proposed tech-

nique in data recovery, we compare it with the models

including NN, IF2NN-SP and EMD2FNN. For the NN

approach, it is implemented by using two models as

well, one is responsible for the left side on the missing

data area and the other acts on the right side. The

samples are constructed similar to the IF2FNN-based

approach, but the difference is that NN does not require

the IF method, and thus the input features are directly

extracted from the original signal. For the IF2NN-SP

approach, it is achieved using two classes of models,

where the first class of models is used in successively

and separately predicting the future values of each left

IMF, and it similarly uses the second class of mod-

els to separately predict the historical values of each

right IMF. The EMD2FNN approach in data recovery

is similar to IF2FNN. Their difference is that the EMD

method replaces the IF one.

The results on the damaged data TMMT and

NHLTI with one missing data area are shown in Fig.9

and Fig.10 respectively. Moreover, Table 8 and Ta-

ble 9 list the performance values. From them, we can

conclude that the proposed approach IF2FNN is able

to significantly improve the recovery accuracy, and it

reduces 25.0% MAPE than the second best approach

for TMMT, and 31.8% than the second best one for

NHLTL.

In addition, we simulate the damaged data by ran-

domly generating two missing data areas on NHLTI,

which contain 6 and 12 points respectively. The recov-

ered results and performance are given in Fig.11 and

Table 10. The results state that the IF2FNN approach

generally performs the best. But the conclusion fails

if the context information is too little, e.g., the results

of the missing data area [225, 230], the left side on the

area just contains 224 points, which makes the recov-

ered results vulnerable by the “endpoint effect” from

the signal decomposition approach.
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Fig.8. IMFs of the signals, located on both sides of the data missing area, obtained from the IF technique. (a) IMFs of the signal

located on the left side of the data missing area (i.e., [228, 237]) of TMMT. (b) IMFs of the signal located on the right side of the

data missing area (i.e., [228, 237]) of TMMT. (c) IMFs of the signal located on the left side of the data missing area (i.e., [601, 612])

of NHLTI. (d) IMFs of the signal located on the right side of the data missing area (i.e., [601, 612]) of NHLTI.
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Table 7. Performances of Different Ways in Selecting β for

Data Recovery

Data Method MAE MSE MAPE

TMMT Simple average 0.249 1 0.294 8 0.513 9

Length average 0.249 1 0.294 8 0.513 9

Moving average 0.241 2 0.291 2 0.491 3

NHLTI Simple average 10.797 5 13.473 3 0.788 3

Length average 10.829 5 13.497 9 0.789 1

Moving average 10.419 9 10.797 5 0.787 8

At last, we employ the recovery task on NAS-

DAQ, whose IMFs are plotted in Fig.12. We simulate

the damaged data by randomly selecting single miss-

ing data point from NASDAQ, and repeat the ope-

ration five times to make the discussions more objec-

tive. The randomly selected missing points and val-

ues are (1 084, 4 869.31), (664, 4 442.69), (221, 2 904.82),

(992, 4 927.85) and (886, 5 055.52). To evaluate the

performance of the IF2FNN method, we compare it

with the models including SVM, GBDT, IF2SVM,

IF2GBDT, NN, IF2NN-SP, and EMD2FNN. The val-

ues of the recovered data and MAPE metric from

the models are listed in Table 11 and Fig.13 respec-

tively. The results still reflect that the IF2FNN ap-

proach works the best as long as the missing point

is not selected too close to the endpoint 1 or 1 273.

Otherwise, like the results of the third missing point

(221, 2 904.82), which leads the signal decomposition

based (EMD and IF based) techniques are susceptible

to interference from the “endpoint effect” of the signal

decomposition method.

5 Conclusions

This paper presents a novel technique integrating

IF and FM-based neural network together, IF2FNN,

to solve several issues about the general types of non-

stationary signal, including one-step and multi-step

forecasting and data recovery. The IF technique was

experimentally proven to be efficient and robust in

handling the complicated non-stationary signals, and
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was used to decompose the original nonlinear and non-

stationary time series into IMFs that can be consi-

dered “quasi stationary”. All of the produced IMFs

were taken as inputs to the FM-based neural net-

work, which incorporates the FM strategy to exploit

the nonlinear interactions between features extracted

at different time scales. Furthermore, we adopted

four datasets with different instabilities including ACS,

LOD, TMMT, NHLTI and NASDAQ to evaluate the

proposed approach in both one-step, multi-step fore-

casting and data recovery tasks. The numerical experi-

ments demonstrated that the integrated methods have

significant advantages in improving the prediction and

recovery accuracies, measured by MAE, RMSE and

MAPE.

This study is another example that demonstrates

the power of combining IF with neural network to

achieve outstanding performance in time series predic-

tion and recovery. In fact, we believe that IF can be

used in conjunction with other statistical or artificial in-

telligence strategies to create general methods for pre-

dicting and missing data recovery. Various combina-

tions in algorithm design can be investigated in the fu-

ture to tackle problems emerging from different appli-

cations.

Table 8. Performances of Different Models for

Data Recovery on TMMT

Model MAE MSE MAPE

NN 0.273 2 0.306 0 0.654 2

IF2NN-SP 0.306 5 0.334 8 0.704 7

EMD2FNN 0.366 9 0.406 0 0.755 7

IF2FNN 0.241 2 0.291 2 0.491 3

Table 9. Performances of Different Models for

Data Recovery on NHLTI

Model MAE MSE MAPE

NN 15.466 7 19.771 6 1.155 6

IF2NN-SP 36.042 6 38.692 1 2.980 0

EMD2FNN 15.163 0 19.037 2 1.180 0

IF2FNN 10.419 9 10.797 5 0.787 8



334 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

-150

-100

-50

0

50

100

0 200 400 600 800 1000 1200

N
H

L
T

I 
(C

)

Time (Month)

(a)

Time (Month)

(b)

Time (Month)

(c)

Existing Data

Missing Data

-60

-50

-40

-30

-20

-10

0

10

20

225 226 227 228 229 230

D
a
ta

 R
e
c
o
v
e
ry

D
a
ta

 R
e
c
o
v
e
ry

Missing Data
EMD2FNN
NN
IF2NN-SP
IF2FNN

-60

-40

-20

0

20

40

612 614 616 618 620 622

Missing Data
EMD2FNN
NN

IF2NN-SP
IF2FNN

Fig.11. Damaged data and results of the models in data recovery on NHLTI. (a) Damaged data and the missing data (red star points)

located in two areas. (b) Performance of the models including NN, IF2NN-SP, EMD2FNN and IF2FNN in recovering the data located

in the first missing data area. (c) Performance of the models including NN, IF2NN-SP, EMD2FNN and IF2FNN in recovering the data

located in the second missing data ares.

Table 10. Performances of Different Models for Two Missing Data Areas on NHLTI

Missing Data Area Model MAE MSE MAPE

[225, 230] NN 12.450 4 16.563 0 0.316 3

IF2NN-SP 25.431 1 33.796 5 0.788 0

EMD2FNN 19.035 9 22.467 7 0.566 1

IF2FNN 13.569 1 20.330 1 0.362 5

[612, 623] NN 16.125 1 19.667 5 0.975 2

IF2NN-SP 36.709 5 38.747 3 3.030 3

EMD2FNN 12.260 0 15.433 0 0.869 1

IF2FNN 10.530 7 12.716 2 0.670 1

Table 11. Results of Different Models for Recovering the Randomly Generated Single Missing Data of NASDAQ

Model Missing Data

(1 084, 4 869.31) (664, 4 442.69) (221, 2 904.82) (992, 4 927.85) (886, 5 055.52)

SVM 4788.61 4 357.83 3 163.97 4 744.32 4 726.94

GBDT 4993.41 4 385.08 3 072.98 4 910.53 4 918.25

IF2SVM 4845.12 4 378.04 3 164.97 4 759.20 4 695.66

IF2GBDT 4807.63 4 441.60 3 079.83 4 873.85 4 891.52

NN 4 859.41 4 421.07 2 920.63 5 000.90 5 042.89

IF2NN-SP 4 754.61 4 435.03 2 975.04 4 964.23 5 046.83

EMD2FNN 4864.04 4 452.21 3 002.24 4 997.11 4 954.64

IF2FNN 4 864.44 4 441.80 2 939.05 4 931.31 5 059.61
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