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1. Introduction

The nonlinear Schrédinger equation (NLS) given in the form of

hé%llf(t, T) = —%Alll(t,z) + U(t,z)V(z) + lIf(t,:c)/W(I, NIt y)2dy, (1)
Rd

plays vital roles in many areas in physical sciences [2,27]. The unknown ¥(¢,z) is a
complex wave function for z € R%, h > 0 is the Planck constant, and V(z) and W(z, y) are
real valued functions, referred as linear and interaction potentials respectively. Although
the NLS provides accurate predictions to various physical phenomena, its formulation
is very different from the classical mechanics, and it cannot be easily interpreted by the
Newton’s law.

To bridge the difference, Edward Nelson provided an compelling approach in 1966
[23]. He derived the NLS by means of classical mechanics in conjunction with variational
principles and stochastic diffusion processes [3,16]. To better understand his idea, we
recall that the NLS (1) has a fluid dynamics formulation, named Madelung system [19].
By introducing a change of variables, U(t,z) = \/p(t, z)e’>®*)/" one can rewrite (1) as

dp o
E'l‘V'(pv.S‘)—U,

as 1 h? 6

: )
5+ 58 + L) + Vi) + R] W(e, y)p(t,y)dy =0 ,

where p, S are unknown real valued functions, EHJET is the L? first variation operator,
and Z(p) = [34(V log p(z))?p(z)dz is the Fisher information [14]. Nelson constructed a
Lagrangian in the space of probability density functions, and then used calculus of vari-
ation to derive (2). We shall give a brief review on his approach in Section 3. Readers
can find more details in [24]. Recently, Nelson’s approach is linked to the framework
of optimal transport theory [6,28], which has been developed in the past few decades
[1,4,15,28]. The theory shows that the probability density space equipped with the op-
timal transport distance, also known as the Wasserstein metric, becomes a Riemannian
manifold, and the NLS is a Hamiltonian system on this density manifold [16,26].

In this paper, we consider similar matters in discrete spaces, such as finite graphs.
There are two reasons motivating us to conduct this investigation. On one hand, Nelson’s
derivation is based on a variational principle, which makes his approach more attractive.
However, although different formulations of the NLS on graphs have been introduced in
physics and mathematics [5,9,12,13,25], not much is known through Nelson’s approach,
mainly because the theory of discrete optimal transport has not been seriously explored
until the past few years [10,18,20]. On the other hand, most of the discrete formulations
for the NLS, especially those defined on lattices, are obtained by discretizations of the
continuous NLS. Some important properties, such as conservation of energy, or dispersion



2442 S.-N. Chow et al. / Journal of Functional Analysis 276 (2019) 2440-2469

relation, or time transverse (gauge) invariant, can be lost due to the discretizations. As
reported in a recent survey on numerical methods for the NLS [2], none of the commonly
used schemes has all those features simultaneously. We would like to examine whether
Nelson's approach can provide a systematic strategy for constructing the discrete NLS on
general graphs in order to retain those desirable properties. Our investigation confirms
this assertion.

We follow the settings given in [11,17] to derive the discrete NLS, which turns out
to be a system of ordinary differential equations. The derivation utilizes the optimal
transport distance and the Fokker—Planck equation on a graph. The main results are
sketched here.

Consider a weighted finite graph G = (V, E,w), where V is the vertex set, E is the
edge set, and wj; € w the weight of edge (j,l) € E satisfies wi; = wj; > 0. We assume
that G is undirected, contains no self loops or multiple edges. Given a linear potential
V; on each note j and an interactive potential W;;, with W;; = W, for any two nodes
(7,1) € E. Nelson’s approach leads to the following ODEs:

dp.
=L+ 37 wa(S; — S)a(p) =0

IeN(])
s, 1 9, h2 9 = ®
J 2 YUyl _
— t3 Z wjt (S5 — 51) P ga—wﬂp) +Vi+ Y Wi =0,
IEN(j) =1

where p;(t) and S;(t) are the probability density and potential function at time ¢ on
node j respectively, N(j) = {l € V: (j,1) € E} is the adjacency set of node j, 8;:(p) =
%(dijpj + dl!pg) represents the weight of probability density on the edge (j,1) € E, d; =
e N() @it 18 the volume form at node j and

1
I(p) =3 > willogp; —log ;)60 (p)
GeE

denotes the discrete Fisher information. Using p;(t) and S;(t), we reconstruct a complex
wave equation, for the discrete NLS, on the graph. The derived discrete NLS is very dif-
ferent from the commonly seen ones, with the most notable distinction being a nonlinear
graph Laplacian, which has not been reported before.

We shall prove that the initial value ODE (3) is well defined with several favorable
properties. For example, it is a Hamiltonian system that conserves the total mass and
total energy. It is time reversible and gauge invariant. Its stationary solution is related
to the discrete ground state, whose formulation has many desirable properties similar to
those in the continuous space. In addition, a Hamiltonian matrix is introduced to study
the stability of ground states. This Hamiltonian matrix is a symplectic decomposition of
two nonlinear graph Laplacian matrices. One is from discrete optimal transport geometry,
and the other is induced by the Hessian matrix of discrete Fisher information.
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It is worth noting that there are other approaches to study quantum Markov semi-
group equations [8,7,21,22]. Their methods generalize the discrete optimal transport
metric into matrix form and establish the Lindblad equations by the associated gradient
flows. Compare to them, our approach fixes the discrete optimal transport metric and
discusses the related Hamiltonian structures. From numerics and modeling angles, our
goals are to establish new discrete schemes for computing Schrédinger equations and
for exploring dynamical properties of discrete Hamiltonian flows in the light of optimal
transport.

Our paper is arranged as follows. In Section 2, we discuss the necessity of using non-
linear Laplacian on graphs. In Section 3, we briefly review Nelson’s approach, and then
followed by the derivation of (3) in Section 4. We show several interesting dynamical
properties of (3) in Sections 5 and 6. Several numerical examples are provided in Sec-
tion 7.

2. Why nonlinear Laplacian on graphs?

To answer the question, we consider the classical linear Schrodinger equation without
potentials,

an(t’ I)= —EAlIf(t, z), zelR% (4)
It is well known that (4) admits plane wave solutions given in the form of
U(x,t) = Aellk-a—nt)

as long as the time frequency p and the spatial wave number k satisfy the following
dispersion relation:

_ K2
-5

Such a simple property may become problematic on graphs. To illustrate the chal-
lenges we face, let us consider the regular lattice in R for its simplicity, or even periodic
lattices if one wishes to avoid dealing with the boundaries. In the lattice, we assume
that every node has the same number of adjacent nodes. The weight on each edge is
uniformly given by Az, and the coordinate value for node j is z; = jAz.

On the lattice, any linear spatial discretization of (4) can be expressed as

A 1
3?3 = D) Z Cu¥y , (5)
leN(7)

where {C;;}'s are selected, not all zeros, constants used to approximate the Laplace
operator in (4). Assume that the discrete plane wave U;(t) = Ae'(*2i=H1) satisfies (5),

we must have
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#ei(k-jA::—;_;t) — _1 Z Cﬂei(k-IAz—,ut) ,
IEN(5)

which is equivalent to

1 ik-(l—j)Ax
o= —§ Z nge k-(1—7)A )
leN(7)

If 4 and k satisfy the dispersion relation u = |k|%/2, one gets

k|2/2 = 1 C et -0Az
2 J
lEN(5)

The left hand side is a quadratic function on the wave number k, while the right hand
side is a periodic function consisting of finite terms of trignometric polynomials. This
implies that there are at most a finite number of values for k satisfying this relation.
Therefore only a finite number of pairs (1, k) can form the plane wave solutions for (5). In
contrast, any dispersion relation satisfying pair (p, k) gives a plane wave solution for (4),
and there are infinitely many of them. We summarize this observation in the following

theorem.

Theorem 1. For any linear spatial discretization of (4), there are at most a finite number
of pairs (p, k) satisfying u = |k|%/2 that can form its discrete plane wave solutions.

An implication of this theorem is that one cannot expect every pair (i, k), pu = |k|2/2,
to give a plane wave solution for a given linear spatial discretization. In fact, only a finite
number of pairs, which is a measure zero set, can do that. It also suggests that a nonlinear
Laplacian on graphs must be used if one wants to construct a spatial discretization
scheme that allows any pair (i, k) to form a plane wave solution. On the other hand, this
theorem does not imply that for any given pair (u, k), one cannot find a linear Laplacian
on the graph and use the pair to construct a plane wave solution for (5). However, if
a different pair is given, one may have to switch to a different linear Laplacian on the
graph.

We also note that nonlinear Laplace operators have been used, and proved to be
necessary in the study of Fokker—Planck equations on graphs [10]. These observations

motivated us to consider Nelson’s approach to systematically construct schemes for (1).
3. Review of Nelson’s approach

In this section, we briefly review Nelson’s approach [23,24], and explain its connection
with optimal transport [26,28]. To simplify the presentation, we do not consider the
interactive potential W(x,y) in this section, even though such a consideration can be

obtained in a straightforward manner.
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Consider the following stochastic variational problem:
1
. 1, . .
it { [ Bl X2~ VOXldt = X0 = b(e, X)+ VB, XO)~*, X~ 0}, (6)
0

where b(t,z) € R? can be any smooth vector field, X; is a stochastic process with
prescribed probability densities p° and p! at time 0 and 1 respectively, h > 0 represents
the noise level, B; is a standard Brownian motion in R? and E the expectation operator.
Under suitable conditions given in [23], Nelson showed that (6) is equivalent to

i];f{[]E[%(b(t, X,)2+ BV -b(t, X,)) = V(X,)|dt : X, = b(t, X,) + VAB: ,

(7)
X(0)~p%, X(1) ~p'}.
By using the probability density function p(¢,z) defined as
/p(t,:c)da: =Pr(X; € A), for any measurable set A ,
A
problem (7) is transferred into a deterministic variational problem,
f 1
inf [ 1500+ bV -b)p = Via)pldadt (8)

0 R4
in which the density function p(t, z) evolves according to the Fokker—Planck equation

PV -te) =200, p0.)="0). plL)= M)

Noticing the facts Vp = pVlogp, [p.V - bpdr = — [pabVpdz = [g4b - pVlog pdzx,
and Ap=V-(Vp) =V -(pVlogp), then (8) can be rewritten into the following optimal
control problem

inf / f [%(bﬂ — hb-Vlog p)p — V(z)pldudt , )
0 Rd

where

2P V(oo - 2VIog) =0, p(0.)=4"(). #lL)=p'().
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The key of Nelson’s derivation is based on a change of variable given by,

v(t,z) = b(t,z) — ngog plt,z) . (10)

Substituting v into (9), the problem becomes

1
1 h?
inf [{ [ 30%0de = ST~ Vio)hat (1)
0 Re

such that

op 0 1

5t TV () =0, p0,-)=0p"(), p(L,-)=p().
Here V(p) := [ V(z)p(z)dz is the linear potential energy and Z(p) := [5.(V log p)?pdzx

is the Fisher mformatwn. The integrant in (11) is the Lagrangian for the optimal control
problem.

The critical point (in the sense of Guerra—Morato [23]) of (11) satisfies the Madelung
equations

%—i-v-(pVS):O;

ot

2 (12)
as 1 ) h
g‘F ~(V8) + m{s Z(p) +V(p)} =0,

where v(t,z) = VS(t, x) is the optimal velocity field. The first equation in (12) is known
as the continuity equation, while the second one is called Hamilton—Jacobi equation in
the literature.

Introducing a complex wave function

U(t, z) = +/plt, az)eﬁ(’::_Il

¥

then W(¢, ) satisfies the linear Schrodinger equation

) h?
hie @ = AT 4+ UV(2) .
ot gAY+ V()

Compared to the optimal transport distance, which can be defined by the well known
Benamou—Brenier formula [4],

1

it [ [oodrdt + 2+ () =0, 90 =), o1 = 7))
0 md
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Nelson’s approach can be viewed as a modified optimal transport problem in which the
negative of a potential energy and the Fisher information are amended to create the
Lagrangian in formulation (11).

4. A Schridinger equation on a finite graph

Following Nelson’s approach, we shall derive the discrete NLS (3) on a graph via
discrete optimal transport.

To do so, we first review some basics of the discrete optimal transport theory developed
in recent years. Consider a finite graph G = (V, E,w). The probability set (simplex)
supported on all vertices of G is defined by

PG)={(pj)j<1 | > pj=1, p;j>0, foranyjeV},
j=1

where p; is the discrete probability function at node j. The interior of P(G) is denoted
by Po(G).

Following [11], we introduce some notations and operators on G and P(G). A vector
field v on G refers to a skew-symmetric matriz on the edges set E:

v:=(vji))gnee , Wwith vy = —vy .

Given a function S = (S;)7_; on V, it induces a potential vector field VS on G as

Ve§ = (\/‘-"’ﬂ(sj - S!))(j,t)eE .
For a probability function p € P(G) and a vector field v, define the product pv, called
fluz function on G, by
PU = (thﬁjt (P))(;‘,t}eE ’

where 6;;(p) is a chosen function on the edge
O(p) = L3, for any (j,1) € B .

We remark that #; may have other choices, such as the logarithmic mean used in [18].
The divergence of flux function pv on G is defined by

i

diva(oo) == —( 30 yomos0a(o))

IEN(j) i=1

Given two vector fields v = (vj1)(j.)er, ¥ = (wj1)(jyee on a graph and p € P(G), the
discrete inner product is defined by,
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(v,u)p Z viruabiu(p)
(j l)eE

where the coefficient 1/2 accounts for the fact that every edge in G is counted twice, i.e.

(j" I)'-‘ (E'-‘j) e E'
Using the notations, the Wasserstein metric on the graph can be defined by the discrete
Benamou—Brenier formula [4],

Definition 2. For any p°, p! € P,(G), define a metric

1
1 z

W(p’,p!) := inf { /(U, v)pdt | - % +divg(pv) =0, p(0)=p", p(1)=p'},

where the infimum is taken over all vector fields v on a graph, and p is a continuous
differentiable curve p : [0,1] = P, (G).

Po(G) equipped with the metric W is a Riemannian manifold [10,11].
4.1. Nelson’s approach on a finite graph

Now, we are ready to derive the NLS on graph (3) via discrete optimal transport.
In the discrete case, the linear and interaction potentials refer to

I\Dli—‘

V(p) = ZVJPJ , W)=

j=1

n mn
Z Z Wiimp;

=1 j=1
respectively. We start with a discrete analog of Nelson’s problem presented in (8),

1
inf /
b
0

where the infimum is taken over all discrete vector fields b, p(t) satisfies the discrete
Fokker—Planck equation [10,11]:

[(b,b), — h(b, Vg log p) ] — V(p) = W(p)dt , (13)

[ ]

d _ h
Ep + divg(p(b— EVG logp))=0,

and p(0) = p°, p(1) = p! are given in P,(G). Similar to Nelson’s change of variable, we
define a new vector field v = (v;;)( j)cp on the graph

h
v:i=>b— Evclogp .
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Substituting v into (13), we can write the objective functional as

J(v) == fl

where v is a vector field on the graph, such that p(t) € P,(G) satisfies

(v,0) — < T(p) ~ V(o) - Wiot (1)

[

dp

— Tdiva(pw) =0, p(0)=4", p(1)=p".

We note that any given feasible path p(t) of (14) is determined by wv(t), so we denote
functional J only in term of v, and call it discrete Nelson’s functional.
We also call (v(¢), p(t)) a critical point of (14) if

J(v+edv) — T(v) =o0l(e) , Vu(t) €D, (15)

where

D= {6ve C>®[0,1] : p(t) € Po(G) is continuously differentiable, and ,

g +dive(p(v +€v)) =0, p(0)=p°, p(1) =p'}.

In the following theorem, we show that the critical point of the discrete Nelson’s func-
tional satisfies (3).

Theorem 3 (Critical point of discrete Nelson’s functional). Assume there erists a critical
point (v(t), p(t)) of (14) in the sense of (15), whose components are smooth functions
with respect to the time variable. Then v(t) and p(t) satisfy the following conditions:

(a) v(t) is a potential vector field on the graph, i.e. there ezists a function S(t) =
(8j(t))j=1 defined on the nodes, such that

v1(t) = s (S;(t) — Si(t)) , forallt €[0,1] and (j,1) € E .

(b) For every S(t) that induces v(t), there erists a scalar function C(t) € R, independent
of the nodes, such that p(t) and S(t), defined by S(t) = (S;(t) — C(t))j=1, satisfy
(3):

dp; _ _
d_tj+ Z wi(Sj — S)0(p) =0 ;

IEN(H)
dS; 1 & =000 h2 0 =

=) w8 - 8L+ ——1 Vi+Y Wup =0
7 -I—2 wit(S; 1) Bp; + 8 0p; (p) +V;+ Pl )

=1
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Remark 1. We can rewrite (3) as

()2 (8.

where H is the discrete total energy

H(p.) i= 5(VaS.VaS),+ o T(0) + V() + W)

=(%)

is a symplectic matrix, with I € R"*" being the identity matrix. The symplectic form
(16), identical to (3), is the discrete analog of (12). Following the convention, we call the

and

first equation the discrete continuity equation, and the second one the discrete Hamilton—

Jacobi equation.

The proof of Theorem 3 requires the following lemma, which can be viewed as the
Hodge decomposition on a graph.

Lemma 4. Given a vector field v = (vji)ee on a graph and a probability density
function p € P,(G), there exists a unique VS, such that

v=VgS+u, with divg(pu)=0. (17)

Proof. The detailed proof can be found in [18]. For the completeness of this paper, more
importantly to introduce some notations that will be used later in the paper, we sketch
the proof here. We define a weighted graph Laplacian matrix L(p) € R™*™:

L(p)=-DTO(p)D ,
where D € RIFIXIV is the discrete gradient matrix
Ve o ifj=k;

Dineerev = —wu ifl=k;

0 otherwise;

and © € RIFIXIEl i the diagonal weighted matrix

G.ﬂ (P) if (J: I) = (j’: I’) EE ;

0 otherwise .

OuneE, i reE = {
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We want to emphasize that L(p) depends on p. This is different from the commonly seen
graph Laplace operators, which are often independent of p.
We only need to show that there exists a unique gradient vector field V55, such that

divg(pVeS) = L(p)S = dive(pv) .

Since p € P,(G) and the graph is connected, then

1
STL(p)S = 3 D wlS;—S1)*0a(p) =0,
(Fh)eE

this implies that value 0 must be a simple eigenvalue of the weighted graph Laplacian
matrix L(p) with eigenvector {1,--- ,1}. Thus there exists a unique solution of .S up to
constant shrift. Therefore V&S is unique. O

Furthermore, we can express

0

Amax (L(p))

where 0 < Agee(L(p)) < --- < Amax(L(p)) are eigenvalues of L(p) arranged in the
ascending order, and T is its corresponding eigenvector matrix. The pseudo-inverse of

L(p) is defined by
0
Lp) ' =T )
pN— 7
Thus S = L(p)1divg(pv).
Proof of Theorem 3. (a) We prove that v(t) = VgS(¢). From Lemma 4, we have,

v(t) =VeS(t) +u(t), with dive(p(t)u(t))=0 forallte[0,1].

We only need to prove u(t) = 0 for ¢ € [0,1] when v(¢) is a critical point. Consider a
function w(t) = (wji(t)) ek satisfying

divg(pw(t)) =0, forte|0,1].

It is clear that ew € D for any € > 0 because 2 + dive(p(v + ew)) = 0.
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Since (v, p) is a critical solution of (14), we must have

i L+ ew) = T ()

e—0 €

=0. (18)

Because p(t) keeps the same for the vector field v + ew, it implies

1

Tt I0) _ [ ot on ren,
j(vv p + 2¢(v,w), + (w,w), (UU)pdt

1
=2 [ (v,w),dt + O(e) 2/ (VS +u,w),dt + O(€)
0

2

%-..__5_ o c%-..__w

(VaS,w), + (u,w),dt + O(e)

Zdwc pw)|;S; + (u, w),dt + O(e)
j=1

|
)

w;r(t)wi ()05 (p(t))dt + O(e) ,
(i.D)eE

I
ot-..__s'_‘ -

where the last equality uses the fact divg(pw) = 0. From (18), we get

j S g (Eyws ()01 (o(e))de
o (GEE

In particular, by taking w(t) = u(t), we obtain

1
Z i (£)*050(p(t))dt =0 .
0o (EeE
Since p(t) € Po(G), B51(p(t)) > 0 and u(t) € D, this implies u(t) = 0 for ¢ € [0, 1], which
proves (a).
(b) Since p(t) € Po(G) is continuous in [0, 1], then min;cy, 1cp0,1) Pi(t) > co > 0. We
consider a perturb function p(t) defined by:

p(t) = plt) + €dp(t) ,
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where dp(t) = (3p;(t))]—1, p;(t) € C>[0,1] with Z;:l dp; = 0 and 6p(0) = dp(1) = 0.
Let esupgc;<i [6p(t)] < %co, then p(t) € P,(G). Thus L(p¢(t))~! is well defined for
t € [0,1], whose entries are smooth. From S¢(t) = L(p¢(t))~ 1—0{"?, then S¢(t) is smooth
with respect to ¢ and €. Since

(VeS = VeS+VeS)) =0,

dt
we have Vo S¢(t) —VgS(¢) € D.

For the simplicity of presentation, we denote

B2
Fp) = 5L(p) +V(e) + W(p) -
By direct calculations, we have

I(VeS) - IT(VeS)
1

1
_ / 5 [(VaS5, Va5 — (VaS,VeS)oldt  (x)
0

(V6 S, VaS )y — (VaS, VS ldt - / [F (o) = Flo)ldt -

Ml,_.
mo| =

1 n

/ > o 5 F )t +00).

We need to estimate (x). Using the Taylor expansion of S¢(¢) with respect to €, S(t) =
S(t) +€dS(t) + o(€), where 65(t) = £ S(t)|co, we obtain

1
= /2_];5 (VeSS +€eVgdS, VS + EVG§S)ps —(VgS, VGS)p]dt + O(e)
0

[(VGS VGS) e — (VGS VGS) +25(V(_;«S, VG§S)ps]dt —I—O(e)

|
':L-..,___5
Ml —

Zn: > wilS; = 8)*[05u(p + €6p) — O5u(p)]dt + j (VeS,Veds),dt + O(e)

J=11eN(7)

u:-li—l

-/

(20)

1
f > wlS;— [89” 89}‘6;); dt + / (Ve S, VebS),dt + O(e)
0

o (heE
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]

Next we find a connection between dp(t) and 85(¢). Notice that

1
- ,0
> Iop; Y walS;—S) %dwrj (VeS,VedS) dt + Ofe) -
Ji=1 s

lEN(7)

I\Dli—‘

d d
d_i) + EE{SP =dive((p+ €dp)Va (S + €S + o(e)) .

By comparing the order € term, we have

d 00
Eé‘pj = Z wjg(Sg S )[8 ] {5 +

1EN(H)

86}{

o ——dp] +dive(pVedS) .

Then

1
/
[ o0 a6
:/Z wusj(sg—S)[a‘fa + 83‘5pg]+23 dive (pV c65)|;dt
0
1
/

J=lIeN(j =1
(9) (21)
- (l+l)i5,ﬂ' > wy(Si— 852 8” +(VeS,Veds),d
22 7 o dp;
3=1 LeN(j)
1 n
D) j j
0o J=1  IleN(j)
where the last equality is from (20). Substituting (21) into (19), we have
1 n
0 =1im LVeS) = IN6S) _ 0 op / S 65 F(p)dt + O(e)}
e—0 € e—0 = apj
o =
(& 96, ~. 9
:fZS = 0pjdt — Z‘sf’} > wy(Si— S')2ﬁﬁ_z5piff(ﬂ)ﬁ
o =1 lEN(H) Pi j=1 P

1
- d 1 o6; 9
= [Yonlgsits X anlsi- S g+ g Fod
o =1

LeN(j)

where the last equality is from integration by parts and 6p(0) = dp(1) = 0. Since dp;(t)
with Z?:l 0p;(t) = 0 can be any smooth function, we obtain
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d ]_ 289}'{ 3 _
Esj + 3 Z wi(S; — St) 3_pj + B_%I(P) =c(t) ,

lEN(7)

for any smooth function ¢(t) € R. We denote C(t) = fé c(s)ds, then S;(t) = S;(t) —C(¢),
and together with p(t), satisfy (3). O

Corollary 5. Let (v(t), p(t)) be a critical point of (14), and S(t) a function on G that
induces v(t), then S(t) and p(t) satisfy (3) if and only if

35080 =350 / (2(V65,Y68),~ (o) V(o) -2W(o)}as . (22)

Proof. From the proof of Theorem 3, we know

ds; 1 200;1
T3 2 enlSi—syghe apjf()—c(t).
leN(j)

Then by direct calculations, we obtain

) STAOII0)

j=1

—Z[ 21 i) + 25,0
—Zl—- Y w8 - 50222 2 7)1 ety (6) + (Va5,VeS),

1EN(4) Op; O

"8
=—(VcS VeS), Za_ p)p;(t) + c(t) .

We note

9 "\ 9 1
> 6‘_ )oi = 3_93'( 5 L(p) + Vip+ §PTWP)PJ-
i=1 j=1

n h2 o T T 1 T

and
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=) wji(log ;i — log p;) —p;+22 > wit (logp; log p1)p;
J=l1eN(j) J=1l1eN(j)

1 mn
=3 Z wji(log p; — log Pl)zajl (p) +2 Z wji(log pj — log pr)
=1 IeN(j) (41)eE

Combining the calculations together, we have
d < 1
=07 5,®)ps(1)) = 5(VaS,VaS), = Flo) = Wip) +<(t) -
J=1

Therefore ¢(t) = 0 if and only if (22) holds. O
In fact, the construction of S suggests S = L(p)~!p. This implies
(VaS,VaS), =STL(p)S = p"L(p)~" - L(p) - L(p) ' =p"L(p) "5 .

Thus the discrete Nelson’s problem can be rewritten as a geometric variational problem

on the probability density manifold P,(G)

inpf{jﬁTL(p)_lb—%Zf(p)—v(p)—w(p)dt 2 p(0)=p", p(1)=p", p(t) €C}, (23)

where C is the set of continuous differentiable curve in P,(G), and L(p)~! introduces a
location dependent inner product on the tangent space at every point in (P,(G), W); see
[11]. A solution of (16) is a critical point of (23).

4.2. Complezx formulations
In this sequel, we reformulate (3) into a complex wave equation. Let us define
n E'Ej?fﬂ n
V() = (¥;(8)j=1 = (/ pi(®)e" ™ )jo1

where (p(t), S(t)) are solutions of (3), then W(t) satisfies the following complex value
ODE system.

d; h? -
hi ?:—?AGIIJL;—I—IFJVJ—I—‘IJJ;WJ”\I&P, (24)
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in which the Laplacian on graph is defined by

1

Ag¥; = —‘I’J(w

96,
> willog Uy —log Up)fu+ Y wﬂ|1oglpj—1ogwg|28—?‘).
IEN (7) IEN (4) Pi

One may wonder when seeing the Laplace operator in such a nonlinear way. However,
a closer examination demonstrates that this graph Laplacian is consistent with the one
in the continuous case. In fact, we can show the following relationship in the continuous
space. Let U(t, ) be a complex function defined in R?, then

AT — W{@v |9V log ¥) — [V log U[?} . (25)

Proof of (25). Denote U(t, ) = \/p(t, 2)ei 7 = e3 08 p(t0)+1252 e have
AT =V . (V¥) =V [w(%v log p + i%)]
—U[(LVlogp+iv2)? + (zAlogp+iAD)

—U[L(Viogp)? + LAlogp+iViogp- Vo +ih2 — 1(Viogp)? — (V2)7

h h 4

o1 1 S 1 ) S,

—lI'[pV-(pV(Qlongh))—(QVlogp) —(Vh)]
1

=U(=—=V - (|T|’V 1og ¥) — |V log ¥|?) ,

|2

where the first equality uses %Vp = V log p, while the second to the last equality uses
the fact

1 1 S
=V - (pV(5logp+i=))
p 2 h

1.1 S
=—p[§Vp-Vlog.0+ pAlogp+iVp - 4+ pAS]

—E(Vlogp) + EA logp—l—zV]ogp-VE +3AE . O
The nonlinearity in the Laplace operator allows the discrete NLS possessing many

desirable dynamical properties, which will be shown in the next two sections.
5. Some properties
For the convenience of presentation, we do not distinguish (3) and its complex wave

version (24) in the discussion. The results here are always proposed for formulation (24)

while all proofs are based on (3).
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Our first task is examining the dispersion relation in the absence of potentials.

Proposition. For a uniform toroidal graph G, i.e. a graph that every node has the same
number of adjacent nodes and the weight on each edge is uniformly given, the plane wave
function U(t) = A(ei(k‘j‘ﬁx_”t))?zl, with any p = |k|? and A > 0, satisfies

d 1
L = AL
Vit 7 =¢

The proposition can be verified by directly substituting the plane wave function in
(3)-

In what follows, we show that (3) is a well defined ODE system having several desirable
properties such as total mass and energy conservation, time reversibility, and gauge
invariant. In addition, its interior stationary solution shares the same property as that

for the counterpart in the continuous case.

Theorem 6. Given a simple weighted graph G = (V, E,w), a vector (V;)]"_;, a symmetric
matriz (Wji)1<j1<n, and an initial condition W0 = (¥9)7_, (complex vector) satisfying

n
Z|‘IJ§-'|2:1, |T0* >0, foranyjeV .
j=1

Then equation (3) has a unique solution U(t) for allt € [0, 00). Moreover, U(t) satisfies
following properties:

(i) It conserves the total mass

n
D IT@P=1;
j=1
(ii) It conserves the total energy

E(T(t) = £(T%)

where € is a combination of the discrete Kinetic energy Egin, linear potential energy
Epor and interaction potential energy Eing, i.e.

E(T) = h2Ekin (V) + Epot (V) + Eine (V) . (26)

They are given by the following definitions:
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Erin(V) = Z {[Re(log ¥; —log 7)]? + [Im(log ¥; — log ¥1)[*}0(|¥|?) ,
(J,!)EE
n 1 n n
Epot(U) =D VU517, Eine(¥) = EZZWM‘I’JFM’:P 3
j j=11=1
(iii) It is teme reversible:
U(t) = () ;
(iv) It is time transverse (gauge) invariant: Denote W®(t) as the solution of (3) with
Ve = (V; +a)j_;, where a is a given real constant, then

ot

UY(t) = U(t)e'w

(v) A time invariant p* = (p})}_; € Po(G) and S(t) = vt form an interior stationary
solution of (3) if and only if p* is the critical point of {E(,\/p): p € P(G)}, and

v = g(\/}) + gz'nt(\/?) .

Remark 2. £, in (26) is an analog of the Kinetic energy in continuous case:
/ |V|2dz = /([Re(v log ¥))? + [Im(V log ¥)]?)|¥|%dx
d B

Remark 3. Equations (3) are always well defined in the interior of probability set P(G).
In fact, we shall show that the boundary of probability set P(G) is a repeller for (3).

Remark 4. The property of the interior stationary solution of (3) given in (v) of The-
orem 6 mimics a similar property for the ground state of Schrédinger equation in the
continuous case. Details will be given in Section 5.1.

Proof. We show that for any given initial condition p° € P,(G), there exists a unique
solution (p(t), S(¢)) for all ¢ > 0. Since the right hand side of (3) is locally Lipchitz
continuous and p? € P,(G), from Picard’s existence theorem, there exists a unique
solution (p(t), S(t)) in time interval [0, T(p%)), where T(p°) is the maximal time that
the solution exists. We will prove T'(p°) = +o0 by the following claim.

Claim. For any given p° € P,(G), there erists a compact set B C Po(G), such that
T(p") = oo and p(t) € B.

The proof of Claim is based on two facts. On one hand, the ODE system (3) is a
Hamiltonian system on probability set, which conserves the total mass and total energy;
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On the other hand, the total energy contains the Fisher information Z(p). On the bound-
ary of P,(G), Z(p) is positive infinity, so is the total energy. From the conservation of
total energy, it is not hard to see that the boundary of P,(G) is a repeller for p(t).

Proof of Claim. We construct a set B C P(G):

2

h
B = G) : —I(p) < E(T°) — mi
lpeP(@) : FT(p) < E(W)— min [V(p) +W(p)]},
where £(¥°) = H(p",5°) = 2(VeS°, Ve S?) 0 + %21(,00) + V(") + W(p°) < co. Obvi-
ously, B is not empty.
We will prove that B is a compact set and p(¢) C B for all ¢ > 0 by following three

steps.
Step 1, we prove (i) and (ii) for ¢ € [0,T(p%)). Since

Z d_j = —Z;diVG(vaS)lj =0,
=1 j=

(i) is concluded. For (ii), we need to show

d
55(T@) =0,

where £(T) = H(p, S). Notice (3) has the following symplectic form

d(r)_ ai”)
dt(S)“”(%% ’
then

L e (w(e) =Sr(ote), 5)) = ;{a%%%pj + 55 M)

"\ 9
_;{8—7{—7{ — E?{ 7{} =0.

Step 2, we show that Z(p) is positive infinity on the boundary, i.e.

lim Z(p) =+oco .

minjev pj—0

Assume the above is not true, there exists a constant M > 0, such that if min;cv p; =0,
then
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1 1

—pi + M
M2I(p) =5 Y, wullogp; —logp)* “—"—
(s.1)eE

1 1
27 > wiillog p; —log ;1) max{p;, u} min — .
GEE g

Hence for any (j,1) € E, we have

wji(log pj — log pr)* max{p;, m} < 2M < 400 .

Since there exists a j* € V, such that p;» = 0, the above formula implies that for any
[ € N(5*), m = 0. Since G is connected and V is a finite set, by iterating through the
nodes, we get p1 = -+ = pp = 0, which contradicts the fact that Z;:l pi =1L

Step 3, we claim that B is a compact set. This can be easily verified because 7 is a
lower semi continuous function, and Z(p) = +oco when p € P(G) \ P,(G). Hence B is a
compact set in R™.

Let us combine above three steps. Since (3) is a Hamiltonian system in P,(G),

E(W(1)) = E(T°) = 2 (VaS(), VoSO + ST(o) + Vo(t) + Wip(t)
then
B T(0(t) =£(8°) ~ 2(VS(©).VaSW0) 0 — (V(6l0) + W(o(1)

0y .
<&(T7) perg',l(%)[v(p) +W(p)] .
Thus p(t) € BC P,(G) forallt >0. O

8 _
Next, we prove (iii) and (iv). For (iii), since ¥; = ,/fe' =, its conjugate U satisfies

Let us look at (3) by changing ¢ to —¢.

_d
pJ + Z ‘-Ulj 81]( )
leEN(7)
ds; 1 2000 8 K _
T + 3 .E%,:(.}wﬂ(Sj ) 3_,03 + a—%{glr(f’) +W(p) +V(p)} =
J T

Denote S = —8, then (p(t), S(t)) and (p(—t), S(—t)) satisfies (3).
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For (iv), if V = V@ =V + a, we substitute U*(t) = ¥(t)e"¥ into (3) to get:

(dp
—=+ D wal(Si+at)— (S +at)8u(p) =0
leN(j)

d 1 o6 9 h?
| &S +an+5 3 wallSi+at) = (S, +atPFE + Vs + 5-{T(0) + W)
IEN(5) J

=0.

\

This means that if (p, S) are solutions of (3) with V', then S®(¢) = S + at, p“(t) = p(t)
are solutions of (3) with V<, i.e.

. go .5 . .
\I}Q = 4’,{)&8!_"_ = \/f_jelﬁe"%—t = \I}elgh_t .

(v). On one hand, suppose ¥* satisfies (3), then

h? .
£ (=Z(p) +V(p) + W(p))|p=p= , foranyieV.
pj- 8

=

Notice that £(,/p) = %21(,0) + V(p) + W(p). It is simple to check that p* satisfies the

Karush-Kuhn—Tucker conditions of minimization
T
]II.I.]].{S Z j — 1 Py > 0}

with v being the Lagrange multiplier. Next, we show

0 _h?
V—ij Za (T +V+WhHp--pj

j=1
h2 "9
8 I|p'p3 +ZV +Zwﬂpl
j=1 =1
_h2 "9 . h? h2 (27)

—I(p*)+ I( ")+ V(") + W(p") + W(p*)

_I *= . —
8;0_]' |.0 p_]' 8

(X Tl — T6) + £+ W)
=E(Vp*) + Ent(VPF)

where the last equality is from the fact: n:(\/p) = W(p) and Z(p) = Z;:l %Z(p)pj.
On the other hand, suppose p* is a critical point of £(,/p), then there exists A € R,
such that A = %{%21—1— V + W}p». Since v = E(/p*) + Eine(V/p*), we have A =
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S BT AV WY -} = EWF) + Eme(V/F7) = v. Thus W () = /e is

an interior stationary solution. 0O
5.1. Ground states

Similar to Nelson’s idea in [23], we show that the stationary solution of (3) in Theo-
rem 6 (v) is related to the discrete ground state of the NLS.

Corollary 7. If W is a semi positive definite matriz, then the stationary state is a ground

state U9 = \/pTe "t if and only if

i

UI = argmén{ E(0) - Z |T;]2 =1}, (28)

Jj=1

with

p? =arg min E(/p) and v9=E(VP9)+ Eime(VpT) .

pPEP(G)

Proof. From Theorem 6 (v), p is a critical point of minyep,(c) £(,/p) and 17 is defined
as above. We only need to prove U9 is the minimizer of problem (28). In fact,

m_m{é' Z|‘IJ ?=1}> min &(/p),

peP(G)

because

W) =2 3wl - 50%4(0) + () + V(o) + W)

(.)EE
> K1) + V() + W) = £(v)

the equality holds if and only if S; = 3 = 8, for any (7,1) € E. Since G is a connected graph,
then a ground state U9 = /p9e"F has the following structure:

arg min &£ and S{=85=...=59.
p? = gpe,p(c} (VP) 1 2

Next, we show that the function £(,/p) = %Z (p) + W(p) + V(p) is strictly convex. If
this is true, we can conclude that p? is a unique minimizer, which is the ground state.

Notice that W(p) = 5 ZJ 121 Wapio, V(p) = Z?:l V;p; are convex functionals.
So we only need to prove

I(p) is a strict conver functional in P,(G).
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We show this result by proving

RPN A,
aeTp’P,,(G){J HessgnZ(p)o : 0o =1} >0. (29)

Since the Hessian matrix of 7 is

5 p:iﬂ;wg}tl} ifl N(J) ;
apgaij(P) = E?ZIEN(}') wigtyy ifl=7;

0 otherwise ,

where
ty = (S — Lp,)(1 log p;) + (= p1 + —p;) > 0 (30)
; - — 0 og pi — —pi ,

Ij = d Pl d Pj g o — log pj d Pl dj Pj

hence

(1)EE
1 o; 0]

=5 > (=t —=)?>0
wpee PP

So HessprT is a semi-positive definite matrix.
Suppose (29) is not true, there exists a unit vector o* € T,P,(G), such that

1 of O

o*THesspnZ(p)o* = 3 Z tU(E — ‘0_“7)2 =0.
(.4)€E I
Then Z—; = E; = ﬁ = 0. Combining with Z; 10; =0, we have 0] =05 = --- =
oy =0, which contradlcts that o* is a unit vector. O

It is worth mentioning that we have the following eigenvalue problem at the ground

state:
h2 - 2 n 1)
vl =—Ac¥; + V0, + U WaT P, (), eR™. (31)
=1

The solution of (31) is the ground state configuration, where |¥| = \/p9 and v = £(/p9)+
Eint(+/p9) is the associated energy level.
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6. Linearized problems

In this section, we study the linearized problem near the ground state. Consider the

7 (5) (%)

The ground state (p?,59(t)) can be viewed as its equilibrium solution, which is clearly

Hamiltonian system

the critical point of Hamiltonian

1 h? 1
H(p,8) = 5(VaS,VeS),+ L) + 50" Wo+V7p.
Consider the linearized problem of (3)

d

5= H®

where z € R?", H(2) ¢ R2"%2" is the Hamiltonian matriz at the equilibrium (p9, S9).
Because (S;?);.‘zl is a constant vector, we obtain a simple structure for H(2):

0 L)
H® := J . HessgznH(p, S)|(ps.50) = 2 2 : 32
3 BessionH(e. )50 = 2 nsgeZ(p0) 0 (52

We estimate the eigenvalue of (32) in a particular case:

) 2
pidls _ _h

7 = 7 Ac¥l+ al; | ;% (33)

where G is a d-dimensional Torus graph. This equation is obtained from (24) by taking
V =0 and W = all. It can be viewed as a discrete version of Gross—Pitaevskii equation
(GPE), which has been proposed to model the Bose—Einstein condensate.

Proposition. For discrete GPE (33), H® has eigenvalues

. — .1 al
af == +i Z)\%hz +—, ap =—i Z)\%hz + £

]
T

with associated eigenvectors

+ Uk 2
wy =1 . [m2p2 w;, = mzhz e Ccm
k n2h fads? ’ k n2h fats} ]
1 T +_Akvk 1 +_Akvk

1.€.
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H(z)w:‘ = a:w; , H(z)wk_ = o, w, .

Here Lug, = Agvg. Ak = 0, vp, € R™ are k-th eigenvalue and eigenvector of graph Laplacian

o HLENG);
matriz L = (L(j,1))1<;j1<n € R"*", where L(j,1) = ZIEN(_’,‘) wi ifl=7;
0 otherwise.

Proof. Denote 1 = (%)?:1 From Karush-Kuhn—Tucker conditions, one can easily find

p? =1 is the critical point of {%21(,0) +5$2 p? : p€P(G)}. In this case, L1(1) =
2nL, Ly(1) = LL, where L = DT D. So the matrix (32) becomes

n

0 ir
RO =3 Hessaen Mo S = (_og Cwzy 7 ) - (31)
4

In fact, we can find all eigenvalues and eigenvectors of (32). Notice that L € R"*" is a
semi-positive matrix, and denote Ax € R, vy € R", as the k-th eigenvalue and eigenvector
of L. Therefore one can check that

0 lr Uk
(2),,+ — n
- (3%\;‘ TrL24'%2 + X ')‘kvk)

2
— Qv — %)\kvk

:—|—z\,‘)\§h2 -I——ﬂiA'rc 2 :}k

ot
=0y Wy

Similarly, H?w, = o w,. O

From these eigenvalues, when o > — 7 A h?2, the solution p = 1, VS = 0 is stable for
(33). When o = —FAxh?, bifurcations may happen.

7. Examples

Finally, we demonstrate (3) and (31) by two numerical examples.

Example 1 (NLS on a two points graph). Consider a Hamiltonian:
1 2 h? 2
H(p,S) = 5(31 — S2)"6h2(p) + g(logpl — log p2)“012(p) + Vip1 + Vapa ,

where Vi = V3 = c. In this case, the solution of (3), (p1(t), p2(t), S1(t) — S2(t)) € R3,
can be plotted using a phase portrait. In Fig. 1, each circle represents a trajectory of (3).
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Fig. 1. The phase portrait of (p;(t), p2(t), S1(t) — Sz(t)) with different initial conditions.
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Fig. 2. The plot of ground state p9. The blue, black, red curves represent h = 1, 0.1, 0.01, respectively. The
color version of the figure is on the web version of this paper.

The ground state (3, 1,0) is in the center of all these circles, so it is spectrally stable.

Example 2 (Ground state). We demonstrate the ground states on a 1-D lattice graph.
Set W = 0. Consider the following minimization problem

e h?
p? = arg in ; Vipi +5L(p)

where V; = E;— We compute the above minimizer numerically [17] in the interval [—5, 5]
with n = 20. From Fig. 2, we observe that the ground state approaches to the delta
measure supported at 0 when h — 0. This captures the exactly same effect in continuous
states, in which the ground state is a Gaussian distribution with variance h? [2)].

8. Conclusions

In this paper we have introduced a new NLS on finite graphs (3). Compared to the
existing work, (3) has distinct features: First, the discrete NLS is introduced via discrete
optimal transport. This formulation provides a way to study the discrete NLS from
geometric viewpoint. The inverse of the weighted Laplacian L(p)~! induces the metric
on the probability manifold. Second, the discrete Fisher information Z(p) is applied to
construct Hamiltonian system. As Nelson deduced in his work, introducing the Fisher

information to the Lagrangian is equivalent to adding noise perturbations to the paths,
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yet the Hamiltonian structure is still retained. This provides a valuable avenue to study
random perturbations to Hamiltonian systems, which is one of the motivations for us to
carry out the present investigation. Compared to other existing ways of adding random
perturbations, which often destroy the Hamiltonian structure, this strategy has preferred
features allowing (3) to mimic many interesting properties of the Schrédinger equation
in the continuous case, such as conservation mass and energy. Last but not the least,
it introduces the ground state on graph given in (31). Studying the stability problem
around the discrete ground state introduces a Hamiltonian matrix, which is a symplectic
composition of two modified graph Laplacian matrices. These give insights of the system
that can be explored in the future.
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