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1.  I nt r o d u cti o n

T h e  n o nli n e a r  S c h r ö di n g e r  e q u ati o n  ( N L S)  gi v e n  i n t h e  f o r m of

hi
∂

∂ t
Ψ( t, x) = −

h 2

2
Δ Ψ( t, x) + Ψ( t, x)V (x ) + Ψ( t, x)

R d

W ( x, y )|Ψ( t, y )|2 d y , ( 1)

pl a y s  vit al  r ol e s  i n m a n y  a r e a s  i n p h y si c al  s ci e n c e s  [2 ,2 7 ]. T h e  u n k n o w n  Ψ( t, x ) i s  a  

c o m pl e x  w a v e  f u n cti o n f o r x  ∈ R d , h  > 0 i s  t h e  Pl a n c k  c o n st a nt,  a n d  V (x ) a n d  W (x,  y ) a r e  

r e al  v al u e d  f u n cti o n s, r ef e r r e d  a s  li n e a r a n d  i nt e r a cti o n p ot e nti al s  r e s p e cti v el y.  Alt h o u g h  

t h e  N L S  p r o vi d e s  a c c u r at e  p r e di cti o n s  t o  v a ri o u s  p h y si c al  p h e n o m e n a,  it s f o r m ul ati o n 

i s v e r y  di ff e r e nt  f r o m t h e  cl a s si c al  m e c h a ni c s,  a n d  it c a n n ot  b e  e a sil y  i nt e r p r et e d b y  t h e  

N e wt o n’ s  l a w.

T o  b ri d g e  t h e  di ff e r e n c e,  E d w a r d  N el s o n  p r o vi d e d  a n  c o m p elli n g  a p p r o a c h  i n 1 9 6 6  

[2 3 ]. H e  d e ri v e d  t h e  N L S  b y  m e a n s  of  cl a s si c al  m e c h a ni c s  i n c o nj u n cti o n  wit h  v a ri ati o n al  

p ri n ci pl e s  a n d  st o c h a sti c  di ff u si o n  p r o c e s s e s  [3 ,1 6 ]. T o  b ett e r  u n d e r st a n d  hi s  i d e a, w e  

r e c all  t h at  t h e  N L S  (1 ) h a s  a  fl ui d  d y n a mi c s  f o r m ul ati o n, n a m e d  M a d el u n g  s y st e m  [1 9 ]. 

B y  i nt r o d u ci n g a  c h a n g e  of  v a ri a bl e s,  Ψ( t, x ) = ρ (t, x)e i S ( t, x ) / h , o n e  c a n  r e w rit e  (1 ) a s

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ ρ

∂ t
+ ∇ · (ρ ∇ S ) = 0 ;

∂ S

∂ t
+

1

2
(∇ S ) 2 +

h 2

8

δ

δ ρ (x )
I (ρ ) + V (x ) +

R d

W ( x, y )ρ (t, y )d y = 0 ,
( 2)

w h e r e  ρ , S a r e  u n k n o w n  r e al  v al u e d  f u n cti o n s, δ
δ ρ ( x ) i s t h e  L 2 fi r st  v a ri ati o n  o p e r at o r,  

a n d  I (ρ ) =
R d ( ∇  l o g ρ (x )) 2 ρ ( x )d x i s t h e  Fi s h e r  i nf o r m ati o n [1 4 ]. N el s o n  c o n st r u ct e d  a  

L a g r a n gi a n  i n t h e  s p a c e  of  p r o b a bilit y  d e n sit y  f u n cti o n s, a n d  t h e n  u s e d  c al c ul u s  of  v a ri-

ati o n  t o  d e ri v e  (2 ). We  s h all  gi v e  a  b ri ef  r e vi e w  o n  hi s  a p p r o a c h  i n S e cti o n 3 . R e a d e r s  

c a n  fi n d  m o r e  d et ail s  i n [2 4 ]. R e c e ntl y,  N el s o n’ s  a p p r o a c h  i s li n k e d t o  t h e  f r a m e w o r k 

of  o pti m al  t r a n s p o rt  t h e o r y  [6 ,2 8 ], w hi c h  h a s  b e e n  d e v el o p e d  i n t h e  p a st  f e w d e c a d e s  

[1 ,4 ,1 5 ,2 8 ]. T h e  t h e o r y  s h o w s  t h at  t h e  p r o b a bilit y  d e n sit y  s p a c e  e q ui p p e d  wit h  t h e  o p-

ti m al t r a n s p o rt  di st a n c e,  al s o  k n o w n  a s  t h e  W a s s e r st ei n  m et ri c,  b e c o m e s  a  Ri e m a n ni a n  

m a nif ol d,  a n d  t h e  N L S  i s a  H a milt o ni a n  s y st e m  o n  t hi s  d e n sit y  m a nif ol d  [1 6 ,2 6 ].

I n t hi s  p a p e r,  w e  c o n si d e r  si mil a r  m att e r s  i n di s c r et e  s p a c e s,  s u c h  a s  fi nit e  g r a p h s.  

T h e r e  a r e  t w o  r e a s o n s  m oti v ati n g  u s  t o  c o n d u ct  t hi s  i n v e sti g ati o n. O n  o n e  h a n d,  N el s o n’ s  

d e ri v ati o n  i s b a s e d  o n  a  v a ri ati o n al  p ri n ci pl e,  w hi c h  m a k e s  hi s  a p p r o a c h  m o r e  att r a cti v e.  

H o w e v e r,  alt h o u g h  di ff e r e nt  f o r m ul ati o n s of  t h e  N L S  o n  g r a p h s  h a v e  b e e n  i nt r o d u c e d i n 

p h y si c s  a n d  m at h e m ati c s  [5 ,9 ,1 2 ,1 3 ,2 5 ], n ot  m u c h  i s k n o w n  t h r o u g h  N el s o n’ s  a p p r o a c h,  

m ai nl y  b e c a u s e  t h e  t h e o r y  of  di s c r et e  o pti m al  t r a n s p o rt  h a s  n ot  b e e n  s e ri o u sl y  e x pl o r e d  

u ntil  t h e  p a st  f e w y e a r s  [1 0 ,1 8 ,2 0 ]. O n  t h e  ot h e r  h a n d,  m o st  of  t h e  di s c r et e  f o r m ul ati o n s 

f o r t h e  N L S,  e s p e ci all y  t h o s e  d e fi n e d  o n  l atti c e s, a r e  o bt ai n e d  b y  di s c r eti z ati o n s  of  t h e  

c o nti n u o u s  N L S.  S o m e  i m p o rt a nt p r o p e rti e s,  s u c h  a s  c o n s e r v ati o n  of  e n e r g y,  o r  di s p e r si o n  
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r el ati o n,  o r  ti m e  t r a n s v e r s e  ( g a u g e)  i n v a ri a nt, c a n  b e  l o st d u e  t o  t h e  di s c r eti z ati o n s.  A s  

r e p o rt e d  i n a  r e c e nt  s u r v e y  o n  n u m e ri c al  m et h o d s  f o r t h e  N L S  [2 ], n o n e  of  t h e  c o m m o nl y  

u s e d  s c h e m e s  h a s  all  t h o s e  f e at u r e s si m ult a n e o u sl y.  We  w o ul d  li k e t o  e x a mi n e  w h et h e r  

N el s o n’ s  a p p r o a c h  c a n  p r o vi d e  a  s y st e m ati c  st r at e g y  f o r c o n st r u cti n g  t h e  di s c r et e  N L S  o n  

g e n e r al  g r a p h s  i n o r d e r  t o  r et ai n  t h o s e  d e si r a bl e  p r o p e rti e s.  O u r  i n v e sti g ati o n c o n fi r m s  

t hi s  a s s e rti o n.

We  f oll o w t h e  s etti n g s  gi v e n  i n [1 1 ,1 7 ] t o d e ri v e  t h e  di s c r et e  N L S,  w hi c h  t u r n s  o ut  

t o  b e  a  s y st e m  of  o r di n a r y  di ff e r e nti al  e q u ati o n s.  T h e  d e ri v ati o n  utili z e s  t h e  o pti m al  

t r a n s p o rt  di st a n c e  a n d  t h e  F o k k e r – Pl a n c k  e q u ati o n  o n  a  g r a p h.  T h e  m ai n  r e s ult s  a r e  

s k et c h e d  h e r e.

C o n si d e r  a  w ei g ht e d  fi nit e  g r a p h  G  = ( V,  E,  ω ), w h e r e  V i s t h e  v e rt e x  s et,  E i s t h e  

e d g e  s et,  a n d  ω j l ∈ ω t h e  w ei g ht  of  e d g e  (j,  l) ∈ E s ati s fi e s  ω l j = ω j l > 0.  We  a s s u m e  

t h at  G i s u n di r e ct e d,  c o nt ai n s  n o  s elf  l o o p s o r  m ulti pl e  e d g e s.  Gi v e n  a  li n e a r p ot e nti al  

V j o n  e a c h  n ot e  j a n d  a n  i nt e r a cti v e p ot e nti al  W j l , wit h  W l j = W j l , f o r a n y  t w o  n o d e s  

(j,  l) ∈ E . N el s o n’ s  a p p r o a c h  l e a d s t o  t h e  f oll o wi n g O D E s:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρ j

dt
+

l∈ N ( j )

ω j l ( S j − S l ) θ j l ( ρ ) = 0 ;

d S j

dt
+

1

2
l∈ N ( j )

ω j l ( S j − S l )
2 ∂ θ j l

∂ ρ j
+

h 2

8

∂

∂ ρ j
I ( ρ ) + V j +

n

l= 1

W j l ρ l = 0 ,

( 3)

w h e r e  ρ j ( t) a n d  S j ( t) a r e  t h e  p r o b a bilit y  d e n sit y  a n d  p ot e nti al  f u n cti o n at  ti m e  t o n  

n o d e  j r e s p e cti v el y,  N (j ) = { l ∈ V : (j,  l) ∈ E } i s t h e  a dj a c e n c y  s et  of  n o d e  j , θ j l ( ρ ) =
1
2 ( 1

d j
ρ j + 1

d l
ρ l ) r e p r e s e nt s  t h e  w ei g ht  of  p r o b a bilit y  d e n sit y  o n  t h e  e d g e  (j,  l) ∈ E , d j =

l∈ N ( j ) ω j l i s t h e  v ol u m e  f o r m at  n o d e  j a n d

I (ρ ) : =
1

2
( j,l ) ∈ E

ω j l (l o g ρ j − l o g ρ l )
2 θ j l ( ρ )

d e n ot e s  t h e  di s c r et e  Fi s h e r  i nf o r m ati o n. U si n g  ρ j ( t) a n d  S j ( t), w e  r e c o n st r u ct  a  c o m pl e x  

w a v e  e q u ati o n,  f o r t h e  di s c r et e  N L S,  o n  t h e  g r a p h.  T h e  d e ri v e d  di s c r et e  N L S  i s v e r y  dif-

f e r e nt f r o m t h e  c o m m o nl y  s e e n  o n e s,  wit h  t h e  m o st  n ot a bl e  di sti n cti o n  b ei n g  a  n o nli n e a r  

g r a p h  L a pl a ci a n,  w hi c h  h a s  n ot  b e e n  r e p o rt e d  b ef o r e.

We  s h all  p r o v e  t h at  t h e  i niti al v al u e  O D E  (3 ) i s  w ell  d e fi n e d  wit h  s e v e r al  f a v o r a bl e 

p r o p e rti e s.  F o r  e x a m pl e,  it i s a  H a milt o ni a n  s y st e m  t h at  c o n s e r v e s  t h e  t ot al  m a s s  a n d  

t ot al  e n e r g y.  It i s ti m e  r e v e r si bl e  a n d  g a u g e  i n v a ri a nt. It s st ati o n a r y  s ol uti o n  i s r el at e d  

t o  t h e  di s c r et e  g r o u n d  st at e,  w h o s e  f o r m ul ati o n h a s  m a n y  d e si r a bl e  p r o p e rti e s  si mil a r  t o  

t h o s e  i n t h e  c o nti n u o u s  s p a c e.  I n a d diti o n,  a  H a milt o ni a n  m at ri x  i s i nt r o d u c e d t o  st u d y  

t h e  st a bilit y  of  g r o u n d  st at e s.  T hi s  H a milt o ni a n  m at ri x  i s a  s y m pl e cti c  d e c o m p o siti o n  of  

t w o  n o nli n e a r  g r a p h  L a pl a ci a n  m at ri c e s.  O n e  i s f r o m di s c r et e  o pti m al  t r a n s p o rt  g e o m et r y,  

a n d  t h e  ot h e r  i s i n d u c e d b y  t h e  H e s si a n  m at ri x  of  di s c r et e  Fi s h e r  i nf o r m ati o n.
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It i s w o rt h  n oti n g  t h at  t h e r e  a r e  ot h e r  a p p r o a c h e s  t o  st u d y  q u a nt u m  M a r k o v  s e mi-

g r o u p  e q u ati o n s  [8 ,7 ,2 1 ,2 2 ]. T h ei r  m et h o d s  g e n e r ali z e  t h e  di s c r et e  o pti m al  t r a n s p o rt  

m et ri c  i nt o m at ri x  f o r m a n d  e st a bli s h  t h e  Li n d bl a d  e q u ati o n s  b y  t h e  a s s o ci at e d  g r a di e nt  

fl o w s.  C o m p a r e  t o  t h e m,  o u r  a p p r o a c h  fi x e s  t h e  di s c r et e  o pti m al  t r a n s p o rt  m et ri c  a n d  

di s c u s s e s  t h e  r el at e d  H a milt o ni a n  st r u ct u r e s.  Fr o m  n u m e ri c s  a n d  m o d eli n g  a n gl e s,  o u r  

g o al s  a r e  t o  e st a bli s h  n e w  di s c r et e  s c h e m e s  f o r c o m p uti n g  S c h r ö di n g e r  e q u ati o n s  a n d  

f o r e x pl o ri n g  d y n a mi c al  p r o p e rti e s  of  di s c r et e  H a milt o ni a n  fl o w s  i n t h e  li g ht of  o pti m al  

t r a n s p o rt.

O u r  p a p e r  i s a r r a n g e d  a s  f oll o w s. I n S e cti o n 2 , w e  di s c u s s  t h e  n e c e s sit y  of  u si n g  n o n-

li n e a r L a pl a ci a n  o n  g r a p h s.  I n S e cti o n 3 , w e  b ri e fl y  r e vi e w  N el s o n’ s  a p p r o a c h,  a n d  t h e n  

f oll o w e d b y  t h e  d e ri v ati o n  of  (3 ) i n  S e cti o n 4 . We  s h o w  s e v e r al  i nt e r e sti n g d y n a mi c al  

p r o p e rti e s  of  (3 ) i n  S e cti o n s  5 a n d 6 . S e v e r al  n u m e ri c al  e x a m pl e s  a r e  p r o vi d e d  i n S e c-

ti o n 7 .

2.  W h y  n o nli n e a r  L a pl a ci a n  o n  g r a p h s ?

T o  a n s w e r  t h e  q u e sti o n,  w e  c o n si d e r  t h e  cl a s si c al  li n e a r S c h r ö di n g e r  e q u ati o n  wit h o ut  

p ot e nti al s,

i
∂

∂ t
Ψ( t, x) = −

1

2
Δ Ψ( t, x) , x ∈ R d . ( 4)

It i s w ell  k n o w n  t h at  (4 ) a d mit s  pl a n e  w a v e  s ol uti o n s  gi v e n  i n t h e  f o r m of

Ψ( x, t ) = A e i ( k ·x − μ t ) ,

a s  l o n g a s  t h e  ti m e  f r e q u e n c y μ a n d  t h e  s p ati al  w a v e  n u m b e r  k s ati sf y  t h e  f oll o wi n g 

di s p e r si o n  r el ati o n :

μ =
|k |2

2
.

S u c h  a  si m pl e  p r o p e rt y  m a y  b e c o m e  p r o bl e m ati c  o n  g r a p h s.  T o  ill u st r at e t h e  c h al-

l e n g e s w e  f a c e, l et u s  c o n si d e r  t h e  r e g ul a r  l atti c e i n R d f o r it s si m pli cit y,  o r  e v e n  p e ri o di c  

l atti c e s if o n e  wi s h e s  t o  a v oi d  d e ali n g  wit h  t h e  b o u n d a ri e s.  I n t h e  l atti c e, w e  a s s u m e  

t h at  e v e r y  n o d e  h a s  t h e  s a m e  n u m b e r  of  a dj a c e nt  n o d e s.  T h e  w ei g ht  o n  e a c h  e d g e  i s 

u nif o r ml y  gi v e n  b y  Δ x , a n d  t h e  c o o r di n at e  v al u e  f o r n o d e  j i s x j = j Δ x .

O n  t h e  l atti c e, a n y  li n e a r s p ati al  di s c r eti z ati o n  of  (4 ) c a n  b e  e x p r e s s e d  a s

i
d Ψ j

dt
= −

1

2
l∈ N ( j )

C j l Ψ l , ( 5)

w h e r e  { C j l } s a r e  s el e ct e d,  n ot  all  z e r o s,  c o n st a nt s  u s e d  t o  a p p r o xi m at e  t h e  L a pl a c e  

o p e r at o r  i n (4 ). A s s u m e  t h at  t h e  di s c r et e  pl a n e  w a v e  Ψ j ( t) = A e i ( k ·x j − μ t ) s a ti s fi e s  (5 ), 

w e  m u st  h a v e
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μ e i ( k ·j Δ x − μ t ) = −
1

2
l∈ N ( j )

C j l e
i ( k ·lΔ x − μ t ) ,

w hi c h  i s e q ui v al e nt  t o

μ = −
1

2
l∈ N ( j )

C j l e
i k ·( l− j ) Δ x .

If μ a n d  k s ati sf y  t h e  di s p e r si o n  r el ati o n  μ  = |k |2 / 2,  o n e  g et s

|k |2 / 2 = −
1

2
l∈ N ( j )

C j l e
i k ·( l− j ) Δ x .

T h e  l eft h a n d  si d e  i s a  q u a d r ati c  f u n cti o n o n  t h e  w a v e  n u m b e r  k , w hil e  t h e  ri g ht  h a n d  

si d e  i s a  p e ri o di c  f u n cti o n c o n si sti n g  of  fi nit e t e r m s  of  t ri g n o m et ri c  p ol y n o mi al s.  T hi s  

i m pli e s t h at  t h e r e  a r e  at  m o st  a  fi nit e  n u m b e r  of  v al u e s  f o r k s ati sf yi n g  t hi s  r el ati o n.  

T h e r ef o r e  o nl y  a  fi nit e  n u m b e r  of  p ai r s  (μ,  k ) c a n  f o r m t h e  pl a n e  w a v e  s ol uti o n s  f o r (5 ). I n 

c o nt r a st,  a n y  di s p e r si o n  r el ati o n  s ati sf yi n g  p ai r  (μ,  k ) gi v e s  a  pl a n e  w a v e  s ol uti o n  f o r (4 ), 

a n d  t h e r e  a r e  i n fi nit el y m a n y  of  t h e m.  We  s u m m a ri z e  t hi s  o b s e r v ati o n  i n t h e  f oll o wi n g 

t h e o r e m.

T h e o r e m  1.  F o r  a n y  li n e a r s p ati al  di s c r eti z ati o n  of  (4 ), t h e r e a r e  at  m o st  a  fi nit e  n u m b e r  

of  p ai r s  (μ,  k ) s ati sf yi n g  μ  = |k |2 / 2 t h at c a n  f o r m it s di s c r et e  pl a n e  w a v e  s ol uti o n s.

A n  i m pli c ati o n of  t hi s  t h e o r e m  i s t h at  o n e  c a n n ot  e x p e ct  e v e r y  p ai r  (μ,  k ), μ  = |k |2 / 2,  

t o  gi v e  a  pl a n e  w a v e  s ol uti o n  f o r a  gi v e n  li n e a r s p ati al  di s c r eti z ati o n.  I n f a ct, o nl y  a  fi nit e  

n u m b e r  of  p ai r s,  w hi c h  i s a  m e a s u r e  z e r o  s et,  c a n  d o  t h at.  It al s o  s u g g e st s  t h at  a  n o nli n e a r  

L a pl a ci a n  o n  g r a p h s  m u st  b e  u s e d  if o n e  w a nt s  t o  c o n st r u ct  a  s p ati al  di s c r eti z ati o n  

s c h e m e  t h at  all o w s  a n y  p ai r  (μ,  k ) t o  f o r m a  pl a n e  w a v e  s ol uti o n.  O n  t h e  ot h e r  h a n d,  t hi s  

t h e o r e m  d o e s  n ot  i m pl y t h at  f o r a n y  gi v e n  p ai r  (μ,  k ), o n e  c a n n ot  fi n d  a  li n e a r L a pl a ci a n  

o n  t h e  g r a p h  a n d  u s e  t h e  p ai r  t o  c o n st r u ct  a  pl a n e  w a v e  s ol uti o n  f o r (5 ). H o w e v e r,  if 

a  di ff e r e nt  p ai r  i s gi v e n,  o n e  m a y  h a v e  t o  s wit c h  t o  a  di ff e r e nt  li n e a r L a pl a ci a n  o n  t h e  

g r a p h.

We  al s o  n ot e  t h at  n o nli n e a r  L a pl a c e  o p e r at o r s  h a v e  b e e n  u s e d,  a n d  p r o v e d  t o  b e  

n e c e s s a r y  i n t h e  st u d y  of  F o k k e r – Pl a n c k  e q u ati o n s  o n  g r a p h s  [1 0 ]. T h e s e  o b s e r v ati o n s  

m oti v at e d  u s  t o  c o n si d e r  N el s o n’ s  a p p r o a c h  t o  s y st e m ati c all y  c o n st r u ct  s c h e m e s  f o r (1 ).

3.  R e vi e w  of  N el s o n’ s  a p p r o a c h

I n t hi s  s e cti o n,  w e  b ri e fl y  r e vi e w  N el s o n’ s  a p p r o a c h  [2 3 ,2 4 ], a n d  e x pl ai n  it s c o n n e cti o n  

wit h  o pti m al  t r a n s p o rt  [2 6 ,2 8 ]. T o  si m plif y  t h e  p r e s e nt ati o n,  w e  d o  n ot  c o n si d e r  t h e  

i nt e r a cti v e p ot e nti al  W (x,  y ) i n  t hi s  s e cti o n,  e v e n  t h o u g h  s u c h  a  c o n si d e r ati o n  c a n  b e  

o bt ai n e d  i n a  st r ai g htf o r w a r d  m a n n e r.
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C o n si d e r  t h e  f oll o wi n g st o c h a sti c  v a ri ati o n al  p r o bl e m:

i nf
b

{

1

0

E [
1

2
˙X 2

t − V ( X t )]dt : ˙X t = b (t,  Xt ) +
√

h ˙B t , X( 0) ∼ ρ 0 , X( 1) ∼ ρ 1 } , ( 6)

w h e r e  b (t, x ) ∈ R d c a n  b e  a n y  s m o ot h  v e ct o r  fi el d,  X t i s a  st o c h a sti c  p r o c e s s  wit h  

p r e s c ri b e d  p r o b a bilit y  d e n siti e s  ρ 0 a n d  ρ 1 a t  ti m e  0 a n d  1 r e s p e cti v el y,  h  > 0 r e p r e s e nt s  

t h e  n oi s e  l e v el, B t i s a  st a n d a r d  B r o w ni a n  m oti o n  i n R d a n d  E t h e  e x p e ct ati o n  o p e r at o r.  

U n d e r  s uit a bl e  c o n diti o n s  gi v e n  i n [2 3 ], N el s o n  s h o w e d  t h at  (6 ) i s  e q ui v al e nt  t o

i nf
b

{

1

0

E [
1

2
(b (t,  Xt )

2 + h ∇ · b (t,  Xt ) ) − V (X t )]dt : ˙X t = b (t,  Xt ) +
√

h ˙B t ,

X ( 0) ∼ ρ 0 , X( 1) ∼ ρ 1 } .

( 7)

B y  u si n g  t h e  p r o b a bilit y  d e n sit y  f u n cti o n ρ (t, x ) d e fi n e d  a s

A

ρ ( t, x)d x = P r( X t ∈ A ) , f o r a n y  m e a s u r a bl e s et A ,

p r o bl e m  (7 ) i s  t r a n sf e r r e d  i nt o a  d et e r mi ni sti c  v a ri ati o n al  p r o bl e m,

i nf
b

1

0 R d

[
1

2
( b 2 ρ + h ∇ · b )ρ − V (x )ρ ]d x dt , ( 8)

i n w hi c h  t h e  d e n sit y  f u n cti o n ρ (t, x ) e v ol v e s  a c c o r di n g  t o  t h e  F o k k e r – Pl a n c k  e q u ati o n

∂ ρ

∂ t
+ ∇ · (b ρ ) =

h

2
Δ ρ ,  ρ ( 0, ·) = ρ 0 ( ·) , ρ( 1, ·) = ρ 1 ( ·) .

N oti ci n g  t h e  f a ct s ∇ ρ  = ρ ∇  l o g ρ , 
R d ∇  · b ρ d x  = −  

R d b ∇ ρ d x  =
R d b  · ρ ∇  l o g ρ d x , 

a n d  Δ ρ  = ∇  · (∇ ρ ) = ∇  · (ρ ∇  l o g ρ ), t h e n  (8 ) c a n  b e  r e w ritt e n  i nt o t h e  f oll o wi n g o pti m al  

c o nt r ol  p r o bl e m

i nf
b

1

0 R d

[
1

2
( b 2 − h b · ∇ l o g ρ )ρ − V (x )ρ ]d x dt , ( 9)

w h e r e

∂ ρ
+ ∇ · (ρ (b −

h
∇ l o g ρ ))  = 0 , ρ( 0, ·) = ρ 0 ( ·) , ρ( 1, ·) = ρ 1 ( ·) .
∂ t 2
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T h e  k e y  of  N el s o n’ s  d e ri v ati o n  i s b a s e d  o n  a  c h a n g e  of  v a ri a bl e gi v e n  b y,

v (t, x) : = b (t, x) −
h

2
∇ l o g ρ (t, x) . ( 1 0)

S u b stit uti n g  v i nt o (9 ), t h e  p r o bl e m  b e c o m e s

i nf
v

1

0

{

R d

1

2
v 2 ρ d x −

h 2

8
I (ρ ) − V (ρ )} dt , ( 1 1)

s u c h  t h at

∂ ρ

∂ t
+ ∇ · (ρ v ) = 0 , ρ( 0, ·) = ρ 0 ( ·) , ρ( 1, ·) = ρ 1 ( ·) .

H e r e  V (ρ ) : =
R d V ( x )ρ (x )d x i s t h e  li n e a r p ot e nti al  e n e r g y  a n d  I (ρ ) : =

R d ( ∇  l o g ρ ) 2 ρ d x

i s t h e  Fi s h e r  i nf o r m ati o n. T h e  i nt e g r a nt i n (1 1 ) i s  t h e  L a g r a n gi a n  f o r t h e  o pti m al  c o nt r ol  

p r o bl e m.

T h e  c riti c al  p oi nt  (i n t h e  s e n s e  of  G u e r r a – M o r at o  [2 3 ]) of  (1 1 ) s ati s fi e s  t h e  M a d el u n g  

e q u ati o n s

⎧
⎪⎪⎨

⎪⎪⎩

∂ ρ

∂ t
+ ∇ · (ρ ∇ S ) = 0 ;

∂ S

∂ t
+

1

2
(∇ S ) 2 +

δ

δ ρ (x )
{

h 2

8
I (ρ ) + V (ρ )} = 0 ,

( 1 2)

w h e r e  v (t, x ) = ∇ S (t, x ) i s  t h e  o pti m al  v el o cit y fi el d.  T h e  fi r st  e q u ati o n  i n (1 2 ) i s  k n o w n  

a s  t h e  c o nti n uit y  e q u ati o n,  w hil e  t h e  s e c o n d  o n e  i s c all e d  H a milt o n – J a c o bi  e q u ati o n  i n 

t h e  lit e r at u r e.

I nt r o d u ci n g a  c o m pl e x  w a v e  f u n cti o n

Ψ( t, x) = ρ (t, x)e
i S ( t , x )

h ,

t h e n  Ψ( t, x ) s ati s fi e s  t h e  li n e a r S c h r ö di n g e r  e q u ati o n

hi
∂

∂ t
Ψ = −

h 2

2
Δ Ψ  +  Ψ V (x ) .

C o m p a r e d  t o  t h e  o pti m al  t r a n s p o rt  di st a n c e,  w hi c h  c a n  b e  d e fi n e d  b y  t h e  w ell  k n o w n  

B e n a m o u – B r e ni e r  f o r m ul a [4 ],

i nf
v

{

1

v 2 ρ d x dt :
∂ ρ

∂ t
+ ∇ · (ρ v ) = 0 , ρ( 0, ·) = ρ 0 ( ·) , ρ( 1, ·) = ρ 1 ( ·)} .
0 R d
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N el s o n’ s  a p p r o a c h  c a n  b e  vi e w e d  a s  a  m o di fi e d  o pti m al  t r a n s p o rt  p r o bl e m  i n w hi c h  t h e  

n e g ati v e  of  a  p ot e nti al  e n e r g y  a n d  t h e  Fi s h e r  i nf o r m ati o n a r e  a m e n d e d  t o  c r e at e  t h e  

L a g r a n gi a n  i n f o r m ul ati o n (1 1 ).

4.  A  S c h r ö di n g e r  e q u ati o n  o n  a  fi nit e  g r a p h

F oll o wi n g  N el s o n’ s  a p p r o a c h,  w e  s h all  d e ri v e  t h e  di s c r et e  N L S  (3 ) o n  a  g r a p h  vi a  

di s c r et e  o pti m al  t r a n s p o rt.

T o  d o  s o,  w e  fi r st  r e vi e w  s o m e  b a si c s  of  t h e  di s c r et e  o pti m al  t r a n s p o rt  t h e o r y  d e v el o p e d  

i n r e c e nt  y e a r s.  C o n si d e r  a  fi nit e  g r a p h  G  = ( V,  E,  ω ). T h e  p r o b a bilit y  s et  ( si m pl e x)  

s u p p o rt e d  o n  all  v e rti c e s  of  G i s d e fi n e d  b y

P (G ) = { (ρ j )
n
j = 1 |

n

j = 1

ρ j = 1 , ρj ≥ 0 , f o r a n y j ∈ V } ,

w h e r e  ρ j i s t h e  di s c r et e  p r o b a bilit y  f u n cti o n at  n o d e  j . T h e  i nt e ri o r of  P (G ) i s  d e n ot e d  

b y  P o ( G ).

F oll o wi n g  [1 1 ], w e  i nt r o d u c e s o m e  n ot ati o n s  a n d  o p e r at o r s  o n  G a n d  P (G ). A  v e ct o r  

fi el d v o n  G r ef e r s  t o  a  s k e w- s y m m et ri c  m at ri x o n  t h e  e d g e s  s et  E :

v : = (v j l ) ( j,l ) ∈ E , wit h v l j = − v j l .

Gi v e n  a  f u n cti o n S = ( S j )
n
j = 1 o n  V , it i n d u c e s a  p ot e nti al  v e ct o r  fi el d ∇ G S o n  G a s

∇ G S : = (
√

ω j l ( S j − S l ) ) ( j,l ) ∈ E .

F o r  a  p r o b a bilit y  f u n cti o n ρ  ∈ P (G ) a n d  a  v e ct o r  fi el d  v , d e fi n e  t h e  p r o d u ct  ρ v , c all e d  

fl u x  f u n cti o n o n  G , b y

ρ v : = (v j l θ j l ( ρ )) ( j,l ) ∈ E ,

w h e r e  θ j l ( ρ ) i s a  c h o s e n  f u n cti o n o n  t h e  e d g e

θ j l ( ρ ) =
ρ j + ρ l

2
, f o r a n y (j, l ) ∈ E .

We  r e m a r k  t h at  θ j l m a y  h a v e  ot h e r  c h oi c e s,  s u c h  a s  t h e  l o g a rit h mi c m e a n  u s e d  i n [1 8 ]. 

T h e  di v e r g e n c e of  fl u x  f u n cti o n ρ v o n  G i s d e fi n e d  b y

di v G ( ρ v ) : = −
l∈ N ( j )

√
ω j l v j l θ j l ( ρ )

n

j = 1

.

Gi v e n  t w o  v e ct o r  fi el d s  v = ( v j l ) ( j,l ) ∈ E , u  = ( u j l ) ( j,l ) ∈ E o n  a  g r a p h  a n d  ρ  ∈ P (G ), t h e  

di s c r et e  i n n e r p r o d u ct i s d e fi n e d  b y,
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(v,  u ) ρ : =
1

2
( j,l ) ∈ E

v j l u j l θ j l ( ρ ) ,

w h e r e  t h e  c o e ffi ci e nt  1 / 2 a c c o u nt s  f o r t h e  f a ct t h at  e v e r y  e d g e  i n G i s c o u nt e d  t wi c e,  i. e. 

(j,  l), (l, j ) ∈ E .

U si n g  t h e  n ot ati o n s,  t h e  W a s s e r st ei n  m et ri c  o n  t h e  g r a p h  c a n  b e  d e fi n e d  b y  t h e  di s c r et e  

B e n a m o u – B r e ni e r  f o r m ul a [4 ],

D e fi niti o n  2.  F o r  a n y  ρ 0 , ρ 1 ∈ P o ( G ), d e fi n e  a  m et ri c

W (ρ 0 , ρ1 ) : = i nf
v

{

⎛

⎝

1

0

( v, v ) ρ dt

⎞

⎠

1
2

:
d ρ

dt
+ di v G ( ρ v ) = 0 , ρ( 0)  = ρ 0 , ρ( 1)  = ρ 1 } ,

w h e r e  t h e  i n fi m u m i s t a k e n  o v e r  all  v e ct o r  fi el d s  v o n  a  g r a p h,  a n d  ρ i s a  c o nti n u o u s  

di ff e r e nti a bl e  c u r v e  ρ  : [ 0, 1]  → P o ( G ).

P o ( G ) e q ui p p e d  wit h  t h e  m et ri c  W i s a  Ri e m a n ni a n  m a nif ol d  [1 0 ,1 1 ].

4. 1.  N el s o n’ s  a p p r o a c h  o n  a  fi nit e  g r a p h

N o w,  w e  a r e  r e a d y  t o  d e ri v e  t h e  N L S  o n  g r a p h  (3 ) vi a  di s c r et e  o pti m al  t r a n s p o rt.

I n t h e  di s c r et e  c a s e,  t h e  li n e a r a n d  i nt e r a cti o n p ot e nti al s  r ef e r  t o

V (ρ ) =

n

j = 1

V j ρ j , W ( ρ ) =
1

2

n

l= 1

n

j = 1

W l j ρ l ρ j ,

r e s p e cti v el y.  We  st a rt  wit h  a  di s c r et e  a n al o g  of  N el s o n’ s  p r o bl e m  p r e s e nt e d  i n (8 ),

i nf
b

1

0

1

2
[ (b, b ) ρ − h (b, ∇ G l o g ρ ) ρ ] − V (ρ ) − W (ρ )dt , ( 1 3)

w h e r e  t h e  i n fi m u m i s t a k e n  o v e r  all  di s c r et e  v e ct o r  fi el d s  b , ρ (t) s ati s fi e s  t h e  di s c r et e  

F o k k e r – Pl a n c k  e q u ati o n  [1 0 ,1 1 ]:

d ρ

dt
+ di v G ( ρ (b −

h

2
∇ G l o g ρ ))  = 0 ,

a n d  ρ ( 0)  = ρ 0 , ρ ( 1)  = ρ 1 a r e  gi v e n  i n P o ( G ). Si mil a r  t o  N el s o n’ s  c h a n g e  of  v a ri a bl e,  w e  

d e fi n e  a  n e w  v e ct o r  fi el d  v = ( v l j ) ( l, j ) ∈ E o n  t h e  g r a p h

v : = b −
h

∇ G l o g ρ .

2
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S u b stit uti n g  v i nt o (1 3 ), w e  c a n  w rit e  t h e  o bj e cti v e  f u n cti o n al a s

J (v ) : =

1

0

1

2
( v, v ) ρ −

h 2

8
I (ρ ) − V (ρ ) − W (ρ )dt , ( 1 4)

w h e r e  v i s a  v e ct o r  fi el d  o n  t h e  g r a p h,  s u c h  t h at  ρ (t) ∈ P o ( G ) s ati s fi e s

d ρ

dt
+ di v G ( ρ v ) = 0 , ρ( 0)  = ρ 0 , ρ( 1)  = ρ 1 .

We  n ot e  t h at  a n y  gi v e n  f e a si bl e p at h  ρ (t) of  (1 4 ) i s  d et e r mi n e d  b y  v (t), s o  w e  d e n ot e  

f u n cti o n al J o nl y  i n t e r m  of  v , a n d  c all  it di s c r et e  N el s o n’ s  f u n cti o n al.

We  al s o  c all  (v (t), ρ (t)) a c riti c al  p oi nt of  (1 4 ) if

J (v + δ v ) − J (v ) = o ( ) , ∀ δ v (t) ∈ D , ( 1 5)

w h e r e

D = { δ v ∈ C ∞ [ 0, 1] : ρ̄ ( t) ∈ P o ( G ) i s c o nti n u o u sl y di ff e r e nti a bl e, a n d ,

d ρ̄

dt
+ di v G ( ρ̄ ( v + δ v ))  = 0 , ρ̄ ( 0 )  = ρ 0 , ρ̄ ( 1 )  = ρ 1 } .

I n t h e  f oll o wi n g t h e o r e m,  w e  s h o w  t h at  t h e  c riti c al  p oi nt  of  t h e  di s c r et e  N el s o n’ s  f u n c-

ti o n al  s ati s fi e s  (3 ).

T h e o r e m  3  ( C riti c al  p oi nt  of  di s c r et e  N el s o n’ s  f u n cti o n al ). As s u m e  t h e r e e xi st s  a  c riti c al  

p oi nt  (v (t), ρ (t)) of  (1 4 ) i n t h e s e n s e  of  (1 5 ), w h o s e  c o m p o n e nt s  a r e  s m o ot h  f u n cti o n s 

wit h  r e s p e ct  t o t h e ti m e v a ri a bl e.  T h e n  v (t) a n d  ρ (t) s ati sf y  t h e f oll o wi n g c o n diti o n s:

( a) v (t) i s a  p ot e nti al  v e ct o r  fi el d  o n  t h e g r a p h,  i. e. t h e r e e xi st s  a  f u n cti o n S (t) =

(S j ( t))
n
j = 1 d e fi n e d  o n  t h e n o d e s,  s u c h  t h at

v j l ( t) =
√

ω j l ( S j ( t) − S l ( t)) , f o r all t ∈ [ 0, 1] a n d (j, l ) ∈ E .

( b) F o r  e v e r y  S (t) t h at i n d u c e s v (t), t h e r e e xi st s  a  s c al a r  f u n cti o n C (t) ∈ R , i n d e p e n d e nt 

of  t h e n o d e s,  s u c h  t h at ρ (t) a n d  S̄ ( t) , d e fi n e d  b y  S̄ ( t)  = ( S j ( t) − C (t)) n
j = 1 , s ati sf y  

(3 ):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρ j

dt
+

l∈ N ( j )

ω j l ( S̄ j − S̄ l ) θ j l ( ρ ) = 0 ;

d S̄ j

dt
+

1

2
l∈ N ( j )

ω j l ( S̄ j − S̄ l )
2 ∂ θ j l

∂ ρ j
+

h 2

8

∂

∂ ρ j
I ( ρ ) + V j +

n

l= 1

W j l ρ l = 0 ,
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R e m a r k  1.  We  c a n  r e w rit e  (3 ) a s

d

dt

ρ
S

= J
∂
∂ ρ H
∂

∂ S H
, ( 1 6)

w h e r e  H i s t h e  di s c r et e  t ot al  e n e r g y

H (ρ,  S ) : =
1

2
(∇ G S, ∇ G S ) ρ +

h 2

8
I (ρ ) + V (ρ ) + W (ρ ) ,

a n d

J =
0 I

− I 0

i s a  s y m pl e cti c  m at ri x,  wit h  I ∈ R n × n b ei n g  t h e  i d e ntit y m at ri x.  T h e  s y m pl e cti c  f o r m 

(1 6 ), i d e nti c al t o  (3 ), i s t h e  di s c r et e  a n al o g  of  (1 2 ). F oll o wi n g  t h e  c o n v e nti o n,  w e  c all  t h e  

fi r st  e q u ati o n  t h e  di s c r et e  c o nti n uit y  e q u ati o n,  a n d  t h e  s e c o n d  o n e  t h e  di s c r et e  H a milt o n –

J a c o bi  e q u ati o n.

T h e  p r o of  of  T h e o r e m  3 r e q ui r e s  t h e  f oll o wi n g l e m m a, w hi c h  c a n  b e  vi e w e d  a s  t h e  

H o d g e  d e c o m p o siti o n  o n  a  g r a p h.

L e m m a  4.  Gi v e n  a  v e ct o r  fi el d  v = ( v j l ) ( j,l ) ∈ E o n  a  g r a p h  a n d  a  p r o b a bilit y  d e n sit y  

f u n cti o n ρ  ∈ P o ( G ), t h e r e e xi st s  a  u ni q u e  ∇ G S , s u c h  t h at

v = ∇ G S + u , wit h di v G ( ρ u ) = 0 . ( 1 7)

P r o of. T h e  d et ail e d  p r o of  c a n  b e  f o u n d i n [1 8 ]. F o r  t h e  c o m pl et e n e s s  of  t hi s  p a p e r,  m o r e  

i m p o rt a ntl y t o  i nt r o d u c e s o m e  n ot ati o n s  t h at  will  b e  u s e d  l at e r i n t h e  p a p e r,  w e  s k et c h  

t h e  p r o of  h e r e.  We  d e fi n e  a  w ei g ht e d  g r a p h  L a pl a ci a n  m at ri x  L (ρ ) ∈ R n × n :

L ( ρ ) = − D T Θ ( ρ )D ,

w h e r e  D ∈ R |E | ×|V | i s t h e  di s c r et e  g r a di e nt  m at ri x

D ( j,l ) ∈ E , k ∈ V =

⎧
⎪⎪⎨

⎪⎪⎩

√
ω j l if j = k ;

−
√

ω j l if l = k ;

0 ot h e r wi s e;

a n d  Θ  ∈ R |E | ×|E | i s t h e  di a g o n al  w ei g ht e d  m at ri x

Θ ( j,l ) ∈ E , ( j ,l ) ∈ E =
θ j l ( ρ ) if (j, l ) = ( j , l ) ∈ E ;

0 ot h e r wi s e .
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We  w a nt  t o  e m p h a si z e  t h at  L (ρ ) d e p e n d s  o n  ρ . T hi s  i s di ff e r e nt  f r o m t h e  c o m m o nl y  s e e n  

g r a p h  L a pl a c e  o p e r at o r s,  w hi c h  a r e  oft e n  i n d e p e n d e nt of  ρ .

We  o nl y  n e e d  t o  s h o w  t h at  t h e r e  e xi st s  a  u ni q u e  g r a di e nt  v e ct o r  fi el d  ∇ G S , s u c h  t h at

di v G ( ρ ∇ G S ) = L (ρ )S = di v G ( ρ v ) .

Si n c e  ρ  ∈ P o ( G ) a n d  t h e  g r a p h  i s c o n n e ct e d,  t h e n

S T L ( ρ )S =
1

2
( j,l ) ∈ E

ω j l ( S j − S l )
2 θ j l ( ρ ) = 0 ,

t hi s  i m pli e s t h at  v al u e  0 m u st  b e  a  si m pl e  ei g e n v al u e  of  t h e  w ei g ht e d  g r a p h  L a pl a ci a n  

m at ri x  L (ρ ) wit h  ei g e n v e ct o r  { 1 , · · · , 1 } . T h u s  t h e r e  e xi st s  a  u ni q u e  s ol uti o n  of  S u p  t o  

c o n st a nt  s h rift.  T h e r ef o r e  ∇ G S i s u ni q u e. ✷

F u rt h e r m o r e,  w e  c a n  e x p r e s s

L (ρ ) = T

⎛

⎜
⎜
⎝

0
λ s e c ( L ( ρ ))

...
λ m a x ( L ( ρ ))

⎞

⎟
⎟
⎠ T − 1 ,

w h e r e  0  < λ s e c ( L ( ρ )) ≤ · · ·  ≤ λ m a x ( L ( ρ )) a r e  ei g e n v al u e s  of  L (ρ ) a r r a n g e d  i n t h e  

a s c e n di n g  o r d e r,  a n d  T i s it s c o r r e s p o n di n g  ei g e n v e ct o r  m at ri x.  T h e  p s e u d o-i n v e r s e  of  

L (ρ ) i s  d e fi n e d  b y

L (ρ ) − 1 = T

⎛

⎜
⎜
⎜
⎝

0
1

λ s e c ( L ( ρ ) )

. . .
1

λ m a x ( L ( ρ ) )

⎞

⎟
⎟
⎟
⎠

T − 1 .

T h u s  S = L (ρ ) − 1 di v G ( ρ v ).

P r o of of  T h e o r e m 3 . ( a)  We  p r o v e  t h at  v (t) = ∇ G S ( t). Fr o m  L e m m a 4 , w e  h a v e,

v (t) = ∇ G S ( t) + u (t) , wit h di v G ( ρ (t)u (t))  = 0 f o r all t ∈ [ 0, 1] .

We  o nl y  n e e d  t o  p r o v e  u (t) = 0 f o r  t ∈ [ 0, 1]  w h e n  v (t) i s  a  c riti c al  p oi nt.  C o n si d e r  a  

f u n cti o n w (t) = ( w j l ( t)) ( j,l ) ∈ E s a ti sf yi n g

di v G ( ρ w (t))  = 0 , f o r t ∈ [ 0, 1] .

It i s cl e a r  t h at  w ∈ D f o r a n y   > 0 b e c a u s e  d ρ + di v G ( ρ (v + w )) = 0.
d t
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Si n c e  (v,  ρ ) i s  a  c riti c al  s ol uti o n  of  (1 4 ), w e  m u st  h a v e

li m
→ 0

J ( v + w ) − J (v )
= 0 . ( 1 8)

B e c a u s e  ρ (t) k e e p s  t h e  s a m e  f o r t h e  v e ct o r  fi el d  v + w , it i m pli e s

2
J (v + w ) − J (v )

=

1

0

( v + w, v + w ) ρ − ( v, v ) ρ
dt

=

1

0

( v, v ) ρ + 2 (v,  w ) ρ + 2 ( w,  w ) ρ − ( v, v ) ρ
dt

= 2

1

0

( v,  w ) ρ dt + O ( ) = 2

1

0

( ∇ G S + u,  w ) ρ dt + O ( )

= 2

1

0

( ∇ G S,  w ) ρ + ( u,  w ) ρ dt + O ( )

= 2

1

0

−

n

j = 1

di v G ( ρ w )|j S j + ( u,  w ) ρ dt + O ( )

=

1

0 ( j,l ) ∈ E

u j l ( t) w j l ( t) θ j l ( ρ ( t))dt + O ( ) ,

w h e r e  t h e  l a st e q u alit y  u s e s  t h e  f a ct di v G ( ρ w ) = 0.  Fr o m  (1 8 ), w e  g et

1

0 ( j,l ) ∈ E

u j l ( t) w j l ( t) θ j l ( ρ ( t))dt = 0 .

I n p a rti c ul a r,  b y  t a ki n g  w (t) = u (t), w e  o bt ai n

1

0 ( j,l ) ∈ E

u j l ( t)
2 θ j l ( ρ ( t))dt = 0 .

Si n c e  ρ (t) ∈ P o ( G ), θ j l ( ρ ( t)) > 0 a n d  u (t) ∈ D , t hi s  i m pli e s u (t) = 0 f o r  t ∈ [ 0, 1],  w hi c h  

p r o v e s  ( a).

( b)  Si n c e  ρ (t) ∈ P o ( G ) i s  c o nti n u o u s  i n [ 0, 1],  t h e n  mi n i ∈ V , t ∈ [ 0,1] ρ i ( t) ≥ c 0 > 0.  We  

c o n si d e r  a  p e rt u r b  f u n cti o n ρ (t) d e fi n e d  b y:

ρ (t) = ρ (t) + δ ρ (t) ,
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w h e r e  δ ρ (t) = ( δ ρ j ( t))
n
j = 1 , δ ρ j ( t) ∈ C ∞ [ 0, 1]  wit h  

n
j = 1 δ ρ j = 0 a n d  δ ρ ( 0)  = δ ρ ( 1)  = 0.  

L et   s u p 0 ≤ t ≤ 1 |δ ρ (t)| < 1
2 c 0 , t h e n  ρ (t) ∈ P o ( G ). T h u s  L (ρ (t)) − 1 i s w ell  d e fi n e d  f o r 

t ∈ [ 0, 1],  w h o s e  e nt ri e s  a r e  s m o ot h.  Fr o m  S (t) = L (ρ (t)) − 1 d ρ
d t , t h e n  S (t) i s  s m o ot h  

wit h  r e s p e ct  t o  t a n d  . Si n c e

d ρ

dt
+ ∇ G ( ρ (∇ G S − ∇ G S + ∇ G S ))  = 0 ,

w e  h a v e  ∇ G S ( t) − ∇ G S ( t) ∈ D .

F o r  t h e  si m pli cit y  of  p r e s e nt ati o n,  w e  d e n ot e

F (ρ ) : =
h 2

8
I (ρ ) + V (ρ ) + W (ρ ) .

B y  di r e ct  c al c ul ati o n s,  w e  h a v e

J (∇ G S ) − J (∇ G S )

=

1

0

1

2
[ (∇ G S , ∇ G S ) ρ − ( ∇ G S, ∇ G S ) ρ ]dt −

1

0

1
[F (ρ ) − F (ρ )]dt .

=

1

0

1

2
[ (∇ G S , ∇ G S ) ρ − ( ∇ G S, ∇ G S ) ρ ]dt ( )

−

1

0

n

j = 1

δ ρ j
∂

∂ ρ j
F ( ρ )dt + O ( ) .

( 1 9)

We  n e e d  t o  e sti m at e  ( ). U si n g  t h e  T a yl o r  e x p a n si o n  of  S (t) wit h  r e s p e ct  t o  , S (t) =

S (t) + δ S (t) + o ( ), w h e r e  δ S (t) = d
d S ( t)| = 0 , w e  o bt ai n

( ) =

1

0

1

2
[ (∇ G S + ∇ G δ S, ∇ G S + ∇ G δ S ) ρ − ( ∇ G S, ∇ G S ) ρ ]dt + O ( )

=

1

0

1

2
[ (∇ G S, ∇ G S ) ρ − ( ∇ G S, ∇ G S ) ρ + 2 (∇ G S, ∇ G δ S ) ρ ]dt + O ( )

=

1

0

1

4

n

j = 1 l∈ N ( j )

ω j l ( S j − S l )
2 [θ j l ( ρ + δ ρ ) − θ j l ( ρ )]dt +

1

0

( ∇ G S, ∇ G δ S ) ρ dt + O ( )

( 2 0)

=

1

1

4
ω j l ( S j − S l )

2 [
∂ θ j l

∂ ρ j
δ ρ j +

∂ θ j l

∂ ρ l
δ ρ l ]dt +

1

( ∇ G S, ∇ G δ S ) ρ dt + O ( )
0 ( j,l ) ∈ E 0
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=

1

0

1

2

n

j = 1

[δ ρ j

l∈ N ( j )

ω j l ( S j − S l )
2 ∂ θ j l

∂ ρ j
]dt +

1

0

( ∇ G S, ∇ G δ S ) ρ dt + O ( ) .

N e xt  w e  fi n d  a  c o n n e cti o n  b et w e e n  δ ρ (t) a n d  δ S (t). N oti c e  t h at

d ρ

dt
+

d

dt
δ ρ = di v G ( ( ρ + δ ρ )∇ G ( S + δ S + o ( )) .

B y  c o m p a ri n g  t h e  o r d e r  t e r m,  w e  h a v e

d

dt
δ ρ j =

l∈ N ( j )

ω j l ( S l − S j )[
∂ θ j l

∂ ρ j
δ ρ j +

∂ θ j l

∂ ρ l
δ ρ l ] + di vG ( ρ ∇ G δ S ) .

T h e n

1

0

n

j = 1

S j
d

dt
δ ρ j dt

=

1

0

n

j = 1 l∈ N ( j )

ω l j S j ( S l − S j )[
∂ θ l j

∂ ρ j
δ ρ j +

∂ θ j l

∂ ρ l
δ ρ l ] +

n

j = 1

S j di v G ( ρ ∇ G δ S )|j dt

=

1

0

(
1

2
+

1

2
)

n

j = 1

δ ρ j

l∈ N ( j )

ω l j ( S l − S j )
2 ∂ θ l j

∂ ρ j
+ ( ∇ G S, ∇ G δ S ) ρ dt

=( T 1 ) +

1

0

1

2

n

j = 1

δ ρ j

l∈ N ( j )

ω j l ( S l − S j )
2 ∂ θ l j

∂ ρ j
dt + O ( ) ,

( 2 1)

w h e r e  t h e  l a st e q u alit y  i s f r o m (2 0 ). S u b stit uti n g  (2 1 ) i nt o  (1 9 ), w e  h a v e

0  = li m
→ 0

J ( ∇ G S ) − J (∇ G S )
= li m

→ 0
{ T −

1

0

n

j = 1

δ ρ j
∂

∂ ρ j
F ( ρ )dt + O ( )}

=

1

0

n

j = 1

S j
d

dt
δ ρ j dt −

1

2

n

j = 1

δ ρ j

l∈ N ( j )

ω l j ( S l − S j )
2 ∂ θ l j

∂ ρ j
dt −

n

j = 1

δ ρ j
∂

∂ ρ j
F ( ρ )dt

= −

1

0

n

j = 1

δ ρ j {
d

dt
S j +

1

2
l∈ N ( j )

ω l j ( S l − S j )
2 ∂ θ l j

∂ ρ j
+

∂

∂ ρ j
F ( ρ )} dt ,

w h e r e  t h e  l a st e q u alit y  i s f r o m i nt e g r ati o n b y  p a rt s  a n d  δ ρ ( 0)  = δ ρ ( 1)  = 0.  Si n c e  δ ρ j ( t)

wit h  
n
j = 1 δ ρ j ( t) = 0 c a n  b e  a n y  s m o ot h  f u n cti o n, w e  o bt ai n
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d

dt
S j +

1

2
l∈ N ( j )

ω j l ( S j − S l )
2 ∂ θ j l

∂ ρ j
+

∂

∂ ρ j
F ( ρ ) = c (t) ,

f o r a n y  s m o ot h  f u n cti o n c (t) ∈ R . We  d e n ot e  C (t) =
t

0
c ( s )d s , t h e n  S̄ j ( t)  = S j ( t) − C (t), 

a n d  t o g et h e r  wit h  ρ (t), s ati sf y  (3 ). ✷

C o r oll a r y  5.  L et  (v (t), ρ (t)) b e  a  c riti c al  p oi nt  of  (1 4 ), a n d  S (t) a  f u n cti o n o n  G t h at 

i n d u c e s v (t), t h e n S (t) a n d  ρ (t) s ati sf y  (3 ) if a n d  o nl y  if

n

j = 1

S j ( t) ρ j ( t) =

n

j = 1

S j ( 0 ) ρ j ( 0) +

t

0

{
1

2
(∇ G S, ∇ G S ) ρ −

h 2

8
I (ρ ) − V (ρ ) − 2 W (ρ )} d s . ( 2 2)

P r o of. Fr o m  t h e  p r o of  of  T h e o r e m 3 , w e  k n o w

d S j

dt
+

1

2
l∈ N ( j )

ω j l ( S j − S l )
2 ∂ θ j l

∂ ρ j
+

∂

∂ ρ j
F ( ρ ) = c (t) .

T h e n  b y  di r e ct  c al c ul ati o n s,  w e  o bt ai n

d

dt
(

n

j = 1

S j ( t) ρ j ( t))

=

n

j = 1

[
d S j

dt
ρ j ( t) +

d ρ j

dt
S j ( t)]

=
n

j = 1

[−
1

2
l∈ N ( j )

ω j l ( S j − S l )
2 ∂ θ j l

∂ ρ j
−

∂

∂ ρ j
F ( ρ ) + c (t)]ρ j ( t) + ( ∇ G S, ∇ G S ) ρ

=
1

2
(∇ G S, ∇ G S ) ρ −

n

j = 1

∂

∂ ρ j
F ( ρ )ρ j ( t) + c (t) .

We  n ot e

n

j = 1

∂

∂ ρ j
F ( ρ )ρ j =

n

j = 1

∂

∂ ρ j
(
h 2

8
I (ρ ) + V T ρ +

1

2
ρ T W ρ )ρ j

=

n

j = 1

h 2

8

∂

∂ ρ j
I ( ρ )ρ j + V T ρ +

1

2
ρ T W ρ +

1

2
ρ T W ρ ,

a n d
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n

j = 1

∂

∂ ρ j
I ( ρ ) · ρ j

=
n

j = 1 l∈ N ( j )

ω j l (l o g ρ l − l o g ρ j )
2 ∂ θ j l

∂ ρ j
ρ j + 2

n

j = 1 l∈ N ( j )

ω j l
1

ρ j
(l o g ρ j − l o g ρ l ) ρ j

=
1

2

n

l= 1 l∈ N ( j )

ω j l (l o g ρ j − l o g ρ l )
2 θ j l ( ρ ) + 2

( j,l ) ∈ E

ω j l (l o g ρ j − l o g ρ l )

= I (ρ ) .

C o m bi ni n g  t h e  c al c ul ati o n s  t o g et h e r,  w e  h a v e

d

dt
(

n

j = 1

S j ( t) ρ j ( t))  =
1

2
(∇ G S, ∇ G S ) ρ − F (ρ ) − W (ρ ) + c (t) .

T h e r ef o r e  c (t) = 0 if  a n d  o nl y  if (2 2 ) h ol d s. ✷

I n f a ct, t h e  c o n st r u cti o n  of  S s u g g e st s  S = L (ρ ) − 1 ρ̇ . T hi s  i m pli e s

(∇ G S, ∇ G S ) ρ = S T L ( ρ )S = ˙ρ T L ( ρ ) − 1 · L ( ρ ) · L (ρ ) − 1 ρ̇ = ˙ρ T L ( ρ ) − 1 ρ̇ .

T h u s  t h e  di s c r et e  N el s o n’ s  p r o bl e m  c a n  b e  r e w ritt e n  a s  a  g e o m et ri c  v a ri ati o n al  p r o bl e m  

o n  t h e  p r o b a bilit y  d e n sit y  m a nif ol d  P o ( G )

i nf
ρ

{

1

0

ρ̇ T L ( ρ ) − 1 ρ̇ −
h 2

8
I ( ρ ) − V (ρ ) − W (ρ )dt : ρ ( 0)  = ρ 0 , ρ( 1)  = ρ 1 , ρ(t) ∈ C } , ( 2 3)

w h e r e  C i s t h e  s et  of  c o nti n u o u s  di ff e r e nti a bl e  c u r v e  i n P o ( G ), a n d  L (ρ ) − 1 i nt r o d u c e s a  

l o c ati o n d e p e n d e nt  i n n e r p r o d u ct  o n  t h e  t a n g e nt  s p a c e  at  e v e r y  p oi nt  i n (P o ( G ), W ); s e e  

[1 1 ]. A  s ol uti o n  of ( 1 6 ) i s  a  c riti c al  p oi nt  of  (2 3 ).

4. 2.  C o m pl e x  f o r m ul ati o n s

I n t hi s  s e q u el,  w e  r ef o r m ul at e  (3 ) i nt o  a  c o m pl e x  w a v e  e q u ati o n.  L et  u s  d e fi n e

Ψ( t) = ( Ψ j ( t))
n
j = 1 = ( ρ j ( t)e

i
S j ( t )

h ) n
j = 1 ,

w h e r e  (ρ (t), S (t)) a r e  s ol uti o n s  of  (3 ), t h e n  Ψ( t) s ati s fi e s  t h e  f oll o wi n g c o m pl e x  v al u e  

O D E  s y st e m.

hi
d Ψ j

dt
= −

h 2

2
Δ G Ψ |j + Ψ j V j + Ψ j

n

W j l |Ψ l |
2 , ( 2 4)
l= 1
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i n w hi c h  t h e  L a pl a ci a n  o n  g r a p h  i s d e fi n e d  b y

Δ G Ψ |j : = − Ψ j
1

|Ψ j |2
l∈ N ( j )

ω j l (l o g  Ψ j − l o g  Ψl ) θ j l +
l∈ N ( j )

ω j l | l o g  Ψj − l o g  Ψl |
2 ∂ θ j l

∂ ρ j
.

O n e  m a y  w o n d e r  w h e n  s e ei n g  t h e  L a pl a c e  o p e r at o r  i n s u c h  a  n o nli n e a r  w a y.  H o w e v e r,  

a  cl o s e r  e x a mi n ati o n  d e m o n st r at e s  t h at  t hi s  g r a p h  L a pl a ci a n  i s c o n si st e nt  wit h  t h e  o n e  

i n t h e  c o nti n u o u s  c a s e.  I n f a ct, w e  c a n  s h o w  t h e  f oll o wi n g r el ati o n s hi p  i n t h e  c o nti n u o u s  

s p a c e.  L et  Ψ( t, x ) b e  a  c o m pl e x  f u n cti o n d e fi n e d  i n R d , t h e n

Δ Ψ  =  Ψ {
1

|Ψ |2
∇ · (|Ψ |2 ∇ l o g  Ψ) − | ∇ l o g  Ψ|2 } . ( 2 5)

P r o of of (2 5 ). D e n ot e  Ψ( t, x ) = ρ (t, x)e i S ( t , x )
h = e

1
2 l o g ρ ( t, x ) + i S ( t , x )

h , w e  h a v e

Δ Ψ  = ∇ · (∇ Ψ)  = ∇ · [ Ψ(
1

2
∇ l o g ρ + i

∇ S

h
)]

= Ψ[(
1

2
∇ l o g ρ + i

∇ S

h
) 2 + (

1

2
Δ l o g ρ + iΔ

S

h
)]

= Ψ[
1

2
(∇ l o g ρ ) 2 +

1

2
Δ l o g ρ + i∇ l o g ρ · ∇

S

h
+ iΔ

S

h
−

1

4
(∇ l o g ρ ) 2 − ( ∇

S

h
) 2 ]

= Ψ[
1

ρ
∇ · (ρ ∇ (

1

2
l o g ρ + i

S

h
)) − (

1

2
∇ l o g ρ ) 2 − ( ∇

S

h
) 2 ]

= Ψ(
1

|Ψ |2
∇ · (|Ψ |2 ∇ l o g  Ψ) − | ∇ l o g  Ψ|2 ) ,

w h e r e  t h e  fi r st  e q u alit y  u s e s  1
ρ ∇ ρ  = ∇  l o g ρ ,  w hil e t h e  s e c o n d  t o  t h e  l a st e q u alit y  u s e s  

t h e  f a ct

1

ρ
∇ · (ρ ∇ (

1

2
l o g ρ + i

S

h
))

=
1

ρ
[
1

2
∇ ρ · ∇ l o g ρ + ρ Δ l o g ρ + i∇ ρ ·

S

h
+ ρ Δ S ]

=
1

2
(∇ l o g ρ ) 2 +

1

2
Δ l o g ρ + i∇ l o g ρ · ∇

S

h
+ iΔ

S

h
. ✷

T h e  n o nli n e a rit y  i n t h e  L a pl a c e  o p e r at o r  all o w s  t h e  di s c r et e  N L S  p o s s e s si n g  m a n y  

d e si r a bl e  d y n a mi c al  p r o p e rti e s,  w hi c h  will  b e  s h o w n  i n t h e  n e xt  t w o  s e cti o n s.

5.  S o m e  p r o p e rti e s

F o r  t h e  c o n v e ni e n c e  of  p r e s e nt ati o n,  w e  d o  n ot  di sti n g ui s h  (3 ) a n d  it s c o m pl e x  w a v e  

v e r si o n  (2 4 ) i n  t h e  di s c u s si o n.  T h e  r e s ult s  h e r e  a r e  al w a y s  p r o p o s e d  f o r f o r m ul ati o n (2 4 )

w hil e  all  p r o of s  a r e  b a s e d  o n ( 3 ).
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O u r  fi r st  t a s k  i s e x a mi ni n g  t h e  di s p e r si o n  r el ati o n  i n t h e  a b s e n c e  of  p ot e nti al s.

P r o p o siti o n.  F o r  a  u nif o r m  t o r oi d al g r a p h  G , i. e. a  g r a p h  t h at e v e r y  n o d e  h a s  t h e s a m e  

n u m b e r  of  a dj a c e nt  n o d e s  a n d  t h e w ei g ht  o n  e a c h  e d g e  i s u nif o r ml y  gi v e n,  t h e pl a n e  w a v e  

f u n cti o n Ψ( t) = A (e i ( k ·j Δ x − μ t ) ) n
j = 1 , wit h  a n y  μ  = 1

2 |k |2 a n d  A  ≥ 0 , s ati s fi e s

i
d

dt
Ψ = −

1

2
Δ G Ψ .

T h e  p r o p o siti o n  c a n  b e  v e ri fi e d  b y  di r e ctl y  s u b stit uti n g  t h e  pl a n e  w a v e  f u n cti o n i n 

(3 ).

I n w h at  f oll o w s, w e  s h o w  t h at  (3 ) i s  a  w ell  d e fi n e d  O D E  s y st e m  h a vi n g  s e v e r al  d e si r a bl e  

p r o p e rti e s  s u c h  a s  t ot al  m a s s  a n d  e n e r g y  c o n s e r v ati o n,  ti m e  r e v e r si bilit y,  a n d  g a u g e  

i n v a ri a nt. I n a d diti o n,  it s i nt e ri o r st ati o n a r y  s ol uti o n  s h a r e s  t h e  s a m e  p r o p e rt y  a s  t h at  

f o r t h e  c o u nt e r p a rt  i n t h e  c o nti n u o u s  c a s e.

T h e o r e m  6.  Gi v e n  a  si m pl e  w ei g ht e d  g r a p h  G  = ( V,  E,  ω ), a  v e ct o r  (V l )
n
l= 1 , a  s y m m et ri c  

m at ri x  (W j l ) 1 ≤ j,l ≤ n , a n d  a n  i niti al c o n diti o n  Ψ 0 = ( Ψ 0
j ) n

j = 1 ( c o m pl e x  v e ct o r )  s ati sf yi n g

n

j = 1

|Ψ 0
j |2 = 1 , |Ψ 0

j |2 > 0 , f o r a n y j ∈ V .

T h e n  e q u ati o n  (3 ) h a s  a  u ni q u e  s ol uti o n  Ψ( t) f o r all  t ∈ [ 0, ∞ ). M o r e o v e r,  Ψ( t) s ati s fi e s  

f oll o wi n g p r o p e rti e s:

(i) It c o n s e r v e s  t h e t ot al m a s s

n

j = 1

|Ψ j ( t) |
2 = 1 ;

(ii) It c o n s e r v e s  t h e t ot al e n e r g y

E ( Ψ( t))  = E ( Ψ 0 ) ,

w h e r e  E i s a  c o m bi n ati o n  of  t h e di s c r et e  Ki n eti c  e n e r g y  E k i n , li n e a r p ot e nti al  e n e r g y  

E p o t a n d  i nt e r a cti o n p ot e nti al  e n e r g y  E i n t , i. e.

E ( Ψ)  = h 2 E k i n ( Ψ )  + E p o t ( Ψ )  + E i n t ( Ψ ) . ( 2 6)

T h e y  a r e  gi v e n  b y  t h e f oll o wi n g d e fi niti o n s:
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E k i n ( Ψ )  =
1

4
( j,l ) ∈ E

{ [R e (l o g  Ψ j − l o g  Ψl )]
2 + [ I m(l o g  Ψ j − l o g  Ψl )]

2 } θ j l ( |Ψ |2 ) ,

E p o t ( Ψ )  =
n

j = 1

V j |Ψ j |
2 , E i n t ( Ψ )  =

1

2

n

j = 1

n

l= 1

W j l |Ψ j |
2 |Ψ l |

2 ;

(iii) It i s ti m e r e v e r si bl e:

Ψ( t) = Ψ̄ ( − t) ;

(i v) It i s ti m e t r a n s v e r s e ( g a u g e )  i n v a ri a nt: D e n ot e  Ψ α ( t) a s  t h e s ol uti o n  of  (3 ) wit h  

V α = ( V j + α ) n
j = 1 , w h e r e  α i s a  gi v e n  r e al  c o n st a nt,  t h e n

Ψ α ( t) = Ψ( t)e i α t
h ;

( v ) A  ti m e i n v a ri a nt ρ ∗ = ( ρ ∗
j ) n

j = 1 ∈ P o ( G ) a n d  S (t) = ν t f o r m a n  i nt e ri o r st ati o n a r y  

s ol uti o n  of  (3 ) if a n d  o nl y  if ρ ∗ i s t h e c riti c al  p oi nt  of  { E (
√

ρ ): ρ  ∈ P (G )} , a n d

ν = E (
√

ρ ∗ ) + E i n t (
√

ρ ∗ ) .

R e m a r k  2.  E k i n i n (2 6 ) i s  a n  a n al o g  of  t h e  Ki n eti c  e n e r g y  i n c o nti n u o u s  c a s e:

R d

| ∇Ψ |2 d x =

R d

([ R e( ∇ l o g  Ψ)]2 + [I m( ∇ l o g  Ψ)]2 ) |Ψ |2 d x .

R e m a r k  3.  E q u ati o n s  (3 ) a r e  al w a y s  w ell  d e fi n e d  i n t h e  i nt e ri o r of  p r o b a bilit y  s et  P (G ). 

I n f a ct, w e  s h all  s h o w  t h at  t h e  b o u n d a r y  of  p r o b a bilit y  s et  P (G ) i s  a  r e p ell e r  f o r (3 ).

R e m a r k  4.  T h e  p r o p e rt y  of  t h e  i nt e ri o r st ati o n a r y  s ol uti o n  of  (3 ) gi v e n  i n ( v)  of  T h e-

o r e m 6 mi mi c s  a  si mil a r  p r o p e rt y  f o r t h e  g r o u n d  st at e  of  S c h r ö di n g e r  e q u ati o n  i n t h e  

c o nti n u o u s  c a s e.  D et ail s  will  b e  gi v e n  i n S e cti o n 5. 1 .

P r o of. We  s h o w  t h at  f o r a n y  gi v e n  i niti al c o n diti o n  ρ 0 ∈ P o ( G ), t h e r e  e xi st s  a  u ni q u e  

s ol uti o n  (ρ (t), S (t)) f o r all  t > 0.  Si n c e  t h e  ri g ht  h a n d  si d e  of  (3 ) i s  l o c all y Li p c hit z  

c o nti n u o u s  a n d  ρ 0 ∈ P o ( G ), f r o m Pi c a r d’ s  e xi st e n c e  t h e o r e m,  t h e r e  e xi st s  a  u ni q u e  

s ol uti o n  (ρ (t), S (t)) i n ti m e  i nt e r v al [ 0, T (ρ 0 ) ), w h e r e  T (ρ 0 ) i s  t h e  m a xi m al  ti m e  t h at  

t h e  s ol uti o n  e xi st s.  We  will  p r o v e  T (ρ 0 )  = + ∞ b y  t h e  f oll o wi n g cl ai m.

Cl ai m.  F o r  a n y  gi v e n  ρ 0 ∈ P o ( G ), t h e r e e xi st s  a  c o m p a ct  s et  B ⊂ P o ( G ), s u c h  t h at 

T (ρ 0 )  = ∞ a n d  ρ (t) ∈ B .

T h e  p r o of  of  Cl ai m  i s b a s e d  o n  t w o  f a ct s. O n  o n e  h a n d,  t h e  O D E  s y st e m  (3 ) i s  a  

H a milt o ni a n  s y st e m  o n  p r o b a bilit y  s et,  w hi c h  c o n s e r v e s  t h e  t ot al  m a s s  a n d  t ot al  e n e r g y;  
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O n  t h e  ot h e r  h a n d,  t h e  t ot al  e n e r g y  c o nt ai n s  t h e  Fi s h e r  i nf o r m ati o n I (ρ ). O n  t h e  b o u n d-

a r y  of  P o ( G ), I (ρ ) i s  p o siti v e  i n fi nit y, s o  i s t h e  t ot al  e n e r g y.  Fr o m  t h e  c o n s e r v ati o n  of  

t ot al  e n e r g y,  it i s n ot  h a r d  t o  s e e  t h at  t h e  b o u n d a r y  of  P o ( G ) i s  a  r e p ell e r  f o r ρ (t).

P r o of of  Cl ai m. We  c o n st r u ct  a  s et  B ⊂ P (G ):

B = { ρ ∈ P (G ) :
h 2

8
I (ρ ) ≤ E ( Ψ 0 ) − mi n

ρ ∈ P ( G )
[V ( ρ ) + W (ρ )] } ,

w h e r e  E ( Ψ 0 )  = H (ρ 0 , S 0 )  = 1
2 ( ∇ G S 0 , ∇ G S 0 ) ρ 0 + h 2

8 I ( ρ 0 )  + V (ρ 0 )  + W (ρ 0 )  < ∞ . O b vi-

o u sl y,  B i s n ot  e m pt y.

We  will  p r o v e  t h at  B i s a  c o m p a ct  s et  a n d  ρ (t) ⊂ B f o r all  t > 0 b y  f oll o wi n g t h r e e  

st e p s.

St e p  1,  w e  p r o v e  (i) a n d  (ii)  f o r t ∈ [ 0, T (ρ 0 ) ). Si n c e

n

j = 1

d ρ j

dt
= −

n

j = 1

di v G ( ρ ∇ G S ) |j = 0 ,

(i) i s c o n cl u d e d.  F o r  (ii), w e  n e e d  t o  s h o w

d

dt
E ( Ψ( t))  = 0 ,

w h e r e  E ( Ψ)  = H (ρ,  S ). N oti c e  (3 ) h a s  t h e  f oll o wi n g s y m pl e cti c  f o r m

d

dt

ρ
S

= J
∂
∂ ρ H
∂

∂ S H
,

t h e n

d

dt
E ( Ψ( t))  =

d

dt
H (ρ (t), S(t))  =

n

j = 1

{
∂

∂ ρ j
H

d

dt
ρ j +

∂

∂ S j
H

d

dt
S j }

=
n

j = 1

{
∂

∂ ρ j
H

∂

∂ S j
H −

∂

∂ S j
H

∂

∂ ρ j
H } = 0 .

St e p  2,  w e  s h o w  t h at  I (ρ ) i s  p o siti v e  i n fi nit y o n  t h e  b o u n d a r y,  i. e.

li m
mi n j ∈ V ρ j → 0

I ( ρ ) = + ∞ .

A s s u m e  t h e  a b o v e  i s n ot  t r u e,  t h e r e  e xi st s  a  c o n st a nt  M > 0,  s u c h  t h at  if mi n i ∈ V ρ j = 0,  

t h e n
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M ≥ I (ρ ) =
1

2
( j,l ) ∈ E

ω j l (l o g ρ j − l o g ρ l )
2

1
d j

ρ j + 1
d l

ρ l

2

≥
1

4
( j,l ) ∈ E

ω j l (l o g ρ j − l o g ρ l )
2 m a x { ρ j , ρl } mi n

k

1

d k
.

H e n c e  f o r a n y  (j,  l) ∈ E , w e  h a v e

ω j l (l o g ρ j − l o g ρ l )
2 m a x { ρ j , ρl } ≤ 2 M < + ∞ .

Si n c e  t h e r e  e xi st s  a  j ∗ ∈ V , s u c h  t h at  ρ j ∗ = 0,  t h e  a b o v e  f o r m ul a i m pli e s t h at  f o r a n y  

l ∈ N (j ∗ ), ρ l = 0.  Si n c e  G i s c o n n e ct e d  a n d  V i s a  fi nit e  s et,  b y  it e r ati n g t h r o u g h  t h e  

n o d e s,  w e  g et  ρ 1 = · · · = ρ n = 0,  w hi c h  c o nt r a di ct s  t h e  f a ct t h at  
n
j = 1 ρ j = 1.

St e p  3,  w e  cl ai m  t h at  B i s a  c o m p a ct  s et.  T hi s  c a n  b e  e a sil y  v e ri fi e d  b e c a u s e  I i s a  

l o w e r s e mi  c o nti n u o u s  f u n cti o n, a n d  I (ρ ) = + ∞ w h e n  ρ  ∈ P (G ) \ P o ( G ). H e n c e  B i s a  

c o m p a ct  s et  i n R n .

L et  u s  c o m bi n e  a b o v e  t h r e e  st e p s.  Si n c e  (3 ) i s  a  H a milt o ni a n  s y st e m  i n P o ( G ),

E ( Ψ( t))  = E ( Ψ 0 ) =
1

2
(∇ G S ( t), ∇ G S ( t)) ρ ( t ) +

h 2

8
I ( ρ (t))  + V (ρ (t))  + W (ρ (t)) ,

t h e n

h 2

8
I (ρ (t))  = E ( Ψ 0 ) −

1

2
(∇ G S ( t), ∇ G S ( t)) ρ ( t ) − V ( ρ (t))  + W (ρ (t))

≤ E ( Ψ 0 ) − mi n
ρ ∈ P ( G )

[V ( ρ ) + W (ρ )] .

T h u s  ρ (t) ∈ B ⊂ P o ( G ) f o r  all  t > 0. ✷

N e xt,  w e  p r o v e  (iii)  a n d  (i v). F o r  (iii), si n c e  Ψ j =
√

ρ j e
i

S j
h , i t s c o nj u g at e  Ψ̄ s a ti s fi e s

Ψ̄ j =
√

ρ j e
i

S̄ j
h wi t h S̄ j = − S j .

L et  u s  l o o k at  (3 ) b y c h a n gi n g  t t o  − t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
d ρ j

dt
+

l∈ N ( j )

ω l j ( S l − S j ) θ l j ( ρ ) = 0 ;

−
d S j

dt
+

1

2
j ∈ N ( i )

ω j l ( S j − S l )
2 ∂ θ j l

∂ ρ j
+

∂

∂ ρ j
{

h 2

8
I (ρ ) + W (ρ ) + V (ρ )} = 0 .

D e n ot e  S̄ = − S , t h e n  (ρ (t), S (t)) a n d  (ρ (− t), S̄ ( − t)) s ati s fi e s  (3 ).
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F o r  (i v), if V → V α = V + α , w e  s u b stit ut e  Ψ α ( t) = Ψ( t)e i α t
h i nt o (3 ) t o  g et:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρ j

dt
+

l∈ N ( j )

ω j l [ (S l + αt ) − (S j + αt )]θ j l ( ρ ) = 0 ;

d

dt
(S j + αt ) +

1

2
l∈ N ( j )

ω j l [ (S l + αt ) − (S j + αt )] 2 ∂ θ j l

∂ ρ j
+ V j +

∂

∂ ρ j
{

h 2

8
I (ρ ) + W (ρ )}

= 0 .

T hi s  m e a n s  t h at  if (ρ,  S ) a r e  s ol uti o n s  of  (3 ) wit h  V , t h e n  S α ( t) = S + αt , ρ α ( t) = ρ (t)

a r e  s ol uti o n s  of  (3 ) wit h  V α , i. e.

Ψ α =
√

ρ α e i S α

h =
√

ρ e i S
h e i α t

h = Ψ e i α t
h .

( v ). O n  o n e  h a n d,  s u p p o s e  Ψ ∗ s ati s fi e s  (3 ), t h e n

ν =
∂

∂ ρ j

h 2

8
I ( ρ ) + V (ρ ) + W (ρ ) |ρ = ρ ∗ , f o r a n y i ∈ V .

N oti c e  t h at  E (
√

ρ ) = h 2

8 I ( ρ ) + V (ρ ) + W (ρ ). It i s si m pl e  t o  c h e c k  t h at  ρ ∗ s ati s fi e s  t h e  

K a r u s h – K u h n – T u c k e r  c o n diti o n s  of  mi ni mi z ati o n

mi n
ρ

{ E (
√

ρ ) :
n

j = 1

ρ j = 1 , ρj > 0 } ,

wit h  ν b ei n g  t h e  L a g r a n g e  m ulti pli e r.  N e xt,  w e  s h o w

ν =

n

j = 1

ν ρ ∗
j =

n

j = 1

∂

∂ ρ j
{

h 2

8
I + V + W }| ρ ∗ · ρ ∗

j

=
h 2

8

n

j = 1

∂

∂ ρ j
I| ρ ∗ ρ ∗

j +

n

j = 1

[V j +

n

l= 1

W j l ρ
∗
l ]ρ ∗

j

=
h 2

8

n

j = 1

∂

∂ ρ j
I| ρ ∗ ρ ∗

j −
h 2

8
I ( ρ ∗ ) +

h 2

8
I (ρ ∗ ) + V (ρ ∗ ) + W (ρ ∗ ) + W (ρ ∗ )

=
h 2

8

n

j = 1

∂

∂ ρ j
I| ρ ∗ ρ ∗

j − I ( ρ ∗ ) + E (
√

ρ ∗ ) + W (ρ ∗ )

= E (
√

ρ ∗ ) + E i n t (
√

ρ ∗ ) ,

( 2 7)

w h e r e  t h e  l a st e q u alit y  i s f r o m t h e  f a ct: E i n t (
√

ρ ) = W (ρ ) a n d  I (ρ ) =
n
j = 1

∂
∂ ρ j

I ( ρ ) ρ j . 

O n  t h e  ot h e r  h a n d,  s u p p o s e  ρ ∗ i s a  c riti c al  p oi nt  of  E (
√

ρ ), t h e n  t h e r e  e xi st s  λ  ∈ R , 

s u c h  t h at  λ  = ∂ { h 2

I + V + W }| ρ ∗ . Si n c e  ν = E (
√

ρ ∗ )  + E i n t (
√

ρ ∗ ),  w e  h a v e  λ  =
∂ ρ j 8
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n
j = 1

∂
∂ ρ j

{ h 2

8 I + V + W }| ρ ∗ · ρ ∗
j = E (

√
ρ ∗ )  + E i n t (

√
ρ ∗ )  = ν . T h u s  Ψ ∗ ( t) =

√
ρ ∗ e − i ν t i s 

a n  i nt e ri o r st ati o n a r y  s ol uti o n. ✷

5. 1.  G r o u n d  st at e s

Si mil a r  t o  N el s o n’ s  i d e a i n [2 3 ], w e  s h o w  t h at  t h e  st ati o n a r y  s ol uti o n  of  (3 ) i n  T h e o-

r e m 6 ( v)  i s r el at e d  t o  t h e  di s c r et e  g r o u n d  st at e  of  t h e  N L S.

C o r oll a r y  7.  If W i s a  s e mi  p o siti v e  d e fi nit e  m at ri x,  t h e n t h e st ati o n a r y  st at e  i s a  g r o u n d  

st at e  Ψ g =
√

ρ g e − i ν g t if a n d  o nl y  if

Ψ g = a r g mi n
Ψ

{ E ( Ψ) :
n

j = 1

|Ψ j |
2 = 1 } , ( 2 8)

wit h

ρ g = a r g  mi n
ρ ∈ P ( G )

E (
√

ρ ) a n d ν g = E (
√

ρ g ) + E i n t (
√

ρ g ) .

P r o of. Fr o m  T h e o r e m  6 ( v), ρ g i s a  c riti c al  p oi nt  of  mi n ρ ∈ P o ( G ) E (
√

ρ ) a n d  ν g i s d e fi n e d  

a s  a b o v e.  We  o nl y  n e e d  t o  p r o v e  Ψ g i s t h e  mi ni mi z e r  of  p r o bl e m  (2 8 ). I n f a ct,

mi n
Ψ

{ E ( Ψ) :

n

j = 1

|Ψ j |
2 = 1 } ≥ mi n

ρ ∈ P ( G )
E (

√
ρ ) ,

b e c a u s e

E ( Ψ)  =
1

4
( j,l ) ∈ E

ω j l ( S j − S l )
2 θ j l ( ρ ) +

h 2

8
I (ρ ) + V (ρ ) + W (ρ )

≥
h 2

8
I (ρ ) + V (ρ ) + W (ρ ) = E (

√
ρ ) ,

t h e  e q u alit y  h ol d s  if a n d  o nl y  if S j = S l , f o r a n y  (j,  l) ∈ E . Si n c e  G i s a  c o n n e ct e d  g r a p h,  

t h e n  a  g r o u n d  st at e  Ψ g =
√

ρ g e i S g

h h a s  t h e  f oll o wi n g st r u ct u r e:

ρ g = a r g  mi n
ρ ∈ P ( G )

E (
√

ρ ) a n d S g
1 = S g

2 = · · · = S g
n .

N e xt,  w e  s h o w  t h at  t h e  f u n cti o n E (
√

ρ ) = h 2

8 I ( ρ ) + W (ρ ) + V (ρ ) i s  st ri ctl y  c o n v e x.  If 

t hi s  i s t r u e,  w e  c a n  c o n cl u d e  t h at  ρ g i s a  u ni q u e  mi ni mi z e r,  w hi c h  i s t h e  g r o u n d  st at e.

N oti c e  t h at  W (ρ ) = 1
2

n
j = 1

n
l= 1 W j l ρ j ρ l , V (ρ ) =

n
j = 1 V j ρ j a r e  c o n v e x  f u n cti o n al s. 

S o  w e  o nl y  n e e d  t o  p r o v e

I (ρ ) i s a  st ri ct  c o n v e x  f u n cti o n al i n P o ( G ).
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We  s h o w  t hi s  r e s ult  b y  p r o vi n g

mi n
σ ∈ T ρ P o ( G )

{ σ T H e s s R n I ( ρ )σ : σ T σ = 1 } > 0 . ( 2 9)

Si n c e  t h e  H e s si a n  m at ri x  of  I i s

∂ 2

∂ ρ l ∂ ρ j
I ( ρ ) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
ρ l ρ j

ω l j tl j if l ∈ N (j ) ;

1
ρ 2

j
l∈ N ( j ) ω l j tl j if l = j ;

0 ot h e r wi s e ,

w h e r e

tl j = (
1

d l
ρ l −

1

d j
ρ j ) (l o g ρ l − l o g ρ j ) + (

1

d l
ρ l +

1

d j
ρ j ) > 0 , ( 3 0)

h e n c e

σ T H e s s R n I ( ρ )σ =
1

2
( l, j ) ∈ E

tl j { (
σ j

ρ j
) 2 + (

σ l

ρ l
) 2 − 2

σ l

ρ l

σ j

ρ j
}

=
1

2
( l, j ) ∈ E

tl j (
σ j

ρ j
−

σ l

ρ l
) 2 ≥ 0 .

S o  H e s s R n I i s a  s e mi- p o siti v e  d e fi nit e  m at ri x.

S u p p o s e  (2 9 ) i s  n ot  t r u e,  t h e r e  e xi st s  a  u nit  v e ct o r  σ ∗ ∈ T ρ P o ( G ), s u c h  t h at

σ ∗ T H e s s R n I ( ρ )σ ∗ =
1

2
( l, j ) ∈ E

tl j (
σ ∗

l

ρ l
−

σ ∗
j

ρ j
) 2 = 0 .

T h e n  
σ ∗

1

ρ 1
=

σ ∗
2

ρ 2
= · · ·

σ ∗
n

ρ n
= 0.  C o m bi ni n g  wit h  

n
j = 1 σ ∗

j = 0,  w e  h a v e  σ ∗
1 = σ ∗

2 = · · · =

σ ∗
n = 0,  w hi c h  c o nt r a di ct s  t h at  σ ∗ i s a  u nit  v e ct o r. ✷

It i s w o rt h  m e nti o ni n g  t h at  w e  h a v e  t h e  f oll o wi n g ei g e n v al u e  p r o bl e m  at  t h e  g r o u n d  

st at e:

ν Ψ j = −
h 2

2
Δ G Ψ j + V j Ψ j + Ψ j

n

l= 1

W j l |Ψ l |
2 , ( Ψ j )

n
j = 1 ∈ R n . ( 3 1)

T h e  s ol uti o n  of  (3 1 ) i s  t h e  g r o u n d  st at e  c o n fi g u r ati o n,  w h e r e  |Ψ | =
√

ρ g a n d  ν = E (
√

ρ g )  +

E i n t (
√

ρ g ) i s  t h e  a s s o ci at e d  e n e r g y  l e v el.
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6.  Li n e a ri z e d  p r o bl e m s

I n t hi s  s e cti o n,  w e  st u d y  t h e  li n e a ri z e d p r o bl e m  n e a r  t h e  g r o u n d  st at e.  C o n si d e r  t h e  

H a milt o ni a n  s y st e m

d

dt

ρ
S

= J
∂
∂ ρ H
∂

∂ S H
.

T h e  g r o u n d  st at e  (ρ g , S g ( t)) c a n  b e  vi e w e d  a s  it s e q uili b ri u m  s ol uti o n,  w hi c h  i s cl e a rl y  

t h e  c riti c al  p oi nt  of  H a milt o ni a n

H (ρ,  S ) =
1

2
(∇ G S, ∇ G S ) ρ +

h 2

8
I (ρ ) +

1

2
ρ T W ρ + V T ρ .

C o n si d e r  t h e  li n e a ri z e d p r o bl e m  of  (3 )

d

dt
z = H ( 2 ) z ,

w h e r e  z ∈ R 2 n , H ( 2 ) ∈ R 2 n × 2 n i s t h e  H a milt o ni a n  m at ri x at  t h e  e q uili b ri u m  (ρ g , S g ).

B e c a u s e  (S g
j ) n

j = 1 i s a  c o n st a nt  v e ct o r,  w e  o bt ai n  a  si m pl e  st r u ct u r e  f o r H ( 2 ) :

H ( 2 ) : = J · H e s s R 2 n H ( ρ,  S )|( ρ g , S g ) =
0 L 2 ( ρ g )

− W − h 2

8 H e s s R n I ( ρ g ) 0
. ( 3 2)

We  e sti m at e  t h e  ei g e n v al u e  of  (3 2 ) i n  a  p a rti c ul a r  c a s e:

hi
d Ψ j

dt
= −

h 2

2
Δ G Ψ |j + α Ψ j |Ψ j |

2 , ( 3 3)

w h e r e  G i s a  d - di m e n si o n al T o r u s  g r a p h.  T hi s  e q u ati o n  i s o bt ai n e d  f r o m (2 4 ) b y  t a ki n g  

V  = 0 a n d  W  = α I. It c a n  b e  vi e w e d  a s  a  di s c r et e  v e r si o n  of  G r o s s – Pit a e v s kii  e q u ati o n  

( G P E),  w hi c h  h a s  b e e n  p r o p o s e d  t o  m o d el  t h e  B o s e – Ei n st ei n  c o n d e n s at e.

P r o p o siti o n.  F o r  di s c r et e  G P E  (3 3 ), H ( 2 ) h a s  ei g e n v al u e s

α +
k : =  +i

1

4
λ 2

k h 2 +
α λ k

n
, α−k : = − i

1

4
λ 2

k h 2 +
α λ k

n
,

wit h  a s s o ci at e d  ei g e n v e ct o r s

w +
k : =

v k

i n 2 h 2

4 + α n
λ k

v k
, w−k : =

i vk

n 2 h 2

4 + α n
λ k

v k
∈ C 2 n ,

i. e.
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H ( 2 ) w +
k = α +

k w +
k , H( 2 ) w −

k = α −
k w −

k .

H e r e  L v k = λ k v k . λ k ≥ 0 , v k ∈ R n a r e  k -t h ei g e n v al u e  a n d  ei g e n v e ct o r  of  g r a p h  L a pl a ci a n  

m at ri x  L  = ( L (j,  l)) 1 ≤ j,l ≤ n ∈ R n × n , w h e r e  L (j,  l) =

⎧
⎪⎪⎨

⎪⎪⎩

− ω j l if l ∈ N (j );

l∈ N ( j ) ω j l if l = j ;

0 ot h e r wi s e.

P r o of. D e n ot e  1 = ( 1
n ) n

j = 1 . Fr o m  K a r u s h – K u h n – T u c k e r  c o n diti o n s,  o n e  c a n  e a sil y  fi n d  

ρ g = 1 i s t h e  c riti c al  p oi nt  of  { h 2

8 I ( ρ ) + α
2

n
j = 1 ρ 2

j : ρ  ∈ P (G )} . I n t hi s  c a s e,  L 1 ( 1 )  =

2 n L , L 2 ( 1 )  = 1
n L , w h e r e  L  = 1

d D T D . S o  t h e  m at ri x  (3 2 ) b e c o m e s

H ( 2 ) = J · H e s s R 2 n H ( ρ,  S )|( 1 , S g ) =
0 1

n L

− α I − n h 2

4 L 0
. ( 3 4)

I n f a ct, w e  c a n  fi n d  all  ei g e n v al u e s  a n d  ei g e n v e ct o r s  of  (3 2 ). N oti c e  t h at  L  ∈ R n × n i s a  

s e mi- p o siti v e  m at ri x,  a n d  d e n ot e  λ k ∈ R , v k ∈ R n , a s  t h e  k -t h ei g e n v al u e  a n d  ei g e n v e ct o r  

of  L . T h e r ef o r e  o n e  c a n  c h e c k  t h at

H ( 2 ) w +
k =

0 1
n L

− α I − n h 2

4 L 0

v k

i n 2 h 2

4 + α n
λ k

v k

=
i 1

n
n 2 h 2

4 + α n
λ k

· λ k v k

− α v k − n h 2

4 λ k v k

= + i
λ 2

k h 2

4
+

α λ k

n

v k

i n 2 h 2

4 + α n
λ k

v k

= α +
k w +

k

Si mil a rl y,  H ( 2 ) w −
k = α −

k w −
k . ✷

Fr o m  t h e s e  ei g e n v al u e s,  w h e n  α > − n
4 λ k h 2 , t h e  s ol uti o n  ρ  = 1 , ∇ G S = 0 i s  st a bl e  f o r 

(3 3 ). W h e n  α = − n
4 λ k h 2 , bif u r c ati o n s  m a y  h a p p e n.

7.  E x a m pl e s

Fi n all y,  w e  d e m o n st r at e  (3 ) a n d  (3 1 ) b y t w o  n u m e ri c al  e x a m pl e s.

E x a m pl e  1  ( N L S  o n  a  t w o p oi nt s  g r a p h ).  C o n si d e r  a  H a milt o ni a n:

H (ρ,  S ) =
1

2
(S 1 − S 2 ) 2 θ 1 2 ( ρ ) +

h 2

8
(l o g ρ 1 − l o g ρ 2 ) 2 θ 1 2 ( ρ ) + V 1 ρ 1 + V 2 ρ 2 ,

w h e r e  V 1 = V 2 = c . I n t hi s  c a s e,  t h e  s ol uti o n  of  (3 ), (ρ 1 ( t), ρ 2 ( t), S 1 ( t) − S 2 ( t)) ∈ R 3 , 

c a n  b e  pl ott e d  u si n g  a  p h a s e  p o rt r ait.  I n Fi g. 1 , e a c h  ci r cl e  r e p r e s e nt s  a  t r aj e ct o r y  of  (3 ). 
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Fi g. 1. T h e  p h a s e  p o r t r ai t of ( ρ 1 ( t ) , ρ2 ( t ) , S1 ( t ) − S 2 ( t ) )  wi t h  di ff e r e n t i ni ti al c o n di ti o n s.

Fi g. 2. T h e  pl o t  of  g r o u n d  s t a t e  ρ g . T h e  bl u e,  bl a c k,  r e d  c u r v e s  r e p r e s e n t  h  = 1,  0 .1,  0 .0 1,  r e s p e c ti v el y.  T h e  
c ol o r  v e r si o n  of  t h e  fi g u r e  i s o n  t h e  w e b  v e r si o n  of  t hi s  p a p e r.

T h e  g r o u n d  st at e  ( 1
2 , 12 , 0) i s  i n t h e  c e nt e r  of  all  t h e s e  ci r cl e s,  s o  it i s s p e ct r all y  st a bl e.

E x a m pl e  2  ( G r o u n d  st at e ).  We  d e m o n st r at e  t h e  g r o u n d  st at e s  o n  a  1- D  l atti c e g r a p h.  

S et  W  = 0.  C o n si d e r  t h e  f oll o wi n g mi ni mi z ati o n  p r o bl e m

ρ g = a r g  mi n
ρ ∈ P ( G )

n

j = 1

V j ρ j +
h 2

8
I (ρ ) ,

w h e r e  V j =
x 2

j

2 . We  c o m p ut e  t h e  a b o v e  mi ni mi z e r  n u m e ri c all y  [1 7 ] i n t h e  i nt e r v al [− 5 , 5]

wit h  n  = 2 0.  Fr o m  Fi g. 2 , w e  o b s e r v e  t h at  t h e  g r o u n d  st at e  a p p r o a c h e s  t o  t h e  d elt a  

m e a s u r e  s u p p o rt e d  at  0 w h e n  h  → 0.  T hi s  c a pt u r e s  t h e  e x a ctl y  s a m e  e ff e ct  i n c o nti n u o u s  

st at e s,  i n w hi c h  t h e  g r o u n d  st at e  i s a  G a u s si a n  di st ri b uti o n  wit h  v a ri a n c e  h 2 [2 ].

8.  C o n cl u si o n s

I n t hi s  p a p e r  w e  h a v e  i nt r o d u c e d a  n e w  N L S  o n  fi nit e  g r a p h s  (3 ). C o m p a r e d  t o  t h e  

e xi sti n g  w o r k,  (3 ) h a s  di sti n ct  f e at u r e s: Fi r st,  t h e  di s c r et e  N L S  i s i nt r o d u c e d vi a  di s c r et e  

o pti m al  t r a n s p o rt.  T hi s  f o r m ul ati o n p r o vi d e s  a  w a y  t o  st u d y  t h e  di s c r et e  N L S  f r o m 

g e o m et ri c  vi e w p oi nt.  T h e  i n v e r s e of  t h e  w ei g ht e d  L a pl a ci a n  L (ρ ) − 1 i n d u c e s t h e  m et ri c  

o n  t h e  p r o b a bilit y  m a nif ol d.  S e c o n d,  t h e  di s c r et e  Fi s h e r  i nf o r m ati o n I (ρ ) i s  a p pli e d  t o  

c o n st r u ct  H a milt o ni a n  s y st e m.  A s  N el s o n  d e d u c e d  i n hi s  w o r k,  i nt r o d u ci n g t h e  Fi s h e r  

i nf o r m ati o n t o  t h e  L a g r a n gi a n  i s e q ui v al e nt  t o  a d di n g  n oi s e  p e rt u r b ati o n s  t o  t h e  p at h s,  
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y et  t h e  H a milt o ni a n  st r u ct u r e  i s still  r et ai n e d.  T hi s  p r o vi d e s  a  v al u a bl e  a v e n u e  t o  st u d y  

r a n d o m  p e rt u r b ati o n s  t o  H a milt o ni a n  s y st e m s,  w hi c h  i s o n e  of  t h e  m oti v ati o n s  f o r u s  t o  

c a r r y  o ut  t h e  p r e s e nt  i n v e sti g ati o n. C o m p a r e d  t o  ot h e r  e xi sti n g  w a y s  of  a d di n g  r a n d o m  

p e rt u r b ati o n s,  w hi c h  oft e n  d e st r o y  t h e  H a milt o ni a n  st r u ct u r e,  t hi s  st r at e g y  h a s  p r ef e r r e d  

f e at u r e s all o wi n g  (3 ) t o  mi mi c  m a n y  i nt e r e sti n g p r o p e rti e s  of  t h e  S c h r ö di n g e r  e q u ati o n  

i n t h e  c o nti n u o u s  c a s e,  s u c h  a s  c o n s e r v ati o n  m a s s  a n d  e n e r g y.  L a st  b ut  n ot  t h e  l e a st, 

it i nt r o d u c e s t h e  g r o u n d  st at e  o n  g r a p h  gi v e n  i n (3 1 ). St u d yi n g  t h e  st a bilit y  p r o bl e m  

a r o u n d  t h e  di s c r et e  g r o u n d  st at e  i nt r o d u c e s a  H a milt o ni a n  m at ri x,  w hi c h  i s a  s y m pl e cti c  

c o m p o siti o n  of  t w o  m o di fi e d  g r a p h  L a pl a ci a n  m at ri c e s.  T h e s e  gi v e  i n si g ht s of  t h e  s y st e m  

t h at  c a n  b e  e x pl o r e d  i n t h e  f ut u r e.
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