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Abstract
Wepropose an evolutionary dynamics for population gameswith discrete strategy sets,
inspired by optimal transport theory and mean field games. The proposed dynamics
is the Smith dynamics with strategy graph structure, in which payoffs are modified by
logarithmic terms. The dynamics can be described as a Fokker–Planck equation on a
discrete strategy set. For potential games, the dynamics is a gradient flow system under
a Riemannian metric from optimal transport theory. The stability of the dynamics is
studied through optimal transport metric tensor, free energy and Fisher information.

Keywords Evolutionary game theory · Optimal transport · Mean field games ·
Fokker–Planck equations

1 Introduction

Population games are introduced as a framework to model population behaviors and
study strategic interactions in populations by extending finite player games (Nash
1950; Sigmund and Nowak 1999; Von Neumann andMorgenstern 2007). It has funda-
mental impact on game theory related to social networks, evolution of biology species,
virus and cancer, etc (Huang et al. 2015;Mertikopoulos and Sandholm 2016; Shah and
Shin 2010; Wu et al. 2014). Nash equilibrium (NE) describes a status that no player in
population is willing to change his/her strategy unilaterally. To investigate stabilities of
NEs, evolutionary game theory (Nowak 2006; Sandholm 2012b; Sigmund and Nowak
1999) has been developed in the last several decades. Researchers from various fields
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(economics, biology, etc) design different dynamics, called mean dynamics or evo-
lutionary dynamics (Hofbauer and Sigmund 2003; Sandholm 2012a), under various
assumptions to describe population behaviors. Important examples include Replicator,
Best-response, Logit and Smith dynamics (Matsui 1992; Shah and Shin 2010; Smith
1984), just to name a few. A special class of games, named potential games (Hofbauer
and Sigmund 1988; Monderer and Shapley 1996; Sandholm 2010), are widely con-
sidered. Heuristically, potential games describe the situation that all players face the
same payoff function, called potential. Thus, maximizing each player’s own payoff is
equivalent to maximizing the potential. In this case, NEs correspond to maximizers of
the potential, which gives natural connections between mean dynamics and gradient
flows obtained from minimizing the negative potential. An important example is the
Replicator dynamics, which is a gradient flow of the negative potential in the prob-
ability space (simplex) with a Shahshahani metric (Akin 1979; Mertikopoulos and
Sandholm 2016; Shahshahani 1979).

To study evolutionary dynamics, modeling uncertainties in individual players’ deci-
sion processes plays vital roles. Usually such uncertainties are introduced by the
notion of noisy potential, i.e., the expected payoff added with Shannon–Boltzmann
entropy. Onewell-known example is the Logit dynamics (Fudenberg and Levine 1998;
Hofbauer and Sandholm 2002, 2007; Sandholm 2010), whose solution is forced to
converge to critical points of the noisy potential. On the other hand, for population
games with continuous strategy sets, there is a natural way to introduce uncertainties
by adding white noise, see mean field games introduced by Cardaliaguet (2010), Lasry
and Lions (2007) and Best-reply dynamics (Degond et al. 2014). Their results relate to
Smith dynamics (1984) originated from studying traffic flows (Smith 1984) by the fact
that the Smith dynamics can be viewed as a discrete continuity equation. Mean field
games have continuous strategy sets (Blanchet and Carlier 2012, 2014). Each player
is assumed to make decisions according to a stochastic process instead of making a
one-shot decision. More specifically, individual players change their pure strategies
locally and simultaneously in a continuous fashion according to the direction thatmax-
imizes their own payoff functions most rapidly, and randomness is introduced in the
form of white noise perturbation. The resulting dynamics for individual players forms
a mean field type stochastic differential equation, whose probability density func-
tion evolves according to the Fokker–Planck equation, i.e., continuity equation with
diffusion processes. Here, mean field serves as a mediator for aggregating individual
players’ behaviors. For potential games (Degond et al. 2014), Fokker–Planck equations
can also be viewed as gradient flows of negative noisy potential in the probability space.

The aim of this paper is to further the mathematical understandings of optimal
transport theory in mean field games and populations games, especially when the
strategy set is discrete. We propose an evolutionary equation via gradient flow in
discrete optimal transport metric tensor. We note that it is not a straightforward task
to transform the theory on games with continuous strategy set directly to discrete
settings. This is due to the fact that the discrete strategy set is no longer a length
space, a space that one can define length of curves, and morph one curve to another
in a continuous fashion. To proceed, we employ key tools developed in Chow et al.
(2017a, b), Li (2016) [Similar topics are discussed in Chow et al. (2012), Erbar and
Maas (2012), Maas (2011)]. More specifically, we impose a Riemannian metric tensor
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on the probability space of the strategy. With the Riemannian structure in probability
simplex, we derive the gradient flow of the negative noisy potential as mean dynamics.

In detail, let us consider a population game with finite discrete strategy set S =
{1, . . . , n}. Denote the set of population state

P(S) =
{

(ρi )
n
i=1 ∈ R

n :
n∑

i=1

ρi = 1 , ρi ≥ 0 , i ∈ S

}
,

and payoff function Fi : P(S) → R, for any i ∈ S. The derived mean dynamics is
given by

dρi

dt
=
∑
j∈N (i)

1

d j
ρ j [Fi (ρ) − Fj (ρ) + β(log ρ j − log ρi )]+

−
∑
j∈N (i)

1

di
ρi [Fj (ρ) − Fi (ρ) + β(log ρi − log ρ j )]+ , (1)

where β ≥ 0 is the strength of uncertainty1, ρi (t) is the probability at time t of strategy
i ∈ S, [·]+ = max{·, 0}, j ∈ N (i) if j can be achieved by players changing their
strategies from i and di =∑ j∈N (i) 1 represents the degree of graph at note i . We call
(1) Fokker–Planck equation of a game.

Dynamics (1) has many appealing features. For potential games, the dynamics is
shown to be a gradient flow,whose equilibria are discreteGibbsmeasures. Their stabil-
ity properties can also be studied by leveraging twonotions, namely relative free energy
and relative Fisher information (Frieden 2004; Villani 2008). Through their relations
with optimal transport metric tensor, we show that the relative entropy converges to
0 as t goes to infinity, and the solution converges to the Gibbs measure exponentially
fast. For general games, (1) is not a gradient flow, which may exhibit complicated
limiting behaviors including Hopf bifurcations. And the noise level becomes a natural
parameter to introduce such bifurcations.

When β = 0 and the strategy graph is complete, then dynamics (1) is exactly
the Smith dynamics. When β > 0, (1) still fits into the Smith dynamics framework
with modified payoff functions. From this viewpoint, many mathematical properties
of dynamics (1), including the convergence to NEs, can be derived using existing
methods for Smith dynamics Sandholm (2010). In addition, one by-product of our
model is that the Smith dynamics can be viewed as gradient flows of negative potentials
under a optimal transport metric tensor. So many studies in Sandholm (2010) have
natural analog or extensions in optimal transport. On the other hand, while both Logit
dynamics and the proposed model converge to Gibbs measures, they differ in the
following aspects: (i) For Logit dynamics of potential games, the noisy potential is
the Lyapunov function, while for (1), it is the objective function of a gradient flow.
This additional property gives rise to the exponential convergence results; (ii) in the
formulation, the Logit dynamics depends on the information of all strategies (all Fi s),

1 β represents the inverse of temperature.
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while (1) only depends on the local information (neighboring Fi s). Last but not least,
the proposed dynamics depends on the graph structure of strategy set,which is different
from the Replicator dynamics (Coucheney et al. 2015; Leslie and Collins 2005), in
which all discrete strategies are treated equally.

The arrangement of this paper is as follows. In Sect. 2, we give a brief introduction
to population games on discrete sets. In Sect. 3, we derive (1) by an optimal transport
metric defined on the simplex set and introduce theMarkov process associatedwith (1)
from the modeling perspective. In Sect. 4, we study (1)’s longtime behavior by relative
free energy and relative Fisher information. In Sect. 5, we discuss the application of
our dynamics by working on some well-known population games.

2 Preliminaries

Consider a game played by a continuum of players. Each player in the population
selects a pure strategy from the discrete strategy set S = {1, . . . , n}. The aggregated
state of the population can be described by the population state ρ = (ρi )

n
i=1 ∈ P(S),

where ρi represents the proportion of players choosing pure strategy i and P(S) is a
probability space (simplex):

P(S) =
{

(ρi )
n
i=1 ∈ R

n :
n∑

i=1

ρi = 1 , 0 ≤ ρi ≤ 1 , i ∈ S

}
.

The game assumes that each player’s payoff is independent of his/her identity
(autonomous game). Thus, all players choosing strategy i have the continuous payoff
function Fi : P(S) → R.

A population state ρ∗ ∈ P(S) is a Nash equilibrium of the population game if

ρ∗
i > 0 implies that Fi (ρ

∗) ≥ Fj (ρ
∗) , for all j ∈ S.

The following type of population games has particular importance, inwhichNEs enjoy
various prominent properties.

A population game is named a potential game, if there exists a differentiable poten-
tial function F : P(S) → R, such that ∂

∂ρi
F(ρ) = Fi (ρ), for all i ∈ S. It is a

well-known fact that the NEs of a potential game are the stationary points of F(ρ).

Example Suppose that a unit mass of agents are randomly matched to play symmetric
normal-form game with payoff matrix A ∈ R

n×n . At population state ρ, a player
choosing strategy i receives payoff equal to the expectation of the others, i.e., Fi (ρ) =∑

j∈S ai jρ j . In particular, if the payoff matrix A is symmetric, then the game becomes

a potential game with potential function F(ρ) = 1
2ρ

TAρ, since ∂
∂ρi

F(ρ) = Fi (ρ).
Given a potential game with potential F , define the noisy potential

F̄(ρ) := F(ρ) − β

n∑
i=1

ρi log ρi , β > 0 ,
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which is the summation of potential and Shannon–Boltzmann entropy. In information
theory, it has been known for a long time that the entropy is away tomodel uncertainties
(Frieden 2004). In the context of population games, such uncertainties may refer to
players’ irrational behaviors, making mistakes or risk-taking behaviors. In optimal
transport theory, the negative noisy potential is usually called the free energy (Villani
2003, 2008).

The problem of maximizing each player’s payoff with uncertainties is equivalent
to maximizing the noisy potential (minimizing the free energy)

min{−F̄(ρ) : ρ ∈ P(S)}.

Wecall the stationary pointsρ∗ of the aboveminimization the discreteGibbsmeasures,
i.e., ρ∗ solves the following fixed point problem

ρ∗
i = 1

K
e

Fi (ρ
∗)

β , for any i ∈ S,where K =
n∑
j=1

e
Fj (ρ

∗)

β . (2)

3 Evolutionary Dynamics Via Discrete Optimal Transport

In this section, we first introduce an optimal transport metric for population games.
Based on the metric, we derive a new interpretation of Smith dynamics with modified
payoff function. For potential games, the Smith dynamics can be viewed as gradient
flows.

3.1 Optimal Transport Metric for Games

We first introduce the optimal transport metric tensor in probability simplex.
We start with the construction of strategy graphs. A strategy graph G = (S, E) is

a neighborhood structure imposed on the strategy set S = {1, . . . , n}. Two vertices
i, j ∈ S are connected inG if players who currently choose strategy i is able to switch
to strategy j . Denote the neighborhood of i by

N (i) = { j ∈ S : (i, j) ∈ E} .

For many games, every two strategies are connected, making G a complete graph. In
other words, N (i) = S \ {i}, for any i ∈ S. For example, the strategy set of Prisoner
Dilemma game is either cooperation (C) or defection (D), i.e., S = {C, D}. Thus, the
strategy graph is

DC

FD(ρ)FC(ρ)
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For any given strategy graph G, we can introduce an optimal transport metric on
the simplex P(S). Denote the interior of P(S) by Po(S).

Given a function � : S → R, define ∇� : S × S → R as

∇�i j =
{

�i − � j if (i, j) ∈ E ;
0 otherwise .

Let m : S × S → R be an anti-symmetric flux function such that mi j = −mi j . The
divergence of m, denoted as div(m) : S → R, is defined by

div(m)i = −
∑
j∈N (i)

mi j .

For the purpose of defining our distance function, we will use a particular flux function

mi j := θi j (ρ)∇�i j ,

where θi j (ρ) represents the discrete probability on edge (i, j), defined by

θi j (ρ) =

⎧⎪⎪⎨
⎪⎪⎩

1
d j

ρ j F̄ j (ρ) < F̄i (ρ) ;
1
di

ρi F̄ j (ρ) > F̄i (ρ) ;
1
2

(
ρi
di

+ ρ j
d j

)
F̄j (ρ) = F̄i (ρ) .

(3)

Here, di =∑ j∈N (i) 1 is the degree of graph at node i and F̄i (ρ) = Fi (ρ) − β log ρi .

Given two potential vector fields ∇�, ∇�̃, define

(∇�,∇�̃)ρ := 1

2

∑
(i, j)∈E

(�i − � j )(�̃i − �̃ j )θi j (ρ) , (4)

where 1
2 is applied because each edge is summed twice, i.e., (i, j), ( j, i) ∈ E . The

above definitions provide the following distance function on Po(S).

Definition 1 Given two discrete probability functions ρ0, ρ1 ∈ Po(S), theWasserstein
metric W is defined by:

W (ρ0, ρ1)2 = inf

{∫ 1

0
(∇�(t),∇�(t))ρ(t)dt : dρ

dt
+ div(ρ∇�) = 0

ρ(0) = ρ0, ρ(1) = ρ1
}

. (5)

Here, the infimum is taken over pairs (ρ(t),�(t)) with ρ ∈ H1((0, 1),Rn) and
� : [0, 1] → R

n measurable.
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TheWasserstein metric induces a Riemannian metric tensor in the interior of prob-
ability simplex. Consider the tangent space at a point ρ ∈ Po(S):

TρPo(S) =
{

(σi )
n
i=1 ∈ R

n :
n∑

i=1

σi = 0

}
.

We next identify a potential vector � ∈ R
n with a tangent vector σ ∈ Po(S).

Lemma 2 For given σ ∈ TρPo(S), there exists a unique function �, up to a constant
shift, such that

σ = − div(ρ∇�).

Proof We prove the result by rewriting the operator −div(ρ∇) into a matrix form.
Denote

L(ρ) = DT�(ρ)D ∈ R
n×n,

where D ∈ R
|E |×n is the discrete gradient operator

D(i, j)∈E,k∈V =

⎧⎪⎨
⎪⎩

√
ωi j , if i = k, i > j

−√
ωi j , if j = k, i > j

0, otherwise;

−DT ∈ R
n×|E | is the discrete divergence operator, and �(ρ) ∈ R

|E |×|E | is a weight
matrix

�(ρ)(i, j)∈E,(k,l)∈E =
{

θi j (ρ) if (i, j) = (k, l) ∈ E

0 otherwise.

Using this matrix notation, we prove that −div(ρ∇�) = L(ρ)� = σ has a unique
solution for � up to a constant shrift.

If ρ ∈ Po(G), all diagonal entries of the weight matrix�(ρ) are nonzero. Consider

�TL(ρ)� = 1

2

∑
(i, j)∈E

ωi j (�i − � j )
2θi j (ρ) = 0.

Since ρi > 0 for any i ∈ V and the strategy graph is connected, �1 = · · · = �n is
the only solution of above equation. Thus, 0 must be the simple eigenvalue of L(ρ)

with eigenvector (1, . . . , 1)T. Since Ker
(
L(ρ)

) = {(1, . . . , 1)T},

R
n/ker(L(ρ)) ∼= Ran(L(ρ)) = TρPo(G).

Thus, there exists a unique solution of � up to a constant shrift. 
�
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Based on Lemma 2, we write

L(ρ) = T

⎛
⎜⎜⎜⎝
0

λsec(L(ρ))

. . .

λmax(L(ρ))

⎞
⎟⎟⎟⎠ T−1 ,

where 0 < λsec(L(ρ)) ≤ · · · ≤ λmax(L(ρ)) are eigenvalues of L(ρ) arranged in
ascending order, and T is its corresponding eigenvector matrix.We denote the pseudo-
inverse of L(ρ) by

L(ρ)−1 = T

⎛
⎜⎜⎜⎝
0

1
λsecL(ρ)

. . .
1

λmaxL(ρ)

⎞
⎟⎟⎟⎠ T−1 .

Here, the matrix L(ρ)−1 endows an inner product on TρPo(G).

Definition 3 For any two tangent vectors σ 1, σ 2 ∈ TρPo(S), define the inner product
gW : TρPo(S) × TρPo(S) → R by

gWρ (σ, σ̃ ) := σ TL(ρ)−1σ̃ = �TL(ρ)�̃ = 1

2

∑
(i, j)∈E

θi j (ρ)(�i − � j )(�̃i − �̃ j ) ,

where σ = L(ρ)� and σ̃ = L(ρ)�̃.

Under this inner product, we can formulate the Wasserstein metric (5) as a geometric
action function

W (ρ0, ρ1)2 = inf
ρ(t)∈C

{∫ 1

0
ρ̇TL(ρ)−1ρ̇dt : ρ(0) = ρ0, ρ(1) = ρ1

}
, (6)

whereC is the set of all continuously differentiable curves inPo(S). Thus, (Po(S), gW )

is a finite-dimensional Riemannian manifold (Li 2018). In particular, we call gWρ the
optimal transport metric tensor.

3.2 Fokker–Planck Equations as Evolutionary Dynamics

We shall derive (1) as a gradient flow of the free energy on the Riemannian manifold
(Po(S), gW ).

Theorem 4 Given a potential gamewith strategy graph G = (S, E), potentialF(ρ) ∈
C2(Rn) and a constant β ≥ 0. Then, the gradient flow of free energy

−F(ρ) + β

n∑
i=1

ρi log ρi
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on the Riemannian manifold (Po(S), gW ) is the Fokker–Planck equation

dρi

dt
=
∑
j∈N (i)

1

d j
ρ j [Fi (ρ) − Fj (ρ) + β(log ρ j − log ρi )]+

−
∑
j∈N (i)

1

di
ρi [Fj (ρ) − Fi (ρ) + β(log ρi − log ρ j )]+ ,

for any i ∈ S. In addition, for any initial ρ0 ∈ Po(S), there exists a unique solution
ρ(t) : [0,∞) → Po(S). And the free energy is a Lyapunov function. Moreover, if
ρ∞ = limt→∞ ρ(t) exists, ρ∞ is one of the Gibbs measures satisfying (2).

Remark 1 We note that if β = 0 andG is a complete graph, the derived Fokker–Planck
equation is the Smith dynamic (1984) by dividing a constant ratio n.

Remark 2 The strategy graph G is different from the one in evolutionary graph games
studied in Allen and Nowak (2014), Lieberman et al. (2005), Szabo and Fath (2007).
They mainly consider a spatial space as the graph, while our graph relates to the
strategy set.

Proof We show that (1) is a gradient flow. For any σ ∈ TρPo(S), there exists �, such

that σ = −div(ρ∇�). Since dρ

dt =
(
dρi
dt

)n
i=1

is in TρPo(S). By Definition 3, we have

gWρ

(
dρ

dt
, σ

)
=

n∑
i=1

dρi
dt

�i . (7)

On the other hand, we have

dF̄(ρ) · σ =
n∑

i=1

∂

∂ρi
F̄(ρ) · σi = −

n∑
i=1

F̄i (ρ)div(ρ∇�)i

= (∇ F̄(ρ),∇�)ρ = −
n∑

i=1

�idiv(ρ∇ F̄(ρ))i . (8)

Combining (7) and (8), and the definition of gradient flow of −F̄(ρ) on the manifold,
we obtain

0 = gWρ

(
dρ

dt
, σ

)
− dF̄(ρ) · σ

=
n∑

i=1

{
dρi
dt

+ div(ρ∇ F̄(ρ))i

}
�i .
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Since the above formula is true for all (�i )
n
i=1 ∈ R

n ,

dρi
dt

+
∑
j∈N (i)

θi j (ρ)
(
F̄j (ρ) − F̄i (ρ)

) = 0

holds for all i ∈ V . Substituting θi j defined in (3) into the above formula, we derive
(1). The rest of the proof are in Chow et al. (2017a), Li (2016), see details there. 
�

We can further extend (1) as mean dynamics to model general population games
without potential. Although (1) can no longer be viewed as gradient flows of any sort
in this case, yet it is a system of well-defined ordinary differential equations in P(S).

Corollary 5 Given a population game with strategy graph G = (S, E) and a constant
β ≥ 0. Assumepayoff function F : P(S) → R

n is continuous. For any initial condition
ρ0 ∈ Po(S), the Fokker–Planck equation

dρi

dt
=
∑
j∈N (i)

1

d j
ρ j [Fi (ρ) − Fj (ρ) + β(log ρ j − log ρi )]+

−
∑
j∈N (i)

1

di
ρi [Fj (ρ) − Fi (ρ) + β(log ρi − log ρ j )]+ ,

is a well-defined flow in Po(S).

The proof is similar to that of Theorem 4 and hence omitted.
It is worth mentioning that, for potential games, there may exist multiple Gibbs

measures as equilibria of (1). For non-potential games, there exist even more com-
plicated phenomena than equilibria, for example, invariant sets. We illustrate this by
a modified Rock–Scissors–Paper game in Sect. 5, for which Hopf bifurcation exists
with respect to the parameter β.

Remark 3 (Links with existing dynamics) In the literature, there are discussions of the
relation between the dynamics’ rest points and Gibbs measure for various evolution-
ary dynamics, see Sandholm (2010). For example, Leslie and Collins (2005) study
perturbed Best-response dynamics, and Coucheney et al. (2015) discuss the issue for
perturbed Replicator dynamics. In these dynamics, the perturbations are driven by
entropy.

We compare the proposed dynamics (FPE) with some existing game dynamics
(entropy perturbed Replicator dynamics and Logit dynamics). Firstly, the rest points
of FPE, entropy perturbed Replicator dynamics (Coucheney et al. 2015) and Logit
dynamics, are the same, i.e., Gibbs measures. Secondly, the dynamical property of
these dynamics is different. For potential games, (i) the FPE, Replicator dynamics are
gradient flows, while the Logit is not; (ii) if the potential is given by entropy only, the
Replicator dynamics is the Hessian flow (Newton method) in the probability set, while
the FPE is not. This comes from the difference of the geometry of Shahshahani (Fisher–
Rao) metric and Wasserstein metric. The Shahshahani metric is given by Hessian
operator of entropy. It is a symmetric metric tensor treating all discrete strategy states
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equally. The Wasserstein metric is built on the transportation of measures on graphs.
If the graph is not a complete graph, the Wasserstein metric tensor is not symmetric
for discrete strategies, which results in asymmetrical dynamics.

We give an example for illustrating these differences. Let n = 3. Denote F(ρ) =
−∑3

i=1 ρi log ρi and the Gibbs measure ρ∗ = ( 13 ,
1
3 ,

1
3 ). The Logit dynamics satisfies

ρ̇i = 1

3
− ρi , i = 1, 2, 3.

The Replicator dynamics is given by

ρ̇i = ρi

(
log ρi + 1 −

n∑
i=1

ρi log ρi

)
, i = 1, 2, 3.

The FPE follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ̇1 = 1
2 (log ρ2 − log ρ1)+ρ2 − (log ρ1 − log ρ2)+ρ1

ρ̇1 = (log ρ1 − log ρ2)+ρ1 + (log ρ3 − log ρ2)+ρ3

− 1
2

(
(log ρ2 − log ρ1)+ + (log ρ2 − log ρ3)+

)
ρ2

ρ̇3 = 1
2 (log ρ2 − log ρ3)+ρ2 − (log ρ3 − log ρ2)+ρ3

.

for the following asymmetrical strategy graph

1 2 3

The vector fields of the three equations are plotted in the following figures. We
observe that the vector fields of Logit and Replicator dynamics are symmetric, while
the vector field of FPE depends on the structure of strategy graph. In this case, because
strategy (1) and strategy (3) are disconnected, the vector field of FPE is not symmetric,
i.e., strategy 2 behaves differently from strategy 1, 3. This demonstrates how the
behavior of the dynamics is affected by the underlying strategy graph (Fig. 1).
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Fig. 1 Comparison of vector fields in different dynamics. a Logit, b replicator, c FPE
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Likewise, the structure of the strategy graph determines the behavior of Smith
dynamics as well, even if all states’ payoff are given equally. See more examples in
Sect. 5.

3.3 Markov Process

In this subsection, we look at Fokker–Planck equation (1) from the probabilistic view-
point. More specifically, we present a Markov process whose transition function is
given by (1). From the modeling perspective, such a Markov process models individ-
ual player’s decision process that is myopic, irrational and locally greedy. TheMarkov
process Xβ(t) is defined as

Pr(Xβ(t + h) = j | Xβ(t) = i)

=

⎧⎪⎨
⎪⎩

1
d j

(F̄j (ρ) − F̄i (ρ))+h + o(h) , if j ∈ N (i) ;
1 −∑ j∈N (i)

1
di

(F̄j (ρ) − F̄i (ρ))+h + o(h) , if j = i ;
0 , otherwise ,

(9)

where F̄i (ρ) = Fi (ρ) − β log ρi and limh→0
o(h)
h = 0. It can be easily seen that the

probability evolution equation of Xβ(t) is exactly (1).
Process Xβ(t) characterizes players’ decision-making process. Intuitively, players

compare their current strategies with local strategy neighbors. If the neighboring strat-
egy has payoff higher than their current payoffs, they switch strategies with probability
proportional to the difference between the two payoffs. In addition, Xβ(t) represents
an individual player’s irrational behavior. This irrationality may be due to players’
mistake or willingness to take risk. The uncertainty of strategy i is quantified by term
log ρi . The monotonicity of this term intuitively implies that the fewer players cur-
rently select strategy i , the more likely players are willing to take risks by switching to
strategy i . For this interpretation, we call Fi (ρ)−β log ρi the noisy payoff of strategy
i , where β is the noise level.

4 Stability

In this section, we discuss the longtime behavior of (1) for potential games. We shall
study the convergence properties of dynamics (1). Our derivation is based on two
concepts, discrete relative free energy and relative Fisher information (Carrillo et al.
2003). They are used to measure the closeness between two discrete measures ρ and
ρ∞, the Gibbs measure defined by (2).

The first concept is the discrete relative free energy (H)

H(ρ|ρ∞) := β(F̄(ρ∞) − F̄(ρ)) .
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The other is the discrete relative Fisher information (I)

I(ρ|ρ∞) :=
∑

(i, j)∈E

(
log

ρi

eFi (ρ)/β
− log

ρ j

eFj (ρ)/β

)2
+

1

di
ρi .

We remark that in finite player games, where the potential is a linear function
of ρ, H and I coincide with the classical relative entropy (Kullback–Leibler diver-
gence) and relative Fisher information respectively, e.g., let F(ρ) = ∑n

i=1 viρi with∑n
i=1 e

− vi
β = 1, then ρ∞

i = e− vi
β ,

H(ρ|ρ∞) = β

n∑
i=1

ρi log
ρi

ρ∞
i

= β

n∑
i=1

ρi log ρi − β

n∑
i=1

ρi log e
− vi

β

= β

n∑
i=1

ρi log ρi +
n∑

i=1

viρi .

We shall show that H(ρ(t)|ρ∞) converges to 0 as t goes to infinity. We will also
estimate the speed of convergence and characterize their stability properties. Before
that, we state a theorem that connects H and I via gradient flow (1).

Theorem 6 Suppose ρ(t) is the transition probability of Xβ(t) of a potential game.
Then, the relative entropy decreases as a function of t . In other words,

d

dt
H(ρ(t)|ρ∞) < 0.

And the dissipation of relative entropy is β times relative Fisher information

d

dt
H(ρ(t)|ρ∞) = −βI(ρ(t)|ρ∞). (10)

Proof The proof is based on the fact thatH (the difference between noisy potentials)
decreases along the gradient flow with respect to time. Namely,

d

dt
H(ρ(t)|ρ∞) = −β

d

dt
F̄(ρ(t)) = β(∇ F̄,∇ F̄)ρ

= β
∑

(i, j)∈E

[
(F̄j (ρ) − F̄i (ρ))+

]2 1

di
ρi

= β
∑

(i, j)∈E

[(
log

ρi

eFi (ρ)/β
− log

ρ j

eFj (ρ)/β

)
+

]2 1

di
ρi . (11)


�
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This shows that the noisy potential grows at the rate equal to the relative Fisher
information. In other words, the population as a whole always seeks to improve the
average noisy payoff at the rate equal to the expected squared benefits. Based on
Theorem 6, we show that the dynamics converges to the equilibrium exponentially
fast. Here, the convergence is in the sense of H going to zero. Such phenomenon is
called entropy dissipation.

Theorem 7 (Entropy dissipation) Let F ∈ C2(P(S)) be a concave potential function
(not necessary strictly concave) for a given game. Then, there exists a constant C =
C(ρ0,G) > 0 such that

H(ρ(t)|ρ∞) ≤ e−CtH(ρ0|ρ∞) . (12)

The proof of Theorem 7 is readily available by noticing the fact that

I(ρ|ρ∞) ≤ CβH(ρ|ρ∞) ,

and an application of Gronwall’s inequality. See details in Chow et al. (2017a), Li
(2016). In fact, the exponential convergence is naturally expected because (1) is the
gradient flow on a Riemannian manifold (Po(S), gW ).

In fact, a more precise characterization on the convergence rate C in (12) can
be made. This characterization enables us to address the stability issues of Gibbs
measures. Define

λ(ρ) = min
�

div(ρ∇�)T · Hess(−F̄(ρ)) · div(ρ∇�) , (13)

where the infimum is among all (�i )
n
i=1 ∈ R

n , such that (∇�,∇�)ρ = 1 and Hess
represents the Hessian operator in Rn .

Theorem 8 (Stability and asymptotic convergence rate) For a potential game with
potential F(ρ) ∈ C2. Denote its Gibbs measure ρ∞ by (2). If λ(ρ∞) > 0, then ρ∞ is
an asymptotic stable equilibrium for (1). In addition, for any sufficiently small ε > 0,
there exists a time T > 0, such that when t > T ,

H(ρ(t)|ρ∞) ≤ e−2(λ(ρ∞)−ε)(t−T )H(ρ0|ρ∞) . (14)

Theorem 8 can be proved by utilizing standard techniques from dynamical systems.
Namely,

(i) Calculate the second order derivative of F(ρ(t)) with respect to time t .

d2

dt2
F̄(ρ(t)) = 2div(ρ∇ F̄(ρ))T · HessF̄(ρ) · div(ρ∇ F̄(ρ)) + o

(
d

dt
F(ρ(t))

)
.

(15)
(ii) Compare the first and second derivative to have

d2

dt2
F̄(ρ(t)) ≤ −λ(ρ∞)

d

dt
F̄(ρ(t)) + o

(
d

dt
F̄(ρ(t))

)
,
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and apply Gronwall’s inequality to show (14) and (12).

The crucial part of the proof is to establish (15), which is given below. For complete
details, see Chow et al. (2017a).

Proof of (15) The first derivative of the free energy along (1) is

d

dt
F̄(ρ(t)) =

∑
(i, j)∈E

[(F̄j − F̄i )+]2 1
di

ρi .

The second derivative of the free energy can be calculated by using the product rule:

d2

dt2
F̄(ρ(t)) =

∑
(i, j)∈E

[(F̄j − F̄i )+]2 dρi
dt

(T1)

+ 2
∑

(i, j)∈E

(
dF̄j

dt
− dF̄i

dt

)
(F̄j − F̄i )+

1

di
ρi . (T2)

Since ρ(t) is assumed to converge to an equilibrium ρ∞ and the boundary is a repeller

(Theorem 4), we know that dρ

dt → 0, while ρi (t) ≥ c(ρ0) > 0. Hence, T1 is a
high-order term of the first derivative, i.e.,

T1 = o

(
d

dt
F̄(ρ(t))

)
.

On the other hand,

T2 = 2
∑

(i, j)∈E

(
dF̄j

dt
− dF̄i

dt

)
(F̄j − F̄i )+

1

di
ρi

= 2
∑

(i, j)∈E

dF̄j

dt
(F̄j − F̄i )+

1

di
ρi − 2

∑
(i, j)∈E

dF̄i
dt

(F̄j − F̄i )+
1

di
ρi

= 2
∑

( j,i)∈E

dF̄i
dt

(F̄i − F̄j )+
1

d j
ρ j − 2

∑
(i, j)∈E

dF̄i
dt

(F̄j − F̄i )+
1

di
ρi

= 2
n∑

i=1

dF̄i
dt

∑
j∈N (i)

{
(F̄i − F̄j )+

1

d j
ρ j − (F̄j − F̄i )+

1

di
ρi

}

= 2
n∑

i=1

dF̄i
dt

dρi
dt

= 2
dF̄

dt
· dρ
dt

= 2 ·
(
dρ

dt

)T
· HessF̄(ρ) · dρ

dt

= 2 · div(ρ∇ F̄(ρ))T · HessF̄(ρ) · div(ρ∇ F̄(ρ)) ,
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where the third equality is by relabeling i and j and the last equality is from the
alternative representation of (1), i.e.,

dρi
dt

= −div(ρ∇ F̄(ρ)) .


�
The rest of proof is to compare (T1) and (T2), see details in Chow et al. (2017a).

Remark 4 (Link with current works) It is known that the Smith dynamics converge
to equilibrium in potential games. See Sandholm (2010) and references therein. We
demonstrate that how the convergence rate depends on the graph structure. This result
shares many similar properties with continuous cases.

5 Examples

In this section, we investigate (1) by applying it to several well-known population
games.

Example 1 Stag Hunt. The point we seek to convey in this example is that the noisy
payoff reflects the rationality of the population. The symmetric normal-form game
with payoff matrix

A =
(
h h
0 s

)
is known as Stag Hunt game. Each player in a random match needs to decide whether
to hunt for a hare (h) or stag (s). Assume s ≥ h, which means that the payoff of a
stag is larger than a hare. This population game has three Nash equilibria: two pure
equilibria (0, 1), (1, 0), and one mixed equilibrium (1 − h

s ,
h
s ).

In particular, let h = 2 and s = 3. The population state is ρ = (ρh, ρs)
T with

payoff Fh(ρ) = 2ρh and Fs(ρ) = 3ρs . Then, Fokker–Planck equation (1) becomes{
ρ̇s = ρs[2ρh − 3ρs + β log ρs − β log ρh]+ − ρh[−2ρh + 3ρs + β log ρh − β log ρs]+
ρ̇s = ρh[3ρs − 2ρh + β log ρh − β log ρs]+ − ρs[−3ρs + 2ρh + β log ρs − β log ρh]+ .

The numerical results are in Fig. 2. One can easily see that if the noise level β is suffi-
cient small, the perturbation does not affect the limit behavior of the mean dynamics.
On the other hand, if noise level β is large enough, (1) settles around ( 12 ,

1
2 ). Lastly, if

the noise level is moderate, Equation (1) has (1, 0) as the unique equilibrium.
The above observation has practical meanings. Namely, if the perturbation is large

enough, it turns out that people always choose to hunt hare (NE (1, 0)). This is a safe
choice as players can get at least a hare, no matter how the others behave. This appears
evenmore so if comparingwith the state (0, 1) for which the player receives nothing. If
the perturbation is small and initial population appears to be more cooperative, people
will choose to hunt the stag. This is a rational move because stag is definitely better
than hare.
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Fig. 2 Stag and Hare. a β = 5. b β = 0.5. c β = 0.1. d β = 0

Example 2 Rock–Scissors–Paper game. Rock–Scissors–Paper has payoff matrix

A =
⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠ .

The strategy set is S = {r , s, p}. The population state is ρ = (ρr , ρs, ρp)
T, and the

payoff functions are Fr (ρ) = ρs − ρp, Fs(ρ) = −ρr + ρp and Fp(ρ) = ρr − ρs . By
solving (1), we find that there is one unique Nash equilibrium around ρ∗ = ( 13 ,

1
3 ,

1
3 )

for various βs. The result can be found in Fig. 3.

Example 3 We show an example with Hopf Bifurcation. Consider a modified Rock–
Scissors–Paper game with payoff matrix

A =
⎛
⎝ 0 2 −1

−1 0 2
2 −1 0

⎞
⎠ .
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Fig. 3 Rock–Scissors–Paper. a β = 0. b β = 0.1
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Fig. 4 Modified Rock–Scissors–Paper. a β = 0.5. b β = 0.1. c β = 0

Different from the previous example, the payoff functions are Fr (ρ) = 2ρs − ρp,
Fs(ρ) = −ρr + 2ρp and Fp(ρ) = 2ρr − ρs . We find that there is Hopf bifurcation
for Equation (1). If β is large, there is a unique equilibrium around ( 13 ,

1
3 ,

1
3 )

T. If β

goes to 0, the solution approaches to a limit cycle. The results are in Fig. 4.

Also, we illustrate the effect of graph structure in proposed FPEs. In Fig. 5, we
consider two strategy graphs: One is the complete graph; the other is the lattice graph

R P S

In other words, we cut off one edge for the complete strategy. This consideration
results in the asymmetric property of vector fields. It shows the difference among
FPEs, Logit and perturbed Replicator dynamics with β = 0.1 (Fig. 6).

Example 4 We show an example with multiple Gibbs measures. Consider a potential
game with payoff matrix

A =
⎛
⎝1 0 0
0 1 1
0 1 1

⎞
⎠
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Fig. 5 Left: Fokker–Planck equation on a complete strategy graph, Right: Fokker–Planck equation on a
lattice graph
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Fig. 6 Left: replicator dynamics with entropy perturbation, Right: logit dynamics

Denote the strategy set as S = {1, 2, 3}. The population state is ρ = (ρ1, ρ2, ρ3)
T,

and the payoff functions are F1(ρ) = ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. We
consider three sets of Nash equilibria :

{
ρ | ρ1 = 1

2

}
∪ {(1, 0, 0)} ∪ {ρ | ρ1 = 0} ,

where the first and third ones are lines on the probability simplex P(S). By applying
(1) on a complete graph, we obtain two Gibbs measures

{(
0,

1

2
,
1

2

)}
∪ {(1, 0, 0)}

as β → 0. The vector field is shown in Fig. 7. Similarly, we illustrate the effect of
graph structure for potential games. We also consider two strategy graphs: One is the
complete graph, the other is the lattice graph

1 2 3
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Fig. 7 Multiple Gibbs measures a β = 0. b β = 0.1
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Fig. 8 Left: Fokker–Planck equation on a complete strategy graph, Right: Fokker–Planck equation on a
lattice graph
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Fig. 9 Left: replicator dynamics with entropy perturbation. Right: logit dynamics

We observe the asymmetric property of vector fields. This property shows the
difference among FPEs, Logit and perturbed Replicator dynamics with β = 0.1. See
Figs. 8 and 9.
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Fig. 10 Unique Gibbs measures. a β = 0. b β = 0.1

Example 5 As a completion, we introduce a game with unique Gibbs measure. Let us
consider another potential game with payoff matrix

A =
⎛
⎝ 1

2 0 0
0 1 1
0 1 1

⎞
⎠ .

Here, the strategy set is S = {1, 2, 3}, the population state is ρ = (ρ1, ρ2, ρ3)
T, and

the payoff functions are F1(ρ) = 1
2ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. There

are three sets of Nash equilibria

{
ρ | 1 − 1

2
ρ1 = ρ2 + ρ3

}
∪ {(1, 0, 0)} ∪ {ρ |1 = ρ2 + ρ3} ,

By applying Fokker–Planck equation (1) on a complete graph, we have a unique Gibbs
measure (

0,
1

2
,
1

2

)

as β → 0. See Fig. 10 for the vector fields.

6 Conclusion

In this paper, we proposed a dynamics for population games utilizing optimal trans-
port theory and mean field games. Comparing to existing models, it has the following
desirable features. Firstly, the dynamics is the gradient flow of the noisy potential in
the probability space endowed with the optimal transport metric. The dynamics can
also be seen as the mean field type Fokker–Planck equations. Secondly, the dynam-
ics is the probability evolution equation of a Markov process. Such processes model
players’ myopicity, greediness and irrationality. In particular, the irrational behaviors
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or uncertainties are introduced via the notion of noisy payoff. This shares many sim-
ilarities with the diffusion or white noise perturbation in continuous cases. Last but
not least, for potential games, Gibbs measures are equilibria of the dynamics. Their
stability properties are easily obtained by the relation between relative free energy and
Fisher information. In general, the dynamics may exhibit more complicated limiting
behaviors, including Hopf bifurcations.

We would continue to bridge the communities between optimal transport and
population games. On the one hand, the evolutionary game theory provides broad
application fields for optimal transport. It introduces various modeling perspective.
On the other hand, optimal transport introduces the other mathematical structures
for games. It gives the game-dependent Riemannian metric tensor. The metric tensor
relies on the graph structure of discrete strategy set. Many questions intersecting both
communities arise, e.g., what are dynamical properties of FPEs related to this metric?
What is the effect of the strategy graph for the stability issues of NEs?Wewill continue
to work on these problems in future.

Acknowledgements This paper is based on Wuchen Li’s thesis Li (2016).

Appendix

In this section, we briefly review the Best-reply dynamics and its connection with
optimal transport theory. These serve the motivations of the dynamics considered in
this paper. For more details see Degond et al. (2014), Villani (2008).

Best-reply dynamics and Fokker–Planck equations We first consider a game con-
sisting N players i ∈ {1, . . . , N }. Each player i chooses a strategy xi from a same
Borel strategy set S. For concreteness, we consider S = T

d , which is a d dimensional
torus. Suppose each player receives a payoff function Fi ∈ C∞(S). For notational con-
nivence, we denote Fi (xi , x−i ) = Fi (x1, . . . , xN ), where we abuse the notation by

x−i = {x1, . . . , xi−1, xi+1, . . . , xN } .

We model players’ decision-making processes in a game by stochastic process
xi (t), t ∈ [0,+∞). Here, t is an artificial time variable, at which player i selects
his/her decision based on the current strategies of all other players x−i (t). We note that
all playersmake their decisions simultaneously andwithout knowingothers’ decisions.
Each player selects his or her strategy that increases the player’s payoff most rapidly.
In other words, we model the game by the following stochastic differential equations
(SDEs)

dxi = ∇xi Fi (xi , x−i )dt +√2βdBi
t , (16)

where the independent Brownian motion (Bi
t )

N
i=1 is added to model the uncertainty of

each player and β > 0 controls the magnitude of the noise.
Under the standard assumptions in population games, i.e., the game is autonomous

and the players are symmetric, one can simply encode all the informationof players into
one probability density ρ ∈ P(S) by taking N → ∞. In this limiting processes, each
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player’s cost function is rewritten as F : S × P(S) → R, and the limiting stochastic
process forms the following mean field SDE

dXt = ∇Xt F(Xt , ρ)dt +√2βdBi
t , (17)

where Xt has probability law ρ(t, x).
In Degond et al. (2014), SDE (17) is called the Best-reply dynamics, and Xt is

the Best-reply decision process. Here, the transition density function ρ(t, x) of the
stochastic process X(t) satisfies the FPE

∂ρ(t, x)

∂t
= −∇ · (ρ(t, x)F(x, ρ)) + β�ρ(t, x) . (18)

The game is called a potential game if there exists a potential functionF : P(S) →
R, such that δ

δρ(x)F(ρ) = F(x, ρ). For potential games, the Best-reply SDE (17)
becomes

dXt = ∇ δ

δρ(t, Xt )
F(ρ)dt +√2βdBt ,

which is a perturbed gradient flow and whose transition equation (FPE) forms

∂ρ(t, x)

∂t
= −∇ · (ρ(t, x)∇ δ

δρ(t, x)
F(ρ)) + β�ρ(t, x) . (19)

From the theory of optimal transport, Equation (19) can be interpreted as a gradient
ascend flow of the free energy

F̄(ρ) = F(ρ) − β

∫
S
ρ(x) log ρ(x)dx . (20)

Optimal transport and density manifold We next review the geometry of optimal
transport on the continuous strategy set S.

Consider the setP2(S) of Borel measurable probability density functions on S with
finite second moment. Given ρ0, ρ1 ∈ P2(S), the L2-Wasserstein distance between
ρ0 and ρ1 is denoted by W : P2(S) × P2(S) → R+. There are two equivalent ways
of defining this distance.

The first definition is the following linear programming formulation:

W (ρ0, ρ1)2 = inf
π∈�(ρ0,ρ1)

∫
�×�

d�(x, y)2π(dx, dy) , (21)

where the infimum is taken over the set � of joint probability measures on �×� that
have marginals ρ0, ρ1.

The second definition considers a probability path ρ : [0, 1] → P2(S) connecting
ρ0, ρ1. And the distance is defined by a variational problem known as the Benamou–
Brenier formula:
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W (ρ0, ρ1)2 = inf
�

∫ 1

0

∫
�

(∇�(t, x),∇�(t, x))ρ(t, x)dxdt , (22a)

where the infimum is taken over the set of Borel potential functions [0, 1] × S → R.
Each potential function � determines a corresponding density path ρ as the solution
of the continuity equation

∂ρ(t, x)

∂t
+ div(ρ(t, x)∇�(t, x)) = 0 , ρ(0, x) = ρ0(x) , ρ(1, x) = ρ1(x) .

(22b)
Here, div and∇ are the divergence and gradient operators in�. The continuity equation
is known as the probability density transition equation according to the given vector
field.

The equivalence between the static (21) and dynamical (22) formulations is well
known. Moreover, the variational formulation (22) entails a similar Riemannian struc-
ture used in this paper. For simplicity, we only consider the set of smooth and strictly
positive probability densities

P+(S) =
{
ρ ∈ C∞(�) : ρ(x) > 0 ,

∫
�

ρ(x)dx = 1
}

⊂ P2(S) .

Denote F(S) := C∞(S) the set of smooth real valued functions on S. The tangent
space of P+(S) is given by

TρP+(S) =
{
σ ∈ F(S) :

∫
S
σ(x)dx = 0

}
.

Given � ∈ F(S) and ρ ∈ P+(S), define

V�(x) := −div(ρ(x)∇�(x)) .

Thus, V� ∈ TρP+(S). The elliptic operator ∇ · (ρ∇) identifies the function � on S
modulo additive constants with the tangent vector V� of the space of densities. This
gives an isomorphism

F(S)/R → TρP+(S); � �→ V� .

Define theRiemannianmetric (inner product) on the tangent space of positive densities
gW : TρP+(S) × TρP+(S) → R by

gWρ (V�, V�̃) =
∫
S
(∇�(x),∇�̃(x))ρ(x)dx ,

where �(x), �̃(x) ∈ F(S)/R. The inner product endows P+(S) with an infinite-
dimensional Riemannian metric tensor. In other words, the variational problem (22)
is a geometric action energy in (P+(S), gW ).
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We are now ready to present the gradient operator of free energy w.r.t. L2-
Wasserstein metric tensor. Following

gW (gradW F̄(ρ), V�) =
∫
S

δ

δρ(x)
F̄(ρ)V�dx

and δ
δρ(x)F(ρ) = F(x, ρ), and noticing δ

δρ(x)

∫
S ρ(x) log ρ(x)dx = log ρ(x) + 1, we

obtain
gradW F̄(ρ) = −∇ · (ρ∇(F(x, ρ) − β log ρ(x))) .

From the fact that ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = �ρ, we derive FPE (19) by the
gradient flow of the free energy

∂ρ

∂t
= gradWF(ρ) = −∇ · (ρ∇F(x, ρ)) + β�ρ.
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