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Stock market forecasting is a vital component of financial systems. However, the stock prices are highly
noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predict-
ing stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new
hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization
Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method,
we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite
(SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and
the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory,
upward and downward patterns. The results are compared with predictions obtained by other methods,
including the neural network (NN) model, the factorization machine based neural network (FNN) model,
the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-
based back propagation (WDBP) neural network model. Under the same conditions, the experiments in-
dicate that the proposed methods perform better than the other ones according to the metrics of Mean
Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Fur-
thermore, we compute the profitability with a simple long-short trading strategy to examine the trading
performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD),
Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking
the transaction cost into consideration, are found economically significant.
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1. Introduction forecasting performance due to the requirement of observations to

be distributed normally.

Stock market forecasting is always a remarkable topic and
has attracted continuous attention in finance. Unfortunately, stock
prices exhibit dynamic, non-linear, non-parametric and chaotic
properties in nature (Oh & Kim, 2002; Wang, 2003). Many standard
statistical and econometric models for forecasting must face signif-
icant challenges, such as disobeying the statistical assumptions in
dealing with non-stationary time series, or having unsatisfactory
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There are numerous models and strategies proposed for the
stock market predictions. Most of them can be classified into
two categories: the ones based on statistical techniques and those
using machine learning techniques. In the category of statistical
approaches, there are autoregressive integrated moving average
(ARIMA), generalized autoregressive conditional heteroskedasticity
(GARCH) volatility (Franses & Chijsels, 1999), and the smooth tran-
sition autoregressive model (STAR) (Sarantis, 2001), just to name
a few. These approaches are primarily based on the assumptions
of stationarity in time series and linearity among normally dis-
tributed variables. However, the stationarity, linearity and nor-
mality assumptions are not satisfied in real stock markets. On
the other side, machine learning models without these restric-
tive assumptions have been proposed in recent years, and they
can outperform the statistical methods (Enke & Thawornwong,
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2005; Hansen & Nelson, 2002; Ture & Kurt, 2006; Zhang, 2003).
Thus, machine learning approaches, such as support vector ma-
chine (SVM) (Kim, 2003; Qian & Gao, 2017), genetic algorithm (Kim
& Han, 2000), fuzzy system (Shen & Han, 2004; Wang, 2002),
neural network (NN) (Chen, Leung, & Daouk, 2003; Rather, Agar-
wal, & Sastry, 2015; Vellido, Lisboa, & Meehan, 1999) and hybrid
methods (Armano, Marchesi, & Murru, 2005; Patel, Shah, Thakkar,
& Kotecha, 2015; Wang, Wang, Zhang, & Guo, 2011), have been
widely employed in forecasting stock prices.

Although the machine learning based models have achieved re-
markable results, there are still limitations. Firstly, they do not
have an explicitly mechanism to handle the non-stationarity of
stock prices. Secondly, as far as we know, most models do not pay
attention to the interactions between features at different scales.
For example, for the neural network models or deep network mod-
els, which are also widely used in many other applications such
as image processing (He, Zhang, Ren, & Sun, 2015a; Krizhevsky,
Sutskever, & Hinton, 2012; Szegedy et al., 2015), mechanical trans-
lation (Bahdanau, Cho, & Bengio, 2014; Luong, Pham, & Manning,
2015), speech recognition (Amodei et al., 2016; Hinton et al., 2012)
and so on, the non-linearities mainly handled by the activation
functions, and there is few technique addressing the non-linear in-
teractions among the inputs.

In this paper, we propose a 2-stage, end-to-end forecasting
model combining Empirical Mode Decomposition (EMD) and Fac-
torization Machine (FM) based Neural Network technique for stock
market trend prediction. For convenience, we abbreviate it by
EMD2FNN. In the first stage, we utilize EMD (Huang et al., 1998a),
which is very efficient in handling the non-stationary data, to de-
compose the original financial time series into several components
called intrinsic mode functions (IMFs). Each extracted IMF contains
oscillatory patterns with scales in a narrow range, and it can be
viewed as a quasi-stationary component. In the second stage, a
FM-based Neural Network (FNN) (Rendle, 2010) technique is con-
structed using the values of IMFs as inputs to predict the future
stock prices trend. Owning to the combination with the FM tech-
nology, it makes FNN capable of grasping the factorized interac-
tions among inputs and efficient in computation due to its linear
complexity.

There exist many EMD based techniques in dealing with non-
linear and non-stationary time series, and some have been used
for data predictions (Bi, Sun, Huang, Yang, & Huang, 2007; Huang,
Shen, & Long, 1999; Huang, Shen, Huang, & Yuan, 1998b; ]aber,
Ismail, & Altaher, 2014; Nunes, Guyot, & Deléchelle, 2005; Yang,
Huang, & Yang, 2004; Yang, Qi, & Yang, 2005; Yang, Yang, & Qi,
2006a; Yang, Yang, Qi, & Suen, 2006b; Zhang, Lai, & Wang, 2008). A
common theme in these EMD prediction strategies is that each IMF
is used as an independent time series, and every IMF has its own
machine learning model for predicting. Different from the existing
methods, the EMD2FNN uses one forecasting model, i.e., FNN, and
all IMFs are fed as the inputs of this FNN. This design makes the
prediction mechanism not only simple, easy to execute in practice,
but also enable to capture the interactions among different scales.

To evaluate the performance, we apply the EMD2FNN to predict
the closing prices from the empirical data sets of Shanghai Stock
Exchange Composite (SSEC) index closing prices from January 4th
2012 to December 30th 2016, the National Association of Securi-
ties Dealers Automated Quotations (NASDAQ) index from January
4th 2012 to December 30th 2016, and the Standard & Poor’s 500
Composite (S&P 500) index covering from January 3rd 2007 to
December 30th 2011, which respectively cover oscillatory, upward
and downward patterns. We compare the proposed model with
several other approaches, such as the single NN and FNN models,
and a hybrid model combining the empirical mode decomposition
and neural network (EMD2NN) using the performance metrics
such as the Mean Absolute Error (MAE), Root Mean Square Error

(RMSE) and Mean Absolute Percentage Error (MAPE). Moreover,
the EMD2FNN is compared with the wavelet de-nosing-based back
propagation (WDBP) neural network model (Wang et al, 2011)
which aims at using the wavelet transform to avoid the influences
of noise. The results show significant improvements achieved by
our model. In addition, we compute the profitability with a simple
long-short trading strategy, in two different scenarios - taking or
not taking the transaction cost into consideration, to examine the
trading performance of our model in terms of the Average Annual
Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and
AAR/MD. The performances are found economically significant as
well.

The contributions of this paper include the following three
points. (1) We propose EMD2FNN, a 2-stage, end-to-end model for
the prediction of the stock market trend. The EMD2FNN is com-
posed of EMD and FNN, two techniques that can work together for
non-stationary data analysis. The EMD2FNN enjoys benefits from
both EMD and FNN. (2) We demonstrate the prediction accuracy,
in various metrics, of our methods for data sets that exhibit oscil-
latory, upward or downward patterns. The numerical experiments
show significant improvements in prediction accuracy over the ex-
isting methods. (3) We illustrate the effectiveness of our method
in a simple long-short trading strategy. The results are prominently
better than the benchmark (i.e. buy-and-hold) strategy when eval-
uating the performance by either taking or not taking the transac-
tion cost into consideration.

The rest of this paper is organized into following sections. We
review the needed ingredients including EMD, FM and neural net-
work in Section 2. Our EMD2FNN model is presented in Section 3,
in which a couple of other hybrid approaches are discussed too.
We show the simulation results in Section 4, and followed it by a
brief conclusion in Section 5.

2. EMD, neural networks and FM
2.1. Empirical mode decomposition

As an alternative to the traditional methods, such as Fourier or
wavelet transforms, EMD has been proven, by numerous studies,
to be effective in analyzing non-stationary time series in recent
years. It has received considerable attention in terms of interpreta-
tions (Chen, Huang, Riemenschneider, & Xu, 2006; Flandrin, Rilling,
& Goncalves, 2004; Lin, Wang, & Zhou, 2009; Sekine, 2007; Yang,
Yang, Zhou, & Yang, 2014; Zhou, Yang, Zhou, & Yang, 2016) and ap-
plications in many disciplines such as ocean science (Huang et al.,
1999), biomedicine (Huang et al., 1998b; Yang et al., 2006a), speech
signal processing (Yang et al, 2004), image processing (Bi et al,,
2007), pattern recognition (Nunes et al,, 2005; Yang et al,, 2005;
Yang et al, 2006b) and financial forecasting (Jaber et al., 2014;
Zhang et al., 2008).

Many different algorithms have been proposed to carry out
EMD. Examples include the strategies based on moving aver-
age (Smith, 2005), partial differential equation (PDE) (Delechelle,
Lemoine, & Niang, 2005; Diop, Alexandre, & Boudraa, 2010), op-
erators (Hong, Wang, & Tao, 2009; Hu, Peng, & Hwang, 2013;
Oberlin, Meignen, & Perrier, 2012; Peng & Hwang, 2008; 2010),
filtering (Lin et al, 2009), and optimizations (Daubechies, Lu,
& Wu, 2011; Ding & Selesnick, 2013; Hou & Shi, 2011; Pustel-
nik, Borgnat, & Flandrin, 2010; 2014; Wu, 2013; Zhou et al.,
2016). In this paper, we adopt the original EMD method given in
Huang et al. (1998b) for two reasons. Firstly, it is simple, intuitive
and efficient in computation. Secondly, it has been demonstrated
experimentally in a broad range of applications. The process of the
EMD method is given in Algorithm 1.
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Algorithm 1 Empirical mode decomposition.
Require: Given a signal x(t)
1). Set r(t) :=x(t) and k =0
while r(t) is not monotonous do
2). Set m(t) =r(t)
while m(t) is nontrivial do
3). Interpolate between minima (resp. maxima), ending up
with some ‘envelope’ enn (t) (resp. emax(t))
4). Compute the average m(t) = (epin(t) + emax(t))/2
5). Extract the detail c(t) =r(t) —m(t), and denote c(t) as
r(t)
end while
6). Setk=k+1
7). Set imfy, (t) = c(t)
8). Set r(t) = x(t) — Y, imf;(t)
end while
Output: x(t) = X, imf;(t)

output layer

hidden layer

hidden layer

input layer

Fig. 1. The architecture of neural network (NN).

In essence, the EMD method decomposes a complicated sig-
nal into a finite, and often small, number of intrinsic mode func-
tions (IMFs), arranged from high frequencies to low frequencies,
based on local characteristic scale, which is defined as the distance
between two successive local extrema in the signal. An IMF is a
function whose upper and lower envelopes are symmetric. More-
over, the number of zero-crossings and the number of extremes
are equal or differ at most by one (Huang et al., 1998a). Each com-
puted IMF contains oscillatory scales in a narrow range, and it is
usually viewed as a quasi-stationary component. For example, an
IMF extracted from an economic time series with a scale of three
months can be viewed as the seasonal component.

2.2. Neural networks

In general, neural networks possess attributes of learning, gen-
erating, parallel processing and error endurance, which make them
powerful in solving complex problems. Over the past decades, neu-
ral networks have been widely used in many areas, including fi-
nancial forecasting (Chang, Wang, & Zhou, 2012; Lu, 2010; Omidi,
Nourani, & Jalili, 2011; Wang et al., 2011). Hence, we take the neu-
ral network as the benchmark for comparing the models’ forecast-
ing accuracy.

The commonly referred neural network contains very diverse
structures. For instance, selecting different number of network lay-
ers or different activation functions can generate different models
with various approximation abilities. In this paper, we employ a
neural network with 4-layer as depicted in Fig. 1. The four layers
are one input layer, two hidden layers and one output layer. We
want to note that the pooling and dropout layers, which are often

added in the convolutional neural network (CNN) when applied to
image processing, are not included in the NN structure.

In the neural network of Fig. 1, the neurons of the input layer
denote the input features, each neuron of the hidden and out-
put layers is computed through combining the connection weights
multiplied by the input values and nonlinear activation function,
where the activation function aims to take the nonlinearity into
consideration in the model. There are plenty of studies worked
on the selection of activation functions, such as the sigmoid (Han
& Moraga, 1995), tanh, Relu (Lecun, Bengio, & Hinton, 2015),
PRelu (He, Zhang, Ren, & Sun, 2015b), ELU (Clevert, Unterthiner,
& Hochreiter, 2016) and so on. The loss layer calculates the error
between the training and estimated values to adjust the connec-
tion weights. In addition, a regularization term is often added to
the loss layer to avoid over-fitting.

Assume that there are n input features, m; output neurons in
the 1st hidden layer, m, output neurons in the 2nd hidden layer
and o output neurons in the output layer, the forward (forecasting)
process of the neural network can be described by the following
four steps:

1). The 1st hidden layer: the outputs of the first activation layer
are calculated by the following scheme:

Yi=fO wix), (1=1,2,...,my), (1)
i=1

where x; denotes the value of the ith feature, w}}. is the to-be-
determined weight related to the ith input feature and the jth
output neuron, yﬂ is the value of the jth node and f is the acti-
vation function.

2). The 2nd hidden layer: the neurons in the second activation
layer are computed by:

Vi = oW, (1=1.2,....ma), ?)
i=1

where w:j is the undetermined weight related to the ith input
neuron and the jth output neuron.

3). The output layer: the outputs of the output layer are given as
follows:

W=rO wiyh, i=1.2....,0), (3)
i=1

where WP is the undetermined connection weight, y? is the
value of the jth node of the output layer.

4). The loss layer: for different tasks, one can choose different loss
functions ¢ to calculate the error between the actual and the
estimated values from the output layer, such as squared loss,
log-loss, softmax (Arjo, 2009). In order to avoid over-fitting, we
add the L, regularized term in this layer. Hence, the loss func-
tion is computed as follows:

o mp msz

Lxy) = Y €000+ SO0 Y wh?+ 3y wi)?

i=1 i=1 j=1 i=1 j=1

+ 33w, (4)

i=1 j=1
where a >0 is a regularized parameter, y; is the actual values.

All undetermined weights in the NN model are iteratively up-
dated according to the stochastic gradient descent (SGD) method
within the back propagation process for the gradients. This pro-
cess can be regarded as a special case of our improved FNN model
described in Section 3.1, Therefore, we do not describe the weight
updating process of the NN model here.
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2.3. Factorization machine

FM is originally introduced for collaborative recommendations
(Rendle, 2010). Like the support vector machines, FMs form a gen-
eral class of predictors that are able to estimate reliable parameters
under the very high sparsity assumption. FM has a key advantage
in learning feature interactions, due to its learning in the latent
space. And this is one of the main reasons we select FM in our
model. Given a real valued feature vector x € R", FM estimates the
target by modeling all interactions between each pair of features
via factorized interaction parameters:

n n n
FOO =wo+ Y wi-Xi+ Y Y (Vi Vi) -Xj, (5)
i=1 i=1 j=i+1
where the model parameters for calibration are: wp e R is the
global bias, w € R" denotes linear interaction to the target. The in-
ner product term (v;,V;) captures the factorized interaction, where
each v; ¢ R¥ is the latent vector for feature x;, and k is a user-
specified parameter for the dimension of the latent vector. The
larger the value of k, the more sensitive the training model.

FM is very flexible, in contrast to the matrix factorization that
models the relation of two entities only (He, Zhang, Kan, & Chua,
2017). FM can work with any real valued feature vectors for super-
vised learning. It enhances the linear or logistic regression using
the second order factorized interactions among features. By speci-
fying input features, the study in Rendle (2010) shows that FM can
mimic many specific factorization models such as the standard ma-
trix factorization, parallel factor analysis, and SVD++ (Koren, 2008).
On the other hand, since the factorized interactive term can be
rewritten as

n n 1 k n n
>3 (thj}xi"xj:EZ((ZVif'xi)Z_ZViZf'x,-Z)‘ (6)
i=1 j=i+1 f=1 i=1 i=1
this enables that the Eq. (5) can be computed in a linear time
O(k -n). Owing to such a property, FM has been recognized as one
of the most effective methods for sparse data prediction. It has
brought a plethora of successful applications in industry, and has
yielded great promise in a variety of prediction tasks, such as re-
gression, classification and ranking (Bayer, He, Kanagal, & Rendle,
2017; Chen, He, & Kan, 2016; Juan, Zhuang, Chin, & Lin, 2016; Oen-
taryo, Lim, Low, Lo, & Finegold, 2014).

3. Our proposed approaches
3.1. The FNN model

Inspired by FM, we modify the NN model by incorporating FM
ideas and name it as FNN for simplicity. The structure of FNN is
shown in Fig. 2. The main differences, compared against NN, are lo-
cated in the hidden layers, where the gray nodes are still achieved
by the nonlinear activation function's operation after the linear
connections as those appeared in the NN model, but the blue
nodes represent the results calculated through the activation func-
tion of the factorized interactions. Comparing to the NN model, we
summarize the properties of the FNN as follows:

1) From the expression (5), the term Y3il; > i q{Vi Vj)Xi-X;
makes FNN capture the role of factorized interactions between
features, which is an advantage that most of the existing gen-
eralized linear models do not have.

2) According to equation (6), FNN has the same level (linear) of
computation complexity as that of NN model.

The idea combining FM together with NN models has been re-
cently reported for advertisement recommendation system (He &
Chua, 2017), in which FM is used to modify the 1st hidden layer

output layer

FM hidden layer

FM hidden layer

input layer 1

Fig. 2. The architecture of FM based neural network (FNN).

only. In this paper we advocate the idea by incorporating FM in
other hidden layers as well. We use single-FNN to denote the
model that FM is used only at the 1st hidden layer, while multi-
FNN is for the case where FM is used in other layers.

Suppose that there are n input features, m; output neurons in
the 1st hidden layer, m, output neurons in the 2nd hidden layer
and o output neurons in the output layer. Next, we describe the
forward (forecasting) process of FNN.

1). The 1st hidden layer: the neurons in the first hidden layer are
partitioned into two parts:

Yi=FQ o wixd, (1=1,2,....m1 —k), (7)
i1

Vieotor = PGt x0? = Y042 ), (=12, ko),
i=1 i=1
(8)

where x; denotes the value of ith feature, yz is the value of the
jth node, ng is the undetermined linear weight related to the

ith input feature and the jth output neuron, ¥ € R*1 is the un-
determined latent weight corresponding to the feature x;, kq is
the user-specified dimension of v{ , and f is the activation func-
tion.

2). The 2nd hidden layer: the outputs of the second hidden layer
include the following two cases:

« single-FNN:
yﬁ-‘=f(iw{}y}), (j=1.2.....my), 9)
. multi—Fl\Il;J:
y?:f(iw{}y}), (j=1,2,...,my —ky), (10)

e = f(%((gu;j =L GG =120 k)
(11)

where w{j is the undetermined linear weight related to the ith

input neuron and the jth output neuron, ¥ € R*2 is the un-
determined latent weight corresponding to J,{ k> is the user-
specified dimension of 1.
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3). The output layer: the output layer in FNN is the same as that
in the NN model, i.e.,

f(Zw Vi), (=1,2....,0), (12)

where ‘WIO is the undetermined connection weight, y? is the
value of the jth node of the output layer.

4). The loss layer: FNN can be applied to a variety of forecast-
ing tasks by taking different loss functions ¢, including clas-
sification, regression and ranking. For regression, a commonly
used loss function is the squared loss defined by E(y?, yi) =
%(V,p—}’i)z. For classification task, the loss function is usually
taken as the log-loss £(y9,y;) = —y;logy? — (1 —y;) log(1 —y?).
For ranking task, it optimizes contrastive max-margin loss or
pairwise personalized ranking loss. Similar to the loss layer in
the NN model, the loss layer in FNN is computed as follows:

n m—k my my—k;
L(x,y) = Ze{y" W+ 5 (Z 3 w2+ Y wh)?
i=1 j=1 i=1 j=1
ky my ks
W Y Y . (1)
i=1 j=1 i=1 j=1 iz1 j=1

where a >0 denotes the regularized parameter, y; is the actual
values.

To optimize the FNN model, the back propagation process is
used to iteratively calculating the gradient in each layer, and then
the stochastic gradient descent (SGD) is adopted to update the
weights until convergence. The backward (training) process of FNN
would be given in Section 3.2.

3.2. The EMDZFNN model

In this section, we present the EMD2FNN approach. It would be
used for two tasks in this paper, determining the changes (direc-
tions) and predicting the future prices (trends) in stock prices. The
former is a classification problem, and the later a regression task.

There are two stages in EMD2FNN. At the first stage, the orig-
inal data sequence is decomposed into several components (IMFs)
via the EMD algorithms given in Algorithm 1. The resulting IMFs
are used as the inputs for the FNN model for the prediction. The
detailed steps are presented in Algorithm 2 accompanied by a
flowchart shown in Fig. 3.

The step 5) (i.e., the FNN model) appeared at the stage two in
Algorithm 2 is the only part involving machine learning. The back-
ward (training or learning) process of FNN is detailed in the fol-
lowing points.

1). The gradients of the inputs and weights in the output layer are
computed as:

aL  d¢ aL AL af

e Y ta-wh
ay?  dyj awp  ay) 9z X W
aL
0 0
Wij < Wi —1- - (14)
if ij awfj
where i=1,2,...,m3, j=1,2,...,0 and n denotes the learn-

ing rate.
2). The gradienst of the inputs and weights in the 2nd hidden layer
are calculated as the following two cases:

Z BL - W, (15)
=52, Wiy

Algorithm 2 EMD2FNN.
Require: Given a stock prices series {x;}T ,
Stage one - the EMD process:

1). Following the Algorithm 1, decompose the original stock
prices {x;}! , into several IMFs {C; 5

P=r

where C; e R", and denote the number of IMFs as L.

Stage two - the FNN process:

2). Each IMF (; is normalized into B; < [0, 1] defined by B; =

Cj—min ({G;}%_,)

max ({G;},_,)-min ({G;T}_,) *

3). Take the set constituted of M consecutive values from each
IMF (ie. {Bjk.Bjks1.---. Bjkm-1}iy)

as the input features, and the set constituted of next o consecu-
tive values from original stock prices

(i.e. {Xpemr>XksMs1s---»XkiMio—1}) as the labels for regression
task where k=1,2,...,i—-M—-o0+1.

For classification task, the labels are taken as the direction of the
stock price change (ie., 1 if X =
Xg.m—_1: -1 otherwise), where k=1,2,...,fi— M.
4), Divide the samples into training and testing data sets.

5). The FNN model is learnt on the training data.

6). According to the forward process of FNN described in Section
3.1, using the testing data to measure

how well the network is able to extrapolate the unknown sam-
ples.

7). For regression task, the predicted values are scaled back to
the original range.

Stock Prices

v

TN
*sxmsmnnnt®

Normalization | ( B:) ( By ) -

Dividing Training
and Testing Sets

[ Weight Initialization ] %

Calculating All Layers'
Qutput and Loss

le—

/| Update Weights

Calculating the Back
Propagation error

Vieet the Standards

yes

RTINS ERE R R R R R,
- .,

[ Predicting the Test samples ‘

I
|'. P
w‘_‘ \o.,\v; :
Predicted valies

.
.
.
.

De-normalization

Fig. 3. The flowchart of our proposed EMD2FNN.
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« single-EMD2FNN:

oL _ L o y
oWl " Bz w7
a-wh Wi — . L (16)

ij* "ij ij awhH
« multi-EMD2FNN:

aL oL af y
_ oL 9] awh
W T | i 1
- 1, & R )
2, = (v, = L) 0D,
h=1 h=1
a oL af
31‘){'}2 ay?mz—k:+jz) z=3j,
my
’ (ZV;‘JQ}’;)}’E Uz(yi)z Ta- vgz’
h=1
dL oL
“ﬁl‘_“’ﬁl_n amﬁ‘bﬁzﬁdéz_n'@’ (17)
1 2
where i=1,2,....mq, j1=12,....my—ky, jo=1,2,....ky

and 7 is the learning rate.
3). The gradients of the inputs and weights in the 1st hidden layer
are computed by:
« single-EMD2FNN:

L &AL af "
:Z_. it .wH, (18)
o Tyl 0z i
« multi-EMD2FNN:

Z

AJ'l Z h_ny;i’

sz ((Z hjz * y;i)z Z( ;,12)2-(}’5,)2),

make 51 af

BL af
Zaygfazzh

'J+Z BZ

H12 —ky+i

=%

< [@‘u;gy;,)ug— (whly? ] (19)
h=1

aL aL  af
- — . — .xl.+a.'ng‘
a'ng.j 3_‘}"3.3 0z 23w { 3
- 1,3
Zj, = 5(Q_ v, -xh)z—z(v;h)z -Xn)?),
h=1 h=1
aL aL af
81{14 ayj(ml—hﬂﬂ 9z z=3j,
I:(Z hhxh)xi U_,(xr) i|+a'ufj4,
aL oL
“’;Jia ‘_'W;Ja_n awl. VI 4_0514_” FIT (20)
ijs ija
where i=1,2,....,n, j=1,2,...,mq, j1=1,2,...,my—ky,
J=12,.. ks, j3=1,2,....my—kq, ja=1,2,...,ky, n de-

notes the learning rate, and the single-EMD2FNN shares the
equation (20) with the case of multi-EMD2FNN.

Table 1

The data and their descriptive statistical analysis.
Name N Nae  Mean Std. Data range
SSEC 1214 242 2665.19 667.26 2012.01.04-2016.12.30
NASDAQ 1214 242 4161.88 82513 2012.01.04-2016.12.30
S&P500 1260 252 2677.27 672.07 2007.01.03-2011.12.30

It is worth noting that the EMD2FNN need only one prediction
model, in which all normalized IMFs are fed as the inputs. This
gives several advantages for EMD2FNN:

« It makes the prediction mechanism simple and easy to control
in practice.

+ Since each IMF is not completely independent to the others,
EMD2FNN is able to excavate the interactions among IMFs.

As mentioned in Section 3.1, both single-FNN and multi-FNN
structures can be used in the second stage for prediction. We call
them single-EMD2FNN and multi-EMD2FNN respectively.

We want to remark that after replacing the FNN model by NN,
one can construct another hybrid approach called EMD2NN that
will be compared with our model in the next section. In fact, the
idea of using EMD together with neural network has been recently
reported in a few applications, e.g., wind speed series prediction
(Liu, Chen, Tian, & Li, 2012), tourism demand prediction (Chen, Lai,
& Yeh, 2012), and water temperature prediction (Liu, Xu, & Li,
2016). A common structure in those studies is that every IMF has
its own machine learning model for predicting, and the neural net-
work models are completely independent of each other, including
the training and predicting stages. In contrast, our EMD2FNN uses
FM to exploit the interactions between IMFs and that helps to im-
prove the prediction accuracy significantly.

4. Simulation results and evaluation
4.1. Experimental data

The data! for our experiments are the Shanghai Stock Ex-
change Composite (SSEC) index, the National Association of Securi-
ties Dealers Automated Quotations (NASDAQ) index and the Stan-
dard & Poor’s 500 Composite Stock Price Index (S&P 500). For the
SSEC and NASDAQ data sets, their total number of values are 1214
collected from trading days ranged from January 4th 2012 to De-
cember 30th 2016. For the S&P 500, the size of series is 1260.
It is taken from January 3rd 2007 to December 30th 2011. Fig. 4
shows the original time series, from which it covers oscillatory (top
panel), upward (middle panel) and downward (bottom panel) pat-
terns. We partition them into training sets (80% of the total trading
days) and testing sets (20% of the total trading days). Table 1 de-
scribes their statistics, where Ny; and Noy: denote the sizes of the
whole data and the testing samples respectively.

4.2. The setup in models

To evaluate the performance of the proposed single-EMD2FNN
and multi-EMD2FNN models, we first compare them with other
models in forecasting the stock prices to determine the predic-
tion accuracy. And then, they are used in predicting the trend of
the price change to prove their reliability in trading with a simple
long-short trading strategy.

Suppose that the stock price series is decomposed into L IMFs
via the EMD, we take the set constituted of M consecutive values
from each IMF as the input samples, the activation function f from

! All the data in this paper are downloaded from www.financeyahoo.com.
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Fig. 4. The original data. Top: SSEC. Middle: NASDAQ. Bottom: S&P500.

the hidden layers as tanh. The activation function f, the size of out-
put neurons in the output layer and the loss function in the loss
layer are set as the identity function, M and squared loss respec-
tively for the case of stock price prediction, ie., f(x)=x, 0o=M
and ¢(y?.y;) = 3(v? — y;)?. where y; is the true stock price and
y? denotes the predicted stock price. In the case of trend pre-
diction, they are taken as the sigmoid function, 1 and the log-
loss respectively, i.e., f(x) =1/(1 +exp(—x)), o=1 and £(y?,yi) =
~yilogy? — (1 -y;)log(1 —y?), where y; is the true direction of
the price change, i.e., y; = 1 if the (i + 1)th price is larger than the
ith price, and y; = —1 otherwise, y? denotes the predicted value.

After the training and testing data sets divided, the FNN model
will be learnt on the training samples with the input size n=M %
L. In this paper, all undetermined weights are assigned with nor-
mal distributed random values initially, and then updated accord-
ing to the back-propagation process on the training samples, which
is concretely depicted in Section 3.2. For the hyper-parameters
my, my, ki, k; mentioned in Section 3.1 and 3.2, to reduce the
FNN model’s complexity in our experiments, we fix m; = |5t ],
ki =mqy —1, ky =my — 1. The rest values of hyper-parameter m,
the learning rate i in back-propagation process and the regularized
parameter « are obtained by the grid search algorithm, which aims
at finding the optimal parameters from various parameter combi-
nations via minimizing the squared loss on training set.

For the parameters in the NN model, including the parame-
ters m1, my, o, and the activation functions f from the hidden lay-
ers and the output layer, we take the similar setup as FNN, ie.,
my = Lﬂzlj the activation functions from the hidden layers are set
to be tanh, the activation function f and the size of output neu-
rons in the output layer and the loss function in the loss layer are
set as f(x)=x, o=M and ¢(y?,y;) = 3(y? —y;)? respectively for
the case of stock price prediction; as f(x) = 1/(1 +exp(—x)), 0=1
and £(y9,y;) = —y;logy? — (1 —y;)log(1 —y?) respectively for the
case of predicting the direction of price change.

4.3. Evaluation criteria

Three accuracy measures are chosen to evaluate the predicted
values j € R%N relative to the actual closing price y ¢ R®N, where
N is the sample size. They are mean absolute error (MAE), root
mean square error (RMSE) and mean absolute percentage error
(MAPE). Their definitions are given in Table 2. In our experi-
ments, we use all three measures to judge the prediction per-

Table 2
Evaluation indexes.

Measure

MAE ﬁﬂ:l Y P =Yl

Expression

RMSE F o P — Vi )2
MAPE § Taa X |n}—-n- |

Table 3

Description of the measures of trading performance. r; is the return in year i; ryp
denotes the realized return from the trade; r, is the return of risk-free; o is the
standard deviation of the difference E[r, —ry]; R; is the return at date t.

Statistical measure Describe

Trade Counts Total number of entered trades

Average Annual Return AAR=([TY, (1 +r))% -1

Sharpe Ratio SR=El=n]

Maximum Drawdown MD= max ( max (R —R;))
t=(0.T) Teit,T)

Average Annual Return/Maximum Drawdown  AAR/MD

formance. Smaller values of these indexes indicate more accurate
forecast. When the results are not consistent among the indexes,
we choose the relatively more stable one, MAPE as suggested by
Makridakis (1993), to be the main reference substance.

In addition, Table 3 lists all statistical metrics used for ex-
amining the trading performance in this study. The Sharpe Ratio
(SR) measures the risk-adjusted return. AAR/MD is slightly mod-
ified from the Calmar ratio and is calculated as the Average An-
nual Return (AAR) derived by the Maximum Drawdown (MD) for
the whole duration considered. For the MD, defined as the largest
accumulated percentage loss due to a sequence of drops over an
investment horizon, a lower output means a better performance.
For the Average Annual Return, Sharpe Ratio and AAR/MD, a higher
output is better.

4.4. Empirical mode decomposition

From Fig. 4, it can be seen that the data includes long term
tendencies, periodic vibrations and noise. These patterns can be
extracted from the observed data by EMD. The IMFs of SSEC are
depicted in Fig. 5 as the frequencies changing from high to low,
and plots in Fig. 6 show the IMFs of NASDAQ and S&P 500 by the
EMD technique.
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Fig. 5. The IMFs of S5EC data.

4.5. Results by the EMD2FNN model

After the FNN model set up and the IMFs obtained from
the EMD technique, we discuss how to select the window size
M.Tables 4-6 describe the results obtained from the multi-
EMD2FNN model on SSEC, NASDAQ and S&P 500 of selecting M
as 3, 4, 5 respectively. Fig. 7 depicts the results graphically with
bar charts. From them, the results of M = 3 outperform the others,
so we take M = 3 in this paper.

Figs. 8-10 depict the results of the single-EMD2FNN and multi-
EMD2FNN, where the top panels characterize the results from the
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Table 4

The performance of different window sizes M on SSEC.

M  Training data

Testing data

MAE RMSE MAPE MAE RMSE MAPE
3 35.0131 54.8787 0.0128 371778 615138 0.0123
4 52.2786  73.7618 0.0193 43.5513 66.7576 0.0143
5 51.5614 71.8362 0.0195 54.8499 89.9065 0.0152
Table 5
The performance of different window sizes M on NASDAQ.
M Training data Testing data
MAE RMSE MAPE MAE RMSE MAPE
3 36.4873 49.4673 0.0092 524773 70.4576 0.0108
4 41.0351 55.9020  0.0104 624763 82.4402 0.0128
5 50.7281 62.8714 0.0135 65.0425  83.1258 0.0150
Table 6
The performance of different window sizes M on S&P500.
M  Training data Testing data
MAE RMSE MAPE MAE RMSE MAPE
3 13.0210 17.5318 0.0117 13.0356 17.6591 0.0105
4 151725 20.3924 0.0137 15.1386 203978 0.0122
5 15.5838 20.7445 0.0139 16.1700 221277 0.0130

single-EMD2FNN (the cyan dashed lines), multi-EMD2FNN (the red
broken lines) and the true observation (the blue dashed lines with
dots), the bottom panels are the errors of the single-EMD2FNN
(the cyan broken lines) and multi-EMD2FNN (the red dashed lines)
models. It can be seen from the figures that both the fittings and
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Fig. 6. Left: the IMFs of NASDAQ data; Right: the IMFs of S&P500 data.



144

F. Zhou et al./Expert Systems With Applications 115 (2019) 136-151

100 548787 615138
35,0131 37.1778
10
g g
= MAE RMSE MAE RMSE
training testing
01
oL 0.0128 0.0123
Eim4ms
70.4576
100 36.4873 494673 524773 100
" 13021 175318 130396 176591
i0
1
3 MAE RMSE MAE RMSE -1 1
= s treining testing @ MAE RMSE MAE RIMSE
training testing
0.1
0.01
0.0092 0.0108
0.001 0.01
0.0117 0.0105
Emim4ams5 Emimams

Fig. 7. The graphic illustrations of the performance of selecting different M. Top: SSEC; Bottom left: NASDAQ; Bottom right: S&P 500.

6000
5000
4000
3000

Stock price

2000
1000

Eror

Fig. 8. The performances of EMD2FNN models on SSEC. The top panel depicts the fitting and prediction capabilities of different models, where the blue dashed line with dots
denotes the true observations, the cyan dashed line is the results obtained from the single-EMD2FNN, the red broken line represents the results from the multi-EMD2FNN,
and the green vertical line is the boundary between the training and testing sets. The bottom panel gives the errors of fitting and prediction from different models, where
the cyan broken line and red dashed one represent the performances from the single-EMD2FNN and multi-EMD2FNN models respectively, the green vertical line is also the
boundary between the training and testing sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. The performance of the models including NN, single-FNN, multi-FNN, EMD2NN, single-EMD2FNN and multi-EMD2FNN on SSEC. Top: all the predicted values covering
the whole testing data set; Bottom: the detail with enlarged scale of the top panel, where the red solid rectangle boxes denote the EMD2FNN models surpass the other ones,
the green blushing ones denote the other models exceed the EMD2FNN models, and the blue dashed ones denote that it is blurry to judge which model predicts better. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

predictions look reasonably accurate, and the results obtained by
the models are similar.

4.6. The discussion of predicted accuracy

In order to evaluate the predicted accuracy of the proposed
EMD2FNN (single-EMD2FNN and multi-EMD2FNN) models, we
compare them with the NN, FNN (single-FNN and multi-FNN), and
the EMD2NN models.

For the NN, single-FNN, multi-FNN, EMD2NN and EMD2FNN-
based models, their predicted values on SSEC, NASDAQ and S&P
500 are depicted in Figs. 11-13 respectively with the correspond-
ing colors and curve types, where each top panel shows the pre-
dicted values on the whole testing data set, each bottom panel de-
picts the results zoomed in to see detailed local values. In order
to clearly observe the performance of the proposed models, we

mark the ranges that the proposed models prominently surpass
the other ones, and vice versa. We use colored rectangles to box
the regions where the EMD2FNN is better than the others (soild
red), the others are better than EMD2FNN (dashed blue), and they
can't be clearly tell which one is better (brushing green). According
to the results, we have that:

1). From the top panels of Figs. 11-13, it indicates that all neural
network based models have good prediction ability, especially
for the trend of stock prices.

In the bottom panel of Fig. 11, the SSEC values ranged from
March 1st, 2016 to May 20th, 2016, which contain both up-
ward and downward patterns, there are more soild red rect-
angles covering the majority of the interval. This indicates that
the EMD2FNN models predicted values closer to the true stock
prices than those obtained by the other models.

2).
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Fig. 12. The performance of the models including NN, single-FNN, multi-FNN, EMD2NN, single-EMD2FNN and multi-EMD2FNN on NASDAQ. Top: all the predicted values
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other ones, the green brushing ones denote the other models exceed the EMD2FNN models, and the blue dashed one denotes that it is blurry to judge which model predicts
better. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. The performance of the models including NN, single-FNN, multi-FNN, EMD2NN, single-EMD2FNN and multi-EMD2FNN on S&P 500. Top: all the predicted values
covering the whole testing data set; Bottom: the detail with enlarged scale of the top panel, where the red solid rectangle boxes denote the EMD2FNN models surpass the
other ones, the green brushing ones denote the other models exceed the EMD2FNN models, and the blue dashed ones denote that it is blurry to judge which model predicts
better. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3).

4).

The bottom panel of Fig. 12 is the NASDAQ data ranged from
September 10th, 2016 to December 30th, 2016. In the figure,
there are three soild red rectangle boxes showing that the pre-
dicted values from the EMD2FNN models are better than those
from the other models. And the overall coverage of the red rect-
angle boxes is the largest.

The data of S&P 500 from January 3rd, 2007 to April 5th, 2007
is shown in the bottom panel of Fig. 13. There are three soild
red rectangles, two dashed blue boxes and two brushing green

ones. Again, the range covered by the soild red boxes is the
largest one showing the EMD2FNN produce better predication
results in general.

In order to know more clearly about the effects from FM and

EMD techniques, we evaluate the models with the indexes listed
in Table 2.Table 7-9 show the gains of the single-FNN, multi-FNN,
EMD2NN, single-EMD2FNN and mulit-EMD2FNN models compared
with the benchmark (NN) model on SSEC, NASDAQ and S&P 500.
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Table 7
The performances of different models on SSEC.
Models Training data Testing data
MAE Gain  RMSE Gain  MAPE Gain MAE Gain RMSE Gain  MAPE Gain
Benchmark: NN 0.0000 0.0000 0.0%. 0.0000 0.0000 0.0%e
single-FNN —0.1408 —0.5235 —0.0% —0.4923 0.4900 —0.1%a
multi-FNN 1.001 0.1077 —0.0% 0.1374 —0.1435 —0.1%a
EMD2NN —7.0951 —16.1093 —21% 0.3309 10.0282 —0.2%0
single-EMD2FNN —0.9250 —14.5796 —1.9%e —2.8577 1.6113 —1.0%.
multi-EMD2FNN —7.1983 —19.8979 —1.8% —1.5161 5.0094 —0.4%.
Table 8
The performances of different models on NASDAQ.
Models Training data Testing data
MAE Gain  RMSE Gain  MAPE Gain MAE Gain RMSE Gain  MAPE Gain
Benchmark: NN 0.0000 0.0000 0.0%. 0.0000 0.0000 0.0%e
single-FNN 0.1552 —-11318 0.1% —3.7138 —2.6285 —0.7%
multi-FNN —0.1061 —0.1676 —0.1%e —1.8645 —0.8479 —0.3%
EMD2NN 1.8459 —0.9002 1.3%e —3.7176 2.0391 —0.5%0
single-EMD2FNN -1.1246 —3.0685 —0.2% —5.1145 —4.4529 —0.9%.
multi-EMD2FNN -1.6514 —3.3447 —0.4% —8.6644 —6.8494 —1.6%
Table 9
The performances of different models on S&P500.
Models Training data Testing data
MAE Gain  RMSE Gain  MAPE Gain MAE Gain RMSE Gain  MAPE Gain
Benchmark: NN 0.0000 0.0000 0.0%. 0.0000 0.0000 0.0%e
single-FNN 0.012 —0.1202 —0.1%e —0.1356 —0.2523 —0.2%0
multi-FNN —0.0053 —0.1218 —0.1%e —0.1223 —0.3279 —0.1%a
EMD2NN —2.2764 —4.0868 —2.7% —3.2361 —5.0912 —2.7%
single-EMD2FNN —3.9365 —4.9230 —3.6% —3.8347 —5.5865 —3.1%
multi-EMD2FNN —4.0252 —5.8653 —3.7% —4.3960 —6.3499 —3.6%
10045 3114 2i-E190 38,6939 I
) ““I‘ ““Il ““" ““ll

Error
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Fig. 14. The performance of the forecasting models on three datasets. Top: SSEC; Bottom left: NASDAQ; Bottom right: S&P 500.

The smaller the gain value, the better the model improves. Besides,
Fig. 14 plots the metrics’ values with bar chart. From the results, it
can conclude that:

+ Compared with the benchmark model, the values indicate both
EMD and FM techniques can improve the accuracies. For the
EMD2FNN based models, the MAPE indexes are respectively im-
proved as high as 1.9% and 1.0%. for the training and testing

Error

MAE RMSE
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data in the SSEC data set. The same conclusion can be obtained
for the NASDAQ data set (the accuracies of MAPE are improved
as high as 0.4%. and 1.6%. for the training and testing data re-
spectively), and S&P 500 data set (the accuracies of MAPE are
improved as high as 3.7%. and 3.6%. for the training and testing
data respectively).
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Table 10
The performances of multi-EMD2FNN and WDBP on SSEC.
Models Training data Testing data
MAE RMSE MAPE MAE RMSE MAPE
WDBP - - - 675.9543 8475841 0.1948
single-EMD2FNN 83.7839 105.7786 0.0597 186.4379 235.7480 0.0647
multi-EMD2FNN 99.4046 136.8320 0.0673 164.1967 215.8639 0.0568

Table 11

The performance of the simple long-short strategy without transaction cost using EMD2FNN-based pre-
diction models, together with those of the buy-and-hold (denoted as Benchmark) and of the look-ahead
‘ex post trading strategy’ (denoted as Ex post) for S&P500.

Transaction cost ~ Measure Ex post  Benchmark  single-EMD2FNN  multi-EMD2FNN
No AAR 285 —0.01 013 0.25

MD 0.00 0.19 0.05 0.04

SR 10.05 0.07 172 2.60

AAR/MD +00 —0.05 2.60 6.25

Trade Counts 58 1 17 22

* Compared with the other models, the gain values of the
EMD2FNN based models are basically smaller. It indicates the
single-EMD2FNN or multi-EMD2FNN are the best among these
models, and both EMD and FM techniques are useful in improv-
ing the accuracies.

Consider the differences between multi-EMD2FNN and single-
EMD2FNN structures, the gain values of multi-EMD2FNN model
are generally smaller than those of single-EMD2FNN model.
It indicates the multi-EMD2FNN model is more robust than
single-EMD2FNN.

Finally, the EMD2FNN models are compared against the WDBP
technique that is proposed in Wang et al. (2011). The data from
Wang et al. (2011) is also the closing prices collected on the Shang-
hai Stock Exchange. The total number of values is from 204 trad-
ing months, from January 1993 to December 2009. Table 10 lists
the results obtained from the WDBP (Wang et al, 2011) and the
EMD2FNN models. From the table, the MAPE index is reduced from
19.48% to 6.47% and 5.68% corresponding to single-EMD2FNN and
multi-EMD2FNN respectively. This shows that the proposed tech-
nique has achieved a significant improvement in predicting accu-
racy, and also proves that the multi-EMD2FNN is superior to the
single-EMD2FNN.

4.7. The discussion on profitability

Since having a high prediction accuracy does not necessarily
imply that the strategy makes profit, we compute the profitability
with a simple long-short trading strategy to prove the reliability of
the EMD2FNN models in trading, where we follow the philosophy
of Zhou, Mu, and Chen (2011) in viewing strategies as nonlinear
transforms of the input time series that help revealing the proper-
ties of the price generating process.

For each model, the so-called long-short strategy we use con-
sists of buying (respectively selling) if the price is predicted to in-
crease (respectively decrease) from today to the next day. More
specifically, one buys one unit of the index (position +1) if the
price is predicted to increase. This strategy is kept until the first
prediction for a price decrease is obtained, at which time one sells
the index (position —1), i.e., one sells the existing position and
further borrows one additional unit of the index and sells it. This
short position —1 is reversed to position +1 at the next prediction
for an upward index direction, by buying two units of the index,
where one unit is used to cancel the short position and the other
one is to be the net long position. And so on.

We compare the performance of this simple long-short strategy
for both single-EMD2FNN and multi-EMD2FNN prediction models
to (i) the buy-and-hold strategy, i.e., enter the market with buy-
ing one unit of index and holding the long position until the end;
and (ii) a look-ahead ‘ex post trading strategy’, which would be re-
alized if one had perfect foresight of the sign of the price change
from today to tomorrow. Although, the ‘ex post trading strategy’
can never be achieved in practice, and is expected to give extraor-
dinary large returns, it provides an interesting upper bound of the
performance.

Table 11reports the performance metrics defined in Table 3 of
the simple long-short strategy using our proposed prediction mod-
els, together with those of the buy-and-hold (denoted as Bench-
mark) and of the look-ahead ‘ex post trading strategy’. As ex-
pected, the Ex post strategy would achieve a whooping 285% of av-
erage annual return (AAR) and zero drawdown since perfect fore-
sight is assumed. In contrast, the Benchmark strategy delivers —1%
of AAR with maximum drawdowns 19%. Remarkably, the single-
EMD2FNN and multi-EMD2FNN models respectively have the AAR
close to 13% and 25% with small maximum drawdowns in the
range of 5%. Their Sharpe ratios are also impressive. From it, we
can also see that the multi-EMD2FNN performs much better than
the single-EMD2FNN.

It is often the case that very good results are reported in the ab-
sence of transaction cost (as well as when neglecting slippage and
other real market frictions), while it wipes out all profits. In such
a case, the prediction ability of a model would be a statistical re-
ality but would be economically irrelevant. The market would still
provide apparent arbitrage opportunities, which would be however
in-exploitable due to the market frictions.

Transaction cost mainly consists of stamp duty, commission and
transfer fees. In addition, an order to buy at a given price may
not be implemented at the desired price due to lack of counter-
parties (lack of liquidity and fast moving prices), leading to ad-
verse slippage. In order to simplify the process of estimating the
impact of transaction cost, we use a rather conservative value of
0.3% for each trade, to include all possible cost and frictions. This
means that a given transaction consisting of buying an index and
then selling it in the future will be exposed to a total of 0.6% of
transaction cost.

Table 12shows that, as expected, transaction cost reduces dra-
matically the AAR and other performance indicators. However, the
multi-EMD2FNN still gives impressive results with AAR 14% and
maximum drawdown 4%. Meanwhile, the single-EMD2FNN have
the metrics with AAR 11% and maximum drawdown 17%.
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Table 12
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The performance of the simple long-short strategy with transaction cost using EMD2FNN-based predic-
tion models, together with those of the buy-and-hold (denoted as Benchmark) and of the look-ahead
‘ex post trading strategy’ (denoted as Ex post) for S&P500.

Transaction cost ~ Measure Ex post Benchmark  single-EMD2FNN  multi-EMD2FNN
Yes AAR 1.66 —0.02 on 0.14
MD 0.01 0.19 017 0.05
SR 717 0.04 0.58 1.30
AAR/MD 166.0 —0.11 0.65 2.80
Trade Counts 59 1 16 23
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Fig. 15. Top: Time evolution of the performance of the strategy in the test (out-of-sample) period based on the predictions of the EMD2FNN-based models on S&P 500
index without taking transaction cost into account. Middle: buy and sell signals of the single-EMD2FNN-based trading strategy. Bottom: buy and sell signals of the multi-
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Fig. 16. Top: Time evolution of the performance of the sirategy in the test (out-of-sample) period based on the predictions of the EMD2FNN-based models on S&P 500 index
with taking transaction cost into account. Middle: buy and sell signals of the single-EMD2FNN-based trading strategy. Bottom: buy and sell signals of the multi-EMD2FNN-

based trading strategy.

Figs. 16and 15 show the time evolution of the performance of
the strategy in the test (out-of-sample) period based on the pre-
dictions of the EMD2FNN models for two cases: taking or not tak-
ing the transaction cost into consideration for the S&P 500, in
comparison with the buy-and-hold strategy (that reproduces the
AAR of the indices). The top panels of these three figures present
the normalized cumulative compounded returns of the buy-and-

hold (black curve), single-EMD2FNN-based strategy (blue curve)
and multi-EMD2FNN-based strategy (red curve) respectively. The
initial value of return is set as 1, and thus the initial volume equals
to 1 divided by the price at that base day. In the following days, we
update the volume according to the return divided by the close
price one day before. In a sense, we compound the returns. The
other two panels of each of these three figures show the corre-
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sponding buy or sell signals of the single-EMD2FNN-based trading
strategy (middle panel), and multi-EMD2FNN-based trading strat-
egy (bottom panel).

5. Concluding remarks

This paper introduces a novel method for predicting the stock
prices by integrating EMD, FM and the neural network together.
EMD is used to decompose the original nonlinear and non-
stationary time series into IMFs that can be considered quasi-
stationary. The produced IMFs are used as inputs to the neural
network, which incorporates the FM strategy to exploit the nonlin-
ear interactions between features extracted at different time scales.
The resulting EMD2FNN can handle not only the nonlinearity but
also the influence among time scales, which are two aspects that
the existing methods face challenges. The numerical experiments
demonstrated that the integrated methods have significant advan-
tages in improving the prediction accuracies, measured by MAE,
RMSE and MAPE. Furthermore, the profitability is computed with
a simple long-short trading strategy to examine the trading per-
formance of the proposed models by taking transaction cost into
account or not. The performances, measured by AAR, MD, SR and
AAR/MD, are also found economically significant.

This study is another example that demonstrates the power of
combining EMD with neural network to achieve outstanding per-
formance in stock price predictions. In fact, we believe that EMD
can be used in conjunction with other statistic or artificial intelli-
gent strategies to form general methods for predicting, especially
for the time series that is nonlinear and non-stationary in nature.
Various combinations in algorithm design can be investigated in
the future to tackle problems emerging from different applications.
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