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Abstract We propose a new semi-discretization scheme to approximate nonlinear Fokker—
Planck equations, by exploiting the gradient flow structures with respect to the 2-Wasserstein
metric in the space of probability densities. We discretize the underlying state by a finite
graph and define a discrete 2-Wasserstein metric in the discrete probability space. Based on
such metric, we introduce a gradient flow of the discrete free energy as semi discretization
scheme. We prove that the scheme maintains dissipativity of the free energy and converges
to a discrete Gibbs measure at exponential dissipation rate. We exhibit these properties on
several numerical examples.
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1 Introduction

In this paper we introduce and study semi-discretization schemes for certain types of partial
differential equations (PDEs) [16], which are gradient flows from the viewpoint of optimal
transportation theory [1-3,10,21,22,25,26].
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Consider a nonlinear Fokker—Planck equation [4,10]

B
8—’; =V [pV(V(x) + /Rd W(x, y)p(, y)dy)} + BAp. (1

The unknown p(t, -) is a probability density function supported on R?, the functions V :
R? — R,and W : R? x R? — R are smooth and further W(x, y) = W(y, x) for any
X,y € R4,

Equation (1) is associated to a functional F : P(R?) — R, called free energy

1
Flo) = / V()P (odx + / W(x, y)p()p(dxdy + B / p(x) log p(x)dx.
R4 R? xRY R4

2
(@)
which is a summation of linear potential energy, interaction energy and linear entropy, from
left to right. It is known that the free energy (2) is a Lyapunov function for (1):

d
- F(p(t, ) = — / (VF(x, p)*p(t, x)dx <0,
t R4

where F (x, p) 1= %}' (p)(x),and % is the L2 first variation. Under suitable conditions

on V and W, the solution p(t, -) of (1) converges to an equilibrium p*(x) named Gibbs
measure, where

1 V@) +[pa Wey)e*(dy V)t [pa W% ()dy

pF(x) = ¢ ] ,  where K:/ e B dx.
]Rd

Recent work on optimal transport treats the probability set P (R) as a “Remannian manifold”
equipped with the 2-Wasserstein metric. From this viewpoint, (1) is a gradient flow of the
free energy F(p) on P(RY), see [2,25,26]. Furthermore, requiring W(x,y) = W(jx — y|)
with suitable conditions, Carrillo, McCann and Villani show that p (¢, -) converges to a Gibbs
measure with exponential rate, see [10].

In this paper, we consider a similar matter in the discrete setting. In other words, we shall
derive a semi-discretization scheme for (1) (continuous in time and discrete in spatial space),
which also has a gradient flow structure with respect to a discrete 2-Wasserstein metric in the
discrete probability space. We note that the underlying space for (1) can be a variety other
than R?. For instance, the domain can be a bounded open set, with a zero-flux conditions or
periodic conditions. In this paper, we apply the setting of finite graph to consider all these
cases.

Consider a graph G = (V, E) to discretize the spatial domain, where V is the vertex set

V={1,2,...,n},
and E is the edge set. The adjacency set of the vertex i € V is denoted by
N@) ={jeVI()j €E}
We note that each i € V represents a point in R?, and (i, j) is shorthand for an edge

connecting i and j. For example, we can think of G as a lattice corresponding to a uniform
discretization of the domain with spacing Ax.
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Consider a discrete probability set supported on all vertices:

n
Zpi=1, ,OiZO,iGV}-

i=1

P(G) = [p = (o)}, €R"

Moreover, we consider a discrete free energy of F(p), as an analog of (2)

n n n n
Fp) = vai + % Zzwijpmj + ﬁZPi log pi,
i=1 i=1

i=1 j=1

where (v)7_; = (V)7 and (w;j)1<i,j<n = (W(, j))1<i,j<n are a fixed vector, and a
fixed symmetric matrix, respectively. By this setting, we will equip P(G) with a “discrete”
2-Wasserstein metric, then derive and analyze the gradient flow of discrete free energy under
this metric.

Delaying the derivation details until Sect. 2, we show the semi-discretization directly. We
propose to take

dpi 1
T X AEP =Fe)r = Y aEE = Fo)i . G
JEN() JEN()

where i € V, (-)4 = max{-, 0} and

a
Fi(p) = —F(p), foranyieV.
api
Besides showing that (3) is a well defined ordinary differential equation (ODE), we demon-
strate that (3) has a gradient flow structure. Firstly, the free energy is a Lyapunov function of

3):
d - F) —Fip\ T
Ef(p(t)) = E [( Ax )J pi <0.

(i,j)eE

Then, if p(¢) converges to an equilibrium p®°, then we will show that such equilibrium is a
discrete Gibbs measure
1 _ vi+ Xy wije§° "o vi+ Xy wije§°
P = x© P , K= Ze B

i=1

Furthermore, if p is a strictly local minimizer of the free energy, and p(¢) is in its basin
of attraction for the gradient dynamics, then we will show that the convergence speed is
exponential:

F(p(0) = F(p™) < e (F(p°) — F(p™)).

where C is a positive constant. In fact, we will say more about this convergence. We will
give an explicit formula for the asymptotic convergence rate, which mimics the role of the
Hessian of the free energy at the Gibbs measure w.r.t. the discrete 2-Wasserstein metric.
Finally, we will show that (3) is a consistent scheme for the PDE (1), and further derive a
general consistent scheme for general drift diffusion systems, not necessarily gradient flows.

The semi-discretization scheme in this paper is largely inspired by [12,17], the upwind
scheme of [5], and optimal transport theory [26]. In addition, the convergence result is
influenced by the work of Carrillo, McCann and Villani, [10]. Our method can be viewed as
a discrete entropy dissipation method [11,19], with a dynamical twist.
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In the literature, people have studied 2-Wasserstein metric and Fokker—Planck equations
in discrete settings for a long time [6,8,9,15,18,20]. Maas [18] and Mielke [20] introduce a
different discrete 2-Wasserstein metric. Based on such metric, they analyze the convergence
rate of some schemes for one-dimensional linear Fokker—Planck equations. In addition, Che
et al. [7] studies the convergence rate for any linear Fokker—Planck equations on graphs.
Our scheme shows exponential convergence for all linear and nonlinear cases. Carrillo et
al. [8,9] have recently designed several algorithms based on entropy dissipation viewpoint.
Particularly, the first order scheme designed in [8] shares some similarities with (3) for a
lattice graph. However, we advocate designing semi discretization schemes by using directly
the viewpoint of discrete Wasserstein metric. We believe that the metric would be useful
for deriving various time discretization for semi discretization scheme in the light of [16].
In addition, the gradient flow of entropy with this metric suggests an interesting nonlinear
discretization of Laplacian operator. This effect introduces many dynamical properties of the
semi-discretization scheme, such as exponential convergence.

This paper is arranged as follows. In Sect. 2, we derive (3) based on a discrete 2-Wasserstein
metric. With respect to this metric, (3)’s gradient flow properties are given. In Sect. 3, we show
that the solution of (3) converges to a discrete Gibbs measure exponentially fast. Numerical
analysis and several experiments on (3) are discussed in Sects. 4 and 5.

2 Semi-Discretization Scheme
In this section, we show that (3) is a gradient flow for the discrete free energy on the probability
set P(G). First, we define a discrete 2-Wasserstein metric on P(G). Second, based on such

metric, we derive (3) as a gradient flow of the discrete free energy. Third, we show that (3)
is a well defined ODE with gradient flow structure.

2.1 Discrete 2-Wasserstein Metric

The 2-Wasserstein metric (Benamou—Brenier formula, [3]) is a metric defined on a probability
set supported on R¥:

1
. a
Wa(p", p')? = inf {/ (VO, VO),dt a—f + V- (pV®) =0, p(0) = p°, p(1) = p' }
0
where (-, -), represents an inner product on the probability set:
(VO, VD), = / (VO(t,x))*p(t, x)dx,
R4

and the infimum is taken among scalar potential functions ® (¢, x) € R4,

We give a similar metric definition for a discrete setting, which is a finite graph G =
(V, E, Ax). Here Ax represents the equivalent weight on the edge of graph, which is a
scaling parameter. Consider a probability set supported on V with all positive measures:

Po(G) = {p = (pi)i=

n
Zpi =1, pi>0, foranyi e V}.
i=1
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We use three steps to define the metric on P,(G). Firstly, we define a potential vector field

on graph

1

Ve® = (7(q>i - q>j)> ,
Ax (i.j)eE

with the potential function ® := (®;)7_,. Secondly, we introduce the discrete analog of
V. (pV®D) by:

] n

divg (pVG @) == (— 2 Z (i — q:'j)gij(/)));l»
JEN (i) =

where

pi if Fi(p) > Fj(p), j € N(),
gij(p)=1p;  if Fi(p) < Fj(p). j € NG, @
BEEL i Fi(p) = Fi(p). j € N(),

and F;(p) := 3%}' (p). It is worth mentioning that g;; defined in (4) has multiple choices,

such as g;; = @ in [13]. Lastly, we construct an inner product on P, (G):

1
(V6®, V6P, i= s D (B = ®)’gij (),
(i,j)eE

where % is due to the fact that every edge in G is counted twice, i.e. (i, j), (j, i) € E.
We are now ready to introduce a discrete 2-Wasserstein metric on P, (G).

Definition 1 For any p°, p! € P,(G), define Wa: P,(G) x P,(G) — R :
2
(W20, 1)
) ! dp . 0 1
= inf f (V6 @, Vg ®),dt i divg(pV®) =0, p(0)=p", p(D=p},
0

where the infimum is taken over all ® for which p is a continuously differentiable curve
p [0, 1] = P,(G).

We justify that W in Definition 1 is a well defined metric. We endow P, (G) with an inner
product on its tangent space

T, Po(G) = !(oi);’:l e R"

im’ = 0} .
i=1

“,

Consider the equivalence relation
so that the quotient space is

in R” which stands for “modulo additive constants,”

R"/ ~={[®] | (®)}_, e R"}, where [®]={(®|+c,---,P,+0)|ceR.

We introduce an identification map

1
TR~ TP(G), T(D = | D 5 (@i = @))gii(p)
JENG)

Lemma 2 The map t : R"/ ~— T,P,(G) is a well defined map, linear, and one to one.
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Proof First, we show that t is well defined. We denote
1
0i =3 Z (®i — ®)gij(p).
JEN()
Our task is equivalent to show Y, o; = 0. Indeed,

n

Zdi =$ Z Z (®; — Dj)gij(p)
i=1

i=1 jeN(i)

:ﬁ Z D;gij(p) — Z D;gij(p)

@i,j)eE @i,j)eE

Relabel i and j on the first formula

=71 2 @i — Y ®igi(o)p =0.
(i, ))eE (i,))eE
Hence, the map 7 is a well-defined linear map.
Next, we show 7 is one to one. Since 7,,P,(G) and R"/ ~ are (n — 1) dimensional linear
spaces, we only need to prove 7 is injective. Le., if

1 .
o= > 8ij(p)(®; — ;) =0, foranyieV,
JjeN(@)
then [®] = 0, meaning that &; = oy =-.- = .
Assume this is not true. Let ¢ = max;cy ®;. Since the graph G is connected, there exists
an edge (k,l) € E, such that ®; = c and & < c. But, since o; = 0, we know that

o = M —ca 2 jena) 8 (PP —©) .
2 jena) 81 (P 2 jena) 81 (P)
which contradicts &; = c. .

This identification map induces a scalar inner product on P, (G).

Definition 3 For any two tangent vectors ol,o? ¢ T,P,(G), we define an inner product
8 : TyPy(G) x TyPy(G) — R:

n n
1
g o)=Y ol 0 =Y dlo? = —— 3" gy(p) (0} - o)) (07 - @3).
i=1 i=1 (i,))€E
)

where [®!], [®?] € R"/ ~, are such that ¢! = t([®']), 0% = T ([?)).
Under the above setting, we have

1
2. d
(“72(/)0’ ,01)) = inf {/0 g(O’, O')d[ . 7di‘) =0, p(o) = ,00, p(l) = 101, o€ C} i

where C is the set of all continuously differentiable curves p : [0, 1] — P,(G). So, the
metric is well defined. For more details see [12].
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2.2 Derivation of the Scheme

Based on the metric manifold (P,(G), W5), we now show that the semi-discretization scheme
(3) is a gradient flow of the discrete free energy.
In abstract form, the gradient flow is defined by

dp
—_— = —gradpo(G)]:(p)

dt
Here gradF (p) is in the tangent space T,,P,(G), which is defined by the duality condition:
g(gradp, ) F(p),0) = dF(p) - o, foranyo € T,P,(G),

where dF - 0 = Zl e 27 (p)o;. Hence the gradient flow satisfies

d

(d—‘;,a> +dF(p)-o =0, foranyo € T,Py(G). 6)
P

Following (6), we derive (3) in Theorem 4 below.

Theorem 4 Given a graph G, a constant 8 > 0, a vector (v,)” | and a symmetric matrix
(w;ij)1<i,j<n- Then the gradient flow of the discrete free energy

Fp) = Zvlpl+ Zzwljlolloj +,32,0110g,01,

i=1j=1

on the metric manifold (P,(G), W»), is

dp; 1
P VST piF ()~ Fio)s — Y. pilEi(p) — Fj ()4 | .

dt - Ax2 | & A~
JEN(i) JEN(D)
foranyi € V. Here Fi(p) = 5 F(p) = vi + X _ wijp; + Blog pi + B.

Proof of Theorem 4 We show the derivation of (3). For any o € T,P,(G), [®] € R"/ ~,
such that 7 ([®]) = o. On one hand, we denote =£ d (d”’ n |- From definition 3,

dp =~ dp;
& S Y.
(dz’a)p ; 7 @)

At the same time, we also have

n

dF(p)-o =) %f(p) Lo = Z Fp)5z D &)@ — @)
i=1 "t JeN(l)
= DD i @FE P =Y Y gii(pFi(p)®,
i=1 jeN(i) i=1 jeN(i)

Relabel i and j on second formula
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1
=17 X SiOFE@®i— 3 i) Fi(0)®;
@Dk (. )eE
1 n
= a2 |2 2 so(F) — o)y ®)
i=1 jeN(i)

Combining (7) and (8) into (6), we have

oz(d—,a) +dF(p) -0
d P

i 1
=2\ tEe gij(p)(Fi(p)—Fj(p)> ;.

i=1 JEN()

Since the above formula is true for all (®;)7_,; € R", then

dp; 1
o T 2 sie(Fip) — Fi(p) =0
JEN(D)
holds for all i € V. From the definition of g;;(p) in (4), we have (3). O

To summarize, we have introduced a new discretization, which can be formally represented

as

dp . d "
7l divg(pVG F(p)), F(p) = (*H/D) ,
t api i=1

where
. 1
divg (PVGF(P)):TXZ Z pj(Fj(p) — Fi(p)+ — Z pi(Fi(p) — Fi(p)+
JEN(D) JEN(D)
2.3 Gradient Flow Properties
Here, we show that (3) is a well defined ODE with gradient flow structures.

Theorem 5 Forany initial condition p° € P,(G), 3) hasa unique solution p(t) : [0, co) —
Po(G). Moreover,

(i) there exists a constant ¢ = ¢(p°) > 0 depending on p°, such that p;(t) > ¢ for all
ieVandt > 0;
(ii) the free energy F(p) is a Lyapunov function of (3):

d Fi(p) = Fj(p)\*
ZFpm) =-— SRR
T F o) Z ( Ax R
(i,j)eE
Further, if lim;_, oo p(¢) exists, call it p°, then p™ is a Gibbs measure.

Proof The proof of (i) can be found in [17], which is just a slight modification of [12]. Below,
we only show (ii), which justifies saying that (3) is a gradient system. Firstly, we show that
F(p) is a Lyapunov function:
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d _ - . .d,Oz
T F(p®) —l;mp) .

> ) Fie)(Fj(p) = Fi(p))+pj

TAx? | & 4
i=1 jeN()

—-Y_ > Fo)(Fi(p) = Fi(p)+pi

i=1 jeN()

Switch i, j on the first formula

> Fip)(Fi(p) = Fi(p)+pi

i=1 jeN(i)

=Y > Fi(p)(Fi(p) = Fj(p))1pi

i=1 jeN(i)
F. —F; 2
—_ Z < i(p) ](0)) pi < 0.
“ Ax i
(i,j)eE

Secondly, we prove that if p>° = lim;_, , p () exists, then p* is a Gibbs measure. Since
lim;_, 5o d%t) = 0, then lim;_, %}'(p(t)) = 0. From (i), we know that p° > c(p% >0

for any i € V; so, the relation

Z D Fi(p™) = Fi(p™)3p°

i=1 jeN(@)

implies F; (0>°) = F;(p™) for any (i, j) € E. Since the graph is strongly connected,
Fi(p>°) = Fj(p*™), foranyi,jeV.

Let
n

C:=v + Z wijpj?o + Blog p°, whichis constant for any i € V,
j=1

a

K = e 7 and use the fact Z?:l p7° = 1. Then, we have

- 1 ui+Z';~:1 w,'jpj.’o n B Ui+2?:] w;j pj?o
’Oi = fe B . K = Z e B
j=1
Hence p™ is a Gibbs measure, which finishes the proof. O

Notice that (P,(G), W) is not a smooth Riemannian manifold, since for fixed i and
J €V, gij(p) may be discontinuous with respect to p. Still, even though (P, (G), W>) is not
smooth, (3) is a well defined ODE for any initial condition ,00 € P, (G).

One may be surprised by the unusual discretization of the Laplacian term, namely

1
m(bg pj —log pi)gij(p) ©)
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which is different from the commonly adopted centered difference. We call (9) the
“Log-Laplacian.” We observe that the Log-Laplacian plays a crucial role in the spatial dis-
cretization. Not only it implies that (3)’s equilibria are Gibbs measures, but it also indicates
that the boundary of the probability set,

IP(G) = {(pi)?zl

n
Z pi = 1, there exists some indexi, such that p; = O} ,

is a repeller for (3). We will see that this boundary repeller property plays an important role
in the convergence result of Sect. 3.

3 Dissipation Rate to a Discrete Gibbs Measure

Considering the gradient flow (3), an important question arises. Assuming that p (¢) converges
to an equilibrium p°°, how fast is the convergence speed? In the sequel, we show that the
rate of convergence is exponential. Indeed, we capture such rate by the following explicit
formula.

Definition 6 Denote 5

0

fii = ——F(p),

Y dpidp;
and T

hij,kl = flk f]l Qfll f]k for any i’ jv k’ leV.

Ax

We define
—® D — P
rr(p) = mm Z Z z]kl( j) Pi (7) Pk s
o) €D + Ax +
(i,j)€E (k,)eE

where

D — D \2
D= ew| ¥ (FLH) ao
+

@i,j))eE

Remark 1 Az in Definition 6 plays the role of the smallest eigenvalue of the Hessian operator
on Riemannian manifold of the free energy at Gibbs measure; see [13,17] for more details
about this connection.

Based on A £ (p), we show the exponential convergence result for (3). We will assume that
p? is in the basin of attraction of p for the gradient flow. Le., if p(¢) is a solution of (3)
with initial condition ,00, then

(A) tlim p(t) = p> and p*™ is an isolated equilibrium.
500

Theorem 7 Let(A) hold, andlet A r(p°°) > 0. Then there exists a constant C = C(po, G) >
0, depending on p° and G, such that

F(p0)) — F(p™®) < e " (F(0%) — F(p™)).
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Moreover, the asymptotic convergence rate is 2A x(p°°). In other words, for any sufficiently
small € > 0, there exists a time T > 0 depending on € and p°, such that whent > T,

F(p(0)) = F(p®) < e 2HF PN F (p(T) = F(p™)).

Motivation of the proof Our proof is motivated by some known facts of gradient flows in
R”". We consider a A-convex energy g(x) € C2(RM), ie. Hesspng(x) = AI, 1 > 0 for all
x € R". The gradient flow associated to g is

dx,

L —-_v , e R".
dt g(x), X

We compare the first and second derivative of g(x;) with respect to ¢:

d
Eg(xr) =—(Vg(x), Vgx1)),
2

d d
27280n) = — 2(Hessng(x;) - Vg (x), Vg (xr)) = —2A—g(x1).

From the above comparison, we obtain the convergence result. Integrating on the time interval
[t, +00),

d
Z[g(xz) — 8(x00)] < —2A[g(xr) — g(x00)],

and applying Gronwall’s inequality, the energy function g(x;) decreases exponentially

—2xt

g(xr) — g(xx0) < e (g(x0) — 8(X0))-

In addition, from the dynamical viewpoint, the strict convexity of the free energy can be
weakened: if the equilibrium x, is a strict local minimizer, the exponential convergence
result is still valid. Furthermore, the asymptotic convergence rate is 2AminHessgr g(Xo0). O

Proof of Theorem 7 Motivated by the standard approach in R”, we briefly sketch our proof
in Riemannian manifold (P,(G), W>); see [13,17] for complete details. The main idea is to
compare the first and second derivatives of the free energy along (3).

Claim )

d 2

SF0) =5 S > hijw(Fi = Fp)ypi(Fe — F)qpk

G, ))EE (kI)eE (10)
d
+ —F(p(t .
0 ( S F )))
) 2

Here we denote limj,_, ¢ % =0,F = a%]:(ﬁ)), fij= ﬁ%}"(ﬂ) and hijua = fik+ iy =

fit = fjr- If (10) holds, it is not hard to check that Theorem 7 holds.
Let’s show (10) directly. Recall the gradient flow (3)

dp; 1
=) 2 Fi—Fowpi— Y (Fi—Fppi
JENG) JENG)
We compute the first derivative of the free energy along (3):

d - Fi — Fj\?
SFw)==3" < ~ )+p,~.

i=1 jeN(i)
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Notice that j—tzz]:(p(t)) exists for all + > 0, because (F;(p) — F; (p))i is differentiable
everywhere with respect to p. Then we obtain the second derivative by using the product

rule: 5 )
d u Fi — F; dp;
EFem = =Y % ( )+ dt "
i=1 jeN(@)
dF;, dF
B ST

i=1 jeN(i)
Hence, (10) can be shown by the following two steps. Firstly, since p(¢) is assumed to

converge to an equilibrium p° and the boundary is a repeller (Theorem 5), we know that

o5 0 while pi(t) = c¢(p®) > 0. Hence & is a high order term of the first derivative

dt

Secondly, we have the following Lemma. O

Fi — Fj F — F
®=2 ; .
Y Yk ( )p( - )+pk

(i,j)eE (k.)eE

Lemma 8

Proof of Lemma 8 We derive this result by a direct calculation. Here we use the relabeling
technique heavily: For a matrix (k;;)1<;, j<n,

D kij= ) ki

(.J)eE (ji)eE
Then
1 1 < d d
—®=5a) D (F,-—F,-)+p,-< Fi(p(®) = —F (p(r)))
e JEN()
- " 0F; dor ~= OF; dox
i J
=32 >, (Fi—F,-)+p,-( — - )
AXTIT NG = Ok dt = Opr dt
R ‘ dpk
=32 2 Fi—Fpepi ) (fie = fiy)
i=1 jeN() k=1

= ﬁ SN Fi=Fpaepi Y (fa—fi) | Y. (Fi= Foypr

i=1 jeN(i) k=1 leN (k)

- Y (Fe—F)yp

IeN (k)
‘
= A Z Z (Fi — Fj)+pi Z Z (fik = i) (F1 = F)+p1
i=1 jeN(i) k=11eN (k)

33 = i) (Fe — Fem

k=11eN (k)
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Relabel k, [ in the first formula

= A%; SN F=Fpepi 1Y D (fu— fip(Fx = F) g

i=1 jeN(i) k=11eN (k)

33 - ) (e — e

k=11eN (k)

= ﬁ SN ST ST i fiy — S+ fe)Fr— Fpepi(Fi— F)

i=1 jeN(i) k=1 1N (k)
1
= Do = fij = fa+ fi)(Fi = Fp)ypiCFe = Fi)y i

(i,j)€E (k,1)eE

Combining all the above facts, the claim and the proof of Theorem 7 follow. O

3.1 Analysis of Dissipation Rate

In the sequel, we further elucidate the relationship between convexity of the free energy
(Hessian operator in R") and the dissipation rate.

Lemma 9 Denote
n

~ 1
divg(PVG®) = [ 1 D (@i =@)ppi— Y (®; = Pi)yp;
JEN (@) JEN()

i=1

Then Ar(p) in Definition 6 is equivalent to
: v T ~ o; — (Dj 2
Ar(p) = min (de (pVe <1>)> Hessan F(p)divg (pV6®) = Y (—L) pi=1¢.
(i,j)€E * +
Proof Notice Hessgr F(p) = (fik)iev kev- Then we derive the following formula:

(divg(pVa CD))THessRn F(p)divg(pVsP)
n n

=23 fudiv(pV®)|idive (0Ve ®)k

i=1 k=1
n n

=23 fu| = D (@i—0pg || = Y (Pk—Pgu
i=1 k=1 JEN () IeN (k)

= Y (@—P)g; Y. fu(®k—D)gu
(G, ))eE (kDeE

= ) (D —D)g Yoo fa@—Pm+ Y fu( @ —D)p

(i,j)€E (kD)EE, Op>D; (k,)EE, Dp<P;
Relabel k and [ for the second formula

= Z (P; — P))gij Z Jik (@ — D) pi — Z Sit(®r — @) o

(i,j)eE (k,1)eE, &> (k,1)eE, &>
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= Y Y (fi— fid (@i — )i (P — By i

(i,j)€E (k,l)eE

= Y D fik = fi) (@i — D) pi(Pk — D)1 i

(,))€E, &> (k,)eE

+ ) D ik = fi) (@i — ©)pj(Pr — D)4 i

(i,/)€E, ®;<®; (k,DEE
Relabel i and j for the second formula

= > D ik — fi) (@i — @) pi(P — Py px

@i,j))€E, ®;>®; (k,))eE

- Z Z (fik = [i)( @i — D) 0i (P — D)+ ok

@i,J))€E, ;>®; (k,[)€E

= Z Z (fik + fit = fu — fix) (@i — @) 4pi (P — D)4 px

(i,j)eE (k,)eE

Lemma 9 gives convergence rates for many semi-discretization schemes.

Corollary 10 Consider the gradient flow (3) of the free energy
n 1 n n n
Flp) =) vipi + 3 DO wijpipj + By pilogpi.
i=1 i=1 j=1 i=1

Ifthe matrix W = (w;;) 1<, j<n IS Semi positive definite, then there is a unique Gibbs measure
02, which is a global attractor of (3). Moreover, there exists a constant C > 0, such that

Fp(1)) — F(p™) < e " (F(p%) — F(p™))

with asymptotic rate 2\ (p°°).

Proof The main idea of proof is as follows (full details are in [17]). Notice that since

Hessge >/ pi log p; = diag (p%o) and the matrix W is semi positive definite, then
k

1<k<n
. 1
Hesspn F(0)|p=p> = W + Bdiag | —
Py 1<k<n
is a positive definite matrix. Then, from Lemma 9 and Theorem 7, we know that (3) converges

exponentially. O

Throughout this section, we observe another important effect of the Log-Laplacian, which
reflects the convexity property of the linear entropy

n
H(p) =Y _ pilog pi.
i=1

Lemma 9 says that
n 2
. 1 /- 2 O, — D;
brclp) =min 1 57— (dveoveorl) ) (T) pi =1

i=1 P (i,j)eE
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Given any Gibbs measure p*°, we know that A1/ (0°°) > 0. To visualize that, consider a
simple example with no interaction energy, meaning that (w;;) = 0. In this case, (3) is a
semi-discretization for a linear Fokker—Planck equation. The free energy is

Fp) =Y vipi + BH(p).
i=1

Here, strict convexity of H(p) tells that there always exists a constant C > 0, such that

Fp(1)) — F(p™®) < e "(F(p%) — F(p™))

holds with asymptotic rate 213 (0°°).

4 Numerical Analysis

In this section, we show some numerical properties of (3).

4.1 Spatial Consistency

To begin with, we show that (3) is a finite volume scheme for the PDE (1). Here the finite
volume refers to the small volume surrounding each node point on a finite graph (mesh), see
details in [23]. For concreteness, we use a lattice graph. Rewrite (3) in the following form

%— Ve Z > [Fite) = Fi(p)], Z > (R = Fip)], p

v=1 jEN, (i) v=1 jeN, (i)

Denote i = (if,...,iq), and G is a cartesian graph of d one dimensional lattices, i.e.
G =G O---0G4 with G, = (V,, E,). Here

Nv(i) = {(ils“’aiv—lsjvviv-i-]v"'vid) eV | (ivajv) € Ev}~

Theorem 11 The semi-discretization (3) is a consistent finite volume scheme for the PDE

(1).

Proof Denote by p; (t) a discrete probability function
pi(t) = f p(t, x)dx,
Ci

where C; is acube in R? centered at point i with equal width Ax. Herei € V represents a point
x(i) e R, Lete, = (0,...,1,...,0)7, where 1 is in the v-th position,v =1, ...,d. Soin
this setting, N, (i) for a lattice graph only contains the two points x (i) — e, Ax, x (i) + e, Ax.
Denote p;(t) by

pj(t) = f p(t, x)dx,

Ci,

where j € N (i) satisfies x(j) = x(i) + e, Ax and C;, is a cube centered at the point j € V.
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Without loss of generality, we assume F(x(i) 4+ e,Ax, p) > F(x(@{),p) > F(x(@) —
ey Ax, p). Applying Taylor expansion of (3) relative to the direction e,,, we obtain

—1 X [Fite)y—F] pi— > [Filp)—Fi(p)], pi

JENy (@) JENy (D)

1
= A2 {[F(x(i) + eyAx, p) — F(x(i), p)]/ o(t, x)dx
X c.

— [F(x(®), p) = F(x() —evAx,p)]/; p(t,X)dx}

2] / p(t, x)dx
Ci

+

ke i 0007 | )
— , p(t, x)dx + O(Ax”)
2 0xy C; an

1
?T(X(l) ) [/c p(t, x)dx —/Ci ,O(I,X)dX}

+

1 oF .
=— {[a(x(l)’ pP)Ax
Xy

Ax2

2
+ la—z(x(l) 0) / p(t,x)dx—l—/ p(t, x)dx | + O(Ax)
2 ox iy I
_ 7()6(1.),/))/ p(t,ereuijCC)—p(t,X)dx
9%F p(t,x +eyAx) + p(t, x)

+ T%(x(i), 0) . > dx + O(Ax)

:/ Vi, - (p(t, X)Vy, F(x, p))dx + O(Ax).

Similarly, we can show the same results for other possible configurations, such as F(x(i) —
eyAx, p) = F(x(i), p) = F(x(i)) + ey Ax, p), F(x(0), p) = F(xy —eyAx, p) = F(x(i) +
eyAx, p).

Therefore, combining all directions e, with v = 1,...,d, the right-hand-side of (3)
becomes

dp;
d—’;—A—sz S [Fi) — E@], 0~ Y [Fw0) — Fi)], pj

v=1 | jeN, (i) JEN (D)

d
— / [ap(t’ ) _ D Vi, - (p(t, X) Ve, Fx, P))} dx +d0(Ax)
i v=1

ot

_ f { 3";’[’ DV (Ve F (G, p))}dx +d0(Ax)
Ci

= O0(Ax).
This shows that (3) is a finite volume first order semi-discretization scheme for (1). ]
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4.2 Time Discretization

To deal with the time discretization, we use a forward Euler scheme on (3):
p(c—H _ p{‘ 1
T = xa ) 2 AEEY =R Y el FE") = Fio)y
JEN(D) JEN()
(12)

Lemma 12 Assume that the discrete free energy F(p) is strictly convex on P,(G).

(i) For a given small tolerance constant € > 0, and initial measure pO € P,(G), there
exists a finite time T = O (log é), such that whent > T,

IF(p () — F(p™)| <e.

(ii) There exists a constant h, such that if 0 < At < h, p*¥ = (,of);’:l € P,(G), for all
k=0,1,..., [%], where T is the value from (i).

Proof (i) can be shown by the exponential convergence result in Corollary 10. Since there
exists a constant C > 0, such that

F(p(T)) = F(p™) < e T (F(p%) — F(p™)),
then if p(T') satisfies | F(o(T)) — F(p>°)| < €, we need to set

Lo F) = F(p™)

T > —log .
C " Fp(M) —F(p™)

In other words, we can approximate p°° with O (¢) precision by time T = O (log %).

We prove (ii) in two steps. Firstly, we show that ok = (pf)?:l stays positive (min;cy pf >

0) forallk = 1,..., N. From Theorem 4, we know that the boundary is a repeller for (3).
This means that there exists a constant €y = €g(p°) > 0, such that

iefl,...,

Since the forward Euler scheme is convergent for Lipschitz right-hand-sides (and this is the
case for us), there exists constant £, such that when At < h, we have

€0
57

from which min;je(1,...n) pf > €0 > 0.
Secondly, we show that > ;_, ,0{‘ =1forallk =1,...,N. Since };_, o0 = 1,itis

sufficient to prove that
n n
Z pit! = Zplk, for any k.
i=1

i=1

This is a linear invariant, and it is therefore kept by Euler method. Indeed, an explicit com-
putation gives
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A=Y S Y A R = Y pf D - Fie)s

i=1 i=1 JeN() JENG)

m}

Remark 2 In practice, cfr. with [8], we may consider At < %, with M =
2sup;cy; |F;(p*)| and A(G) representing the maximal degree of the graph G. For suffi-
ciently small At, we know that M will be a bounded function up to a finite time 7.

4.3 An Extension

We extend the idea of semi-discretization scheme (3) to deal with general non-gradient flow
type Fokker—Planck equations. Consider

0
o _ o

d
s [o(folx, 0)2_, 1. (13)

where f,: R? x P(RY) — R is a given one dimensional function. Here if (f,(x, p))__,
is not a gradient vector field in R?, (13) fails to be a gradient flow with respect to the 2-
Wasserstein metric. In this case, we cannot consider a discretization which is a gradient flow
of a certain free energy. However, we can still construct a flow (semi-discretization scheme)
whose solutions lie on the probability set.

The observation to use is that there exists functions (u, (x, ,o))f’=1 such that

Vi y(x, p) = fu(x, p), forvell,...,d}.

Example 1 (van der Pol) Consider the 2 dimensional Fokker—Planck equation

o _ _y. x Po_ g, fl(x,m))
o (p ((1 —x7) —xz)) Tl v (p (fz(x,p) ’
where x = (x1, x2), f1(x, p) = xz and fr(x, p) = (1 — x12) —x3 + Vy, log p(x). We let

ur(x, p) =ff1(x,p>dx1 -

and

1
ux(x, p) = / Hx, pdxy = (1 —x3) x2 — Ex% +log p(x1, x2).

Then the Fokker—Planck equation becomes
ap Vi up(x p)))
+r__v. X1 5 .
ot (p <szu2(x7 p)
Based on the above observation, we naturally extend (3) to the semi-discretization of (13)
dpi | d d
=1 Y ) —w Gl = Y Y (e p) = uu(, p)1y pi

dt ~ Ax2? . . . .
v=1 jeN, (i) v=I jeN, (i)
(14)

We observe that (3) is a special case of (14). Similarly to Theorem 11, we can show that the
semi-discretization (14) is a consistent finite volume scheme for (13).
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S Numerical Experiments

In this section, we illustrate the proposed semi-discretization with several numerical experi-
ments.

Example 2 (Nonlinear Fokker—Planck equation) We consider a nonlinear interaction-
diffusion equation in granular gas [4,24],
dp

5 = V- [pV(W % p+ V(X)) + BAp,

2 . .
where W (x, y) = %le —ylPand V(x) = % with || - || the 2 norm in R,
The PDE has a unique stationary measure (Gibbs measure),
1 Jrd We»p*0)dy+V ()  Jpd W)p* ()dy+V ()

pF(x) = ¢ ] ,  where K:/ e [ dx.
]Rd

We apply (3) to discretize this PDE with 8 = 0.01:

dp; 1 n n
—— =1 > i | Dowijpi =Y wijpj +vj —vi + Blogp; — Blog p;
j=1

dt  Ax?2 | &~ —
JeN() i= 4
n n
= > i | Do wijpj — > wijpi +vi —vj + Blog pi — Blog p; ,
jeN®  \j=I i=1 N

and further discretize in time with the forward Euler method (12) with time step At = 10~

_ o1 —lxan? n _lol?
and initial condition p; = ;e~ 200, L =37 ;e 20 .

When d = 2, we consider a two dimensional lattice graph of [—5, 5] x [—5, 5] with
Ax = 0.5; see Fig. 1.

It is known, see [10], that solutions of this PDE converge to the unique Gibbs measure,
which itself converges to a 6-measure supported at the origin when g — 0. In addition, the
solution converges to the Gibbs measure exponentially. We observe that (3) reflects all of
these behaviors and the free energy along solutions of (3) decreases exponentially.

(A) B) oo

Density

-6
y X 10

-5 -5 0 500 1000 1500

Fig. 1 Example 2: 2-d. a Gibbs measure, b Semi-log Y plot of F(p) — F(p°°) w.r.t. iteration
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(A) (B)m“

10'50

107100

y
B X L L L L L L L L L
5 -5 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

107150

Fig. 2 Example 3: 2-d. a Gibbs measure, b Semi-log Y plot of F(p) — F(0°°) w.r.t. iteration

Example 3 (Linear Fokker—Planck equation) We consider a linear Fokker—Planck equation

J
8—‘[’ = V. [pVV@)]+BAp, (15)

i i ; S 7 A B
with a potential function V (x) = 5 )

the unique Gibbs measure is.

. Here the underlying state is R?. In this case,

V(x

1 _vw
p*(x) = —e F , where K=/ e F dx.
K R4

We use (3) to approximate the solution of this PDE with g = 0.01,

dp; 1
T =1 X pi(v—vi+Blogp; = Blogpi),
JEN (@)
— > pi(vi—vj+Blogp — Blogp)), t -
JEN)

and further discretize in time by the forward Euler method (12) with time step At = 10~4.

.. P N 1)1 o PN {1
Initial condition is p; = Fe™ 20 , L ="/ e~ 20 .

If d = 2, we take a uniform discretization of [— 5, 5] x [— 5, 5] with Ax = 0.5; see Fig. 2.

The computational results in both cases reflects that the linear Fokker—Planck equation
always converges to the Gibbs measure exponentially, which is in agreement with the dis-
cussion of Sect. 3. Note that here the potential function V (x) is not strictly convex. It is the
strict convexity of the entropy in probability set that plays the key role in convergence. This
asymptotic convergence rate is fully determined by A7 (0°°) in Definition 6.

Example 4 (General Fokker—Planck equation) We consider the Fokker—Planck equation [14]

ap X2 _
TV (p ((1 - D) —xz)) = Phubs

whose underlying state is the stochastic van der Pol oscillator
dx| = xpdt
dxy = [(1 = xD)x2 — x11d1 + 2BdW;.
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41010

Fig. 3 Example 4. Stationary measure, van der Pol

We apply the semi-discretization (14) to approximate the solution of this PDE. Further,

we discretize in time by the forward Euler method (12) with time step Af = 10~*. Initial

. _lx@1? _lx@1?
condition is p) = fe~ W0 L =" "

Let = 0.125, and consider a lattice graph on [— 10, 10] x [— 10, 10] with Ax = 0.4. The
result in Fig. 3 shows the obtained approximation of the stationary measure of the stochastic
van der Pol oscillator.

Similarly, we consider the Fokker—Planck equation

% v 2 = BA
ot P —2kwxy +wxy —w?rxi) ) 0P

associated with the stochastic Duffing oscillator

dx| = xpdt

dxy = [-2Ewxy + wx1 — wzrx?]dt + /28dW;.

Leté =02, w=1,r =0.1, B = 0.125 and a lattice graph of [— 10, 10] x [— 10, 10]
with Ax = 0.4. The computed invariant measure is shown in Fig. 4.

In these examples, we have shown that our discretization scheme (14) finds a two-peaks
stationary measure, even though the underlying Fokker—Planck equations are not gradient
flow type. It is interesting to observe that, in the above two figures, stationary measures are
supported around the limit cycles of the oscillators. The two peaks in the stationary measures
reflect that there is slow and fast motion in the underlying dynamical systems; namely, the
two peaks are witness to the fact that there is a larger probability that a trajectory at time ¢ will
be found in the slow motion region; see Fig. 5. It is also worth mentioning that the boundary
condition of FPE plays important roles in computation of the associated invariant measures.
In practice, we mainly consider the zero-flux conditions. The domain is chosen large enough,
so that it contains the limit cycle or stationary solutions of the original dynamical system.
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0.015

0.01

0.005

-10

Fig. 4 Example 4. Stationary measure, Duffing

10
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 5 The plot of stationary measure and limit cycle (red) of van der Pol oscillator (Color figure online)

6 Conclusion

We have derived a new semi-discretization scheme (3) for the PDE (1). In comparison to

other methods, our scheme (3) has the following advantages.

(1) Firstly, our scheme (3) works on a finite graph, which is a spatial discretization of the
underlying state. As a result of having this graph, we can handle a variety of bound-
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ary conditions, e.g. zero-flux conditions or periodic conditions, and different types of
underlying states, such as R4, open set of R4, or Riemannian manifold.

(2) Secondly, we derive (3) from the viewpoint of free energy and optimal transport. Hence,
(3) can keep the gradient flow structure of (1). On one hand, this fact gives that (3)
is a well defined flow whose equilibria are discrete Gibbs measures; on the other hand,
solutions of (3) converge to a Gibbs measure with exponential rate. This property allowed
us to discretize (3) in time by a forward Euler scheme.

(3) Lastly, we bring a new twist to discretize the diffusion term, namely

1
o 2 (ogp; —logpi)gij ().
JEN (D)

We called it Log-Laplacian, and it is quite different from commonly known centered
differences or the Graph Laplacian. Although the log term brings some nonlinearities
into the algorithm, it also brings many benefits. One is that solutions of (3) always stay
in P,(G), and thus remain positive and conserve the total probability automatically. The
other is that the scheme naturally inherits the convexity of the entropy, a fact which plays
a critical role in the convergence result.

Appendix

Generally, to obtain Ax(p) in Definition 6 is not easy. Below, we give simple 1-d model
example to illustrate situations in which A = (p) can be explicitly obtained, and its dependence
on the graph structure (the boundary conditions of the PDE).
A 1-d model problem Suppose that the free energy contains only the linear entropy term,
so that the gradient flow is the heat equation:
ap

vl Ap, x € (a,b). (16)

Here, we consider either (i) Neumann boundary conditions (zero flux) g—ﬁ lx=a = g—g lx=p» =0,
or (ii) periodic boundary conditions p (¢, a) = p(¢, b).
b—a

We approximate the solution of (16) by (3), with a uniform discretization Ax = ;=7:

dp; 1

= > pjlogp; —logpi)y — Y pillogpi —logpj)ip.  (17)
JEN() JEN()

The above two types of boundary conditions lead to distinct graph structures.
(i) A lattice graph L,:

O O O o

(ii) A cycle graph Cy,:
—a0

)
v,
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In both cases, (17) is the gradient flow of the discrete linear entropy

n
H(p) =Y pilogpi,
i=1

and the unique Gibbs measure is p™ = %, RN %). We are going to estimate how fast the

solution p () of the semi-discretization scheme (17) converges to the equilibrium p*°.
As we have seen in Theorem 7, the asymptotic convergence rates are determined by A #(p):

. 1
A3 (p™) = min e Z Z hija(®; — @) (P — D)y -

PR (i.j)€E (k.)eE
i .
' (18)
D — d;\?2
Z (7IA ]) pi=1¢g,
)< e
where
it = S+ S fi— fee and 0% = — () o =
ij.kl = fik i1t — fu— fix, and fij(p™) = Plp=pe = i
SR A N opidp; T o i #
For the present model, we can find exact values of (18) for the above two graphs.
Theorem 13 We have s
A (p™) = D, (L
(™) = =g Ho (L)
and
2
A (p™) = 1. (C
HPX) = G Hol) (C)
Proof First, consider the lattice graph L,. Without loss of generality, let (®;)7_; in (18)
satisfy the relation
D= Dy > > Dy (19)
Denote & := (§)/~| € R by
Qit1 — ;i .
= ————, 1<i<mn, 20
& ﬁAx =i=n (20)

and substitute p> into (18), to obtain
1
I (p™) = min {—#As D ElE= 1},
éeR’j:' Ax
where
2 —1
-1 2 —1

A= e . GR("_I)X(n_l).

-1 2 -1
-1 2
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It is simple to observe that A is positive definite and that'

Ax? (b—a)? n—1
(n—1)2

o0 1 . 1 T
A (p™°) =— X (the smallest eigenvalue of A) = —— |2 —2cos | ——

7.[2
:m +0(1).

Next, we analyze the convergence rate for the cycle graph C,. Again we assume the
relation (19) and let £ as in (20). Since C, has one more edge than L,, we let € R:

—1
o — D,
Ni=———" = Z&'-
JnAx P
Substituting o> into (18), we have

. 1
A (p%) = o {rxz[‘?TAé + 2610 + 26,10 + 2071
; +

nt @1
e +n? =1, n=Zs,-}.
i=1

The following transformations reduce (21) to a simpler eigenvalue problem. Let

(i) = P&, where P = (i) e R*n=1

with the identity matrix / € R#~D*®=D and 1 € R"~! being the vector of all 1’s. Then,
(21) becomes

1
J(p®) = min, =F<PE)TB(P5):(P5)T(P5> - 1} , 22)
geR)” X

where

A bT nxn : T n—1
B=() " ) eR™ with b e R b=(1,0,....0,1),

and A is as above.
Below, we compute (22). First, we give explicit formulas for the eigenvalues and eigen-

vectors of B. O
Lemma 14 Letn > 3. Foreachk =0, 1,...,n — 1, the eigenvalues of B are
2k
M =2—2cos| —|.
n
Fork =0,1,...,n— 1, the associated eigenvectors in un-normalized form are:

vk = () oys wie = we()j=y

where, for j =1,...,n —1,

. . [ 2nkj ) 2rkj
v(j) =sin| —— ), wi(j) =cos| ——);
n n

! Here the eigenvector of A corresponding to the smallest eigenvalue satisfies the assumption (19).
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. (2nkj> . <271kj>
vg(n) = —sin| —— |, wi(j) = —cos| —— .
n n

Proof The proof is by direct computation. We just show the details for the case of j = 1.
We have

(Bu)(1) = 2v(1) — vr(2) + vk (n)

and when j = n,

2k 2.2k
= 2sin (L) — sin ( T ) — 0 By double angle formula
n n

2k
= (l —2cos —) vr(1).
n
And

(Bwi)(1) = 2wk (1) — wi(2) + wi(n)

n

2%
= (1 — 2cos —”) we(1).
n

Note that in Lemma 14, many eigenvalues are repeated. As a consequence, obviously there
are only two eigenvectors associated to each repeated eigenvalues, and not four; the repeating
eigenvalues, in fact, have identical pairs vk, wg, up to sign. However, the eigenvalue equal to
0 is simple, with associated eigenvector wo = (1, ..., 1, — )T . Moreover, aside from this 0
eigenvalue, all other eigenvalues are positive.

Now, observe that PTwq = 0, and therefore the matrix V = [wyp, P] is invertible and

v=v]oe]

2k 2.2k
=2cos| — ) —cos + 1 By double angle formula
n

m}

0C

where C € R"~1"=1 Further, notice that PT P is positive definite and thus it has a unique
positive definite square root (PT P)!/2. Thus, €7 PT B P¢, subject to (P&)T P& = 1, can be
rewritten as
and thus, with x = (PT P)!/2¢, we end up with the problem
min  x7 [(PTP)I/ZC(PTP)_I/z]x.
x: xTx=1
Finally, we notice that the matrix [(PT P)!/2C(PT P)~!/?] is symmetric, and it is obviously
similar to C, so that indeed
min  x7 [(PTP)1/2C(PTP)_1/2]x
x: xTx=1

= min, {(Pg)TB(Pg) . (Pe)T (PE) = 1} — The second smallest eigenvalue of B.
EeRY”
(23)
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Putting it all together, (22) gives

1
Ar (p™) =2 (the second smallest eigenvalue of B)

X2
1 2 42
ZW |:2 — 2cos <7)i| = m + 0(1):
(n—1)?
and the proof of Theorem 13 is completed. O
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