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Abstract—We study a multi-agent partially observable environ-
ment in which autonomous agents aim to coordinate their actions,
while also learning the parameters of the unknown environment
through repeated interactions. In particular, we focus on the
role of communication in a multi-agent reinforcement learning
problem. We consider a learning algorithm in which agents make
decisions based on their own observations of the environment,
as well as the observations of other agents, which are collected
through communication between agents. We first identify two
potential benefits of this type of information sharing when
agents’ observation quality is heterogeneous: (1) it can facilitate
coordination among agents, and (2) it can enhance the learning
of all participants, including the better informed agents. We
show however that these benefits of communication depend in
general on its timing, so that delayed information sharing may
be preferred in certain scenarios.

Index Terms—Multi-agent reinforcement learning, information
sharing, cooperative games.

I. INTRODUCTION

The study of decentralized decision making under uncer-

tainty by multiple autonomous agents arises in a wide variety

of applications, including in wireless and telecommunication

networks (e.g., opportunistic spectrum access, dynamic re-

source allocation), management of the smart grid and elec-

tricity markets, the operation of cyber-physical systems, and

in a variety of other physical, social, and economic networks

[1]–[7]. In these scenarios, the outcomes experienced by each

agent is affected not only by their own decisions, but also by

the actions taken by (a subset) of other agents in the system.

An instance of practical interest in these problems is when

agents are willing to collaborate in order to achieve a common

goal; these are referred to as cooperative games. In these

environments, the literature has identified communication or

information sharing as a way to facilitate coordination among

agents, so that they can collaborate on reaching a shared goal.

Examples include the study of communication for multi-robot

formation control [5], autonomous vehicle coordination [6],

and control of microgrids [4]. These works identify optimal

communication schemes, agents’ strategies, and the benefits

of information sharing, under the assumption of some a priori

knowledge about the environment and/or its dynamics.

However, the rise of self-organizing multi-agent systems in

fully unknown environments, such as those arising in edge
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computing applications, has introduced an additional challenge

for multi-agent systems. In particular, even in the absence of

coordination problems, agents face the additional challenge

of learning to act in the a priori unknown environment. For

instance, a fleet of drones deployed for monitoring climate

change [8] or for anti-poaching efforts in a wildlife area [9],

or a team of disaster relief robots [10], will not only need

to coordinate with one another, but at the same time need to

learn features of the unknown environment in which they are

deployed. The problem of learning to act through repeated

interactions with an unknown environment, in the presence of

other agents, is the subject of the multi-agent reinforcement

learning literature; see [11] for a survey.

In this paper, we study the problem of multi-agent rein-

forcement learning in cooperative environments, and aim to

analytically evaluate the effects of information sharing on both

the coordination and learning of the agents. We are partic-

ularly interested in the role of communication when agents

have heterogeneous capabilities in assessing their shared en-

vironment. This is motivated by the possible heterogeneity

in agents’ platforms; for instance, an agent might have a

less accurate perception of the environment due to having

weaker sensors, energy constraints, or limited storage. Such

heterogeneity would be the case in fog computing [12]–[14],

for example, where powerful cloud services and resource-

limited edge nodes cooperate to assess the environment.

Specifically, we consider a collaborative, binary, partially

observable environment, in which two agents receive indepen-

dent observations about the state of the world. We assume that

one of the agents is better informed, i.e., it makes an accurate

observation of the true state of the environment. We analyze

how enabling the sharing of these independent observations of

differing quality between agents affects their decision making

and learning.

We consider learning through a multi-agent version of the

REINFORCE algorithm [15], which is a special case of actor-

critic algorithms [16], [17], by extending it to incorporate

communication between agents. The idea of using inter-agent

communication for better learning has also been recently

studied empirically in [18]–[20]. These works have proposed

deep reinforcement learning methods based on actor-critic

algorithms for multi-agent learning problems, with either

policy parameter sharing [18] or full experience sharing [19],

[20], and evaluate the performance of the resulting learning

algorithms through empirical analysis. Our work, which only
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requires sharing of environmental observations, provides a

formal analysis of the various aspects in which communica-

tion can benefit agents, and more importantly, identifies its

potential drawbacks, in multi-agent reinforcement learning.

Our contributions: We identify two potential benefits

of communication in these multi-agent systems. First, the

instantaneous effect of communication is to enable better

coordination among the agents in reaching their collaborative

goal. This effect is in line with that commonly identified in

the existing literature on multi-agent decision making.

Moreover, we identify a forward effect of communication,

as it relates to agents’ learning: we show that communi-

cation can also improve the learning of both agents. Such

improvement may be expected in the less informed agent’s

learning, as the quality of information available to this agent

improves through communication. More interestingly, our

analysis shows that the learning of the informed agent also

improves, even though communication does not affect the

quality of the information available to this agent. That is,

agents can benefit even if communication does not provide

them with additional information. Intuitively, this finding can

be explained as follows: by aiding the learning of another

less informed agent, and given the collaborative nature of the

agents’ goal, an informed agent can collect more “informative”

sample trajectories during its repeated interactions with the

environment, hence enhancing its learning. Our analysis thus

elaborates on the coupling between the agents’ coordination

and learning tasks in collaborative multi-agent environments.

We then show that the realization of the two identified ben-

efits from communication will in general depend on its timing,

and more specifically, on the agents’ policy initialization. In

particular, depending on the initialization of agents’ policy

parameters, communication in earlier stages of the game may

in fact decrease the likelihood of agents’ coordination and

deter agents from learning. In these scenarios, and especially

when agents are more shortsighted (i.e., place higher value on

their immediate rewards), delayed information sharing may

be preferred. We illustrate our findings through numerical

examples.

Our main contributions can be summarized as follows:

• We show that the potential benefits of communication

in multi-agent systems are in general two-fold: it not

only facilitates coordination, but can further enhance the

learning of both informed and less informed agents.

• We show that the realization of these benefits from

communication is dependent on its timing: communica-

tion in earlier stages of the game may in fact hinder

both coordination and agents’ learning, making delayed

communication preferable.

• We identify the parameters affecting the optimal timing

of communication, including the policy initializations, the

agents’ patience, and the quality of the agents’ indepen-

dent observations.

The remainder of the paper is organized as follows. We

present the model for the environment in Section II, followed

by the multi-agent learning algorithm in Section III. Section

IV analyzes the potential benefits of communication. Section

V illustrates the effects of communication timing. We validate

our results through numerical studies in Section VI, and con-

clude with a discussion of some implications of our findings

in Section VII.

II. MODEL AND PRELIMINARIES

A. The POMDP environment

We consider a multi-agent Partially Observable Markov

Decision Process (POMDP) in which N agents take actions

over an infinite time horizon t = {1, 2, . . .}. We begin

by introducing the general model, followed by the specific

parameters used in establishing our analytical results.

In general, a POMDP (N ,A,S, p,O,q, r, δ) is determined

by the following elements:

Agents: A set of agents N interact with one another, and

with the environment.

Actions: At time t, each agent i ∈ N takes an action ait ∈
Ai, where Ai denotes the agent’s discrete action space. Let

at = {a1t, . . . , aNt} denote the vector of joint actions of all

agents at time t, and A := A1 × · · · × AN denote the joint

action space.

States: The underlying environment evolves according to

a Markov Decision Process (MDP) with a finite state space

S = {s1, . . . , sm}. The state of the MDP at time t is denoted

st ∈ S . Following agents’ actions a ∈ A, the environment will

transition from state s to s′ according to a transition probability

p : S × A → Π(S). Denote p(s′, s,a) := P (st+1 = s′|st =
s,at = a).

Observations: In a POMDP, the state of the environment is

not directly observed by the agents; rather, each agent i has

a private observation or belief about st, denoted oit. These

private observations are generated according to an observation

function qi : S → O, where O denotes the finite set of all

possible observations. Denote qi(o, s) := P (oit = o|st = s).
We assume that the private observations {oit, ∀i} are indepen-

dent across agents. Note also that the observation functions qi
are agent-dependent, so that the accuracy of the observations

can vary across agents.

Rewards: Each agent i collects a reward rit at each time t.

The reward is determined by the reward function ri : S×A →
R, which depends on the current state, as well as the choice

of actions of all users. All agents discount future rewards by

a factor δ. The discounted long run reward of agent i will be

given by Ri :=
∑

t δ
trit. Each agent’s goal is to maximize its

own expected long-run reward E[Ri].
Based on the above definition, we observe that as the agents’

rewards depend not only on the state of the environment and

their own actions, but also on the actions of other agents,

the POMDP can be viewed as an N -person game among the

agents. The type of this game will be determined by the rela-

tion between the agents’ reward functions. In particular, two

special cases that are commonly of interest include cooperative

(ri = r, ∀i) and competitive or zero-sum (r1 = −r2) games.

More generally, any environment in which ri �= rj for at

least one pair of agents i, j is referred to as a non-cooperative
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game. In this paper, our focus is on cooperative environments;

the study of communication in non-cooperative games is an

interesting direction of future work.

B. The collaborative binary POMDP

For concreteness, we will evaluate the effects of com-

munication in the following POMDP. We will focus on an

N = 2 agent cooperative environment with two states, two

observations, and two actions.1

Specifically, we consider two agents, i ∈ N = {1, 2},

selecting one of two possible actions ait ∈ A = {0, 1}
at each time step t. They interact in an environment with

states st ∈ S = {−1, 1}, and each obtain an observation

oit ∈ O = {−1, 1} of the state at each time step t.

To model heterogeneity in agents’ observations, we let agent

1 be the more informed agent. In particular, we will proceed

with the analysis under the following assumption. We let agent

1 be fully informed, i.e. q1(o1 = s, s) = 1 for all s. On the

other hand, agent 2 is only partially informed, with q2(o2 =
s, s2 = s) = β < 1.2 Finally, the fact that agent 1 is better

informed is common knowledge between the agents.

Following agents’ actions, we let the rewards be given by

ri(s = 1, a1 = 1, a2 = 1) = 1 and ri(s = −1, a1 = 0, a2 =
0) = 1, for all i, with the remaining rewards being zero.

Therefore, it is beneficial for the agents to coordinate (so as

to take the same action) with the right coordination actions

dependent on the current state (hence the need for learning).

Finally, for the state transition probabilities, we assume the

state will self-transition when agents correctly coordinate,

but transition to the other state under other combinations of

actions. That is, we let p(s′ = 1, s = 1, a1 = 1, a2 = 1) = 1
and p(s′ = −1, s = −1, a1 = 0, a2 = 0) = 1.

III. THE MULTI-AGENT REINFORCE ALGORITHM

A. Multi-agent reinforcement learning

Each agent’s goal when interacting with the POMDP en-

vironment is to choose her actions so as to maximize her

expected long run reward E[Ri]. The choice of actions is

determined by the agent’s policy. Specifically, an agent’s

(stochastic) policy πi : O → Π(Ai) maps her private

observation of the current state of the environment to the

probability of selecting each action. If all of the environments’

parameters where known to the agents, they could solve for

the optimal policy using dynamic programming methods, and

behave accordingly.

Nevertheless, when the environment is unknown to the

agents, each agent only has access to her own rewards and

private observations, collected through repeated interactions

with the environment, while all else in unknown. These

scenarios are the focus of the reinforcement learning (RL)

literature. This literature studies how an agent should learn to

1All restrictions of the size of the environment are without loss of generality
to the obtained results, and are adopted to simplify the exposition. In
particular, the extension to N agents is possible at the expense of additional
notational complexity, and can be found in the online appendix [21].

2We will assume, without loss of generality, that β ≥ 0.5.

act in such unknown environments, by using RL algorithms

which repeatedly take the outcomes attained by following the

agent’s current policy as input, and output an updated policy

accordingly. More generally, the multi-agent reinforcement

learning literature (MARL) studies this problem in the setting

where multiple agents simultaneously interact and learn their

optimal polices in an unknown environment.

Here, following the literature on policy iteration in rein-

forcement learning, we assume that the agents choose the

general form of their policies from a parameterized set

{π(a|o, θ)}, with the choice of parameter θ determining an

agent’s specific policy. In this approach, the policy updates

can be done by adjusting only the parameter of the policy.

In particular, for the RL algorithm used by the agents,

we will consider the well-known REINFORCE algorithm of

[15]. REINFORCE, which is often considered a special case

of actor-critic algorithms [16], [17], was originally proposed

for single-agent reinforcement learning problems. Here, we

present a variant with extension to multi-agent environments

which incorporates communication.

B. The REINFORCE algorithm

We consider the episodic REINFORCE algorithm [15],

also known as the Monte Carlo policy gradient algorithm

[22], in which agents update the parameter of their policy

based on their interactions with the environment over multiple

episodes. Specifically, in an episode of length T , the agent

uses her current policy to collect a set of observations, actions,

and rewards {oi, ai, ri}
T
i=1, and then runs the REINFORCE

algorithm to update the parameter of her policy.

The update after the conclusion of each episode is as

follows. Let Jθi = Es∼πθ,a∼πθ
[Ri] be the expected reward of

agent i with respect to the state and action distribution realiza-

tions under a policy parametrized by θ. In the REINFORCE

algorithm, agents use gradient ascent to update their policy

parameter θi in the direction of the gradient of this reward.

The policy gradient theorem [16] states that this gradient can

be approximated by,

∇θJθi ∝ Eπθ
[∇θ log π(a|o, θ)

T
∑

l=t

δl−tril] . (1)

Therefore, using gradient ascent, the updated parameter at time

t+ 1 will be given by,

θi(t+1) = θit + α∇θJθit , (2)

where α is the learning rate.3 The steps of the algorithm are

outlined in Algorithm 1.

For the parametrized family of policies {πθ} to be used

in our proposed POMDP, we will assume that agents are

Bernoulli-logistic units.4 This family is defined as follows:

3Throughout, we assume that the step size α is chosen appropriately to
guarantee convergence.

4The choice between different policy parametrization options can be a way
to inject prior knowledge in the learning algorithm. In particular, for the
binary POMDP of Section II-B, the family of Bernoulli-logistic policies is
particularly suitable as it closely approximates the optimal policy for large θ.
We will further set the bias term of the units to zero for simplicity.
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Algorithm 1 The Monte-Carlo policy gradient (REINFORCE)

algorithm

function REINFORCE

Initialize θi arbitrarily

for each episode {oit, ait, rit}
T
t=1 ∼ π(·|·, θi) do

for t = 1 : T do

θi ← θi + α∇θ log π(ait|oit, θi)
∑T

l=t δ
l−tril

end for

end for

return θi
end function

given the current parameter θit in agent i’s policy, she chooses

her action ait with the following probabilities:

πθit(ait|oit) =

{

1
1+e−θitoit

for ait = 1,
e−θitoit

1+e−θitoit
for ait = 0.

(3)

For this class of policies, using the policy gradient theorem,

the change in the policy parameter in the REINFORCE

algorithm following step t is given by,

∆θit = αEπ[
T
∑

l=t

δl−tril ·

{

oite
−θitoit

1+e−θitoit
for ait = 1

−oit
1+e−θitoit

for ait = 0
] . (4)

To extend the above algorithm to multi-agent settings with

communication, we assume that agents have access to a

communication channel through which they can share their

private observations with one another, and update the input to

their policy according to the shared information.5

More specifically, for the environment of Section II-B, given

our assumption that agent 1 is fully informed, she will have

the ability to share any desired level of information with agent

2. Given that agent 2 is only partially informed, combined

with the cooperative nature of the game, a natural conjecture

is that full information sharing and adoption will lead to a

Nash equilibrium of the cooperative game. Specifically, we

may expect that agent 1 will fully share her state observation

with agent 2, and agent 2 will discard his own observation and

substitute agent 1’s communicated observation as an input to

his policy instead of his own observation.

In the next section, we show that the above can indeed be an

equilibrium under an assumption on the initializations of the

policies’ parameters. We show how this equilibrium improves

upon the outcomes from the default equilibrium in which

agents learn independently. Through this analysis, we identify

the benefits of communication in terms of both facilitating

coordination and improving agents’ learning.

IV. BENEFITS OF COMMUNICATION: COORDINATION AND

LEARNING

Consider the POMDP of Section II-B when agents learn

using the REINFORCE algorithm of III-B. To find conditions

5Availability of a single communication channel entails public commu-
nication. Assuming pairwise communication channels which enable private
communication may be of interest, but as our results show, will yield the
same outcomes in cooperative environments.

under which full information sharing and adoption can be a

Nash equilibrium in this setting, we need to evaluate the bene-

fits of following the equilibrium strategies for both agents. We

separate the analysis based on the instantaneous (current stage)

and forward (long-run) effects of the shared information.

A. Instantaneous effect: improved coordination

The immediate effect of sharing information can be seen in

the agents’ expected instantaneous reward. Our first proposi-

tion formally analyzes this effect.

Proposition 1 (Information sharing aids coordination).

Agents’ expected (instantaneous) reward at time t is increasing

in the information shared at time t if and only if agent 2’s

policy’s parameter at time t is non-negative, i.e., θ2t ≥ 0.

In particular, when θ2t ≥ 0, full information sharing by the

informed agent, and full adoption by the less informed agent,

will lead to the most increase in the instantaneous reward.

The proof is given in the appendix. This result is intuitively

interpreted as follows. Sharing of information from a more

informed agent 1 to the less informed agent 2, and the adoption

of this information by agent 2, will lead agent 2 to choose his

action according to the correct state of the environment. This

will lead to an increase in the expected reward from the current

state if and only if the current policy of agent 2 is such that he

is choosing the optimal action with higher frequency. In the

POMDP of Section II-B, this is equivalent to having θ2t ≥ 0.

In particular, one may envision scenarios in which the

informed agent would be better off when delaying information

sharing, so that the policy parameters have been improved

over their random initialization, and therefore sharing of

information can aid correct coordination. We elaborate on this

effect further in Section V.

It is also worth noting that the statement of Proposition

1 is independent of the informed agent’s policy parameter.

This is expected as the sharing of information does not affect

the informed agent’s choice of action in the current step.

Nonetheless, as we show in the next section, sharing of

information will affect the choice of actions by the informed

agent in future steps.

B. Forward effect: improved learning

The arguments presented above account only for the effects

of the shared information on the agents’ current reward, but

not on the future behavior of the agents. In this section, we

show that the shared information will affect the parameter

updates of both agents, and consequently, all future rewards.

More specifically, if communication between agents occurs

at a time 1 ≤ tc ≤ T during an episode, the collected

traces {oit, ait, rt}
T
t=tc

, and the REINFORCE updates at the

end of the episode, will be affected by this communication.

We therefore evaluate the effects of communication on both

agents’ parameter updates given these changes.
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Proposition 2 (Information sharing aids agents’ learning).

When the informed agent 1 shares her state observation with

the less informed agent 2:

• If θ2t ≥ 0 at the beginning of an episode, agent 1’s

learning improves.

• Agent 2’s learning always improves.

The proof is given in the appendix. It is worth noting that

agent 2 always benefits from communication, while the same

is not necessarily true for agent 1. To see why, note that

by Proposition 1, the instantaneous reward collected at time

t by agents increases if and only if θ2t ≥ 0. This means

that when θ2t < 0 at the beginning of a learning episode,

communication decreases the likelihood that the agents collect

non-zero rewards in that episode; however, non-zero rewards

are the informative samples that guide the updates in the

REINFORCE algorithm. Thus, communicating when θ2t < 0
decreases the likelihood that agent 1 collects informative

traces, and hence is not necessarily beneficial to her learning.

For agent 2 on the other hand, even though the likelihood

of having informative traces decreases, communication allows

this agent to associate the correct actions with the correct true

state of the environment during the updates. Proposition 2

establishes that the latter effect of correct association is more

important than collecting additional informative traces, and

hence the less informed agent 2’s learning always improves

under communication.

Note also that the condition for improvement of agent 1’s

learning is only a sufficient condition. That is, it is still

possible for agent 1 to benefit from communication even if

θ2t < 0 at the beginning of the REINFORCE episode. This

is because by improving agent 2’s learning (even if collecting

less informative traces in the current episode), agent 1 can

increase agent 2’s learning speed, and hence, the likelihood

that they can collect higher rewards and more informative

samples in future episodes. We elaborate on the tradeoffs

between these effects in the next section.

V. COMMUNICATION TIMING: THE EFFECTS OF POLICY

INITIALIZATION

As shown in Propositions 1 and 2, if the parameter policy

θ2 is initialized to a positive value, information sharing is

always beneficial to both agents. Nevertheless, with a negative

initialization of the less informed agent 2’s policy, θ2 < 0,

sharing of information about the state of the environment will

in fact reduce the agents’ expected instantaneous reward, and

degrade agent 1’s learning, as long as θ2t remains negative.

On the other hand, communication always improves agent

2’s learning, which can in turn improve the future rewards

and learning of both agents given the collaborative nature of

their goal. Note also that through the use of the REINFORCE

algorithm, θ2t will improve over its initial (negative) initializa-

tion; once θ2t becomes non-negative, information sharing will

become beneficial to both agents. Given this, it will ultimately

benefit agent 1 to initiate communication at some point in the

interaction, once learning has progressed enough.

That being said, the optimal range of policy parameters is

in general not known a priori in learning problems, and can

therefore not be used directly to determine the optimal timing

of communication. In this section, we identify other param-

eters that affect the (sub-)optimality of early communication,

and can therefore be used to guide the decision of when to

communicate.

A. Parameters affecting the optimal timing of communication

We illustrate the trade-offs between the instantaneous and

forward effects of communication in a minimal instance of

the binary collaborative POMDP consisting of a 2 episodes of

length T = 1, in which policy parameters are initialized arbi-

trarily. We compare agent 1’s expected reward when starting

communication at the beginning of the game, or when delaying

communication until the beginning of the second episode.

Denote the instantaneous reward at time t by rot , and the

policy parameters of agent i at time t by θoit, where o ∈ {C,D}
denotes the decision to communicate or delay, respectively.

Early communication will be beneficial if and only if,

∆E(r1) + δ∆E(r2) ≥ 0 . (5)

where ∆E(r1) := E[rC1 − rD1 ] is the instantaneous effect, and

∆E(r2) := E[rC2 −rD2 ] is the forward effect of communication.

a) Instantaneous effect: From the proof of Proposition

1, we know that agents’ reward at t is,

E[rt] =
eθ1t

1 + eθ1t
(

eθ2t

1 + eθ2t
β +

e−θ2t

1 + e−θ2t
(1− β)) . (6)

Then,

∆E(r1) = (1− β)
eθ11

1 + eθ11

eθ21 − e−θ21

(1 + eθ21)(1 + e−θ21)
. (7)

b) Forward effect: We next look at the parameter updates

to be used in the second episode, θ12 and θ22, with and without

communication. From the proof of Proposition 2, we have,

θ12 − θ11 = α
eθ11

(1 + eθ11)2
βeθ21 + (1− β)e−θ21 + 1

(1 + eθ21)(1 + e−θ21)
,

θ22 − θ21 = α
eθ11

1 + eθ11

2β − 1

(1 + eθ21)(1 + e−θ21)
. (8)

Substituting for β = 1 in the above expressions determines

the parameter updates θCi2 attained if communication happens

in the first episode.

We are now ready to find ∆E(r2). As agent 1 is assumed to

start sharing information at the second episode (i.e., β = 1),

using (6), the change in her expected reward at time 2 will be,

∆E[r2] =
1

1 + e−θC

12

1

1 + e−θC

22

−
1

1 + e−θD

12

1

1 + e−θD

22

. (9)

Substituting for (7) and (9) in (5), we conclude that

communication in the first step is preferred over delayed

communication if and only if,

(1− β)
eθ21 − e−θ21

(1 + e−θ11)(1 + eθ21)(1 + e−θ21)
+

δ(
1

1 + e−θC

12

1

1 + e−θC

22

−
1

1 + e−θD

12

1

1 + e−θD

22

) ≥ 0 . (10)
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From the above, we make the following observation:

Proposition 3 (Parameters affecting the optimal timing of

communication). The preferred timing of communication by

agent 1 depends on the initialization of agent 2’s policy

parameter θ2, the agents’ patience δ (discounting of future

rewards), and the quality of agent 2’s observations in absence

of communication β. In particular, for the problem instance

of this section,

1) [Initialization.] If θ21 ≥ 0, it is optimal for agent 1 to

start communication at the first episode.

2) [Discounting of future rewards.] If θ21 < 0, there exists

a δ0 ∈ [0, 1), such that for 0 ≤ δ ≤ δ0, delayed sharing

is preferred by agent 1.

3) [Observation quality.] When θ21 < 0, there exists a

β0 ∈ [ 12 , 1), such that for 1
2 ≤ β ≤ β0, delayed sharing

is preferred by agent 1.

The first statement above is consistent with Propositions 1

and 2, and can be seen by noting that both the (instantaneous

and forward) terms in (10) are positive at θ21 ≥ 0.

For the second statement, we note that the first term of

(10) (instantaneous effects of communication) is negative. The

second term may be negative as well, as by (8), we will have

θC12 ≤ θD12, that is, agent 1’s learning degrades under commu-

nication. The second term (forward effect) overall can still be

positive, as agent 2’s learning can improve. Nonetheless, it is

possible to find a small enough δ, such that (10) is dominated

by the first term, and delayed communication is preferable.

Finally, for the third statement, we note the two-fold ef-

fect of agent 2’s observation quality. First, for small β and

negative initialization of θ21, by (6), the loss of revenue

due to miscoordination will be larger. On the other hand,

increasing β from a small value up to 1 will lead to a more

considerable improvement in θ21. For the instance considered

in this section, if agent 2 is sufficiently uninformed (smaller

β), the loss of revenue dominates the benefit from improved

learning. That is, perhaps surprisingly, delayed information has

become more preferable even though the less informed agent’s

observations are of particularly low quality.

B. When to communicate?

From the analysis in the previous section, we have observed

that in general, the policy initializations, the quality of ob-

servations in the absence of communication, and the agents’

patience, all affect the optimal timing of communication.

First, note that the differentiation of the policy initialization

in Proposition 3, which is based on the sign of the parameters,

is indeed specific to the problem of Section II-B. More

generally, our insights point to the fact that communication

will be beneficial throughout the agents’ interaction when the

policy parameters are such that the optimal action is already

being selected with a higher frequency. If this condition holds,

sharing of information will not misguide the action choice of

the less informed agent, and can hence aid the coordination

and learning of the agents.

The optimal range of policy parameters is nonetheless not

known a priori in learning problems, and can therefore not be

used directly to determine the optimal timing of communica-

tion. A possible proxy for evaluating the progress of learning

is to keep track of the rate of change in the policy parame-

ters: if the learning step size is chosen appropriately, policy

gradient methods will lead to smaller updates as learning

progresses. Communication can therefore begin once agents

are sufficiently confident about their policies based on the rate

of change in their policy parameters.

Finally, for sufficiently patient agents (δ → 1), communi-

cation from early stages of the game will always be benefi-

cial. This is because through the use of learning algorithms,

even with suboptimal initializations, the policy parameters

will gradually improve towards their optimal values (and the

improvement will be faster under communication). Therefore

the agents will reap the benefits of communication sooner

through adapting early information sharing, at the expense of

lower rewards from a limited number of earlier stages.

VI. NUMERICAL EXAMPLES

A. Benefits of communication

We begin by illustrating the benefits of communication by

comparing the outcomes of the agents’ interactions, specifi-

cally their expected discounted rewards and the progress of

their learning, with and without communication. For this part,

we will initialize both θ1 and θ2 randomly to a non-negative

value between [0, 1]. In addition, we let δ = 0.9, β = 0.7, and

α = 0.1. Figures 1 and 2 illustrate the learned parameters and

expected rewards after 20 episodes of length T = 10, with and

without communication, respectively. The results are averaged

over random initializations of the starting state and parameter

policies over 10, 000 trials.

We observe that as illustrated in Fig. 1, communication

indeed aids the learning of both agents (Proposition 2). First,

it is worth noting that, without communication, the more

informed agent 1 learns faster than the less informed agent 2.

This is due to the fact that, without information sharing, agent

2 at times associates his updates to an incorrect state due to

the imperfect observations of the environment. On the other

hand, the policies learned in the presence of communication

outperform those of both agents in the absence of communi-

cation. That is, information sharing aids the learning of both

the better informed and the less informed agent. Note also

that under full sharing and adoption, both agents will perform

the same updates, and as their starting parameter is equal

on average, their policy parameter curves overlap throughout.

Lastly, as shown in Fig. 2, both agents will indeed benefit from

communication due to the increase in their expected rewards.

Note that by the cooperative nature of the game, both agents

receive the same rewards.

B. Timing of communication

Next, we illustrate the findings of Section V. For this

part, we will again initialize θ1 randomly to a value between

[0, 1], but will set θ2 to a negative value in [−1, 0]. We let
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Fig. 1. Information sharing improves the speed of learning of both
agents (under positive parameter initializations).

0 50 100 150 200

Time

0

1

2

3

4

5

T
o

ta
l 
d

is
c
o

u
n

te
d

 r
e

w
a

rd
s

 Full sharing+adoption
 No communication

Fig. 2. Information sharing improves the expected rewards of both
agents (under positive parameter initializations).

δ = 0.2 (i.e., less patient agents), β = 0.7, and α = 0.1.

Figures 3 and 4 illustrate the learned parameters and expected

rewards after 20 episodes of length T = 10, with and

without communication, respectively. The results are averaged

over random initializations of the starting state and parameter

policies over 10, 000 trials.

We first note that as shown in Fig. 3, communication

will, in the long-run, improve the learning of both agents.

Nevertheless, in the early steps, agent 1’s learning parameter

without communication θN1 , surpasses that in the presence of

communication θC1 . This is due to the negative initialization

of agent 2’s policy parameter, which causes the shared infor-

mation to misguide his actions, hence reducing coordination

and hindering agent 1’s learning. As illustrated in Fig. 4, the

expected rewards of agents is in fact higher without communi-

cation, due to the miscoordination caused by communication

in the early stages. Note also that, as shown in Proposition 2,

information sharing is beneficial to the less informed agent 2’s

learning irrespective of the policy initialization.

VII. DISCUSSION AND CONCLUSION

We studied the problem of concurrent learning and coordi-

nation of two heterogeneous agents in a partially observable

environment, when a better informed agent can share her

information with a less informed agent. We formally analyzed

the benefits of incorporating this explicit communication in

agents’ learning algorithm, and showed that information shar-

ing can enhance coordination and also improve the learning of

both agents in the long-run, but that it may hinder coordination

and learning in early stages of the cooperative game depending

on the initialization of agents’ policies.

A main implication of our findings is in the design and

operation of self-organizing multi-agent systems in unknown

environments, and in particular those based on the edge/fog

computing paradigm. In this framework, learning and control

are performed primarily by agents residing on the edges of

the network. As a result, agents refine their policies and

consequently select their actions in a decentralized manner.

Our results show that leveraging cloud connectivity for limited

communication can be beneficial for multi-agent learning

and coordination, given correct timing or when agents are

sufficiently patient.

It is worth mentioning that our choice of allowing agents

to communicate only local observations (rather than, e.g.,

policies/actions) is motivated not only by the latency and costs

of communication, but also by the possibility that agents may

in general use heterogeneous learning algorithms and policies,

so that communication of information on policies may not

be interpretable by all agents. This type of communication is

particularly relevant in edge/fog computing scenarios, where

heterogeneous policies may be employed by different devices

as a result of their computational constraints.

Main directions of future work include analyzing the ef-

fects of communication in alternative reinforcement learning

algorithms, including analytical evaluation of the benefits and

drawbacks of communication in other actor-critic algorithms,

as well as empirical evaluation of the effects of communication

timing on the performance of multi-agent deep reinforcement

learning algorithms.

APPENDIX

A. Proof of Proposition 1

The expected reward of the agents is the same at time t,

and is given by,

Es,π[r(s, a1t, a2t)] = P (st = −1)E[r(−1, a1t, a2t)|st = −1]

+ P (st = +1)E[r(1, a1t, a2t)|st = +1]. (11)

We analyze case st = −1; a similar argument holds for st = 1.

Recall that in state st = −1, agents will obtain a non-zero

reward if and only if a1t = a2t = 0. Therefore,

E[r(−1, a1t, a2t)|st = −1] = πθ1t(a1t = 0|o1t = −1)

(πθ2t(a2t = 0|o2t = −1)q2(o2t = −1|st = −1)

+ πθ2t(a2t = 0|o2t = 1)q2(o2t = 1|st = −1))

=
eθ1t

1 + eθ1t
(

eθ2t

1 + eθ2t
β +

e−θ2t

1 + e−θ2t
(1− β)) , (12)

where we have used the fact that agent 1 knows the state

accurately (i.e., o1t = −1 w.p. 1), and agent 2’s knowledge is

given by β = q2(o2t = −1, st = −1). Define,

h(β, θ2t) := β(
eθ2t

1 + eθ2t
−

e−θ2t

1 + e−θ2t
) +

e−θ2t

1 + e−θ2t
. (13)

Note that h(·) is a non-decreasing function of β if and only if
eθ2t−e−θ2t

(1+eθ2t )(1+e−θ2t )
≥ 0, which happens if and only if θ2t ≥ 0.

That is, an increase in β will increase agents’ reward if and

only if θ2t ≥ 0. In particular, full information sharing by the
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Fig. 3. Under negative parameter initialization for the less informed
agent, information sharing will ultimately improve the learning of both
agents, but may cause a slow down in the learning of the informed
agent at early stages.
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Fig. 4. Under negative parameter initialization for the less informed
agent, information sharing is not necessarily beneficial due to reduced
coordination and slow down of learning in early stages.

informed agent, which under full adoption by the less informed

agent leads to β = 1, would lead to the most increase in the

agents’ instantaneous reward. �

B. Proof of Proposition 2

We first note that for the environment of Section II-B,

agents’ optimal policy parameter is θ → +∞. As a result,

we establish improved learning by showing that agents take

larger gradient steps under communication.

We consider an episode of length T , and assume that

communication occurs (only) at some time 1 ≤ tc ≤ T within

the episode. We establish the effects of this change on the

parameter updates of both agents. The same analysis can be

carried out if information sharing occurs at multiple steps in

the episode, as the effects are superimposed.

Recall that under the REINFORCE algorithm, the change

in agent i’s parameter based on step t’s action and reward is,

∆θit = αEπ[
T
∑

l=t

δl−tril ·

{

oite
−θitoit

1+e−θitoit
for ait = 1

−oit
1+e−θitoit

for ait = 0
] . (14)

We will evaluate agents’ parameter updates at a given step

tc ≤ t ≤ T . Note that the final update at time T will lead to

the parameter θi(T+1), which is the policy initialization at the

beginning of the next episode, and hence, determines the new

policy based on which agent i collects rewards in the future.

We start with agent 2, and separate the expression based on

the realization of the state st. The change in agent 2’s policy

parameter when st = −1 is given by,

θ2(t+1) − θ2t = α·

E[(r(st = −1, a1t, a2t) +

T
∑

l=t+1

δl−tr(sl, a1l, a2l))·

{

o2te
−θ2to2t

1+e−θ2to2t
for a2t = 1

−o2T
1+e−θ2to2t

for a2t = 0
|st = −1] . (15)

From the above, we note that as the agents take their sum

reward looking forward in determining each REINFORCE

update, the update at time t will depend on the realization

of actions and rewards in the trace collected in the future up

to time T . At the same time, the realization of the state at time

t + 1 (and hence, forward) will itself depend on the actions

taken in the current state. We therefore have four different

possible updates, depending on the profile of actions at time

t and the realization of state st+1. Let R̄(st+1 = s) :=
E[
∑T

l=t+1 δ
l−tr(sl, a1l, a2l)| st+1 = s].

For the action profile at = (0, 0), the state will evolve to

st+1 = −1, and we have the following update:

∆(0, 0) := α · (1 + R̄(st+1 = −1))(πθ1t(a1t = 0|o1t = −1)

(πθ2t(a2t = 0|o2t = −1)q2(o2t = −1|st = −1)
1

1 + eθ2t
+

πθ2t(a2t = 0|o2t = 1)q2(o2t = 1|st = −1)
−1

1 + e−θ2t
))

= α(1 + R̄(st+1 = −1))
eθ1t

1 + eθ1t
f(β, θ2t) , (16)

where,

f(β, θ2t) :=
2β − 1

(1 + eθ2t)(1 + e−θ2t)
. (17)

We observe that f(β, θ2t) is increasing in β.

For all other action profiles, the agents will not receive any

reward from step t, and the state will transition to st+1 = +1.

Following steps similar to (16), the updates for these action

profiles are given by:

∆(1, 0) := αR̄(st+1 = +1)
1

1 + eθ1t
f(β, θ2t) ,

∆(0, 1) := −αR̄(st+1 = +1)
eθ1t

1 + eθ1t
f(β, θ2t) , (18)

∆(1, 1) := −αR̄(st+1 = +1)
1

1 + eθ1t
f(β, θ2t) .

Putting these expressions together, leads to,

θ2(t+1) − θ2t = α(1 + R̄(st+1 = −1)− R̄(st+1 = +1))

eθ1t

1 + eθ1t
f(β, θ2t) . (19)

First note that f(β, θ2t) is non-decreasing in β. We also note

that the terms R̄(st+1 = −1) and R̄(st+1 = +1) are evaluated

based on the trace collected from time t+1 onwards, and are

independent from communication at time t. Further, as they are

generated using the same, they are in fact equal in expectation.

We conclude that agent 2’s update in (19) is increasing in

β, and is maximized at β = 1, i.e., when full information
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is shared by agent 1 and adopted by agent 2. The argument

for starting from st = +1 is similar. Therefore, information

sharing benefits agent 2’s learning.

We now turn to agent 1, and consider the update at time

t, separating the expression based on the state at time t. The

change in agent 1’s policy parameter when st = −1 is,

θ1(t+1) − θ1t = α·

E[(r(st = −1, a1t, a2t) +
T
∑

l=t+1

δl−tr(sl, a1l, a2l))·

{

o1te
−θ1to1t

1+e−θ1to1t
for a1t = 1

−o1t
1+e−θ1to1t

for a1t = 0
|st = −1] . (20)

From the above, we again note there are four different

possible updates, depending on the profile of actions at time

t and the realization of state st+1.

For the action profile at = (0, 0), the state will evolve to

st+1 = −1, the agents will collect a reward of 1, and we have

the following update:

∆(0, 0) := α(1 + R̄(st+1 = −1))

(πθ1t(a1t = 0|o1t = −1) ·
1

1 + eθ1t
·

(πθ2t(a2t = 0|o2t = −1)q2(o2t = −1|st = −1)+

πθ2t(a2t = 0|o2t = +1)q2(o2t = 1|st = −1))

= α(1 + R̄(st+1 = −1))
eθ1t

(1 + eθ1t)2
h(β, θ2t) , (21)

where h(β, θ2t) is defined in (13).

For all other action profiles, the agents will not receive any

reward from step t, and the state will transition to st+1 = +1.

Following steps similar to (21), the updates for these action

profiles are given by:

∆(1, 0) := −αR̄(st+1 = +1)
eθ1t

(1 + eθ1t)2
h(β, θ2t) ,

∆(0, 1) := αR̄(st+1 = +1)
eθ1t

(1 + eθ1t)2
(1− h(β, θ2t)) ,

∆(1, 1) := −αR̄(st+1 = +1)
eθ1t

(1 + eθ1t)2
(1− h(β, θ2t)) .

(22)

Putting these expressions together, leads to,

θ1(t+1) − θ1t = α(1 + R̄(st+1 = −1)− R̄(st+1 = +1))

eθ1t

(1 + eθ1t)2
h(β, θ2t) . (23)

We first note that the first term above is again non-negative.

In addition, we know that h(β, θ2t) is non-decreasing in β if

and only if θ2t ≥ 0. The argument when starting from st = +1
follows similar steps. We therefore conclude that sharing of

information helps agent 1 take improved (here larger) gradient

steps during the execution of the REINFORCE algorithm only

in steps which θ2t ≥ 0.

Lastly, note that h is increasing in θ2t. Combined with

the analysis of agent 2’s learning, this means that while

communication will not improve agent 1’s learning at time

t when θ2t < 0, it will still lead to a faster increase in θ2(t+1),

and could therefore improve agent 1’s future updates. �
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