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We present powerful new analysis techniques to constrain effective field theories at the LHC. By
leveraging the structure of particle physics processes, we extract extra information from Monte Carlo
simulations, which can be used to train neural network models that estimate the likelihood ratio. These
methods scale well to processes with many observables and theory parameters, do not require any
approximations of the parton shower or detector response, and can be evaluated in microseconds. We show
that they allow us to put significantly stronger bounds on dimension-six operators than existing methods,
demonstrating their potential to improve the precision of the LHC legacy constraints.
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Introduction.—Precision constraints on indirect signa-
tures of physics beyond the standard model (SM) will be an
important part of the legacy of the Large Hadron Collider
(LHC) experiments. A key component of this program is
limits on the dimension-six operators of the SM effective
field theory (SMEFT) [1,2]. Processes relevant to these
measurements are often sensitive to a large number of EFT
coefficients, which predict subtle kinematic signatures in
high-dimensional phase spaces.
Traditionally, such signatures are analyzed by focusing on

a few hand-picked kinematic variables. This approach
discards any information in the remaining directions of
phase space. Well-chosen variables typically yield precise
bounds along individual directions of the parameter space,
but only weak constraints in other directions [3,4]. The
sensitivity to multiple parameters can be substantially
improved by using the fully differential cross section.
This is the forte of the matrix element method [5–23] and
optimal observables [24–26] techniques, which are based on
the parton-level structure of a given process. But these
methods either neglect or approximate the parton shower and
detector response. Moreover, even a simplified description of
the detector effects requires the numerically expensive
evaluation of complicated integrals for each observed event.
None of these established approaches scales well to high-
dimensional problems with many parameters and observ-
ables, such as the SMEFT measurements.

Recently, we have developed new techniques to con-
strain continuous theory parameters in LHC experiments
based on machine learning and neural networks. The
companion paper [27] is an extensive guide that thoroughly
describes and compares a number of different techniques
for this problem. In addition, Ref. [28] presents the
methods in a more abstract setting. Here, we want to
highlight the key idea: by harnessing the structure of
particle physics processes, we can extract additional infor-
mation fromMonte Carlo simulations that characterizes the
dependence of the likelihood on the theory parameters.
This augmented data can be used to train neural networks
that precisely estimate likelihood ratios, the preferred test
statistics for limit setting at the LHC. We sketch two
particularly useful algorithms based on these ideas and
demonstrate their performance in the example process of
weak-boson-fusion Higgs production in the four-lepton
decay mode.
Techniques.—(i) Learning likelihood ratios: Constraints

on beyond-the-standard-model theories by the LHC experi-
ments are typically based on likelihood ratio tests, as they
enjoy many optimal statistical properties. In particle phys-
ics processes, the likelihood pðxjθÞ of theory parameters θ
given data x typically factorizes into a parton-level process,
which depends on the theory parameters, followed by the
parton shower and detector interactions:

pðxjθÞ ¼
Z

dzdetector

Z
dzshower

Z
dzpðxjzdetectorÞpðzdetectorjzshowerÞpðzshowerjzÞpðzjθÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼pðx;zdetector;zshower;zjθÞ

: ð1Þ
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Here, pðzjθÞ ¼ 1=σðθÞdσðθÞ=dz is the probability density
of the parton-level momenta z conditional on the theory
parameters θ. The other conditional densities pðzshowerjzÞ,
pðzdetectorjzshowerÞ, and pðxjzdetectorÞ describe how parton-
level four-momenta z evolve to reconstruction-level ob-
servables x through the parton shower, detector effects, and
the reconstruction procedure.
Simulators such as PYTHIA [29] and GEANT4 [30] use

Monte Carlo techniques to sample from these distributions.
Each step of this chain only depends on the previous one.
Our analysis techniques will rely on this Markov property.
The simulation of a single event can easily involve many
millions of random variables; it is infeasible to explicitly
calculate the integral over this enormous space. This is
why the likelihood function and the likelihood ratio are

intractable; i.e., they cannot be evaluated for a given x and
θ. We denote this intractability with bold-italic symbols. An
optimal analysis strategy thus requires a precise estimator
of the likelihood ratio based on the available data from the
simulator.
Crucially, though, evaluating the density pðzjθÞ of

parton-level four momenta is tractable: the matrix element
and the parton density functions can be evaluated for
arbitrary four-momenta z and parameter values θ.
Matrix-element codes define functions that return the
squared matrix element for a given phase-space point z.
This property allows us to extract more information from

the simulator than just the generated samples of observ-
ables fxg: we can access the corresponding parton-level
momenta fzg and extract the joint likelihood ratio

rðx; zjθ0; θ1Þ≡ pðx; zdetector; zshower; zjθ0Þ
pðx; zdetector; zshower; zjθ1Þ

¼ pðxjzdetectorÞ
pðxjzdetectorÞ

pðzdetectorjzshowerÞ
pðzdetectorjzshowerÞ

pðzshowerjzÞ
pðzshowerjzÞ

pðzjθ0Þ
pðzjθ1Þ

¼ pðzjθ0Þ
pðzjθ1Þ

; ð2Þ

as well as the joint score

tðx; zjθ0Þ≡∇θ log pðx; zdetector; zshower; zjθÞjθ0 ¼
∇θpðzjθÞ
pðzjθÞ

����
θ0

; ð3Þ

which describes the relative gradient of the likelihood with
respect to theory parameters. Because all intractable parts
of the likelihood cancel in the ratio, this step does not
require any assumptions or approximations about shower
and detector.
These joint quantities rðx; zjθ0; θ1Þ and tðx; zjθ0Þ depend

on the parton-level momenta z, which are of course not
available for measured data. Their connection to the like-
lihood ratio rðxjθ0; θ1Þ that we are interested in is not
obvious (essentially because the integral of the ratio is not
the ratio of two integrals). However, in Ref. [28] we show
that they can be used to define functionals Lr½g� and Lt½g�
that are extremized by the likelihood ratio

rðxjθ0; θ1Þ≡ pðxjθ0Þ
pðxjθ1Þ

¼ argmingLr½g� ð4Þ

and the score

tðxjθ0Þ≡∇θ log pðxjθÞjθ0 ¼ argmingLt½g�; ð5Þ

respectively.
We implement this approach through machine learning,

approximating the functionals Lr½g� and Lt½g� through
suitable loss functions based on data available from the

simulator, see Fig. 1. The extremization of the loss
functional is estimated by training a deep neural network
using stochastic gradient descent on the network’s
parameters.
Based on this idea, we define the RASCAL (ratio and

score approximate likelihood ratio) technique that uses
both pieces of information—the joint likelihood ratio and
the joint score—simultaneously to train an estimator
r̂ðxjθ0; θ1Þ for the likelihood ratio. This approach is
essentially a machine-learning version of the matrix
element method. It replaces computationally expensive
numerical integrals with an upfront regression phase,
after which the likelihood ratio can be evaluated in
microseconds per event and parameter point. Instead of
manually specifying simplified smearing functions, the
effect of the parton shower and detector is learned from
full simulations. By using all available information from
the simulator, this estimator maximizes the fidelity of the
likelihood ratio estimation (and therefore the precision of
measurements), at the cost of a somewhat complex
architecture.
(ii) Local approximation: In the neighborhood of the

standard model (or any other reference point), we can
approximate the score tðxjθÞ as independent of θ, and
Eq. (5) is solved by
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plocalðxjθÞ¼
1

ZðθÞp½tðxjθSMÞjθSM�exp½tðxjθSMÞ ⋅ ðθ−θSMÞ�

ð6Þ
with a normalization factor ZðθÞ.
This local model is in the exponential family of prob-

ability distributions. The score tðxjθSMÞ are the sufficient
statistics, i.e., functions of the observables that contain all
the information on θ. A precise score estimator t̂ðxjθSMÞ
therefore defines a vector of ideal, loss-free summary
statistics (independently, the role of the score was studied
for cosmological data [32]), at least in the proximity of the
standard model. The estimated score is essentially a
machine-learning version of optimal observables.
In the companion paper [27], we construct an estimator

for the score based on the availability of the joint score from
the simulator discussed above, again realized as a neural
network. This is the basis of the new SALLY (score
approximates likelihood locally) method to estimate like-
lihood ratios.
In fact, this dimensionality reduction can be taken one

step further. The scalar product

ĥðxjθ0; θ1Þ≡ t̂ðxjθSMÞ ⋅ ðθ0 − θ1Þ ð7Þ

encapsulates all the discrimination power between θ0 and
θ1, at least in the local model approximation. This allows us
to compress high-dimensional observations to a single
scalar function without losing any sensitivity, even for
hundreds of theory parameters. In Ref. [27] we define the
SALLINO (score approximates likelihood locally in one
direction) technique for likelihood ratio estimation based
on this dimensionality reduction.
By construction, the SALLY and SALLINO techniques

work very well close to the standard model. While the
local model approximation may deteriorate far away from
the standard model, the effect of this approximation error is
reduced sensitivity and weaker bounds—it does not lead to
overly optimistic results. These approaches are simple and

robust, and in particular the SALLINO method scales excep-
tionally well to high-dimensional parameter spaces.
Example process.—We demonstrate these two methods

by calculating expected SMEFT constraints based on the
kinematics of Higgs production in weak boson fusion in the
four-lepton mode. This process is particularly sensitive to
two operators [3,4]

L ¼ LSM þ fW
Λ2

ig
2

× ðDμϕÞ†σaDνϕWa
μν −

fWW

Λ2

g2

4
ðϕ†ϕÞWa

μνWμνa: ð8Þ

We generate event samples using a combination of
MADGRAPH 5 [33] and its add-on MADMAX [34–36]. In
order to be able to assess the performance of our methods,
we use an idealized setup in which the momenta of the
partons can be measured exactly, so that we can compare
the results to the true likelihood ratio. In Ref. [27] we
describe the setup in more detail and show results for a
more realistic simulation.
In the left panel of Fig. 2 we show the approximate

likelihood ratio estimated with the RASCAL method for one
particular slice through parameter space. We also show the
likelihood ratio based on a traditional histogram-based
analysis of two particularly powerful kinematic variables,
the transverse momentum of the hardest jet and the
azimuthal angle between the two jets [3,4]. The new
method clearly enables stronger exclusion limits, equiv-
alent to a 16% larger reach in the new physics scale or 90%
more collected data in this particular parameter region.
The right panel of Fig. 2 shows expected constraints on

the two operators after 36 observed events with the RASCAL

and SALLY methods based on the Neyman construction.
The results for SALLINO are very similar to those for SALLY.
The RASCAL limits are virtually indistinguishable from the
true likelihood contours. SALLY and SALLINO lead to nearly
optimal bounds close to the standard model, slightly
weaker constraints at the 95% C.L. level show the break-
down of the local model approximation. All new

FIG. 1. Schematic overview of the techniques presented in this Letter. (Parts of the figure are based on Ref. [31] and on an image
created by Frank Krauss.)
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techniques let us impose significantly tighter bounds on
the parameters than the doubly differential histogram
analysis.
Conclusions.—We have developed new analysis tech-

niques to constrain effective field theories in LHC experi-
ments. Exploiting the particular structure of particle
physics processes, we extract additional information from
Monte Carlo simulations. This augmented data can be used
to train neural networks that estimate arbitrary likelihood
ratios for use in limit setting procedures.
We have introduced the RASCAL technique, which lever-

ages this extended information to define likelihood ratio
estimators of particularly high fidelity. In an example analysis
of weak-boson-fusion Higgs production, this technique lets us
put significantly stronger constraints on two dimension-six
operators, leading to expected exclusion limits that are
virtually indistinguishable from the theoretical optimum.
In the neighborhood of the standard model, any obser-

vation can be condensed into a low-dimensional vector, the
score, without loss of sensitivity. This motivates a second
approach, which we call SALLY. Simpler to implement, it
scales very well to high-dimensional parameter spaces. We
have demonstrated that it performs very well close to the
standard model, and leads to only slightly weaker con-
straints further away.
Both approaches scale well to large-scale LHC analyses

with many observables and high-dimensional parameter
spaces. Though the new methods are particularly well
suited to the SMEFT, they can be applied more generally.

They do not require any approximations of the hard
process, parton shower, or detector effects, and the like-
lihood ratio can be evaluated in microseconds. Given their
performance, scalability, and practicality, these techniques
have the potential to substantially improve the LHC legacy
measurements.
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FIG. 2. Left: Estimated expected likelihood ratio based on a traditional doubly differential histogram analysis (orange dotted) and the new
RASCAL technique (red dashed). We show a line in parameter space with particularly large difference between the methods. The gray dotted
line marks the expected exclusion limit at 95% C.L. according to asymptotics. The vertical arrow shows how much more data the histogram
approach requires to constrain the same parameter point with the same significance. The horizontal arrow demonstrates the increased
physics reach of the machine-learning-based method. Right: Expected exclusion contours at 68% C.L. (innermost lines), 95% C.L., and
99.7% C.L. (outermost lines) based on the Neyman construction. In both panels, we assume 36 observed events and the SM to be true.
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