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In this paper, we study (G, α)-frames for finite dimensional 
Hilbert spaces, where G is a finite group and α is a uni-
tary Schur multiplier of G. We apply the characterizations for 
tight (G, α)-frames and central (G, α)-frames to investigation 
of (G, α)-frames that have the maximal spanning property. 
We apply the theory of twisted group frames to obtain a cri-
terion for maximal spanning vectors that generalizes the main 
result of [16, Theorem 1.7]. Moreover, we prove that a pro-
jective representation does not admit any maximal spanning 
vector if it has an at least 2-dimensional subrepresentation 
that is equivalent to a central projection induced subrepre-
sentation of the α-regular representation.
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1. Introduction

Historically, frame theory was originated in the study of signal decomposition. But it 
has ever-increasing applications today to problems from pure and applied mathematics, 
physics, computer science etc. (cf. [5, Section 1]). In particular, frames with symmetries, 

✩ Chuangxun Cheng is partially supported by NSFC 11701272, Deguang Han is partially supported by 
NSF DMS-1403400 and DMS-1712602.
* Corresponding author.

E-mail addresses: cxcheng@nju.edu.cn (C. Cheng), deguang.han@ucf.edu (D. Han).
https://doi.org/10.1016/j.laa.2018.11.034
0024-3795/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2018.11.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:cxcheng@nju.edu.cn
mailto:deguang.han@ucf.edu
https://doi.org/10.1016/j.laa.2018.11.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2018.11.034&domain=pdf


286 C. Cheng, D. Han / Linear Algebra and its Applications 569 (2019) 285–310
i.e. groups frames, have important applications in signal analysis and in quantum infor-
mation theory (cf. [22]). In this paper, we examine some phase-retrieval related problems 
for twisted group frames, which are also referred to as projective representation frames 
or group-like systems in the literature (cf. [8–11,16]). We apply the classification results 
for tight and central tight twisted group frames to the existence problem ([16]) for max-
imal spanning vectors. In particular, we provide two proofs for a special case of [16, 
Conjecture], one is based on a similar calculation as in [16] and one is an application of 
the theory we developed for (G, α)-frames (cf. Sections 3.2 and 3.4). As a special con-
sequence, we obtain that central frames do not have the maximal span property unless 
the representation is one-dimensional. In particular, this is true for (non-twisted) abelian 
group frames.

First we give the precise definition of a twisted group frame. Let G be a finite group. 
A Schur multiplier (or a factor set or a 2-cocycle) on G is a map α : G ×G → C× such 
that

(1) α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G;
(2) α(x, 1) = α(1, x) = 1 for all x ∈ G.

We always assume that α is unitary, i.e., Imα ⊂ C×
|·|=1. A projective representation

of G over a finite dimensional C-vector space V is a map π : G → GL(V ) such that 
π(x)π(y) = α(x, y)π(xy) for all x, y ∈ G, where α is the associated multiplier. Since 
every projective representation V admits an inner product that is invariant under π, we 
may and will assume that the projective representation is given by π : G → U(V ). Here 
U(V ) denotes the set of unitary operators on a Hilbert space V .

Definition 1.1. Let V be a finite dimensional Hilbert space. An α-twisted G-frame (or a 
(G, α)-frame) for V is a frame Φ = {φg | g ∈ G} for V , for which there exists a unitary 
α-projective representation π : G → U(V ) with

gφh(:= π(g)φh) = α(g, h)φgh.

If Φ = {φg | g ∈ G} is a (G, α)-frame for V , we call φ1 a frame vector for V , where 1 is 
the group unit.

Let Φ = {φg | g ∈ G} be a (G, α)-frame. The symmetry on Φ gives special structures 
on the objects associated with Φ. An obvious property is that Φ is an equal norm frame. 
(Indeed, in the definition take h = 1, then we have gφ1 = α(g, 1)φg = φg.) In Section 2.1, 
we show that a frame is a (G, α)-frame if and only if its Gramian is a (G, α)-matrix 
(Definition 2.1). We then show that the (G, α)-matrices form a sub-algebra of the matrix 
algebra Mn×n(C) isomorphic to the twisted group algebra C[G]α. Here n = |G|.

In Section 2.2 and Section 2.3, like group frames we examine some basic proper-
ties about (G, α)-frames with respect to the irreducible decomposition of the projective 
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representation. We particularly examine a special type of (G, α)-frames, namely, central 
frames. The characterizations of tight (G, α)-frames and tight central frames are obtained 
in Theorem 2.11 and Theorem 2.22. We also give explicit examples with non-trivial α, 
which show that (G, α)-frames are different from G-frames.

Applying Theorem 2.11, it is easy to prove that π ⊗ π∗ : G → U(V ⊗ V ∗), which 
is a projective representation of G with multiplier αα−1 = 1, admits tight G-frames. 
Moreover, [16, Conjecture] conjectures that, if V is irreducible, there always exists a 
G-frame of the form {gw | g ∈ G} with w = v⊗v∗ for some v ∈ V . Such a vector v is called 
a maximal spanning vector of V , which is automatically phase-retrievable. The case for 
G abelian of [16, Conjecture] has been verified (cf. [16, Theorem 1.7]). In Section 3.2, we 
give a slightly different proof of this result. Both our argument and argument in [16] are 
based on the special structure of projective representations of abelian groups. Starting 
with the abelian case, in Section 3.3, we verify the conjecture for certain projective 
representations of some solvable groups. Section 3.4 is devoted to applying the theory of 
twisted group frames to obtain a criterion for maximal spanning vectors. In particular, 
Proposition 3.11 or [16, Theorem 1.7] can be considered as a special case of the criteria. 
For reducible representations, we prove that a central frame vector cannot be a maximal 
spanning vector, and in particular we obtain that an α-projective representation does 
not admit any maximal spanning vector if it has a subrepresentation that has dimension 
at least 2 and is equivalent to a central projection induced subrepresentation of the 
α-regular representation (Corollary 3.5).

1.1. Notation

In this paper, G is a finite group with |G| = n, α ∈ Z2(G, C×) is a unitary multiplier. 
A subgroup H of G is called α-symmetric if α(x, y) = α(y, x) for any x, y ∈ H.

Denote by Repα
G the category of projective representations of G with multiplier α. 

It is well-known that, up to isomorphism, there are finitely many irreducible projective 
representations in Repα

G. Denote those representations by ρi : G → U(Vi), where Vi

is a C-vector space with dimension di (1 ≤ i ≤ r). Denote by χi the character of ρi
(1 ≤ i ≤ r). We refer to [15] for details on Schur multipliers and refer to [6,7] for details 
on projective representations.

For the terminology on frames and group frames, we follow the book Finite Frames. 
Theory and Applications edited by Peter G. Casazza and Gitta Kutyniok, especially the 
articles [5,17,22].

2. Twisted G-frames

In this section, we study (G, α)-frames with the same strategy in the study of group 
frames (cf. [17,19,20]). Some of the basic properties about (G, α)-frames maybe known 
in the literature. However, we still include the proof details for self-completeness and for 
the purpose of discussing their connections with the phase-retrievable problem.
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2.1. Group matrices and the Gramian of a (G, α)-frame

Let Φ = {gφ1 | g ∈ G} be a (G, α)-frame for V . Then

〈φg, φh〉 = 〈gφ1, hφ1〉 = 〈φ1, π(g)−1π(h)φ1〉 = 〈φ1,
α(g−1, h)
α(g, g−1)π(g−1h)φ1〉.

This motivates the following definition.

Definition 2.1. A (G, α)-matrix is a matrix A with entries indexed by elements of a 
group G and of the form

A = (f(g, h))g,h∈G,

where

f(g, h) = α(g, g−1)
α(g−1, h)η(g

−1h) for some η : G → C.

We denote the matrix A by M(η).

Certainly, the Gramian of a (G, α)-frame is a (G, α)-matrix. Conversely, we have 
the following result, which is a projective version of [20, Theorem 4.1]. See also [22, 
Theorem 5.2] and [13, Theorem 3.2].

Theorem 2.2. Let G be a finite group. Assume that Φ = {φg | g ∈ G} is a frame of V
indexed by elements of G. Then Φ is a (G, α)-frame if and only if its Gramian Gram(Φ)
is a (G, α)-matrix.

Proof. We only need to prove the if part. Let η : G → C be the function such that 
Gram(Φ) = (α(g,g−1)

α(g−1,h)η(g
−1h))g,h∈G. It suffices to construct a projective representation 

U : G → U(V ) with multiplier α such that Ugφh = α(g, h)φgh.
Let Φ̃ = {φ̃g := S−1φg | g ∈ G} be the canonical dual frame of Φ (cf. [5, Defini-

tion 1.19, Proposition 1.13]). Here S is the frame operator of Φ. For any v ∈ V , we 
have

v =
∑
h1∈G

〈v, φ̃h1〉φh1 =
∑
h1∈G

〈v, φh1〉φ̃h1 . (2.1)

Define U : G → GL(V ) by

Ug(v) =
∑
h1∈G

〈v, φh1〉α(g, h1)φ̃gh1 .

This U satisfies the following properties.
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(1) For any g, h, h1 ∈ G, we have

〈φh, φh1〉α(g, h1) = 〈φgh, φgh1〉α(g, h). (2.2)

Indeed, in the first equation of the definition of Schur multipliers, take y = x−1 and 
z = x, we have α(x, x−1) = α(x−1, x) for all x ∈ G. Equality (2.2) then follows from 
the following computation

α(g, h1)α(h−1g−1, gh1)α(h, h−1) = α(h−1g−1, g)α(h−1, h1)α(h, h−1)

= [α(h−1g−1, g)α(h−1, h)]α(h−1, h1)

= α(h−1g−1, gh)α(g, h)α(h−1, h1)

= α(gh, h−1g−1)α(g, h)α(h−1, h1).

Therefore, we have

Ug(φh) =
∑
h1∈G

〈φh, φh1〉α(g, h1)φ̃gh1

=
∑
h1∈G

〈φgh, φgh1〉α(g, h)φ̃gh1 = α(g, h)φgh.

(2) For any φh ∈ Φ,

Ug1(Ug2φh) = Ug1(α(g2, h)φg2h)

= α(g2, h)α(g1, g2h)φg1g2h

= α(g1, g2)(α(g1g2, h)φg1g2h) = α(g1, g2)Ug1g2φh.

Hence U defines a projective representation with multiplier α.
(3) For any φh1 , φh2 ∈ Φ,

〈Ugφh1 , Ugφh2〉 = α(g, h1)
α(g, h2)

α(gh1, (gh1)−1)
α((gh1)−1, gh2)

η(h−1
1 h2).

We claim that Ug ∈ U(V ), i.e. 〈Ugφh1 , Ugφh2〉 = 〈φh1 , φh2〉. To prove this, it suffices 
to check that

α(g, h1)
α(g, h2)

α(gh1, (gh1)−1)
α((gh1)−1, gh2)

= α(h1, h
−1
1 )

α(h−1
1 , h2)

.

Note that

α(g, h1)α(gh1, (gh1)−1) = α(g, g−1)α(h1, h
−1
1 g−1)

and
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α((gh1)−1, gh2)α(g, h2) = α(h−1
1 g−1, g)α(h−1

1 , h2),

it suffices to check that

α(g, g−1)α(h1, h
−1
1 g−1) = α(h−1

1 g−1, g)α(h1, h
−1
1 ). (2.3)

Multiply both sides with α(h−1
1 , g−1), it is easy to see that equation (2.3) holds, 

hence the claim follows.

Therefore U : G → U(V ) is the desired projective representation and the theorem 
follows. �

To understand more on (G, α)-matrices, we start with the following observation.

Lemma 2.3. Let G be a finite group. The sum and product of (G, α)-matrices are (G, α)-
matrices.

Proof. Let ν : G → C and μ : G → C be two functions. Then M(μ) +M(ν) = M(μ +ν). 
Next we compute M(ν)M(μ). The (g, h)-entry of M(ν)M(μ) is

∑
f∈G

α(g, g−1)
α(g−1, f)ν(g−1f)α(f, f−1)

α(f−1, h)μ(f−1h)

=
∑
t∈G

α(g, g−1)
α(g−1, ht)ν(g−1ht)α(ht, t−1h−1)

α(t−1h−1, h) μ(t−1) (here f = ht)

=α(g, g−1)
α(g−1, h)

∑
t∈G

α(t, t−1)
α(g−1h, t)ν(g−1ht)μ(t−1).

To verify the last equality, as α(g−1, h)α(g−1h, t) = α(g−1, ht)α(h, t), it suffices to check 
that

α(h, t)α(ht, t−1h−1) = α(t, t−1)α(t−1h−1, h).

This is clear since both sides are equal to α(h, h−1)α(t, t−1h−1). Define η : G → C by 

η(g) =
∑

t∈G
α(t,t−1)
α(g,t) ν(gt)μ(t−1). Then M(ν)M(μ) = M(η). The lemma follows. �

Let C[G]α be the twisted group algebra over C attached to (G, α), i.e., it is a C-algebra 
with a basis {ag | g ∈ G} indexed by elements of G. Each element f ∈ C[G]α can be 
uniquely written as

f =
∑
g∈G

cgag, cg ∈ C

and the multiplication is given by



C. Cheng, D. Han / Linear Algebra and its Applications 569 (2019) 285–310 291
agah = α(g, h)agh.

In the following, we write 
∑

g∈G cgg for 
∑

g∈G cgag ∈ C[G]α. By Lemma 2.3, the set Mα

of (G, α)-matrices is a sub-algebra of the matrix algebra Mn×n(C). Define

Π : Mα → C[G]α

M(ν) 	→
∑
g∈G

ν(g)g. (2.4)

We have the following result (cf. [20, Proposition 4.1]).

Proposition 2.4. The map Π is an isomorphism of C-algebras.

Proof. Let L2(G) be the set of functions from G to C. Let eg be the characteristic 
function of {g}. Then define

Π′ : C[G]α → Mα

g 	→ M(eg)

It is easy to check that Π′ is the inverse of Π. To prove the proposition, it suffices 
to check that Π is a morphism of C-algebras. But this follows from M(eg)M(eh) =
α(g, h)M(egh). �
2.2. Tight (G, α)-frames

Let Φ = {φg | g ∈ G} be a (G, α)-frame for V . Let S : V → V be the frame operator, 
i.e.,

S(v) =
∑
g∈G

〈v, φg〉φg.

Then

S(hv) =
∑
g∈G

〈hv, φg〉φg =
∑
g∈G

〈h−1(hv), h−1φg〉φg

=
∑
g∈G

〈α(h−1, h)v, α(h−1, g)φh−1g〉φg

=
∑
g∈G

α(h−1, h)
α(h−1, g)α(h, h−1g) 〈v, φh−1g〉hφh−1g = hS(v).

Here the last equality follows as α(h−1,h)
α(h−1,g)α(h,h−1g) = 1. Therefore, the frame operator 

S ∈ HomRepα (V, V ). It is easy to see that the canonical dual frame of a (G, α)-frame 

G
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is also a (G, α)-frame (cf. [5, Definition 1.19]). Moreover, by Schur’s Lemma (cf. [6, 
Lemma 2.1]), S is a scalar multiplication if π : G → U(V ) is irreducible. Assume now 
this is the case. Let v ∈ V be a nonzero vector. Then V = Span{gv | g ∈ G}. Hence 
Gv = {gv | g ∈ G} is a frame for V . Even better, we have the following result.

Proposition 2.5. With the notation as above, for v 
= 0, Gv is a tight (G, α)-frame for V .

Proof. Let Sv : V → V be the frame operator associated with Gv. By the above discus-
sion, we must have Sv = λv idV for a constant λv ∈ C. As Sv is self-adjoint and positive, 
λv ∈ R>0 as v 
= 0. The proposition follows. �
Remark 2.6. We may obtain λv by the following computation (cf. [5, Proposition 1.11]). 
Let {wi | 1 ≤ i ≤ dimV } be an orthonormal basis of V . Then for any j,

Sv(wj) =
∑
g∈G

〈wj , gv〉gv = λvwj .

Hence λv =
∑

g∈G |〈wj , gv〉|2. So

λv dimV =
∑
j

∑
g∈G

|〈wj , gv〉|2 =
∑
g∈G

||gv||2 = n · ||v||2.

Remark 2.7 (The Gabor frame). Let G be a finite group. Suppose that G = H × F is a 
direct product of two groups. Let F ×H → C× be a bi-homomorphism and denote it by 
(f, h) 	→ f(h) ∈ C×. Define α : G ×G → C× by

α((h, f), (h′, f ′)) = f(h′) for all h, h′ ∈ H and f, f ′ ∈ F.

It is easy to check that α ∈ Z2(G, C×). Let V be the (right) regular representation of H. 
Fix a basis {eh | h ∈ H}. Define a map π : G → GL(V ) by

π((h, f))ei = f(i)ehi for all h, i ∈ H and f ∈ F.

Then π : G → GL(V ) is a projective representation of G with multiplier α. As an 
H-representation, V contains all irreducible linear representations of H. Yet the pro-
jective representation π may be irreducible. Let us consider the following special case 
(cf. [4,17]).

Let H be an abelian group. Let F = Ĥ := Hom(H, C×) be the dual group of H. Take 
the natural pairing between Ĥ and H. Note that α((h, f), (h′, f ′)) = α((h′, f ′), (h, f)) if 
and only if f(h′) = f ′(h). Thus the maximal α-symmetric subgroup of G has order |H|. 
Indeed, every maximal α-symmetric subgroup of G has the form K × K⊥, where K
is a subgroup of H, and K⊥ = {f ∈ Ĥ | f(K) = 1} (cf. [6, Section 2.3]). By [6, 
Proposition 2.14], this π is the only irreducible element (up to isomorphism) in Repα

G. 
Hence for any nonzero v ∈ V , Gv is a tight (G, α)-frame for V .
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Next, we do not assume the irreducibility of V . In this case, write V = V1 ⊕ · · · ⊕ Vk

as an orthogonal direct sum of irreducible projective representations with multiplier α. 
Let v ∈ V be a nonzero vector. Write v = v1 + · · ·+ vk with vi ∈ Vi for 1 ≤ i ≤ k. Then 
we have the following result.

Proposition 2.8. With the notation as above, Gv = {gv | g ∈ G} is a tight (G, α)-frame 
for V if and only if the following two conditions hold:

(1) ||vi||2
||vj ||2 = dim Vi

dim Vj
for all 1 ≤ i, j ≤ k;

(2)
∑

g∈G〈vi, gvi〉gvj = 0 for all i 
= j.

Proof. Note that Gv is tight if and only if there exists λ ∈ R>0 with 
∑

g∈G〈f, gv〉gv = λf

for all f ∈ V . Assume that Gv is tight. Take fi ∈ Vi, then

∑
g∈G

〈fi, gv〉gv =
∑
g∈G

〈fi, gvi〉gv

=
∑
g∈G

〈fi, gvi〉gvi +
∑
g∈G

∑
j �=i

〈fi, gvi〉gvj .

We must have {∑
g∈G〈fi, gvi〉gvi = λifi,∑
g∈G〈fi, gvi〉gvj = 0 for any j 
= i.

The second condition holds by taking fi = vi. Since Vi is irreducible and vi 
= 0, by 
Remark 2.6, we have λi = n||vi||2

dim Vi
. Moreover, λi = λ = λj . Hence ||vi||

2

||vj ||2 = dim Vi

dim Vj
for all 

1 ≤ i, j ≤ k. We obtain the first condition as well.
Conversely, assume that conditions (1) and (2) hold. From the above discussion and 

Proposition 2.5, to show that Gv = {gv | g ∈ G} is a tight (G, α)-frame for V , it suffices 
to show that 

∑
g∈G〈fi, gvi〉gvj = 0 for any fi ∈ Vi and j 
= i. First take fi = hvi for 

h ∈ G, we have

∑
g∈G

〈fi, gvi〉gvj =
∑
g∈G

〈hvi, gvi〉gvj

=
∑
g∈G

〈vi, h−1(gvi)〉gvj =
∑
g∈G

〈vi, (h−1g)vi)〉
1

α(h−1, g)gvj

Applying h−1 on both sides of the above equality, we have

h−1(
∑

〈fi, gvi〉gvj) = h−1(
∑

〈vi, (h−1g)vi)〉
1

α(h−1, g)gvj)

g∈G g∈G
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=
∑
g∈G

〈vi, (h−1g)vi)〉
1

α(h−1, g)h
−1(gvj)

=
∑
g∈G

〈vi, (h−1g)vi)〉(h−1g)vj = 0.

The proposition then follows since 
∑

g∈G〈fi, gvi〉gvj is linear as a map on fi. �
Corollary 2.9. With the notation as in Proposition 2.8, Gv is a frame if and only if vi 
= 0
for all i and 

∑
g∈G〈vi, gvi〉gvj = 0 for any j 
= i.

Proof. From the same argument in Proposition 2.8, the tightness gives us the first con-
dition. The corollary follows as Gv is a tight (G, α)-frame if V is irreducible. �

In order to simplify the second condition in Proposition 2.8, we first prove a frame 
version of Schur’s Lemma.

Lemma 2.10. Let πi : G → U(Vi) i = 1, 2 be irreducible projective representations of G
with multiplier α. Fix vi ∈ Vi nonzero vector for i = 1, 2. Define

S := Sv1,v2 : V1 → V2

f 	→
∑
g∈G

〈f, gv1〉gv2.

Then S = 0 if V1 and V2 are not isomorphic in Repα
G. If σ : V1 → V2 is an isomorphism 

in Repα
G, then

S(f) = n||v1||2
(dimV1)||σv1||2

〈v2, σv1〉σ(f) for all f ∈ V1.

Proof. A simple computation shows that S ∈ HomRepα
G
(V1, V2). If V1 and V2 are irre-

ducible and non-isomorphic, Schur’s Lemma tells us S = 0. On the other hand, if V1 ∼= V2, 
S must be σ multiplying with a constant number λ. Take f = v1, we have

〈Sv1, σv1〉 = 〈
∑
g∈G

〈v1, gv1〉gv2, σv1〉 =
∑
g∈G

〈v1, gv1〉〈gv2, σv1〉

=
∑
g∈G

〈v1, gv1〉α(g−1, g)〈v2, g
−1(σv1)〉

=
∑
g∈G

〈g−1v1, v1〉〈v2, σ(g−1v1)〉

= 〈v2, σ(
∑
g∈G

〈v1, gv1〉gv1)〉

By Remark 2.6, we have 
∑

g∈G〈v1, gv1〉gv1 = n ||v1||2v1. The lemma follows. �
dim V1
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Combining Proposition 2.8 and Lemma 2.10, we have the following result.

Theorem 2.11. With the notation as in Proposition 2.8, Gv = {gv | g ∈ G} is a tight 
(G, α)-frame for V if and only if the following two conditions hold

(1) ||vi||2
||vj ||2 = dim Vi

dim Vj
for all 1 ≤ i, j ≤ k;

(2) 〈σvi, vj〉 = 0 for any σ ∈ HomRepα
G
(Vi, Vj) and i 
= j.

Similarly, the following result holds.

Corollary 2.12. With the notation as in Proposition 2.8, Gv is a frame if and only if 
vi 
= 0 for all i and 〈σvi, vj〉 = 0 for any σ ∈ HomRepα

G
(Vi, Vj) and i 
= j.

Remark 2.13. Let Φ = {gv | g ∈ G} be a (G, α)-frame for V . Write v = v1 + · · · + vk
as above. Then the canonical dual frame of Φ is given by Φ̃ = {gv′ | g ∈ G}, with 
v′ = 1

λ1
v1 + · · · + 1

λk
vk.

The results in this section are projective version of the corresponding results in [19, 
Section 6]. See also [14, Theorem 6.1] and [21, Theorem 2.8].

2.3. Central tight (G, α)-frames

Definition 2.14. A function f : G → C is called an α-class function if for all g, h ∈ G,

f(hgh−1) = α(h, h−1)
α(h, gh−1)α(g, h−1)f(g) = α(h, h−1)

α(h, g)α(hg, h−1)f(g).

Let Hα denote the space of α-class functions on G. The characters of projective repre-
sentations belong to Hα and {χi} forms a basis of Hα.

Definition 2.15. Let Φ = {φg | g ∈ G} be a (G, α)-frame. We say that Φ is central if 
ν : G → C defined by

ν(g) = 〈φ1, φg〉

is an α−1-class function.

Remark 2.16. Let π : G → U(V ) be a projective representation with multiplier α. We 
have

〈π(h)v, π(g)π(h)v〉 = α(h−1, h)
α(h−1, g)α(h−1g, h) 〈v, π(h−1gh)v〉.

Hence v is a central (G, α)-frame vector for V if and only if

〈π(h)v, π(g)π(h)v〉 = 〈v, π(g)v〉 for all g, h ∈ G.
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In order to classify all the central tight (G, α)-frames, we first review the structure 
of Cent .C[G]α, the center of the twisted group algebra C[G]α. We use the notation 
introduced in Section 1.1. Define ωi = di

n ωχi
:= di

n

∑
g∈G χ̄i(g)g ∈ C[G]α. Here χ̄i is the 

complex conjugation of χi.

Lemma 2.17. With the notation as above, {ωi | 1 ≤ i ≤ r} is a basis for Cent .C[G]α. 
Moreover ωiωi = ωi and ωiωj = 0 if i 
= j.

Proof. Let χ : G → C be an α-class function. Let τ =
∑

g∈G α(g, g−1)−1χ(g−1)g. Then τ
is an element of Cent .C[G]α. Indeed, it suffices to show that h(

∑
g∈G α(g, g−1)−1χ(g−1)g)

= (
∑

g∈G α(g, g−1)−1χ(g−1)g)h for any h ∈ G. This is equivalent to

α(hgh−1, hg−1h−1)−1χ(hg−1h−1)α(hgh−1, h) = α(g, g−1)−1χ(g−1)α(h, g)

⇔α(hgh−1, hg−1h−1) = α(hgh−1, h)α(h, h−1)α(g, g−1)
α(h, g−1h−1)α(g−1, h−1)α(h, g) .

(2.5)

This identity follows from

α(xgx−1, xhx−1) = α(x, ghx−1)α(gx−1, xhx−1)
α(x, gx−1)

= α(x, ghx−1)
α(x, gx−1)

α(gx−1, x)α(g, hx−1)
α(x, hx−1)

= α(x, ghx−1)α(gx−1, x)
α(x, gx−1)α(x, hx−1)

α(g, h)α(gh, x−1)
α(h, x−1)

= α(x, ghx−1)α(g, h)α(gh, x−1)α(x, x−1)
α(x, gx−1)α(x, hx−1)α(h, x−1)α(g, x−1) .

(2.6)

If χ is a character, then χ̄(g) = α(g, g−1)−1χ(g−1). Therefore, {ωi | 1 ≤ i ≤ r} is a 
basis for Cent .C[G]α. We check that ωiωi = ωi. The other identities follow by similar 
argument. For simplicity, we omit the subscript i in the computation. Write ρ : G →
GL(V ) in the matrix form as ρ(g) = (rij(g)). Then as a consequence of Schur’s Lemma, 
we have

1
n

∑
g∈G

α(g, g−1)−1ri2j2(g−1)rj1i1(g) = 1
dimV

δi2i1δj2j1 .

Note that

ω2 =
∑
g∈G

(
∑
h∈G

α(gh−1, h)χ̄(gh−1)χ̄(h))g.

The identity ω2 = ω follows from
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(
∑
h∈G

α(gh−1, h)χ̄(gh−1)χ̄(h))−

=
∑
h∈G

α(gh−1, h)−1χ(gh−1)χ(h)

=
∑
h∈G

α(gh−1, h)−1α(g, h−1)−1 · Tr[(rij(g))(rij(h−1))] · Tr(rij(h))

=
∑
h∈G

∑
i,j,k

α(h, h−1)−1rij(g)rji(h−1)rkk(h)

=n

d

∑
k

rkk(g) = n

d
χ(g).

This completes the proof of the lemma. �
We have the following result on central (G, α)-frames, which is a projective version of 

[20, Theorem 5.1].

Proposition 2.18. Let G be a finite group and Φ be a (G, α)-frame. Φ is a central (G, α)-
frame if and only if its Gramian is given by

Gram(Φ) = M(
∑

i∈I⊂{1≤i≤r}
ai
di
n
χ̄i).

Here ai ∈ C×.

Proof. By definition, Φ is central if and only if Gram(φ) = M(η) with η being an 
α−1-class function. The proposition follows as {χ̄i | 1 ≤ i ≤ r} is a basis of the space 
Hα−1 . �
Remark 2.19. We may realize central frames explicitly as follows. Let ρi : G → U(Vi)
be the irreducible projective representation of G with dimension di and character χi. 
Choose an orthogonal basis {vi1, . . . , vidi

} of Vi with the same length. Consider vi =
vi1 ⊕ · · · ⊕ vidi

∈ V ⊕di
i . Then vi is a central (G, α)-frame vector for π : G → U(V ⊕di

i ). 
The corresponding Gramian is M(||vi1||2χ̄i). Other central (G, α)-frames could be built 
by direct sum (cf. [20, Corollary 2.1]).

Theorem 2.20. Let π : G → U(V ) be a projective representation with multiplier α. Then 
the following are equivalent.

(1) π admits a central (G, α)-frame vector.
(2) Every tight (G, α)-frame vector is central.
(3) π is equivalent to a central projection of the α-regular representation.
(4) 〈π(h)v, π(g)π(h)v〉 = 〈v, π(g)v〉 for all g, h ∈ G.
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Proof. Only the part (1) ⇒ (2) needs explanation. Write V = V ⊕d1
1 ⊕ · · · ⊕ V ⊕ds

s as a 
direct sum of irreducible projective representations, where di = dimVi and Vi � Vj if 
i 
= j. Let v = v11 + · · · v1d1 + · · · + vs1 + · · · + vsds

, where vij is the component of v in 
the j-th copy of Vi (1 ≤ i ≤ s and 1 ≤ j ≤ di).

Assume that v is a tight (G, α)-frame vector for V , by Theorem 2.11, for any 1 ≤ i ≤ s, 
{vi1, . . . , vidi

} is an orthogonal basis of Vi with the same length and ||vi1||
2

||vj1||2 = di

dj
. Write 

a = n||vi1||2
di

∈ C×, which is a constant independent of the choice of i. Then the Gramian 
of {gv | g ∈ G} is M(

∑s
i=1 χ̄i||vi1||2) = M(a 

∑s
i=1

di

n χ̄i). Hence v is central. �
Corollary 2.21. Let π : G → U(V ) be a projective representation that admits central 
(G, α)-frames. Then every central (G, α)-frame vector for V is similar to a Parseval 
frame vector.

We now classify all central tight (G, α)-frames by describing their Gramian matrices. 
Suppose that Φ = {φg | g ∈ G} is a central normalized tight (G, α)-frame. Then its 
Gramian is a (G, α)-matrix

P := Gram(Φ) = M(ν), with ν(g) = 〈φ1, gφ1〉.

Since Φ is central, ν is an α−1-class function. Moreover, Φ is a normalized tight frame, 
by [20, Theorem 2.1], P is an orthogonal projection, i.e. P 2 = P = P̄ t. Under the map 
Π : Mα → C[G]α, the image Π(P ) is an idempotent. Write p = Π(P ) =

∑
g∈G ν(g)g. 

Since ν(g) is an α−1-class function, p ∈ Cent .C[G]α. By Lemma 2.17, we may write

p =
r∑

i=1
aiωi.

Since p2 = p, it is easy to see that ai ∈ {0, 1}. Let I = {1 ≤ i ≤ r | ai = 1}. Then 
p =

∑
i∈I ωi.

Conversely, assume that P = Gram(Φ) = M(ν) with ν =
∑

i∈I
di

n χ̄i for some 
I ⊂ {1 ≤ i ≤ r}. Then P 2 = P = P̄ t as they have the same image under Π. By 
[20, Theorem 2.1] again, Φ is a central normalized tight (G, α)-frame. Summing up the 
discussion, we have proved the first part of the following result.

Theorem 2.22. Let G be a finite group and Φ be a (G, α)-frame.

(1) Φ is a central normalized tight (G, α)-frame if and only if its Gramian is given by

Gram(Φ) = M(
∑

i∈I⊂{1≤i≤r}

di
n
χ̄i).
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(2) Choose normalized tight (G, α)-frames Φi for Wi, with

Gram(Φi) = M(di
n
χ̄i), dim(Wi) = d2

i .

Then the unique (up to isomorphism in Repα
G) central normalized tight (G, α)-frame 

with Gramian M(
∑

i∈I
di

n χ̄i) is given by the direct sum

Φ = ⊕i∈IΦi ⊂ W := ⊕i∈IWi.

Proof. Note that for i 
= j, Gram(Φi) Gram(Φj) = O since Π(Gram(Φi) Gram(Φj)) =
ωiωj = 0. Therefore the second part of the theorem follows from [20, Corollary 2.1]. �
Remark 2.23. We give an explicit realization of Wi. Let ρi : G → U(Cdi) be the projective 
representation of G with character χi. Define

φi
g := (di/n)1/2ρi(g) ∈ U(Cdi) ⊂ Cdi×di ∼= Cd2

i =: Wi.

Define the inner product on matrices by 〈A, B〉 = Tr B̄tA. Then Φi = {φi
g | g ∈ G} is a 

central tight (G, α)-frame for Wi with Gramian M(di

n χ̄i).
Indeed, since ρi is irreducible, Span{ρi(g) | g ∈ G} = Cdi×di . Define π : G →

GL(Cdi×di) by

π(h)ρi(g) = α(h, g)ρi(hg) for all h, g ∈ G.

It is easy to check that π defines a unitary projective representation with multiplier α. 
To prove the claim, it suffices to check that this frame has the desired Gramian. This 
follows from

〈φi
g, φ

i
h〉 = di

n
Tr(ρi(h)

t
ρi(g)) = α(g, g−1)

α(g−1, h)
di
n
χ̄i(g−1h).

Note that the second equality follows from the fact that ρi(h) is unitary and the fact 
χ̄i(g) = α(g, g−1)−1χi(g−1) for any g ∈ G. Putting all the Wi together, the Gramian 
M( 1

n

∑
1≤i≤r diχ̄i) is realized by the α-regular representation of G (cf. [6, Section 2.1], 

[12, Theorem 6], [14, Corollary 5.5]).

2.4. An example

Let G = D4m be the dihedral group with 4m elements. Fix a presentation of G

G = 〈a, b | a2m = 1, b2 = 1, bab = a−1〉.

We know that H2(G, C×) = Z/2Z (see for example [15, 2.11.3 Theorem]). Let ζ be a 
primitive 2m-th root of unity. Let α ∈ Z2(G, C×) be the cocycle defined by
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α(aibj , ai
′
bj

′
) = ζji

′
.

Here 0 ≤ i ≤ 2m − 1 and b ∈ {0, 1}. Then it is a unitary cocycle that represents 
the non-trivial element in H2(G, C×) (cf. [15, 2.11.1 Lemma and 2.11.3 Theorem]). We 
compute the tight (G, α)-frames.

2.4.1. The explicit projective representations
By [6, Theorem 3.9], we know that there are m non-isomorphic irreducible elements 

in Repα
G and all of them have dimension 2. They are given by

πk : G → GL(Vk) = GL2(C)

aibj 	→ Ci
kB

j ,
(2.7)

where 1 ≤ k ≤ m, Ck =
(
ζk 0
0 ζ1−k

)
, B =

(
0 1
1 0

)
.

2.4.2. The tight (G, α)-frames
Let π : G → U(W ) be an element in Repα

G. Then W admits a tight (G, α)-frame 
if and only if dim HomRepα

G
(Vk, W ) ≤ 2 for all 1 ≤ k ≤ m. On the other hand, 

if dim HomRepα
G
(Vk, W ) ≤ 2 for all 1 ≤ k ≤ m, it is easy to write down a tight (G, α)-

frame by Theorem 2.11.

2.4.3. The central tight (G, α)-frames
Let π : G → U(W ) be an element in Repα

G. Then W admits a central tight 
(G, α)-frame if and only if dim HomRepα

G
(Vk, W ) = 2 or 0. Those frames could be written 

down explicitly via Remark 2.23 and they are different from the G-frames constructed 
from linear representations.

For example, let G = D8 and ζ =
√
−1. Arrange the elements of G in the order 

1, a, a2, a3, b, ab, a2b, a3b, the central tight (G, α)-frames for V ⊕2
k (k = 1, 2) are given by

Φ1 = {1
2

⎛⎜⎝1
0
0
1

⎞⎟⎠ ,
1
2

⎛⎜⎝ζ
0
0
1

⎞⎟⎠ ,
1
2

⎛⎜⎝ζ2

0
0
1

⎞⎟⎠ ,
1
2

⎛⎜⎝ζ3

0
0
1

⎞⎟⎠ ,
1
2

⎛⎜⎝0
1
1
0

⎞⎟⎠ ,
1
2

⎛⎜⎝0
ζ
1
0

⎞⎟⎠ ,
1
2

⎛⎜⎝ 0
ζ2

1
0

⎞⎟⎠ ,
1
2

⎛⎜⎝ 0
ζ3

1
0

⎞⎟⎠}

and

Φ2 = {1
2

⎛⎜⎝1
0
0
1

⎞⎟⎠ ,
1
2

⎛⎜⎝−1
0
0
−ζ

⎞⎟⎠ ,
1
2

⎛⎜⎝ 1
0
0
ζ2

⎞⎟⎠ ,
1
2

⎛⎜⎝ −1
0
0

−ζ3

⎞⎟⎠ ,
1
2

⎛⎜⎝0
1
1
0

⎞⎟⎠ ,

1
2

⎛⎜⎝ 0
−1
−ζ
0

⎞⎟⎠ ,
1
2

⎛⎜⎝ 0
1
ζ2

0

⎞⎟⎠ ,
1
2

⎛⎜⎝ 0
−1
−ζ3

0

⎞⎟⎠}.
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3. The maximal spanning vectors

3.1. Definition and the general discussion

Let π : G → U(V ) be a projective representation of G with multiplier α over a 
complex vector space V . Denote by d the dimension of V . Let (V ∗, π∗) be the dual 
projective representation of V , i.e. V ∗ = Hom(V, C) and π∗(g) = α(g, g−1)−1tπ(g−1). 
By definition,

π∗(gh) = α(gh, (gh)−1)−1tπ((gh)−1) = α(gh, (gh)−1)−1tπ(h−1g−1)

= α(gh, (gh)−1)−1α(h−1, g−1)−1t(π(h−1)π(g−1))

= α(gh, (gh)−1)−1α(h−1, g−1)−1α(g, g−1)α(h, h−1)π∗(g)π∗(h)

= α(g, h)π∗(g)π∗(h).

(3.1)

Therefore, the multiplier attached to π∗ is α−1.
For any x ∈ V , denote by x∗ ∈ V ∗ the linear functional defined by u 	→ 〈u, x〉. For 

any u, v ∈ V , we have a matrix coefficient cu,v : G → C defined by

cu,v(h) = v∗(π(h)u) = 〈π(h)u, v〉.

Denote by Cπ ⊂ L2(G) the spanning space of matrix coefficients of V , i.e.

Cπ = Span{cu,v | u ∈ V, v ∈ V } ⊂ L2(G).

Fix a basis {ui | 1 ≤ i ≤ d} of V , then {cui,uj
| 1 ≤ i, j ≤ d} is a spanning set of Cπ. 

Define

Cu,v = Span{cπ(g)u,π(g)v | g ∈ G} ⊂ L2(G).

Certainly, every element cπ(g)u,π(g)v is a matrix coefficient of V . Hence dimCu,v ≤
(dimV )2. If the equality holds, we say that (u, v) is a maximal spanning pair for V . 
If (x, x) is a maximal spanning pair for V , we say that x ∈ V has the maximal spanning 
property and call x a maximal spanning vector for V .

A maximal spanning vector x is automatically phase-retrievable in the sense that the 
set of numbers {|〈v, π(g)x〉| : g ∈ G} uniquely (up to a unimodular scalar) determines v. 
We refer to [1–3,16] for more information on the relation between maximal spanning 
vectors and the phase retrieval problems. In this section, we focus on [16, Conjecture].

Conjecture 3.1. If π : G → U(V ) is an irreducible projective representation with multi-
plier α, then there exists a maximal spanning vector for V .
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In [16], the authors verified this conjecture for abelian groups and certain metacyclic 
groups. In the following, we explain the difficulty of this conjecture and the reason why 
the abelian group case is easy.

Write gu for π(g)u, then

cgu,gv(h) = 〈h(gu), gv〉 = α(g, g−1)−1α(g−1, h)α(g−1h, g)cu,v(g−1hg). (3.2)

From equation (3.2), there are two types of difficulties to find a maximal spanning pair 
(u, v).

A: The complication coming from the multiplier.
B: The complication coming from the conjugation in the group.

These two types are not independent, as simple computation shows that Type A
involves conjugation. For G abelian, Type B difficulty disappears and we may also control 
Type A difficulty. In Section 3.2, we explain the strategy in detail and give another proof 
of [16, Theorem 1.7].

From (G, α)-frame point of view, if we consider the representation π ⊗ π∗ : G →
U(V ⊗ V ∗), it is easy to see that (u, v) is a maximal spanning pair for V if and only if 
G(u ⊗ v∗) is a frame for V ⊗ V ∗. From Theorem 2.12 and its corollary, to characterize 
maximal pairs (u, v), we need to know the decomposition of V ⊗ V ∗ as a direct sum of 
irreducible representations. In Section 3.4, we give another proof of the conjecture for 
abelian groups, as a special case of a more general result. On the other hand, V ⊗ V ∗

always admits tight G-frames.

Proposition 3.2. If π : G → U(V ) is irreducible, then there always exists w ∈ V ⊗ V ∗, 
such that Gw is a tight G-frame for V ⊗ V ∗.

Proof. First we show that there exists w such that Gw is a G-frame for V ⊗V ∗. In order 
to prove this, by Corollary 2.12, it suffices to show that every irreducible Wi ∈ RepG

appears at most (dimWi)-times in V ⊗ V ∗. Since

HomRepG
(Wi, V ⊗ V ∗) = HomRepα

G
(Wi ⊗ V, V ),

and V is irreducible, the claim follows immediately. Then write w = w1 + · · · + ws

according to the decomposition of V ⊗ V ∗ and adjust the length of the components wi, 
we may make Gw tight. �
Remark 3.3. The same argument shows that V ⊗ V admits tight (G, α2)-frames. Con-
tinuing with the Gabor frame example, assume that π : G → U(V ) is from Remark 2.7
with G = H× Ĥ. Assume further that 2 � |G|. Then α2 represents an element with max-
imal order in H2(G, C×). Every irreducible element of Repα2

G has the same dimension, 
which equals dimV = |H|. Then one sees that V ⊗ V is isomorphic to the α2-regular 
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representation of G and it admits a central tight (G, α2)-frame. By Theorem 2.20, every 
tight (G, α2)-frame vector for V ⊗ V is central.

If π in Conjecture 3.1 is reducible, then the statement is false. For example, we have 
the following results.

Proposition 3.4. Let π : G → U(V ) be a finite dimensional projective representation of G
with multiplier α. Then the following claims hold.

(1) If G is abelian, α is trivial, and dim V ≥ 2, then V admits no maximal spanning 
vector.

(2) If dimV ≥ 2 and x ∈ V is a central (G, α)-frame vector for V , then x is not a 
maximal spanning vector for V .

(3) Let r := π ⊕ π : G → U(V ⊕ V ). Then (r, V ⊕ V ) admits no maximal spanning 
vector.

Proof. The first claim follows from equation (3.2), as in this case cgu,gv = cu,v for any 
g ∈ G and u, v ∈ V . The second claim follows from Theorem 2.20. For the third claim, 
let x = u ⊕ v ∈ V ⊕ V be a nonzero vector. Then

cr(g)x,r(g)x(h) = 〈r(h)r(g)x, r(g)x〉
= 〈π(h)π(g)u, π(g)u〉 + 〈π(h)π(g)v, π(g)v〉.

Hence Cx,x ⊂ Cπ and dimCx,x ≤ (dimV )2 < (dim(V ⊕ V ))2. Therefore (r, V ⊕ V )
admits no maximal spanning vector. �

Since a maximal spanning vector for a representation automatically yields a maximal 
spanning vector for any of its subrepresentations, we immediately have the following 
consequence of Proposition 3.4.

Corollary 3.5. Let π : G → U(V ) be a finite dimensional projective representation of G
with multiplier α. If π has a subrepresentation that is equivalent to a subrepresentation 
of the α-regular representation of G corresponding to a central projection P of rank at 
least 2, then π does not admit any maximal spanning vector.

Remark 3.6. Starting with the first claim in Proposition 3.4, a natural question to ask is 
that, with the same assumption there, does V admit phase retrievable vector? We give 
the following R-vector space, for which the answer is yes.

Let G = Z/3Z and V = R2. Let ρ : G → U(V ) be the R-representation of G sending 
1 ∈ G to the rotation by 2π/3. In this case (π, V ) is irreducible. Let v0 = (0, 1) ∈ R2. 
Then Gv0 = {v0, v1, v2} is the Mercedes–Benz frame. Consider the map
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A : V → R3

v 	→ (|〈v, v0〉|, |〈v, v1〉|, |〈v, v2〉|).

If (a, b) and (c, d) have the same image under A, then (a, b) = ±(c, d). This tells us that 
Gv is a phase retrievable frame for V .

On the other hand, any phase-retrievable frame for C2 needs at least four vectors 
(cf. [1]) and so every phase-retrievable frame vector for a representation on C2 is a 
maximal spanning vector. This naturally leads to the following question.

Question 3.7. Let G be a finite group and V a finite dimensional C-space with dimension 
≥ 2. Let π : G → U(V ) be a finite dimensional projective representation of G with 
multiplier α. Is it possible that (π, V ) admits a phase retrievable frame vector which is also 
central? In particular, can this happen if G is abelian and π is a linear representation?

3.2. The abelian case

In this section, G is a finite abelian group. We study projective representations of 
G in detail. Let α ∈ Z2(G, C×) be a unitary multiplier. Let (π, V, α) be an irreducible 
projective representation of G with multiplier α. Let (π, V , α = α−1) be the projective 
representation defined by V = V and π(g) = π(g), where the last ¯ means complex 
conjugation. Then the tensor product π ⊗ π is a projective representation of G with 
multiplier αα = 1, i.e., it is a linear representation. The character of π ⊗ π is χπχπ, 
where χπ and χπ are the characters of π and π respectively. Let ρ : G → C× be a 
one-dimensional linear representation that appears in π ⊗ π. Then

dimC HomG(ρ, π ⊗ π) = 1
|G|

∑
g∈G

ρ(g)χπ(g)χπ(g) = dimC Hom(π ⊗ ρ, π) ≤ 1. (3.3)

Therefore, the dimension must be one, i.e., every one-dimensional representation has 
multiplicity at most one in π ⊗ π. Define

H(V ) := {ρ ∈ Ĝ := Hom(G,C×) | dimC Hom(ρ, π ⊗ π) = 1}.

Lemma 3.8. With the notation as above, H(V ) is a subgroup of Ĝ. Moreover, H(V ) :=
{ρ | ρ ∈ H(V )} coincides with H(V ).

Proof. By equation (3.3), a one-dimensional linear representation ρ is an element of 
H(V ) if and only if π ⊗ ρ is isomorphic to π as projective representations. From this 
observation, it is easy to see that H(V ) is a subgroup of Ĝ.

Moreover, if ρ ∈ H(V ), then V ⊗ ρ ∼= (V ⊗ ρ) ⊗ ρ ∼= V ⊗ (ρ ⊗ ρ) ∼= V . Thus ρ ∈ H(V )
and the last claim follows. �
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Let H(V ) ⊂ G be H(V )⊥ := {g ∈ G | ρ(g) = 1 for any ρ ∈ H(V )}. Then

[G : H(V )] = (dimC V )2. (3.4)

By [6, Propositions 2.3, 2.14], the number of irreducible projective representations in 
Repα

G is |H(V )|. Let (π′, V ′, α) be another irreducible projective representation of G with 
multiplier α. Considering the tensor product V ⊗ V ′ as a projective representation of G
with trivial multiplier, by the same argument as above, it is easy to see that V ′ ∼= V ⊗ ρ

for some ρ ∈ Ĝ. Therefore,

V ⊗ V ∼= V ′ ⊗ V
′
.

Thus H(V ) = H(V ′). This group is independent of the choice of V . From now on, we 
denote it by Hα. The product (V ⊗V )|Hα

decomposes as (dimC V )2-copies of the trivial 
linear representation of Hα.

Lemma 3.9. With the notation as above, α|Hα×Hα
is a coboundary.

Proof. Suppose that α|Hα×Hα
is not a coboundary, then the irreducible projective rep-

resentations of Hα with multiplier α|Hα×Hα
have dimension at least two. Let W ⊂ V |Hα

be such an irreducible object. Then W ⊗W ⊂ (V ⊗ V )|Hα
is a sub-representation. By 

the same argument as before, W ⊗W ∼= ⊕j∈Jχj , where χj are different one-dimensional 
linear representations of Hα. This contradicts to the fact that (V ⊗ V )|Hα

is a direct 
sum of trivial representations of Hα. �

Consider the map f : G ×G → C× defined by

f(g, h) = α(g, h)
α(h, g)

for any g, h ∈ G. It is easy to check that f is a bi-homomorphism and thus induces a 
homomorphism λ : G → Ĝ given by g 	→ λg := α(g,·)

α(·,g) .

Lemma 3.10. For any h ∈ Hα and g ∈ G, α(h, g) = α(g, h). Moreover, Kerλ = Hα.

Proof. A subgroup X of G is called α-symmetric if α(x, y) = α(y, x) for any x, y ∈ X. 
Let K be a maximal α-symmetric subgroup of G such that Hα ⊂ K. Such K exists since 
Hα is α-symmetric by Lemma 3.9.

By [6, Proposition 2.14], |K| · dimC V = |G| and V ∼= α IndG
K χ. Here χ is a one-

dimensional projective representation of K with multiplier α|K×K and α Ind is the 
induction of projective representations with respect to α (see for example [6, Section 2.2]). 
Moreover, by [6, Corollary 2.11],

V |K ∼= ⊕s∈G/Kχs,
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where χs(k) = α(s−1,k)
α(k,s−1)χ(k) for k ∈ K. Therefore,

(V ⊗ V )|Hα
= ⊕s,t∈G/Kχs|Hα

⊗ χt|Hα
.

By the definition of Hα, χs|Hα
⊗ χt|Hα

= 1 for any s, t ∈ G/K. Let t be the unity 
element, then one obtains that α(s−1, h) = α(h, s−1) for any h ∈ Hα and s ∈ G/K. The 
first claim follows and Hα ⊂ Ker(λ).

Moreover, from the above discussion, one sees that (V ⊗ V )|Ker(λ) is a direct sum 
of trivial representations of Ker(λ). Since Hα is maximal with respect to this property, 
Ker(λ) ⊂ Hα. The second claim follows. �

Return to maximal spanning vectors. In equation (3.2), since G is abelian,

α(g, g−1)−1α(g−1, h)α(g−1h, g) = α(g−1, h)
α(h, g−1) .

Therefore, cgu,gv = λg−1cu,v. We have the following result.

Proposition 3.11. Let G be an abelian group and π : G → U(V ) be an irreducible projec-
tive representation of G. Then (u, v) is a maximal pair for V if and only if cu,v(g) 
= 0
for all g ∈ G.

Proof. Suppose that (u, v) is maximal and cu,v(h) = 0 for an h ∈ G. Then cgu,gv(h) = 0
for all g ∈ G. This contradicts to the fact that π(h) ∈ U(V ) and some matrix entries of 
π(h) must be nonzero.

Conversely, assume cu,v(g) 
= 0 for all g ∈ G. By Lemma 3.10, | Imλ| = d2. Let 
{λi | 1 ≤ i ≤ d2} ⊂ Ĝ be the image of λ. Suppose ai ∈ C and∑

i

ai(λicu,v) = 0.

Then for any g ∈ G, we have 
∑

i aiλi(g) = 0 since cu,v(g) 
= 0. Therefore ai = 0 since the 
characters are linearly independent. Hence {λicu,v | 1 ≤ i ≤ d2} are linearly independent 
and dimCu,v = d2. The proposition follows. �

Combining Proposition 3.11 and [16, Lemma 2.2], we obtain [16, Theorem 1.7].

3.3. Non-abelian examples

Consider a projective irreducible representation π : G → U(V ) with multiplier α. Let 
G1 ⊂ G be a subgroup. By restriction, we may consider π1 := π|G1 : G1 → U(V ) as a 
projective representation of G1 with multiplier α|G1×G1 . If v ∈ V is a maximal spanning 
vector for π1 : G1 → U(V ), then v is a maximal spanning vector for π : G → U(V ). We 
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could use this simple idea to verify the conjecture for certain representations of solvable 
groups. See for example [16, Example 3.3] for metacyclic groups of the form Cm � Cp

with p a prime.
Let G = A4, the alternating group for four points. Since A4 ∼= (C2 × C2) � C3, it is 

not metacyclic. In this case H2(G, C×) = Z/2Z. Let α ∈ Z2(G, C×) be a cocycle that 
represents the nontrivial element in H2(G, C×).

Proposition 3.12. Conjecture 3.1 holds for the pair (A4, α).

Proof. We sketch the proof here. Since α is nontrivial, every simple object in Repα
A4

has dimension at least 2. Since the dimension divides 12 and the sum of their squares is 
12, there are 3 simple objects in Repα

A4
, all of which have dimension two. Let V4 be the 

abelian normal subgroup of A4. It is the Klein four group and isomorphic to Z/2Z ×Z/2Z. 
It is easy to check that α|V4×V4 represents the nontrivial element in H2(V4, C×) ∼= Z/2Z. 
Therefore π|V4 is irreducible as an element in Repα

V4
. As V4 is abelian and we have verified 

the conjecture for abelian groups, the conjecture holds for (A4, α) too. �
3.4. On the V ⊗ V ∗-side

If we approach the problem from the V ⊗ V ∗-side, then by Theorem 2.11 and its 
corollary, to find a maximal spanning vector, we need to understand the decomposition 
of the tensor product V ⊗V ∗ into a direct sum of irreducible objects. Note that V ⊗V ∗ is a 
projective representation with trivial multiplier, i.e. it is a linear representation. Assume 
that V ⊗ V ∗ is unramified in the sense that every irreducible object in RepG appears at 
most once in V ⊗V ∗. Write V ⊗V ∗ = V1⊕· · ·⊕Vk with Vi irreducible and non-isomorphic. 
Let ηi be the character of Vi. We have canonical projections V ⊗ V ∗ → Vi, given by

Pi =
∑
t∈G

ηi(t−1)π ⊗ π∗(t).

Then we see that (u, v) is a maximal pair for V if and only if Pi(u ⊗v∗) 
= 0 for 1 ≤ i ≤ k

(cf. Corollary 2.12). This gives us a general characterization for maximal spanning vectors 
in the unramified case.

Remark 3.13. If G is abelian, then V ⊗ V ∗ = V ⊗ V and it is unramified as explained in 
Section 3.2. In this case, the ηi’s form the set H(V ) in Section 3.2, which is the same as 
the set Im(λ) (cf. Lemma 3.10). One then may verify that the conditions

Pi(u⊗ v∗) =
∑
t∈G

ηi(t−1)π ⊗ π∗(t)(u⊗ v∗) 
= 0 (1 ≤ i ≤ k)

are equivalent to the conditions 〈π(g)u, v〉 
= 0 for all g ∈ G. This gives us another proof 
of Proposition 3.11.
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Indeed, suppose that 〈π(g)u, v〉 
= 0 for all g ∈ G and Pi(u ⊗ v∗) = 0 for some 
1 ≤ i ≤ k. Then for any h ∈ G, we have

0 = Pi(u⊗ v∗)(h) =
∑
t∈G

ηi(t−1)π ⊗ π∗(t)(u⊗ v∗)(h)

=
∑
t∈G

ηi(t−1)〈π(h)π(t)u, π(t)v〉

=
∑
t∈G

ηi(t−1)α(t, t−1)−1α(t−1, h)α(t−1h, t)〈π(h)u, v〉

We may choose h ∈ G so that ηi(t−1)α(t, t−1)−1α(t−1, h)α(t−1h, t) = 1 is the trivial 
character on t ∈ G and obtain a contradiction.

Remark 3.14. Unfortunately, V ⊗ V ∗ could be ramified. For example, let G = A4 from 
Section 3.3 and consider the irreducible 3-dimensional representation of A4 on V = C3. 
In this case, V ∗ is a 3-dimensional irreducible representation, hence V ∼= V ∗. From the 
character table in [18, Chap. 5, Section 5.7], V ⊗ V ∗ ∼= V ⊕2 ⊕ χ0 ⊕ χ1 ⊕ χ2 and it is 
ramified.

Write V ⊗ V ∗ = V ⊕r1
1 ⊕ · · · ⊕ V ⊕rk

k with Vi irreducible and non-isomorphic. Let ηi
be the character of Vi. Then Pi is a projection from V ⊗ V ∗ to V ⊕ri

i . The non-vanishing 
property is a necessary but not sufficient condition for being maximal.

Definition 3.15. Let X and Y be two finite dimensional Hilbert spaces with dimX ≥
dimY . Let v ∈ X ⊗ Y be a nonzero vector. We call v optimal if min{s ∈ Z | v =
x1 ⊗ y1 + · · · + xs ⊗ ys} = dimY .

For any nonzero v ∈ X ⊗ Y , let s be the minimal number such that we may write 
v = x′

1⊗y′1+· · ·+x′
s⊗y′s with x′

i ∈ X and y′i ∈ Y (1 ≤ i ≤ s). In this case, x′
1, . . . , x

′
s are 

linearly independent in X and y′1, . . . , y
′
s are linearly independent in Y . Let e1, . . . , ed

be a basis of Y such that at least one y′i has no zero coordinate under this basis. Write

(y′1, . . . , y′s) = (e1, . . . , ed)
(
a11 · · · as1
· · · · · · · · ·
a1d · · · asd

)
.

Let A = (aij)1≤i≤s,1≤j≤d. Then

v = x′
1 ⊗ y′1 + · · · + x′

s ⊗ y′s

= x′
1 ⊗ (a11e1 + · · · + a1ded) + · · · + x′

s ⊗ (as1e1 + · · · + asded)

= (a11x1 + · · · + as1xs) ⊗ e1 + · · · (a1dx1 + · · · + asdxs) ⊗ ed

= w1 ⊗ e1 + · · · + wd ⊗ ed.
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First, wi 
= 0 for 1 ≤ i ≤ d since each column of A has at least one nonzero element 
and xi’s are linearly independent. Moreover, assume that v is optimal (i.e. s = dimY ), 
then wi (1 ≤ i ≤ d) are linearly independent. Applying Gram–Schmidt process to wi, 
we may write v = x1 ⊗ y1 + · · ·+ xd ⊗ yd, such that d = dimY , y1, . . . , yd form a basis 
of Y , x1, . . . , xd are pairwise orthogonal. Combining with Corollary 2.12, we obtain the 
following result.

Proposition 3.16. Let π : G → U(V ) be an irreducible projective representation of G. 
Assume that V ⊗ V ∗ = V ⊕r1

1 ⊕ · · · ⊕ V ⊕rk
k with Vi irreducible and non-isomorphic. Let 

ηi be the character of Vi. Let Pi be the projection from V ⊗ V ∗ to V ⊕ri
i defined by

Pi =
∑
t∈G

ηi(t−1)π ⊗ π∗(t).

Then (u, v) is a maximal pair for V if and only if Pi(u ⊗v∗) ∈ V ⊕ri
i = Vi⊗Cri is optimal 

for any 1 ≤ i ≤ k. Here G acts on Cri trivially.
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