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1. Introduction

Historically, frame theory was originated in the study of signal decomposition. But it
has ever-increasing applications today to problems from pure and applied mathematics,
physics, computer science etc. (cf. [5, Section 1]). In particular, frames with symmetries,
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i.e. groups frames, have important applications in signal analysis and in quantum infor-
mation theory (cf. [22]). In this paper, we examine some phase-retrieval related problems
for twisted group frames, which are also referred to as projective representation frames
or group-like systems in the literature (cf. [8-11,16]). We apply the classification results
for tight and central tight twisted group frames to the existence problem ([16]) for max-
imal spanning vectors. In particular, we provide two proofs for a special case of [16,
Conjecture], one is based on a similar calculation as in [16] and one is an application of
the theory we developed for (G, a)-frames (cf. Sections 3.2 and 3.4). As a special con-
sequence, we obtain that central frames do not have the maximal span property unless
the representation is one-dimensional. In particular, this is true for (non-twisted) abelian
group frames.

First we give the precise definition of a twisted group frame. Let G be a finite group.
A Schur multiplier (or a factor set or a 2-cocycle) on G is a map a : G X G — C* such
that

—
—

N
=~

(z,y)a(zy, 2) = a(z,yz)aly, 2) for all z,y, 2z € G;
(2) a(z,1)=a(l,z) =1forall x € G.

We always assume that a is unitary, i.e., Ima C szl. A projective representation
of G over a finite dimensional C-vector space V is a map m : G — GL(V) such that
w(z)m(y) = alz,y)r(xy) for all 2,y € G, where « is the associated multiplier. Since
every projective representation V' admits an inner product that is invariant under 7, we
may and will assume that the projective representation is given by 7 : G — U(V'). Here
U(V) denotes the set of unitary operators on a Hilbert space V.

Definition 1.1. Let V' be a finite dimensional Hilbert space. An a-twisted G-frame (or a
(G, a)-frame) for V is a frame ® = {¢, | g € G} for V, for which there exists a unitary
a-projective representation 7 : G — U(V) with

gon(:=m(g)dn) = alg, h)dgn.

If ®={¢,| g€ G}isa (G, a)frame for V, we call $1 a frame vector for V, where 1 is
the group unit.

Let ® = {¢, | g € G} be a (G, a)-frame. The symmetry on ® gives special structures
on the objects associated with ®. An obvious property is that ® is an equal norm frame.
(Indeed, in the definition take h = 1, then we have g¢1 = a(g,1)¢y = ¢4.) In Section 2.1,
we show that a frame is a (G, «)-frame if and only if its Gramian is a (G, «)-matrix
(Definition 2.1). We then show that the (G, a)-matrices form a sub-algebra of the matrix
algebra M, (C) isomorphic to the twisted group algebra C[G],. Here n = |G].

In Section 2.2 and Section 2.3, like group frames we examine some basic proper-
ties about (G, a)-frames with respect to the irreducible decomposition of the projective
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representation. We particularly examine a special type of (G, a)-frames, namely, central
frames. The characterizations of tight (G, a)-frames and tight central frames are obtained
in Theorem 2.11 and Theorem 2.22. We also give explicit examples with non-trivial «,
which show that (G, a)-frames are different from G-frames.

Applying Theorem 2.11, it is easy to prove that 7 ® 7* : G — U(V ® V*), which
is a projective representation of G with multiplier aa™! = 1, admits tight G-frames.
Moreover, [16, Conjecture] conjectures that, if V' is irreducible, there always exists a
G-frame of the form {gw | g € G} with w = v®@v* for some v € V. Such a vector v is called
a mazximal spanning vector of V, which is automatically phase-retrievable. The case for
G abelian of [16, Conjecture| has been verified (cf. [16, Theorem 1.7]). In Section 3.2, we
give a slightly different proof of this result. Both our argument and argument in [16] are
based on the special structure of projective representations of abelian groups. Starting
with the abelian case, in Section 3.3, we verify the conjecture for certain projective
representations of some solvable groups. Section 3.4 is devoted to applying the theory of
twisted group frames to obtain a criterion for maximal spanning vectors. In particular,
Proposition 3.11 or [16, Theorem 1.7] can be considered as a special case of the criteria.
For reducible representations, we prove that a central frame vector cannot be a maximal
spanning vector, and in particular we obtain that an a-projective representation does
not admit any maximal spanning vector if it has a subrepresentation that has dimension
at least 2 and is equivalent to a central projection induced subrepresentation of the
a-regular representation (Corollary 3.5).

1.1. Notation

In this paper, G is a finite group with |G| = n, a € Z%(G, C*) is a unitary multiplier.
A subgroup H of G is called a-symmetric if a(x,y) = a(y,z) for any x,y € H.

Denote by Repg: the category of projective representations of G with multiplier a.
It is well-known that, up to isomorphism, there are finitely many irreducible projective
representations in Repg:. Denote those representations by p; : G — U(V;), where V;
is a C-vector space with dimension d; (1 < i < r). Denote by x; the character of p;
(1 <i<r). We refer to [15] for details on Schur multipliers and refer to [6,7] for details
on projective representations.

For the terminology on frames and group frames, we follow the book Finite Frames.
Theory and Applications edited by Peter G. Casazza and Gitta Kutyniok, especially the
articles [5,17,22].

2. Twisted G-frames

In this section, we study (G, «)-frames with the same strategy in the study of group
frames (cf. [17,19,20]). Some of the basic properties about (G, a)-frames maybe known
in the literature. However, we still include the proof details for self-completeness and for
the purpose of discussing their connections with the phase-retrievable problem.
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2.1. Group matrices and the Gramian of a (G, a)-frame
Let ® = {g¢1 | g € G} be a (G, a)-frame for V. Then

o o —1 _ a(gilzh) —1
(b9, dn) = (gd1, ho1) = (b1, 7(g) 7T(h)¢1>—<<151,704(g g,l)ﬂ(g h)p1).

This motivates the following definition.

Definition 2.1. A (G, «a)-matriz is a matrix A with entries indexed by elements of a
group G and of the form

A= (f(g,h))gnea,

where

_algg™) .
flg,h) = a(g—l,h)n(g h) for some n : G — C.

We denote the matrix A by M(n).

Certainly, the Gramian of a (G,«)-frame is a (G, «)-matrix. Conversely, we have
the following result, which is a projective version of [20, Theorem 4.1]. See also [22,
Theorem 5.2] and [13, Theorem 3.2].

Theorem 2.2. Let G be a finite group. Assume that ® = {¢4 | g € G} is a frame of V
indezed by elements of G. Then ® is a (G, a)-frame if and only if its Gramian Gram(®)
is a (G, «)-matriz.

Proof. We only need to prove the if part. Let n : G — C be the function such that
Gram(®) = (ggﬂj;gn(g_lh))g,heg. It suffices to construct a projective representation
U : G — U(V) with multiplier o such that Uy¢p, = a(g, h)dgn.

Let ® = {¢, := S~ '¢, | g € G} be the canonical dual frame of ® (cf. [5, Defini-
tion 1.19, Proposition 1.13]). Here S is the frame operator of ®. For any v € V, we

have

v = Z <U;éh1>¢h1 = Z <U7¢h1>(l§h1~ (21)

h1€G h1€G

Define U : G — GL(V) by

Ug(v) = Z <U7¢h1>a(g7h1)¢;gh1'

h1€G

This U satisfies the following properties.
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For any g,h,h1 € G, we have

(ns i )a(g, ha) = (Pghs Dgny)x(g; h). (2.2)

1

Indeed, in the first equation of the definition of Schur multipliers, take y = 2=+ and

z =z, we have a(z,r71) = a(z~ 1, x) for all z € G. Equality (2.2) then follows from
the following computation

a(g,h)a(h™ gt gh))a(h,h™") = a(h™'g~!, g)a(h ™! hy)a(h, h™Y)
[a(h™ g™ g)a(h™ h)]a(h™, hy)
ah™ g™t gh)a(g, h)a(h™t hy)

a(gh,h "9 a(g, h)a(h ™", hy).

(
(

Therefore, we have

Ug(¢h) = Z <¢h,¢h1>a(g? hl)éghl

h1€G

> (Sans bgny) g, B)dgn, = alg, h)dgn.

h1€G

For any ¢ € @,

Ugl (ng ¢h) = U_lh (a(927 h)¢g2h)
= a(927 h)a(glv g2h>¢9192h
= a(g1, 92)((g192, h)bgygo1n) = (g1, 92)Ug, g, On-

Hence U defines a projective representation with multiplier «.
For any ¢h1 ) (Z)hz SO

a(g, h1) a(ghy, (gh)™)
a(g, h2) a((gh1)~1, ghs)

We claim that U, € U(V), i.e. (Ugon,,Ugdn,) = (&n,, dn,). To prove this, it suffices
to check that

<Ug¢h17Ug¢h2> = n(hf1h2)-

a(gvhl) a(ghlv (ghl)_l) _ a(hlvhil)

a(g, ha) a((gh1) = gha)  a(hit ha)

Note that

a(g, hi)a(gh, (gh1)™") = alg, g~ Deha, hitg™)

and
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a((ght)™!, gha)al(g, ha) = a(hy '™, g)al(hy ', ho),
it suffices to check that
a(g,g_l)a(hl, hflg_l) = cy(fL:flg_l,g)cy(lzl7 h;l). (2.3)

Multiply both sides with a(h;*,g™"), it is easy to see that equation (2.3) holds,
hence the claim follows.

Therefore U : G — U(V) is the desired projective representation and the theorem
follows. O

To understand more on (G, a)-matrices, we start with the following observation.

Lemma 2.3. Let G be a finite group. The sum and product of (G, «a)-matrices are (G, a)-
matrices.

Proof. Let v: G — C and p : G — C be two functions. Then M (u)+M(v) = M(u+v).
Next we compute M (v)M (u). The (g, h)-entry of M (v)M (u) is

olgg™) apelh Y
e e
:é%%g—lhﬂ%u(fﬂ (here f = ht)

_04(979_1) aft,t™) 1 -1
- Ol(gilh,t) V(g ht)u(t )

To verify the last equality, as a(g~t, h)a(g~th,t) = a(g~!, ht)a(h,t), it suffices to check
that

a(h,t)a(ht,t""h~") = a(t,t a1, h).

This is clear since both sides are equal to a(h,h"Y)a(t,t"1h~1). Define  : G — C by
n(g) =D ica altt ) (gt),u(t’l). Then M(v)M(u) = M(n). The lemma follows. O

Talgit) t)

Let C[G], be the twisted group algebra over C attached to (G, o), i.e., it is a C-algebra
with a basis {a, | ¢ € G} indexed by elements of G. Each element f € C[G], can be
uniquely written as

f:chag, cg €C

geG

and the multiplication is given by
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agan, = (g, h)agh.

In the following, we write Y ; cqg for 3°  cgay € C[Gla. By Lemma 2.3, the set M,
of (G, a)-matrices is a sub-algebra of the matrix algebra M, «,(C). Define

I: My — C[Gla

V)= 3 ulg)g. (24)

geG

We have the following result (cf. [20, Proposition 4.1]).
Proposition 2.4. The map 11 is an isomorphism of C-algebras.

Proof. Let L?(G) be the set of functions from G to C. Let e, be the characteristic
function of {g}. Then define

I : C[Gla — Mq
g Megy)

It is easy to check that II' is the inverse of II. To prove the proposition, it suffices
to check that II is a morphism of C-algebras. But this follows from M(ey)M(ep) =
a(g,h)M(egn). O

2.2. Tight (G, a)-frames

Let ® = {¢, | g € G} be a (G, )-frame for V. Let S : V — V be the frame operator,

ie.,

S(0) = 3" (v, 6) 5.

geqG

Then

S(hv) = (h,¢g)dg = Y _(h™ (hv),h ™ ¢y,

geG geG
= > {a(h™  B)v,a(h ™, ) dp-1) g
geG
a(h~ Lh
- Z ) (v, pp-14)hpp-14 = hS(v).

(h=*,g)a(h, h=1g)

Here the last equality follows as #ﬁ_lq) = 1. Therefore, the frame operator

S € Hompgepe, (V, V). It is easy to see that the canonical dual frame of a (G, a)-frame



292 C. Cheng, D. Han / Linear Algebra and its Applications 569 (2019) 285-310

is also a (G, a)-frame (cf. [5, Definition 1.19]). Moreover, by Schur’s Lemma (cf. [6,
Lemma 2.1]), S is a scalar multiplication if 7 : G — U(V) is irreducible. Assume now
this is the case. Let v € V be a nonzero vector. Then V = Span{gv | g € G}. Hence
Gv ={gv | g € G} is a frame for V. Even better, we have the following result.

Proposition 2.5. With the notation as above, for v # 0, Gv is a tight (G, a)-frame for V.

Proof. Let S, : V — V be the frame operator associated with Gv. By the above discus-
sion, we must have S, = )\, idy for a constant A\, € C. As S, is self-adjoint and positive,
Ay € Ry as v # 0. The proposition follows. O

Remark 2.6. We may obtain A, by the following computation (cf. [5, Proposition 1.11]).
Let {w; | 1 <i < dimV} be an orthonormal basis of V. Then for any j,

Sy(wj;) = Z(wj7gv>gv = Aywj.

geG

Hence )\, = deG |(wj,gv>|2. So

A, dim V = ZZ |(w;, gv)|? = Z llgv||? = n - |jv])?.

J 9€G geqG

Remark 2.7 (The Gabor frame). Let G be a finite group. Suppose that G = H x F is a
direct product of two groups. Let F' x H — C* be a bi-homomorphism and denote it by
(f,h)— f(h) € C*. Define a: G x G — C* by

al(h, f), (B, f1)) = f(I') for all h,h' € H and f, f' € F.

It is easy to check that o € Z2(G,C>). Let V be the (right) regular representation of H.
Fix a basis {e;, | h € H}. Define a map 7 : G — GL(V') by

w((h, f))e; = f(i)en; for all h,i € H and f € F.

Then 7 : G — GL(V) is a projective representation of G with multiplier a. As an
H-representation, V' contains all irreducible linear representations of H. Yet the pro-
jective representation 7 may be irreducible. Let us consider the following special case
(cf. [4,17]).

Let H be an abelian group. Let F' = H .= Hom(H,C*) be the dual group of H. Take
the natural pairing between H and H. Note that a((h, f), (R, f)) = a((K', f'), (h, f)) if
and only if f(h’') = f’(h). Thus the maximal a-symmetric subgroup of G has order |H]|.
Indeed, every maximal a-symmetric subgroup of G has the form K x K+, where K
is a subgroup of H, and K+ = {f € H | f(K) = 1} (cf. [6, Section 2.3]). By [6,
Proposition 2.14], this 7 is the only irreducible element (up to isomorphism) in Repg.
Hence for any nonzero v € V, Gv is a tight (G, a)-frame for V.
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Next, we do not assume the irreducibility of V. In this case, write V=V; @ --- ® Vj
as an orthogonal direct sum of irreducible projective representations with multiplier a.
Let v € V be a nonzero vector. Write v = v; + -+ + v, with v; € V; for 1 < ¢ < k. Then
we have the following result.

Proposition 2.8. With the notation as above, Gv = {gv | g € G} is a tight (G, a)-frame
for V if and only if the following two conditions hold:

(1) il dim V; forall1 <i,j <k;

[fvj]]2 = dim Vj

(2) 3 yec(vir guidgu; =0 for all i # j.

Proof. Note that Guv is tight if and only if there exists A € R+ with deg(f, gu)gu = Af
for all f € V. Assume that Gv is tight. Take f; € V;, then

> (figvige =Y (fi, guidgv

geG geG
= Z<fi,gvi>gvi + Z Z<fi;gvi>gvj~
geG g€G j#i

We must have

{deG<fi»gvi>9Ui = \ifs,
deG(fiygvi>ng =0 for any j # i.

The second condition holds by taking f; = v;. Since V; is irreducible and v; # 0, by
Remark 2.6, we have \; = %“f Moreover, A; = A = A;. Hence ”z’HQ = gig“f for all
1 <i,5 < k. We obtain the first condition as well.

Conversely, assume that conditions (1) and (2) hold. From the above discussion and
Proposition 2.5, to show that Gv = {gv | g € G} is a tight (G, a)-frame for V, it suffices
to show that deG<f¢,gvi>gvj = 0 for any f; € V; and j # i. First take f; = hv; for

h € G, we have

> (fisguiygoy =Y (hvi, gvi)go;

S geqG
_ 1
= (vi, b (gvi))gv; = > (vi, (b 19)%)>m9@j
geG geG 9

Applying h~! on both sides of the above equality, we have

W i guidgey) = 1 o (0 9)0) o

)gvj)
geG geG ’
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1

_gze;v“ h 9U1> (h 1 )h (ng)
= > (v, (" g)v)) (™ g)v; = 0.
e

The proposition then follows since dec<fi, gv;)gu; is linear as a map on f;. O

Corollary 2.9. With the notation as in Proposition 2.8, Gv is a frame if and only if v; # 0
for alli and 3° o (vi, gui)gv; = 0 for any j # i.

Proof. From the same argument in Proposition 2.8, the tightness gives us the first con-
dition. The corollary follows as Gv is a tight (G, «)-frame if V' is irreducible. O

In order to simplify the second condition in Proposition 2.8, we first prove a frame
version of Schur’s Lemma.

Lemma 2.10. Let w; : G — U(V;) i = 1,2 be irreducible projective representations of G
with multiplier . Fiz v; € V; nonzero vector for i =1,2. Define

S = S’Ul,vz : V1 — ‘/2
f e S UF gor)gun

geG

Then S =0 if Vi and Va are not isomorphic in Repg:. If o : Vi — Vi is an isomorphism
in Repg, then

nf[va|?

S(f) = (dim V1) |[ovy |2

(ve,0v1)0(f) for all f € V7.

Proof. A simple computation shows that S € HomRep%(Vl, Vo). If V4 and V5 are irre-
ducible and non-isomorphic, Schur’s Lemma tells us S = 0. On the other hand, if V; = V5,
S must be ¢ multiplying with a constant number \. Take f = vy, we have

(Svi,0v1) = (Z(vl,gv1>gvg,av1) = Z(vl,gvl><gv2,ov1>

geG geG
= Z(vl,gv1>a(g_1,g)(vg,g_l(avl)>
geG
= Z Ul,”Ul ’0270(971111))
geG
= (U2,U(Z<Ul,gvl>gvl)>
geG

By Remark 2.6, we have }_ (v1, gui)gu1 = [[v1]|?v1. The lemma follows. O

R C—
dim V1
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Combining Proposition 2.8 and Lemma 2.10, we have the following result.

Theorem 2.11. With the notation as in Proposition 2.8, Gv = {gv | g € G} is a tight
(G, a)-frame for V if and only if the following two conditions hold

(1) floely = dmi for a1 <, < k;

o[ = di

(2) (ovi,v5) =0 for any o € Homgepe, (Vi, V;) and i # j.
Similarly, the following result holds.

Corollary 2.12. With the notation as in Proposition 2.8, Gv is a frame if and only if
v; # 0 for all i and (ov;,v;) = 0 for any o € Homgepe, (V;, V) and i # j.

Remark 2.13. Let ® = {gv | g € G} be a (G, «)-frame for V. Write v = vy + -+ + vy
as above. Then the canonical dual frame of ® is given by ® = {gv’ | g € G}, with
v = )\%v1+o~o+/\%vk,

The results in this section are projective version of the corresponding results in [19,
Section 6]. See also [14, Theorem 6.1] and [21, Theorem 2.8].

2.3. Central tight (G, &)-frames

Definition 2.14. A function f : G — C is called an a-class function if for all g, h € G,

a(h,h™h)

flg) = o, g)a(h%h,l)f(g)-

-1\ __ a(hahil)
Thah ) = S gh T)ale. )

Let H,, denote the space of a-class functions on GG. The characters of projective repre-
sentations belong to H, and {x;} forms a basis of H,.

Definition 2.15. Let ® = {¢, | g € G} be a (G, «)-frame. We say that ® is central if
v : G — C defined by

v(g) = (¢1,¢g)

is an o~ !-class function.

Remark 2.16. Let 7 : G — U(V) be a projective representation with multiplier a. We
have

a(h™1, h)

= ol T ol 1g ) (v, T(h~tgh)v).

(m(h)v, m(g)m(h)v)

Hence v is a central (G, a)-frame vector for V' if and only if

(r(h)v,m(g)m(h)v) = (v,7(g)v) for all g,h € G.
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In order to classify all the central tight (G, «)-frames, we first review the structure
of Cent.C[G],, the center of the twisted group algebra C[G],. We use the notation
introduced in Section 1.1. Define w; = %wxi = % >_gec Xi(9)g € C[Glq. Here y; is the

complex conjugation of x;.

Lemma 2.17. With the notation as above, {w; | 1 < i < r} is a basis for Cent.C[G],.
Moreover wiw; = w; and wyw; =0 if i # 3.

Proof. Let x : G — C be an a-class function. Let 7 = 3, a(g,97") " x(97")g. Then 7
is an element of Cent .C[G],,. Indeed, it suffices to show that h(3_ . a(g,97") " x(97")g)
= (2 4ec a(g,97 )" x(g~Hg)h for any h € G. This is equivalent to

a(hgh™ hg™'h™ )" x(hg™'h™ " a(hgh™", h) = a(g, g ") "x(g~")a(h, g)

IR a(hgh™" h)a(h,h")a(g,g7") (25)
Salbgh™ kg™ h ™) = TR el R Nalh g)'

This identity follows from

a(z,ghz~Ha(ge™t, xha™1)

~1 1y _
a(rgr™ ,xhe™") = Y=Y

_ oz, gha™) a(ga™, w)a(g, ha™!)

afwgr ) alehe) .
_a(z, ghsYa(gz!, x) alg, h)a(gh,z71)

a(z, gr=Ya(x, ha~1) alh,z—1)

_ ae,gha~alg, Halgh, otz
a(z, gz a(x, he=a(h,z~)a(g,z~ 1)

If x is a character, then y(g9) = a(g,g ) tx(g7!). Therefore, {w; | 1 < i < r}is a
basis for Cent.C[G],. We check that w;w; = w;. The other identities follow by similar
argument. For simplicity, we omit the subscript 4 in the computation. Write p : G —
GL(V) in the matrix form as p(g) = (73;(g)). Then as a consequence of Schur’s Lemma,
we have

1
= ——0iyi
dimV "

5j2j1 .

1 T _
E Za(g7g 1) 1ri2j2(g 1)Tj11'1 (g)
geG

Note that

W= (> algh™  mx(gh~)x(h)g.

9geG heG

The identity w? = w follows from
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(D algh™ m)x(gh™")x(h)~

heG

=Y algh™' h) " x(gh™)x(h)

heG

=Y " algh™ h)talg, k™) Tr[(rij(9) (rig (B )] - Tr(ri; ()

heG

= Z Z h h~ rl]( )rji(hil)rkk(h)

heG i,j,k

=g > rklg) = gx(w
k

This completes the proof of the lemma. O

We have the following result on central (G, a)-frames, which is a projective version of
[20, Theorem 5.1].

Proposition 2.18. Let G be a finite group and ® be a (G, «)-frame. ® is a central (G, «)-
frame if and only if its Gramian is given by

Gram(®) = M ( Z aiQXi).

el C{1<i<r}
Here a; € C*.

Proof. By definition, ® is central if and only if Gram(¢) = M(n) with n being an

a~!-class function. The proposition follows as {Y; | 1 < i < r} is a basis of the space
H,-:. O

Remark 2.19. We may realize central frames explicitly as follows. Let p; : G — U(V})
be the irreducible projective representation of G with dimension d; and character x;.
Choose an orthogonal basis {v;1,...,v;4,} of V; with the same length. Consider v; =
Vil @ - ® vig, € V2%, Then v; is a central (G, a)-frame vector for 7 : G — U(V;%).
The corresponding Gramian is M (||v;1][?X;). Other central (G, «)-frames could be built
by direct sum (cf. [20, Corollary 2.1]).

Theorem 2.20. Let 7 : G — U(V) be a projective representation with multiplier . Then
the following are equivalent.

7w admits a central (G, a)-frame vector.
Every tight (G, «)-frame vector is central.
is equivalent to a central projection of the a-reqular representation.

(r(h)v, 7(g)n(h)v) = (v, 7(g)v) for all g,h € G.
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Proof. Only the part (1) = (2) needs explanation. Write V = V2" @ ... @ V&% as a
direct sum of irreducible projective representations, where d; = dimV; and V; 2 V; if
i#j. Let v=wvi1 + - vig, -+ Vs1 + -+ + Vsq,, Wwhere v;; is the component of v in
the j-th copy of V; (1 <i<sand 1<j<d;).

Assume that v is a tight (G, a)-frame vector for V', by Theorem 2.11, for any 1 < i < s,

2

{vi1, ..., 04, } is an orthogonal basis of V; with the same length and ”z;llllg = g—;’_. Write
2

a= "”2—31” € C*, which is a constant independent of the choice of i. Then the Gramian

of {gv | g € Gris M(3_, Xillvarl|?) = M(a>2;_, %y;). Hence v is central. O

Corollary 2.21. Let m# : G — U(V) be a projective representation that admits central
(G, a)-frames. Then every central (G, «)-frame vector for V is similar to a Parseval
frame vector.

We now classify all central tight (G, a)-frames by describing their Gramian matrices.
Suppose that ® = {¢, | ¢ € G} is a central normalized tight (G, «)-frame. Then its
Gramian is a (G, a)-matrix

P := Gram(®) = M (v), with v(g) = (¢1, gé1).

Since ® is central, v is an o~ '-class function. Moreover, ® is a normalized tight frame,
by [20, Theorem 2.1], P is an orthogonal projection, i.e. P? = P = P!. Under the map
II: Mo — C[Gla, the image II(P) is an idempotent. Write p = II(P) = > . v(9)g-
Since v(g) is an a~!-class function, p € Cent.C[G],. By Lemma 2.17, we may write

T
p = E a; W;.
i=1

Since p? = p, it is easy to see that a; € {0,1}. Let I = {1 < i < r | a; = 1}. Then
P=2ier Wir

Conversely, assume that P = Gram(®) = M(v) with v = 3 ,_; %x; for some
I c {1 <i<r} Then P> = P = P! as they have the same image under II. By
[20, Theorem 2.1] again, ® is a central normalized tight (G, a)-frame. Summing up the
discussion, we have proved the first part of the following result.

Theorem 2.22. Let G be a finite group and ® be a (G, a)-frame.

(1) @ is a central normalized tight (G, «)-frame if and only if its Gramian is given by

Gram(®) = M( Y %;@).

ielIC{1<i<r}
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(2) Choose normalized tight (G, «)-frames ®; for W;, with

d;

Gram(®;) = M(—x;), dim(W;) = d2.
n

Then the unique (up to isomorphism in Repg) central normalized tight (G, «)-frame
with Gramian M (), %)Zi) is given by the direct sum

D =@ici® CW = Die1W;.

Proof. Note that for ¢ # j, Gram(®;) Gram(®;) = O since II(Gram(®;) Gram(®,)) =
wiw;j = 0. Therefore the second part of the theorem follows from [20, Corollary 2.1]. O

Remark 2.23. We give an explicit realization of W;. Let p; : G — U(C%) be the projective
representation of G with character ;. Define

¢ == (di/n)"?pi(g) € U(CH) C Ch*h = c = W

Define the inner product on matrices by (A, B) = Tr B*A. Then ®; = {¢} |geG}isa
central tight (G, a)-frame for W; with Gramian M(%)’(l)

Indeed, since p; is irreducible, Span{p;(g) | ¢ € G} = C%*di Define 7 : G —
GL(C%*d:) by

m(h)pi(g) = a(h, g)pi(hg) for all h,g € G.

It is easy to check that 7 defines a unitary projective representation with multiplier «.
To prove the claim, it suffices to check that this frame has the desired Gramian. This
follows from

~
S
2
—~
)
~
~
2
2
< I
=
S8

D (o) pulg) = N0 i o)

n

(), 1) =

Note that the second equality follows from the fact that p;(h) is unitary and the fact
Xi(g) = alg,g ) Ixi(g71) for any g € G. Putting all the W; together, the Gramian
M (L3, ., diX;) is realized by the a-regular representation of G (cf. [6, Section 2.1],
[12, Theorem 6], [14, Corollary 5.5]).

2.4. An example
Let G = Dy, be the dihedral group with 4m elements. Fix a presentation of G
G ={a,b|a* =1,b>=1,bab=a"").

We know that H2(G,C*) = Z/2Z (see for example [15, 2.11.3 Theorem]). Let ¢ be a
primitive 2m-th root of unity. Let o € Z%(G,C*) be the cocycle defined by
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a(aibj7ai/bj/) = Cji/.

Here 0 < i < 2m — 1 and b € {0,1}. Then it is a unitary cocycle that represents
the non-trivial element in H?(G,C*) (cf. [15, 2.11.1 Lemma and 2.11.3 Theorem]). We
compute the tight (G, «)-frames.

2.4.1. The explicit projective representations
By [6, Theorem 3.9], we know that there are m non-isomorphic irreducible elements
in Rep¢ and all of them have dimension 2. They are given by

TE © G — GL(Vk) = GLQ(C)

o o 2.7
't > LB, @)

k
Wher€1§k§m7 Ck?:<CO Clo_k>;B:<(l) é)

2.4.2. The tight (G, a)-frames

Let 7 : G — U(W) be an element in Repg. Then W admits a tight (G, a)-frame
if and only if dim Hompgepe (Vi,W) < 2 for all 1 < k < m. On the other hand,
if dim Homgepg, (Vi, W) < 2 for all 1 < k < m, it is easy to write down a tight (G, a)-
frame by Theorem 2.11.

2.4.3. The central tight (G, a)-frames

Let # : G — U(W) be an element in Repg. Then W admits a central tight
(G, a)-frame if and only if dim Homgepe, (Vi, W) = 2 or 0. Those frames could be written
down explicitly via Remark 2.23 and they are different from the G-frames constructed
from linear representations.

For example, let G = Dg and ¢ = y/—1. Arrange the elements of G in the order
1,a,a?,a®,b,ab, a®b, ab, the central tight (G, a)-frames for Vk€B2 (k =1,2) are given by

1 ¢ 2 ¢3 0 0 0 0
o —L[O] Lfo) tfo} Lfo ) Lf1) Lfc) Lf¢) 1]¢
1—{5 0 [P 0 75 0 a§ 0 PP 1 [P 1 75 1 75 1 }
1 1 1 1 0 0 0 0
and
1 -1 1 -1 0
sy (L[O] 2L O ) LfOo) Al o) L
2 — 0 72 0 72 0 72 0 a2 1 )
1 e ¢ —¢ 0
0 0 0
l -1 l 1 1 —1 )
2| ¢ |21 ) 2| ¢
0 0 0
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3. The maximal spanning vectors
3.1. Definition and the general discussion

Let m : G — U(V) be a projective representation of G with multiplier @ over a
complex vector space V. Denote by d the dimension of V. Let (V*,7*) be the dual
projective representation of V, i.e. V* = Hom(V,C) and 7*(g) = a(g, g~ 1) (g~1).
By definition,

™ (gh) = a(gh, (gh) ™) " Hx((gh)™") = algh, (gh) ™) Hx(h™1g™)
= afgh. (gh) ") ek g ™) T (kg ) 51)
= a(gh, (gh)™ ) ta(h™ g7 ) ralg, g Halh, k™) r* (g)n* (h)
= a(g, )™ (g)7*(h).

Therefore, the multiplier attached to 7* is o™ L.

For any x € V, denote by z* € V* the linear functional defined by u — (u,z). For
any u, v € V, we have a matrix coefficient ¢, , : G — C defined by

Cuw(h) = v*(m(h)u) = (7 (h)u, v).
Denote by C, C L?(G) the spanning space of matrix coefficients of V, i.e.
Cr =Span{c,, |u eV, veV}c L*Q).

Fix a basis {u; | 1 <i < d} of V, then {cy,; | 1 <4,j < d} is a spanning set of Cr.
Define

Cum = Span{cﬂ(g)u)ﬂ(g)v | g e G} C LZ(G).

Certainly, every element cr(g)u,r(g)» 18 @ matrix coefficient of V. Hence dimC, , <
(dim V)2, If the equality holds, we say that (u,v) is a mazimal spanning pair for V.
If (z,x) is a maximal spanning pair for V, we say that € V has the mazimal spanning
property and call z a maximal spanning vector for V.

A maximal spanning vector z is automatically phase-retrievable in the sense that the
set of numbers {|(v,7(g)z)| : ¢ € G} uniquely (up to a unimodular scalar) determines v.
We refer to [1-3,16] for more information on the relation between maximal spanning
vectors and the phase retrieval problems. In this section, we focus on [16, Conjecture].

Conjecture 3.1. If 7 : G — U(V) is an irreducible projective representation with multi-
plier «, then there exists a maximal spanning vector for V.
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In [16], the authors verified this conjecture for abelian groups and certain metacyclic
groups. In the following, we explain the difficulty of this conjecture and the reason why
the abelian group case is easy.

Write gu for 7(g)u, then

Cgu,go(h) = (h(gu), gv) = a(g,g~ ") alg™ h)alg " h, g)cu.o (9 hy). (3.2)

From equation (3.2), there are two types of difficulties to find a maximal spanning pair

(u,v).

A: The complication coming from the multiplier.
B: The complication coming from the conjugation in the group.

These two types are not independent, as simple computation shows that Type A
involves conjugation. For G abelian, Type B difficulty disappears and we may also control
Type A difficulty. In Section 3.2, we explain the strategy in detail and give another proof
of [16, Theorem 1.7].

From (G, a)-frame point of view, if we consider the representation 7 @ 7* : G —
U(V ® V*), it is easy to see that (u,v) is a maximal spanning pair for V if and only if
G(u®v*) is a frame for V ® V*. From Theorem 2.12 and its corollary, to characterize
maximal pairs (u,v), we need to know the decomposition of V' ® V* as a direct sum of
irreducible representations. In Section 3.4, we give another proof of the conjecture for
abelian groups, as a special case of a more general result. On the other hand, V ® V*
always admits tight G-frames.

Proposition 3.2. If 7 : G — U(V) is irreducible, then there always exists w € V @ V*,
such that Gw is a tight G-frame for V@ V*.

Proof. First we show that there exists w such that Gw is a G-frame for V' ® V*. In order
to prove this, by Corollary 2.12, it suffices to show that every irreducible W; € Repg
appears at most (dim W;)-times in V' ® V*. Since

Hompgep,, (Wi, V ® V*) = Hompgepe, (W; @ V, V),

and V is irreducible, the claim follows immediately. Then write w = wy + -+ + wy
according to the decomposition of V' ® V* and adjust the length of the components w;,
we may make Gw tight. O

Remark 3.3. The same argument shows that V ® V admits tight (G, a?)-frames. Con-
tinuing with the Gabor frame example, assume that = : G — U(V) is from Remark 2.7
with G = H x H. Assume further that 2 1 |G|. Then o2 represents an element with max-
imal order in H?(G,C*). Every irreducible element of Rep%2 has the same dimension,
which equals dim V' = |H|. Then one sees that V ® V is isomorphic to the a?-regular
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representation of G and it admits a central tight (G, a?)-frame. By Theorem 2.20, every
tight (G, a?)-frame vector for V @ V is central.

If m in Conjecture 3.1 is reducible, then the statement is false. For example, we have
the following results.

Proposition 3.4. Let 7 : G — U(V) be a finite dimensional projective representation of G
with multiplier o.. Then the following claims hold.

(1) If G is abelian, « is trivial, and dimV > 2, then V' admits no mazimal spanning
vector.

(2) If dimV > 2 and © € V is a central (G, a)-frame vector for V, then x is not a
mazimal spanning vector for V.

3) Letr:=m®nm: G—=UV@V). Then (r,V & V) admits no mazimal spanning
vector.

Proof. The first claim follows from equation (3.2), as in this case ¢gu,gv = Cu, for any
g € G and u,v € V. The second claim follows from Theorem 2.20. For the third claim,
letx=u®dv eV @V be anonzero vector. Then

Cr(g):r,r(g)z(h) = <’I"(h)’l"(g)$,7"(g)1’>
= (m(h)m(g)u, w(g)u) + (w(h)7(g)v, 7(g)v).

Hence C,, C Cr and dimC,, < (dimV)? < (dim(V & V))2. Therefore (r,V & V)
admits no maximal spanning vector. O

Since a maximal spanning vector for a representation automatically yields a maximal
spanning vector for any of its subrepresentations, we immediately have the following
consequence of Proposition 3.4.

Corollary 3.5. Let m : G — U(V) be a finite dimensional projective representation of G
with multiplier o, If m has a subrepresentation that is equivalent to a subrepresentation
of the a-regular representation of G corresponding to a central projection P of rank at
least 2, then m does not admit any maximal spanning vector.

Remark 3.6. Starting with the first claim in Proposition 3.4, a natural question to ask is
that, with the same assumption there, does V admit phase retrievable vector? We give
the following R-vector space, for which the answer is yes.

Let G =7Z/3Z and V = R? Let p: G — U(V) be the R-representation of G sending
1 € G to the rotation by 27/3. In this case (m, V) is irreducible. Let vy = (0,1) € R2.
Then Guvg = {vg, v1,v2} is the Mercedes—Benz frame. Consider the map
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AV 5 R?

v = ([{v, )], [(v, v1)], [(v; v2)])-

If (a,b) and (c,d) have the same image under A, then (a,b) = %(c,d). This tells us that
Gwv is a phase retrievable frame for V.

On the other hand, any phase-retrievable frame for C? needs at least four vectors
(cf. [1]) and so every phase-retrievable frame vector for a representation on C? is a
maximal spanning vector. This naturally leads to the following question.

Question 3.7. Let G be a finite group and V a finite dimensional C-space with dimension
> 2. Let m : G — U(V) be a finite dimensional projective representation of G with
multiplier o Is it possible that (w, V') admits a phase retrievable frame vector which is also
central? In particular, can this happen if G is abelian and 7 is a linear representation?

3.2. The abelian case

In this section, G is a finite abelian group. We study projective representations of
G in detail. Let o € Z%(G,C*) be a unitary multiplier. Let (7, V, a) be an irreducible
projective representation of G' with multiplier .. Let (7, V,@ = a~!) be the projective
representation defined by V = V and 7(g) = @, where the last ~ means complex
conjugation. Then the tensor product @ ® T is a projective representation of G with
multiplier @ = 1, i.e., it is a linear representation. The character of m ® T is Xx Xz,
where y, and 7 are the characters of m and 7 respectively. Let p : G — C* be a
one-dimensional linear representation that appears in 7 ® 7. Then

dim¢ Homg(p, 7 @ 7) Z X=(9)x#(g) = dim¢c Hom(r @ p,7) < 1.  (3.3)

geG

IG\

Therefore, the dimension must be one, i.e., every one-dimensional representation has
multiplicity at most one in 7 ® 7. Define

H(V) = {p € G := Hom(G, C*) | dim¢ Hom(p, 7 ® 7) = 1}.

Lemma 3.8. With the notation as above, H(V) is a subgroup of G. Moreover, H(V) :=
{p|peH(V)} coincides with H(V).

Proof. By equation (3.3), a one-dimensional linear representation p is an element of
H(V) if and only if 7 ® p is isomorphic to m as projective representations. From this
observation, it is easy to see that H (V) is a subgroup of G.

Moreover, if p € H(V), then V@p=Z (VRp)@p =2V (pep) V. Thus p € H(V)
and the last claim follows. O
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Let H(V) C G be H(V)* :={g€ G| p(g) =1 for any p € H(V)}. Then
[G: H(V)] = (dimc V)2 (3.4)

By [6, Propositions 2.3, 2.14], the number of irreducible projective representations in
Repg: is |[H(V)]. Let (7', V', ) be another irreducible projective representation of G with
multiplier . Considering the tensor product V ® V' as a projective representation of G
with trivial multiplier, by the same argument as above, it is easy to see that V' 2V ®p
for some p € G. Therefore,

VvV eV.

Thus H(V) = H(V’). This group is independent of the choice of V. From now on, we
denote it by H,. The product (V ® V)|g, decomposes as (dim¢ V')?-copies of the trivial
linear representation of H,,.

Lemma 3.9. With the notation as above, &|g. xm. i a coboundary.

Proof. Suppose that a|g, «m, is not a coboundary, then the irreducible projective rep-
resentations of H, with multiplier «|g_ « ., have dimension at least two. Let W C V| g,
be such an irreducible object. Then W @ W C (V ® V)|, is a sub-representation. By
the same argument as before, W @ W = &,¢ yy;, where x; are different one-dimensional
linear representations of H,. This contradicts to the fact that (V ® V)|g, is a direct
sum of trivial representations of H,. O

Consider the map f: G x G — C* defined by

a(g, h)
f(g,h) =
(9.7 a(h, g)
for any g,h € G. It is easy to check that f is a bi-homomorphism and thus induces a
homomorphism A : G — G given by g — A\ := Zégg;

Lemma 3.10. For any h € H,, and g € G, a(h,g) = a(g,h). Moreover, Ker A\ = H,,.

Proof. A subgroup X of G is called a-symmetric if o(z,y) = a(y,z) for any z,y € X.
Let K be a maximal a-symmetric subgroup of G such that H, C K. Such K exists since
H, is a-symmetric by Lemma 3.9.

By [6, Proposition 2.14], |K| - dim¢V = |G| and V = aInd$ x. Here x is a one-
dimensional projective representation of K with multiplier a|xxx and alnd is the
induction of projective representations with respect to « (see for example [6, Section 2.2]).
Moreover, by [6, Corollary 2.11],

Vg = @seq/e X’
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where x*(k) = zé%;ff;x(k) for k € K. Therefore,

VeV)lu, = s ec/k X | Ha, ® X1,

By the definition of Hy, x*|g, ® X!|m, = 1 for any s,t € G/K. Let t be the unity
element, then one obtains that a(s™%, h) = a(h, s~ !) for any h € H, and s € G/K. The
first claim follows and H, C Ker()).

Moreover, from the above discussion, one sees that (V ® V)|Kcr( ) is a direct sum
of trivial representations of Ker(\). Since H,, is maximal with respect to this property,
Ker(\) C H,. The second claim follows. O

Return to maximal spanning vectors. In equation (3.2), since G is abelian,

N _ _ o
a(g,g~ ) adg™" h)alg ™ h, ) = —
Therefore, cgu,gv = Ag-1Cy . We have the following result.

Proposition 3.11. Let G be an abelian group and w: G — U(V) be an irreducible projec-
tive representation of G. Then (u,v) is a mazimal pair for V if and only if ¢, (g) # 0
forallg € G.

Proof. Suppose that (u,v) is maximal and ¢, ,(h) = 0 for an h € G. Then cgy g0 (h) =0
for all g € G. This contradicts to the fact that 7(h) € U(V) and some matrix entries of
m(h) must be nonzero.

Conversely, assume ¢, ,(g) # 0 for all ¢ € G. By Lemma 3.10, [Im | = d?. Let
{A\i|1<i<d?®} cG be the image of \. Suppose a; € C and

Z ai()\icu,v) = 0

Then for any g € G, we have ), a;\;(g) = 0 since ¢y, (g) # 0. Therefore a; = 0 since the
characters are linearly independent. Hence {\;c,», | 1 < i < d?} are linearly independent
and dim C,, , = d?. The proposition follows. 0O

Combining Proposition 3.11 and [16, Lemma 2.2], we obtain [16, Theorem 1.7].
3.3. Non-abelian examples

Consider a projective irreducible representation 7 : G — U(V) with multiplier «. Let
G1 C G be a subgroup. By restriction, we may consider m; := 7|g, : G1 — U(V) as a
projective representation of Gy with multiplier a|g, xq, - If v € V' is a maximal spanning
vector for my : G; — U(V), then v is a maximal spanning vector for 7 : G — U(V). We
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could use this simple idea to verify the conjecture for certain representations of solvable
groups. See for example [16, Example 3.3] for metacyclic groups of the form C,, x C)
with p a prime.

Let G = Ay, the alternating group for four points. Since A4 = (Cy x C3) x Cs, it is
not metacyclic. In this case H*(G,C*) = Z/2Z. Let o € Z?(G,C*) be a cocycle that
represents the nontrivial element in H?(G, C*).

Proposition 3.12. Congjecture 3.1 holds for the pair (A4, @).

Proof. We sketch the proof here. Since « is nontrivial, every simple object in Rep%,
has dimension at least 2. Since the dimension divides 12 and the sum of their squares is
12, there are 3 simple objects in Rep%,, all of which have dimension two. Let V4 be the
abelian normal subgroup of Ay. It is the Klein four group and isomorphic to Z/2ZxZ/2Z.
It is easy to check that a|y, «v, represents the nontrivial element in H?(V,,C*) = Z/27Z.
Therefore |y, is irreducible as an element in Repy;,. As Vj is abelian and we have verified
the conjecture for abelian groups, the conjecture holds for (A4, @) too. O

3.4. On the V@ V*-side

If we approach the problem from the V ® V*-side, then by Theorem 2.11 and its
corollary, to find a maximal spanning vector, we need to understand the decomposition
of the tensor product V@V ™ into a direct sum of irreducible objects. Note that V@V * is a
projective representation with trivial multiplier, i.e. it is a linear representation. Assume
that V ® V* is unramified in the sense that every irreducible object in Rep,; appears at
most once in Ve V™. Write VV™* = Vi ®- - -® V. with V; irreducible and non-isomorphic.
Let n; be the character of V;. We have canonical projections V @ V* — V;, given by

Pi = Z?’]i(til)ﬂ' & W*(t)

teG

Then we see that (u, v) is a maximal pair for V if and only if P;(u®v*) #0for 1 <i <k
(cf. Corollary 2.12). This gives us a general characterization for maximal spanning vectors
in the unramified case.

Remark 3.13. If G is abelian, then V ® V* = V ® V and it is unramified as explained in
Section 3.2. In this case, the n;’s form the set H(V') in Section 3.2, which is the same as
the set Im(A) (cf. Lemma 3.10). One then may verify that the conditions

Pi(u®v*) = Zm(t_l)W@w*(t)(u@v*) #0 (1<i<k)
teG

are equivalent to the conditions (r(g)u,v) # 0 for all g € G. This gives us another proof
of Proposition 3.11.
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Indeed, suppose that (m(g)u,v) # 0 for all ¢ € G and P;(u ® v*) = 0 for some
1 < i < k. Then for any h € G, we have

0=Pu®v)(h) =Yt )m@n"(t)(u®v")(h)
teG

= (w7 (1))

teG

=> it ottt h)a(t bt (m(h)u, v)
teG
We may choose h € G so that n;(t1)a(t,t=H)"ta(t=t h)a(tth,t) = 1 is the trivial
character on t € G and obtain a contradiction.

Remark 3.14. Unfortunately, V ® V* could be ramified. For example, let G = A, from
Section 3.3 and consider the irreducible 3-dimensional representation of A4, on V = C3.
In this case, V* is a 3-dimensional irreducible representation, hence V = V*. From the
character table in [18, Chap. 5, Section 5.7, V @ V* = V®2 @ v @ x1 @ x2 and it is
ramified.

Write V@ V* = Vlea“ DD Vk@” with V; irreducible and non-isomorphic. Let ;
be the character of V;. Then P; is a projection from V ® V* to Vi@”. The non-vanishing
property is a necessary but not sufficient condition for being maximal.

Definition 3.15. Let X and Y be two finite dimensional Hilbert spaces with dim X >
dimY. Let v € X ® Y be a nonzero vector. We call v optimal if min{s € Z | v =
T1QY1+ -+ 25 Qys} =dimY.

For any nonzero v € X ® Y, let s be the minimal number such that we may write
v=2iY+ 2.y, withz, € X and y, € Y (1 < i < s). In this case, 2}, ..., = are
linearly independent in X and yj, ..., ¥, are linearly independent in Y. Let ey, ..., e4
be a basis of Y such that at least one y; has no zero coordinate under this basis. Write

/ I ail As1
(y17~o-7ys):(617"‘76d) .
aig Asd
Let A = (aij)i1<i<s,1<j<d- Then
V=0, Oy, +e @Y,
=2} ® (a11€1 + -+ + Gracq) + - + 7, @ (as1€1 + -+ + agaca)

= (anz1+ -+ aazs) Qer + - (a1gz1 + - - + asqTs) ® €q
=wi®er+ - +wg Req.
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First, w; # 0 for 1 < i < d since each column of A has at least one nonzero element
and z;’s are linearly independent. Moreover, assume that v is optimal (i.e. s = dimY),
then w; (1 < i < d) are linearly independent. Applying Gram—Schmidt process to w;,
we may write v =21 ® y1 + - - - + T4 ® yq, such that d = dim Y, y1, ..., yq form a basis
of Y, z1, ..., x4 are pairwise orthogonal. Combining with Corollary 2.12, we obtain the
following result.

Proposition 3.16. Let 7 : G — U(V) be an irreducible projective representation of G.
Assume that V@ V* = V™ @ - @ VE™ with V; irreducible and non-isomorphic. Let
1; be the character of V;. Let P; be the projection from V @ V* to V;GB” defined by

P="nitHm @ (t).

teG

Then (u,v) is a mazimal pair for V if and only if P;(u@v*) € V;¥"* = V;®C" is optimal
for any 1 <i <k. Here G acts on C"i trivially.
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