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We develop, discuss, and compare several inference techniques to constrain theory parameters in collider
experiments. By harnessing the latent-space structure of particle physics processes, we extract extra
information from the simulator. This augmented data can be used to train neural networks that precisely
estimate the likelihood ratio. The new methods scale well to many observables and high-dimensional
parameter spaces, do not require any approximations of the parton shower and detector response, and can
be evaluated in microseconds. Using weak-boson-fusion Higgs production as an example process, we
compare the performance of several techniques. The best results are found for likelihood ratio estimators
trained with extra information about the score, the gradient of the log likelihood function with respect to the
theory parameters. The score also provides sufficient statistics that contain all the information needed for
inference in the neighborhood of the Standard Model. These methods enable us to put significantly stronger
bounds on effective dimension-six operators than the traditional approach based on histograms. They also
outperform generic machine learning methods that do not make use of the particle physics structure,
demonstrating their potential to substantially improve the new physics reach of the Large Hadron Collider
legacy results.
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I. INTRODUCTION

An important aspect of the legacy of the Large Hadron
Collider (LHC) experiments will be precise constraints on
indirect signatures of physics beyond the Standard Model
(SM), parametrized for instance by the dimension-six
operators of the Standard Model effective field theory
(SMEFT). The relevant measurements can easily involve
tens of different parameters that predict subtle kinematic
signatures in the high-dimensional space of the data.
Traditional analysis techniques do not scale well to this
complex problem, motivating the development of more
powerful techniques.
The analysis of high-energy-physics data is based on an

impressive suite of simulation tools that model the hard
interaction, parton shower, hadronization, and detector
response. The community has invested a tremendous
amount of effort into developing these tools, yielding
the high-fidelity modeling of LHC data needed for pre-
cision measurements. Simulators such as PYTHIA [1] and
GEANT4 [2] use Monte Carlo techniques to sample the

multitudinous paths through which a particular hard scat-
tering might develop. A single event’s path through the
simulation can easily involve many millions of random
variables. While Monte Carlo techniques can efficiently
sample from the distributions implicitly defined by the
simulators, it is not feasible to calculate the likelihood for a
particular observation because doing so would require
integrating over all the possible histories leading to that
observation. Clearly it is infeasible to explicitly calculate a
numerical integral over this enormous latent space. While
this problem is ubiquitous in high energy physics, it is
rarely acknowledged explicitly.
Traditionally, particle physicists have approached this

problem by restricting the analysis to one or two well-
motivated discriminating variables, discarding the infor-
mation contained in the remaining observables. The
probability density for the restricted set of discriminating
variables is then estimated with explicit functions or
nonparametric approaches such as template histograms,
kernel density estimates, or Gaussian processes [3]. These
low-dimensional density estimates are constructed and
validated using Monte Carlo samples from the simulation.
While well-chosen variables may yield precise bounds
along individual directions of the parameter space, they
often lead to weak constraints in other directions in the
parameter space [4]. The sensitivity to multiple parameters
can be substantially improved by using the fully differential
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cross section. This is the forte of the matrix element method
[5–19] and optimal observables [20–22] techniques, which
are based on the parton-level structure of a given process.
Shower and event deconstruction [23–26] extend this
approach to the parton shower. But all these methods still
require some level of approximations on the parton shower
and either neglect or crudely approximate the detector
response. Moreover, even a simplified description of the
detector effects requires the numerically expensive evalu-
ation of complicated integrals for each observed event.
None of these established approaches scales well to high-
dimensional problems with many parameters and observ-
ables, such as the SMEFT measurements.
In recent years there has been increased appreciation that

several real-world phenomena are better described by
simulators that do not admit a tractable likelihood. This
appears in fields as diverse as ecology, phylogenetics,
epidemiology, cardiac simulators, quantum chemistry, and
particle physics. Inference in this setting is often referred
to as likelihood-free inference, where the inference strategy
is restricted to samples generated from the simulator.
Implicitly, these techniques aim to estimate the likeli-
hood. A particularly ubiquitous technique is approximate
Bayesian computation (ABC) [23–29]. ABC is closely
related to the traditional template histogram and kernel
density estimation approach used by physicists. More
recently, approximate inference techniques based on
machine learning and neural networks have been proposed
[30–47]. All these techniques have in common that they
only take into account simulated samples similar to the
actual observables—they do not exploit the structure of the
process that generates them.
We develop new simulation-based inference techniques

that are tailored to the structure of particle physics
processes. The key insight behind these methods is that
we can extract more information than just samples from the
simulations, and that this additional information can be
used to efficiently train neural networks that precisely
estimate likelihood ratios, the preferred test statistics for
LHC measurements. These methods are designed for
scalability to both high-dimensional parameter spaces as
well as to many observables. They do not require any
simplifying assumptions to the underlying physics: they
support state-of-the-art event generators with parton
shower, reducible and irreducible backgrounds, and full
detector simulations. After an upfront training phase, they
are very efficient to evaluate. Our tools directly provide an
estimator for the likelihood ratio, an intuitive and easily
interpretable quantity. Finally, limits derived from these
tools with toy experiments have the reassuring property that
even if they might not be optimal, they are never wrong,
i.e., no points are said to be excluded that should not be
excluded at a given confidence level.
In Ref. [48], the companion paper of this publication, we

focus on the key ideas and sensitivity enabled by these
techniques. Reference [49] presents the methods in a more

abstract setting. Here we describe the actual algorithms in
detail, developing several different methods side by side.
Given the number of discussed variations, this publication
might have the look and feel of a review article and we
present it as a guide to the interested practitioner. We focus
on the main ideas and differences between the approaches
and postpone many technical details until the Appendix.
We evaluate the performance of these different methods

on a specific example problem, the measurement of two
dimension-six operators in Higgs production in weak
boson fusion (WBF) in the four-lepton mode at the
LHC. For part of this analysis, we work in an idealized
setting in which we can access the true likelihood function,
providing us with a ground truth for the comparison of the
different analysis methods. After establishing the precision
of the likelihood ratio estimation, we turn towards the more
physical question of how strongly the two operators can be
constrained with the different techniques. We repeat the
analysis with a simplified detector response where the
ground-truth likelihood is no longer tractable.
We begin by laying out the problem in Sec. II: we

summarize the effective field theory idea, list the challenges
posed by EFT measurements, translate the problem from a
physics perspective into the language of statistics, and
discuss its important structural properties. We also set up
the example process used throughout the rest of the paper.
The description of the analysis methods is split in two parts:
in Sec. III we define the different techniques to estimate the
likelihood ratio, which includes most of the conceptual
work presented here. Section IV then explains how to set
limits on the EFT parameters based on these tools.
In Sec. V we evaluate the performance of the different tools
in our example process. Finally, in Sec. VI we summarize
our findings and give recommendations for practitioners.
The Appendix describes the different algorithms in more
detail and provides additional results. The code and data
used for this paper are available online at Ref. [50].

II. THE EFT MEASUREMENT PROBLEM

A. Effective field theory

Effective field theories (EFTs) [51–53] parametrize the
effects of physics at an energy scale Λ on observables at
smaller energies E ≪ Λ as a set of local operators. The
form of these operators is fixed by the light particles and the
symmetry structure of the theory and is entirely indepen-
dent of the high-energy model. Systematically expanding
the Lagrangian in 1=Λ, equivalent to ordering the operators
by their canonical dimension, leaves us with a finite set of
operators weighted by Wilson coefficients that describe all
possible new physics effects up to some order in E=Λ.
In the absence of new particles at the TeV scale, and

assuming the symmetry structure of the SM, we can thus
describe any new physics signature in LHC processes
in terms of a set of higher-dimensional operators [54–59].
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In this SM effective field theory (SMEFT), the leading
effects beyond the SM come from 59 independent dimen-
sion-six operators Oo with Wilson coefficients fo,

LD6 ¼ LSM þ
X
o

fo
Λ2

Oo; ð1Þ

where the SM corresponds to all fo ¼ 0 and any meas-
urement of a deviation hints at new physics.
The dimension-six Wilson coefficients are perfectly

suited as an interface between experimental measurements
and theory interpretations. They are largely model inde-
pendent, can parametrize a wide range of observables,
including novel kinematic features, and are theoretically
consistent beyond tree level. On the technical side, dimen-
sion-six operators are implemented in standard Monte
Carlo event generators [60], allowing us to generate
predictions for rates and kinematic observables for any
combination of Wilson coefficients. Measured values of
fo=Λ2 can easily be translated to the parameters of specific
models through well-established matching procedures [61].
All in all, SMEFTmeasurements will likely be a key part of
the legacy of the LHC experiments [62].
Let us briefly comment on the question of EFT validity.

A hierarchy of energy scales E ≪ Λ is the key assumption
behind the EFT construction, but in a bottom-up approach
the cutoff scale Λ cannot be known without additional
model assumptions. From a measurement fo=Λ2 ≠ 0 we
can estimate the new physics scale Λ only by assuming a
characteristic size of the new physics couplings

ffiffiffiffiffi
fo

p
, and

compare it to the energy scale E of the experiment. It has
been found that dimension-six operators often capture the
dominant effects of new physics even when there is only a
moderate scale separation E≲ Λ [63]. All these concerns
are not primarily of interest for the measurement of Wilson
coefficients, but rather important for the interpretation of
the results in specific UV theories.

B. Physics challenges and traditional methods

EFT measurements at the LHC face three fundamental
challenges:
(1) Individual scattering processes at the LHC are

sensitive to several operators and require simulta-
neous inference over a multidimensional parameter
space. While a naive parameter scan works well for
one or two dimensions, it becomes prohibitively
expensive for more than a few parameters.

(2) Most operators introduce new coupling structures
and predict nontrivial kinematic features. These do
not translate one to one to traditional kinematic
observables such as transverse momenta, invariant
masses or angular correlations. An analysis based on
only one kinematic variable typically cannot con-
strain the full parameter space efficiently. Instead,
most of the operator effects only become fully

apparent when multiple such variables including
their correlations are analyzed [4,64].

(3) The likelihood function of the observables is intrac-
table, making this the setting of “likelihood-free
inference” or “simulator-based inference.” There are
simulators for the high-energy interactions, the
parton shower, and detector effects that can generate
events samples for any theory parameter values, but
they can only be run in the forward mode. Given a
set of reconstruction-level observables, it is not
possible to evaluate the likelihood of this observa-
tion given different theory parameters. The reason is
that this likelihood includes the integral over all
possible different parton shower histories and par-
ticle trajectories through the detector as a normal-
izing constant, which is infeasible to calculate in
realistic situations. We will discuss this property in
more detail in the following section.

The last two issues are typically addressed in one of three
ways. Most commonly, a small set of discriminating
variables (also referred to as summary statistics or engi-
neered features) is handpicked for a given problem. The
likelihood in this low-dimensional space is then estimated,
for instance, by filling histograms from simulations. While
well-chosen variables may lead to good constraints along
individual directions of the parameter space, there are
typically directions in the parameter space with limited
sensitivity [4,64].
The matrix element method [5,6,8–15,17–19] or optimal

observables [20–22] go beyond a few specific discriminat-
ing variables and use the matrix element for a particular
process to estimate the likelihood ratio. While these
techniques can be very powerful, they suffer from two
serious limitations. The parton shower and detector
response are either entirely neglected or approximated
through ad hoc transfer function. Shower and event decon-
struction [23–26] allow for the calculation of likelihood
ratios at the level of the parton shower, but still rely on
transfer functions to describe the detector response. Finally,
even with such a simple description of the shower and
detector, the evaluation of the likelihood ratio estimator
requires the numerically expensive computation of large
integrals for each observed event.
Finally, there is a class of generic methods for likelihood-

free inference. For Bayesian inference, the best-known
approach is approximate Bayesian computation (ABC)
[23–28]. Similar to the histogram approach, it relies on
the choice of appropriate low-dimensional summary statis-
tics, which can severely limit the sensitivity of the analysis.
Different techniques based on machine learning have been
developed recently. In particle physics, the most common
example is discriminative classifiers between two discrete
hypotheses, such as a signal and a background process. This
approach has recently been extended to parameter measure-
ments [30,31]. More generally, many techniques based on
the idea of using a classification model, such as neural
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networks, for inference in the absence of a tractable like-
lihood function have been introduced in the machine
learning community [32–47]. All of these methods only
require samples of events trained according to different
parameter points. They do not make use of the structure of
the particle physics processes, and thus do not use all
available information.
All of these methods come with a price. We develop new

techniques that
(i) are tailored to particle physics measurements and

leverage their structural properties,
(ii) scale well to high-dimensional parameter spaces,
(iii) can accommodate many observables,
(iv) capture the information in the fully differential cross

sections, including all correlations between ob-
servables,

(v) fully support state-of-the art simulators with parton
showers and full detector simulations, and

(vi) are very efficient to evaluate after an upfront train-
ing phase.

C. Structural properties of EFT measurements

1. Particle-physics structure

One essential step to finding the optimal measurement
strategy is identifying the structures and symmetries of the
problem. Particle physics processes, in particular those
described by effective field theories, typically have two key
properties that we can exploit.

First, any high-energy particle physics process factorizes
into the parton-level process, which contains the matrix
element and in it the entire dependence on the EFT
coefficients, and a residual part describing the parton
shower and detector effects. In many plausible scenarios
of new physics neither the strong interactions in the parton
shower nor the electromagnetic and strong interactions in
the detector are affected by the parameters of interest. The
likelihood function can then be written as

pðxjθÞ ¼
Z

dzpðx; zjθÞ ¼
Z

dzpðxjzÞpðzjθÞ: ð2Þ

Here and in the following x are the actual observables after
the shower, detector, and reconstruction; θ are the theory
parameters of interest; and z are the parton-level momenta
(a subset of the latent variables). Table I provides a
dictionary of these and other important symbols that
we use.
The first ingredient to this likelihood function is the

distribution of parton-level four-momenta,

pðzjθÞ ¼ 1

σðθÞ
dσðθÞ
dz

; ð3Þ

where σðθÞ and dσðθÞ=dz are the total and differential cross
sections, respectively. Crucially, this function is tractable:

TABLE I. Dictionary defining many symbols that appear in this paper. p, r, t symbols denote intractable quantities. The last three rows
explain our conventions for indices.

Symbol Physics meaning Machine learning abstraction

x Set of all observables Features
v One or two kinematic variables Low-dimensional summary

statistics/engineered feature
z≡ zparton Parton-level four-momenta Latent variables
zshower Parton shower trajectories Latent variables
zdetector Detector interactions Latent variables
zall ¼ ðzparton; zshower; zdetectorÞ Full simulation history of event All latent variables
θ Theory parameters (Wilson coefficients) Parameters of interest
θ̂ Best fit for theory parameters Estimator for parameters of interest

pðxjθÞ Distributions of observables given theory parameters Intractable likelihood
pðzjθÞ Parton-level distributions from matrix element Tractable likelihood of latent variables
pðxjzÞ Effect of shower, detector, reconstruction Intractable density defined through

stochastic generative process

rðxjθ0; θ1Þ Likelihood ratio between hypotheses θ0, θ1, see Eq. (11)
r̂ðxjθ0; θ1Þ Estimator for likelihood ratio
tðxjθÞ Score, see Eq. (14)
t̂ðxjθÞ Estimator for score

xe, ze Event Data point
θo Wilson coefficient for one operator Individual parameter of interest
θc, wcðzÞ, pcðxÞ Morphing basis points, coefficients, densities, see Eq. (6)
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the matrix element and the parton density functions can be
evaluated for arbitrary four-momenta z and parameter
values θ. In practice this means that matrix-element codes
such as MADGRAPH [60] cannot only be run in a forward,
generative mode, but also define functions that return the
squared matrix element for a given phase-space point z.
Unfortunately, there is typically no user-friendly interface
to these functions, so evaluating it requires some work.
Second, the conditional density pðxjzÞ describes the

probabilistic evolution from the parton-level four-momenta
to observable particle properties. While this symbol looks
innocuous, it represents the full parton shower, the inter-
action of particles with the detector material, the sensor
response and readout, and the reconstruction of observ-
ables. Different simulators such as PYTHIA [1], GEANT4 [2],
or DELPHES [65] are often used to generate samples fxg ∼
pðxjzÞ for given parton-level momenta z. This sampling
involves the Monte Carlo integration over the possible
shower histories and detector interactions,

pðxjzÞ ¼
Z

dzdetector

Z
dzshowerpðxjzdetectorÞ

× pðzdetectorjzshowerÞpðzshowerjzÞ: ð4Þ

This enormous latent space can easily involve many
millions of random numbers, and these integrals are clearly
intractable, which we denote with the symbol p. In other
words, given a set of reconstruction-level observables x, we
cannot calculate the likelihood function pðxjzÞ that
describes the compatibility of parton-level momenta z with
the observation. By extension, we also cannot evaluate
pðxjθÞ, the likelihood function of the theory parameters
given the observation. The intractable integrals in Eq. (4)
are the crux of the EFT measurement problem.
The factorization of Eq. (2) together with the tractability

of the parton-level likelihood pðzjθÞ is immensely impor-
tant. We will refer to the combination of these two
properties as particle-physics structure. The far-reaching
consequences of this structure for EFT measurements will
be the topic of Sec. III B. Many (but not all) of the inference
strategies we discuss will rely on this condition.
Note that this Markov property holds even with reducible

and irreducible backgrounds and when a matching scheme is
used to combine different parton-level multiplicities. In these
situations there may be different disjoint parts of z space,
even with different dimensionalities, for instance when
events with n and nþ 1 partons in the final state can lead
to the same configuration of observed jets. The integral over
z then has to be replaced with a sum over “zn spaces” and an
integral over each zn, but the logic remains unchanged.

2. Operator morphing

Effective field theories (and other parametrizations of
indirect signatures of new physics) typically contribute a
finite number of amplitudes to a given process, each of

which is multiplied by a function of the Wilson coeffi-
cients.1 In this case the likelihood can be written as

pðzjθÞ ¼
X
c0
w̃c0 ðθÞfc0 ðzÞ; ð5Þ

where c0 labels the different amplitude components, and
the functions fc0 ðzÞ are not necessarily properly positive
definite or normalized.
The simplest example is a process in which one SM

amplitude M0ðzÞ interferes with one new physics
amplitude MBSMðzjθÞ ¼ θM1ðzÞ, which scales linearly
with a new physics parameter θ. The differential cross
section, proportional to the squared matrix element, is then
dσðzÞ ∝ jM0ðzÞj2 þ 2θReM0ðzÞ†M1ðzÞ þ θ2jM1ðzÞj2.
There are three components, representing the SM, interfer-
ence, and pure Beyond the Standard Model (BSM) terms,
each with their own parameter dependence w̃c0 ðzÞ and
momentum dependence fc0 ðzÞ.
We can then pick a number of basis2 parameter points θc

equal to the number of components c0 in Eq. (5). They
can always be chosen such that the matrixWcc0 ¼ w̃c0 ðθcÞ is
invertible, which allows us to rewrite (5) as a mixture model

pðzjθÞ ¼
X
c

wcðθÞpcðzÞ ð6Þ

with weights wcðθÞ ¼
P

c0w̃cðθÞW−1
cc0 and (now properly

normalized) basis densities pcðzÞ ¼ pðzjθcÞ. The weights
wcðθÞ depend on the choice of basis points and are
analytically known. This “morphing” procedure therefore
allows us to extract the full likelihood function pðzjθÞ from
a finite set of evaluations of basis densities pcðzÞ.

Calculating the full statistical model through morphing
requires the likelihood pðzjθÞ to be tractable, which is true
for parton-level momenta as argued above. However, the
same trick can be applied even when the exact likelihood
is intractable, but we can estimate it. For instance, the
marginal distribution of any individual kinematic variable
vðxÞ can be reliably estimated through histograms or other
density estimation techniques, even when shower and
detector effects are taken into account. The morphing
procedure then lets us evaluate the full conditional dis-
tribution pðvjθÞ based on a finite number of Monte Carlo
simulations [66].
Finally, note that Eq. (6) together with Eq. (2) imply

pðxjθÞ ¼
X
c

wcðθÞpcðxÞ; ð7Þ

1Exceptions can arise for instance when particle masses
or widths depend on the parameters of interest. But in an EFT
setting one can expand these quantities in 1=Λ, restoring the
factorization.

2Note that the morphing basis points θc are unrelated to the
choice of an operator basis for the effective field theory.
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even if the likelihood function pðxjθÞ and the components
pcðxÞ are intractable. This will later allow us to impose the
morphing structure on likelihood ratio estimators.
Not all EFT amplitudes satisfy the morphing structure in

Eq. (5), so we discuss both measurement strategies that rely
on and make use of this property as well as more general
ones that do not require it to hold.

D. Explicit example

1. Weak-boson-fusion Higgs to four leptons

As an explicit example LHC process we consider Higgs
production in weak boson fusion (WBF) with a decay of the
Higgs into four leptons,

qq → qqh → qqZZ → qqlþl−lþl− ð8Þ

with l ¼ e, μ, as shown in Fig. 1.
While this process is rare and is likely to only be

observed during the high-luminosity run of the LHC, it
has a few compelling features that make it a prime
candidate to study the efficient extraction of information.
First, the two jets from the quarks and in particular the four
leptons can be reconstructed quite precisely in the LHC
detectors. Even when assuming on-shell conditions and
energy-momentum conservation, the final-state momenta
span a 16-dimensional phase space, giving rise to many
potentially informative observables.
Second, both the production of the Higgs boson in weak

boson fusion as well as its decay into four leptons are
highly sensitive to the effects of new physics in the Higgs-
gauge sector. We parametrize these with dimension-six
operators in the SMEFT, following the conventions of the
Hagiwara-Ishihara-Szalapski-Zeppenfeld basis [58]. For
simplicity, we limit our analysis to the two particularly
relevant operators:

L ¼ LSM þ fW
Λ2

ig
2
ðDμϕÞ†σaDνϕWa

μν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OW

−
fWW

Λ2

g2

4
ðϕ†ϕÞWa

μνWμνa

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
OWW

: ð9Þ

For convenience, we rescale the Wilson coefficients to the
dimensionless parameters of interest

θ ¼
�
fWv2

Λ2
;
fWWv2

Λ2

�
T

; ð10Þ

where v ¼ 246 GeV is the electroweak vacuum expect-
ation value. As alluded to above, the validity range of the
EFT cannot be determined in a model-independent way.
For moderately weakly to moderately strongly coupled
underlying new physics models, one would naively expect
jfoj≲Oð1Þ and the EFT description to be useful in the
range E ≈ v≲ Λ, or −1≲ θo ≲ 1. This is the parameter
range we analyze in this paper.
The interference between the Standard Model ampli-

tudes and the dimension-six operators leads to an intricate
relation between the observables and parameters in this
process, which has been studied extensively. The precise
measurement of the momenta of the four leptons provides
access to a range of angular correlations that fully char-
acterize the h → ZZ decay [10,67]. These variables are
sensitive to the effects of dimension-six operators. But the
momentum flow p through the decay vertex is limited by
the Higgs mass, and the relative effects of these dimension-
six operators are suppressed by a factor p2=Λ2. On the
other hand, the Higgs production through two off-shell
gauge bosons with potentially high virtuality does not
suffer from this suppression. The properties of the two jets
recoiling against them are highly sensitive to operator
effects in this vertex [68–71].
In Fig. 2 we show example distributions of two particu-

larly informative observables, the transverse momentum of
the leading (higher-pT) jet pT;j1, and the azimuthal angle
between the two jets, Δϕjj. The two quantities are sensitive
to different directions in parameter space. Note also that the
interference between the different amplitudes can give rise
to nontrivial effects. The size of the dimension-six ampli-
tudes grows with momentum transfer, which is strongly
correlated with the transverse momentum of the leading jet.
If the interference of new-physics amplitudes with the SM
diagrams is destructive, this can drive the total amplitude
through zero [63]. The jet momentum distribution then dips
and rises again with higher energies, as seen in the red
curve in the left panel of Fig. 2. Such depleted regions of
low probability can lead to very small or large likelihood
ratios and potentially pose a challenge to inference
methods.
By analyzing the Fisher information in these distribu-

tions, it is possible to compare the discrimination power in
these two observables to the information contained in the
full multivariate distribution or to the information in the
total rate. It turns out that the full multivariate distribution
pðzjθÞ contains significantly more information than the
one-dimensional and two-dimensional marginal distribu-
tions of any standard kinematic variables [4]. The total

FIG. 1. Feynman diagram for Higgs production in weak boson
fusion in the 4l mode. The red dots show the Higgs-gauge
interactions affected by the dimension-six operators of our analysis.
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rate is found to carry much less information on the two
operators, in particular when systematic uncertainties on
the cross sections are taken into account. In this study we
therefore only analyze the kinematic distributions for a
fixed number of observed events.

2. Sample generation

Already in the sample generation we can make use of
the structural properties of the process discussed in
Sec. II C. The amplitude of this process factorizes into
a sum of parameter-dependent factors times phase-space-
dependent amplitudes, as given in Eq. (5). The effect of
the operators OW and OWW on the total Higgs width
breaks this decomposition, but this effect is tiny and in
practice irrelevant when compared to the experimental
resolution. The likelihood function of this process

therefore follows the mixture model in Eq. (6) to good
approximation, and the weights wcðθÞ can be calculated.
Since the parton-level likelihood function is tractable, we
can reconstruct the entire likelihood function pðzjθÞ
based on a finite number of simulator runs, as described
in Sec. II C 2.
To this end, we first generate a parton-level sample fzeg

of 5.5 × 106 events with MADGRAPH 5 [60] and its add-on
MADMAX [72–74], using the setup described in Ref. [4].
With MADMAX we can evaluate the likelihood pðzejθcÞ for
all events ze and for 15 different basis parameter points θc.
Calculating the morphing weights wcðθÞ finally gives us
the true parton-level likelihood function pðzejθÞ for each
generated phase-space point ze.
In Fig. 3 we show the basis points θc and two of the

morphing weights wcðθÞ with their dependence on θ.

FIG. 2. Kinematic distributions in our example process for three example parameter points. We assume an idealized detector response
to be discussed in Sec. II D 2. Left: Transverse momentum of the leading (higher-pT) jet, a variable strongly correlated with the
momentum transfer in the process. The dip around 350 GeV is a consequence of the amplitude being driven through zero, as discussed in
the text. Right: Separation in azimuthal angle between the two jets.

FIG. 3. Basis points θc and some of the morphing weights wcðθÞ for our example process. Each panel shows the morphing weight of
one of the components c as a function of parameter space. The weights of the remaining 13 components (not shown) follow qualitatively
similar patterns. The dots show the position of the basis points θc; the big black dot denotes the basis point corresponding to the
morphing weight shown in that panel. Away from the morphing basis points, the morphing weights can easily reachOð100Þ, with large
cancellations between different components.
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In some corners of parameter space the weights easily reach
up to jwcj ≲Oð100Þ, and there are large cancellations
between positive and negative weights. This will pose a
challenge for the numerical stability of every inference
algorithm that directly uses the morphing structure of the
process, as we will discuss later. Other basis choices have
led to comparable or larger morphing weights.
Parton shower and detector effects smear the observed

particle properties x with respect to the parton-level
momenta z and make the likelihood function in Eq. (2)
intractable. We develop inference methods that can be
applied exactly in this case and that do not require any
simplifying assumptions on the shower and detector
response. However, in this realistic scenario we cannot
evaluate their performance by comparing them to the true
likelihood ratio. We therefore test them first on an idealized
scenario in which the four-momenta, flavor, and charges of
the leptons, and the momenta of the partons, can be
measured exactly, pðxjzÞ ≈ δðx − zÞ. In this approximation
we can evaluate the likelihood pðxjθÞ.
After establishing the performance of the various algo-

rithms in this idealized setup, we will analyze the effect of
parton shower and detector simulation on the results. We
generate an approximate detector-level sample by drawing
events from a smearing distribution pðxjzÞ conditional on
the parton-level momenta z. This smearing function is
loosely motivated by the performance of the LHC experi-
ments and is defined in Appendix A.

III. LIKELIHOOD RATIO ESTIMATION

According to the Neyman-Pearson lemma, the likelihood
ratio

rðxjθ0; θ1Þ≡ pðxjθ0Þ
pðxjθ1Þ

¼
R
dzpðx; zjθ0ÞR
dzpðx; zjθ1Þ

ð11Þ

is the most powerful test statistic to discriminate between
two hypotheses θ0 and θ1. Unfortunately, the integral over
the latent space z makes the likelihood function pðxjθÞ as
well as the likelihood ratio rðxjθ0; θ1Þ intractable. The first
and crucial stage of all our EFT measurement strategies is
therefore the construction of a likelihood ratio estimator
r̂ðxjθ0; θ1Þ that is as close to the true rðxjθ0; θ1Þ as possible
and thus maximizes the discrimination power between θ0
and θ1.
This estimation problem has several different aspects that

we try to disentangle as much as possible. The first choice
is the overall structure of the likelihood ratio estimator and
its dependence on the theory parameters θ. We discuss this
in Sec. III A. Section III B analyzes what information is
available and useful to construct (train) the estimators for a
given process. Here we will introduce the main ideas that
harness the structure of the EFT to increase the information
that is used in the training process.

These basic concepts are combined into concrete strategies
for the estimation of the likelihood ratio in Sec. III C. After
training the estimators, there is an optional additional cali-
bration stage, which we introduce in Sec. III D. Section III E
describes the technical implementation of these strategies in
terms of neural networks. Finally, we discuss the challenges
that the different algorithms face in Sec. III F and introduce
diagnostic tools for the uncertainties.

A. Modeling likelihood ratios

1. Likelihood ratios

There are different approaches to the structure of this
estimator, in particular to the dependence on the theory
parameters θ:

Point by point (PbP).—A common strategy is to scan the
parameter space, randomly or in a grid. To reduce the
complexity of the scan one can keep the denominator
θ1 fixed, while scanning only θ0. Likelihood ratios
with other denominators can be extracted trivially
as r̂ðxjθ0; θ2Þ ¼ r̂ðxjθ0; θ1Þ=r̂ðxjθ2; θ1Þ. Instead
of a single reference value θ1, we can also use a
composite reference hypothesis pðxjθ1Þ → prefðxÞ ¼R
dθ1πðθ1Þpðxjθ1Þ with some prior πðθ1Þ. This can

reduce the regions in feature spacewith small reference
likelihoodpðxjθ1Þ and improve the numerical stability.
For each pair ðθ0; θ1Þ separately, the likelihood

ratio r̂ðxjθ0; θ1Þ as a function of x is estimated. Only
the final results are interpolated between the scanned
values of θ0.
This approach is particularly simple, but discards all

information about the structure and smoothness of the
parameter space. For high-dimensional parameter
spaces, the parameter scan can become prohibitively
expensive. The final interpolation may introduce addi-
tional uncertainties.

Agnostic parametrized estimators.—Alternatively we
can train one estimator as the full model r̂ðxjθ0; θ1Þ
as a function of both x and the parameter combination
ðθ0; θ1Þ [30,75]. A modification is again to leave θ1 at
a fixed reference value [or fixed composite reference
hypothesis with a prior πðθ1Þ] and only learn the
dependence on x and θ0.
This parametrized approach leaves it to the estima-

tor to learn the typically smooth dependence of the
likelihood ratio on the physics parameters and does
not require any interpolation in the end. There are no
assumptions on the form of the dependence of the
likelihood on the ratios.

Morphing-aware estimators.—For problems that satisfy
the morphing condition of Eq. (6) and thus also Eq. (7),
we can impose this structure and the explicit knowledge
of the weights wcðθÞ onto the estimator. Again, one
option is to keep the denominator fixed at a reference
value (or composite reference hypothesis), leading to
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r̂ðxjθ0; θ1Þ ¼
X
c

wcðθ0Þr̂cðxÞ; ð12Þ

where the basis estimators r̂cðxÞ ¼ r̂ðxjθc; θ1Þ only
depend on x.
Alternatively, we can decompose both the numerator

and denominator distributions to find [30,76]

r̂ðxjθ0; θ1Þ ¼
X
c

�X
c0
wc0 ðθ1Þ
wc0 ðθ0Þ

r̂c0;cðxÞ
�
−1

ð13Þ

with pairwise estimators r̂c0;cðxÞ ¼ r̂ðxjθc0 ; θcÞ.

2. Score and local model

One remarkably powerful quantity is the score, defined
as the relative tangent vector

tðxjθ0Þ ¼ ∇θ log pðxjθÞjθ0 : ð14Þ

It quantifies the relative change of the likelihood under
infinitesimal changes in parameter space and can be seen as
a local equivalent of the likelihood ratio.
In a small patch around θ0 in which we can approximate

tðxjθÞ as independent of θ, Eq. (14) is solved by the local
model

plocalðxjθÞ ¼
1

ZðθÞ pðtðxjθ0Þjθ0Þ exp½tðxjθ0Þ · ðθ − θ0Þ�

ð15Þ

with a normalization factor ZðθÞ. The local model is in the
exponential family. Note that the tðxjθ0Þ are the sufficient
statistics for plocalðxjθÞ. This is significant: if we can
estimate the vector-valued function tðxjθ0Þ (with
one component per parameter of interest) of the high-
dimensional x, we can reduce the dimensionality of our

space dramatically without losing any information, at least
in the local model approximation [77].
In fact, ignoring the normalization factors and in the

local model the likelihood ratio between θ0 and θ1 only
depends on the scalar product between the score and
θ0 − θ1, which will allow us to take this dimensionality
reduction one step further and compress high-dimensional
data x into a scalar without loss of power.
In our example process, we are interested in the Wilson

coefficients of two dimension-six operators. The score
vector therefore has two components. In Fig. 4 we show
the relation between these two score components and two
informative kinematic variables, the jet pT and the azimu-
thal angle between the two jets, Δϕ. We find that the score
vector is very closely related with these two kinematic
quantities, but the relation is not quite one to one. Larger
energy transfer, measured as larger jet pT , increases the
typical size of the score vector. The OWW component of
the score is particularly sensitive to the angular corre-
lation variable, in agreement with detailed studies of this
process [4].

B. Available information and its usefulness

1. General likelihood-free case

All measurement strategies have in common that the
estimator r̂ðxjθ0; θ1Þ is learned from data provided by
Monte Carlo simulations (the stochastic generative proc-
ess). In the most general likelihood-free scenario, we can
only generate samples of events fxeg with xe ∼ pðxjθÞ
through the simulator, and base an estimator r̂ðxjθ0; θ1Þ on
these generated samples.
One strategy [30] is based on training a classifier with

decision function ŝðxÞ between two equal-sized samples
fxeg ∼ pðxjθ0Þ, labeled ye ¼ 0, and fxeg ∼ pðxjθ1Þ,
labeled ye ¼ 1. The cross-entropy loss functional

FIG. 4. Score vector as a function of kinematic observables in our example process. Left: First component of the score vector,
representing the relative change of the likelihood with respect to small changes in OW direction. Right: Second component of the score
vector, representing the relative change of the likelihood with respect to small changes in OWW direction. In both panels, the axes show
two important kinematic variables. We find that the score vector is clearly correlated with these two variables.
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L½ŝ�¼−
1

N

X
e

ðye log ŝðxeÞþð1−yeÞlogð1− ŝðxeÞÞÞ ð16Þ

is minimized by the optimal decision function

sðxjθ0; θ1Þ ¼
pðxjθ1Þ

pðxjθ0Þ þ pðxjθ1Þ
: ð17Þ

From the decision function ŝðxÞ of a classifier we can
therefore extract an estimator for the likelihood ratio as

r̂ðxjθ0; θ1Þ ¼
1 − ŝðxjθ0; θ1Þ
ŝðxjθ0; θ1Þ

: ð18Þ

This idea, sometimes called the likelihood ratio trick, is
visualized in the left panel of Fig. 5.
As pointed out in Ref. [30], we can use the weaker

assumption of any loss functional that is minimized by a
decision function sðxÞ that is a strictly monotonic function
of the likelihood ratio. The underlying reason is that the
likelihood ratio is invariant under any transformation sðxÞ
with this property. In practice, the output of any such
classifier can be brought closer to the form of Eq. (17)
through a calibration procedure, which we will discuss in
Sec. III D.

2. Particle-physics structure

As we have argued in Sec. II C, particle physics
processes have a specific structure that allow us to extract
additional information. Most processes satisfy the factori-
zation of Eq. (2) with a tractable parton-level likelihood
pðzjθÞ. The generators do not only provide samples fxeg,
but also the corresponding parton-level momenta (latent
variables) fzegwith ðxe; zeÞ ∼ pðx; zjθ0Þ. By evaluating the
matrix elements at the generated momenta ze for different
hypotheses θ0 and θ1, we can extract the parton-level

likelihood ratio pðzejθ0Þ=pðzejθ1Þ. Since the distribution of
x is conditionally independent of the theory parameters,
this is the same as the joint likelihood ratio

rðxe;zallejθ0;θ1Þ

≡pðxe;zdetectore;zshowere;zejθ0Þ
pðxe;zdetectore;zshowere;zejθ1Þ

¼pðxejzdetectoreÞ
pðxejzdetectoreÞ

pðzdetectorejzshowereÞ
pðzdetectorejzshowereÞ

pðzshowerejzeÞ
pðzshowerejzeÞ

pðzejθ0Þ
pðzejθ1Þ

¼pðzejθ0Þ
pðzejθ1Þ

: ð19Þ

So while we cannot directly evaluate the likelihood ratio at
the level of measured observables rðxjθ0; θ1Þ, we can
calculate the likelihood ratio for a generated event condi-
tional on the latent parton-level momenta.
The same is true for the score, i.e., the tangent vectors or

relative change of the (log) likelihood under infinitesimal
changes of the parameters of interest. While the score
tðxejθ0Þ ¼ ∇θ log pðxjθÞjθ0 is intractable, we can extract the
joint score

tðxe;zallejθ0Þ
≡∇θ logpðxe;zdetectore;zshowere;zejθ0Þ

¼pðxejzdetectoreÞ
pðxejzdetectoreÞ

pðzdetectorejzshowereÞ
pðzdetectorejzshowereÞ

pðzshowerejzeÞ
pðzshowerejzeÞ

×
∇θpðzejθÞ
pðzejθÞ

����
θ0

¼∇θpðzejθÞ
pðzejθÞ

����
θ0

ð20Þ

from the simulator. Again, all intractable parts of the
likelihood cancel. We visualize the score in Fig. 6 and

FIG. 5. Illustration of some key concepts with a one-dimensional Gaussian toy example. Left: Classifiers trained to distinguish two
sets of events generated from different hypotheses (green dots) converge to an optimal decision function sðxjθ0; θ1Þ (in red) given in
Eq. (17). This lets us extract the likelihood ratio. Right: Regression on the joint likelihood ratios rðxe; zejθ0; θ1Þ of the simulated events
(green dots) converges to the likelihood ratio rðxjθ0; θ1Þ (red line).
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all available information on the generated samples in Fig. 7.
It is worth repeating that we are not making any simplifying
approximations about the process here, these statements are
valid with reducible backgrounds, for state-of-the-art gen-
erators including higher-order matrix elements, matching
of matrix element and parton shower, and with full detector
simulations.

But how does the availability of the joint likelihood ratio
rðx; zjθÞ and score tðx; zjθÞ (which depend on the latent
parton-level momenta z) help us to estimate the likelihood
ratio rðxjθÞ, which is the one we are interested in?
Consider the L2 squared loss functional for functions

ĝðxÞ that only depend on x, but which are trying to
approximate a function gðx; zÞ,

L½ĝðxÞ� ¼
Z

dxdzpðx; zjθÞjgðx; zÞ − ĝðxÞj2

¼
Z

dx½ĝ2ðxÞ
Z

dzpðx; zjθÞ − 2ĝðxÞ
Z

dzpðx; zjθÞgðx; zÞ þ
Z

dzpðx; zjθÞg2ðx; zÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FðxÞ

: ð21Þ

FIG. 6. Illustration of some key concepts with a one-dimensional Gaussian toy example. Left: Probability density functions for
different values of θ and the scores tðxe; zejθÞ at generated events ðxe; zeÞ. These tangent vectors measure the relative change of the
density under infinitesimal changes of θ. Right: Dependence of log pðxjθÞ on θ for fixed x ¼ 4. The arrows again show the (tractable)
scores tðxe; zejθÞ.

FIG. 7. Illustration of some key concepts with a one-dimensional Gaussian toy example. Left: Full statistical model log rðxjθ; θ1Þ that
we are trying to estimate. Right: Available information at the generated events ðxe; zeÞ. The dots mark the joint likelihood ratios
log rðxe; zejθ0; θ1Þ, the arrows the scores tðxe; zejθ0; θ1Þ.
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Via calculus of variations we find that the function g�ðxÞ
that extremizes L½ĝ� is given by [49]

0 ¼ δF
δĝ

����
g�
¼ 2ĝ

Z
dzpðx; zjθÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼pðxjθÞ

−2
Z

dzpðx; zjθÞgðx; zÞ;

ð22Þ

therefore

g�ðxÞ ¼ 1

pðxjθÞ
Z

dzpðx; zjθÞgðx; zÞ: ð23Þ

We can make use of this general property in our problem
in two ways. Identifying gðxe; zeÞ with the joint likelihood
ratios rðxe; zall;ejθ0; θ1Þ (which we can calculate) and
θ ¼ θ1, we find

g�ðxÞ ¼ 1

pðxjθ1Þ
Z

dzpðx; zjθ1Þ
pðx; zjθ0Þ
pðx; zjθ1Þ

¼ rðxjθ0; θ1Þ:

ð24Þ

By minimizing the squared loss

L½r̂ðxjθ0; θ1Þ�

¼ 1

N

X
ðxe;zeÞ∼pðx;zjθ1Þ

jrðxe; zall;ejθ0; θ1Þ − r̂ðxejθ0; θ1Þj2

ð25Þ

of a sufficiently expressive function r̂ðxjθ0; θ1Þ, we
can therefore regress on the true likelihood ratio
[49]. This is illustrated in the right panel of Fig. 5.
Note that to get the correct minimum, the events ðxe; zeÞ
have to be sampled according to the denominator
hypothesis θ1.
We can also identify gðxe; zeÞ in Eq. (22) with the scores

tðxe; zall;ejθÞ, which can also be extracted from the gen-
erator. In this case,

g�ðxÞ ¼ 1

pðxjθÞ
Z

dz∇θpðx; zjθÞ ¼ tðxjθÞ: ð26Þ

Thus minimizing

L½t̂ðxjθÞ� ¼ 1

N

X
ðxe;zeÞ∼pðx;zjθÞ

jtðxe; zall;ejθÞ − t̂ðxejθÞj2 ð27Þ

of a sufficiently expressive function t̂ðxjθÞ allows us to
regress on the score tðxjθÞ [49].3 Now the ðxe; zeÞ have to
be sampled according to θ. We summarize the availability
of the (joint) likelihood, likelihood ratio, and score in the
most general likelihood-free setup and in particle physics
processes in Table II.
This is one of our key results and opens the door for

powerful new inference methods. Particle physics proc-
esses involve the highly complex effects of parton shower,
detector, and reconstruction, modeled by a generative
process with a huge latent space and an intractable like-
lihood. Still, the specific structure of this class of processes
allows us to calculate how much more or less likely a
generated event becomes when we move in the parameter
space of the theory. We have shown that by regressing on
the joint likelihood ratios or scores extracted in this way, we
can recover the actual likelihood ratio or score as a function
of the observables.

C. Strategies

Let us now combine the estimator structure discussed in
Sec. III A with the different quantities available during
training discussed in Sec. III B and define our strategies to
estimate the likelihood ratio. Here we restrict ourselves to
an overview over the main ideas of the different appro-
aches. A more detailed explanation and technical details
can be found in Appendix B.

TABLE II. Availability of different quantities from the gen-
erative process in the most general likelihood-free setup vs in the
particle-physics scenario with the structure given in Eq. (2).
Asterisks (�) denote quantities that are not immediately available,
but can be regressed from the corresponding joint quantity, as
shown in Sec. III B.

Quantity
General

likelihood-free
Particle
physics

Samples fxeg ✓ ✓
Likelihood pðxejθÞ
Likelihood ratio rðxejθ0; θ1Þ *
Score tðxejθÞ *

Latent state fxe; zeg ✓
Joint likelihood pðxe; zall;ejθÞ
Joint likelihood
ratio

rðxe; zall;ejθ0; θ1Þ ✓

Joint score tðxe; zall;ejθÞ ✓

3A similar loss function (with a nonstandard use of the term
“score”) was used in Ref. [78], though the derivative is taken with
respect to x and, critically, the model did not involve margin-
alization over the latent variable z.
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1. General likelihood-free case

Some approaches are designed for the most general
likelihood-free scenario and only require the samples fxeg
from the generator:

Histograms of observables.—The traditional approach
to kinematic analyses relies on one or two kinematic
variables vðxÞ, manually chosen for a given process
and set of parameters. Densities p̂ðvðxÞjθÞ are esti-
mated by filling histograms with generated samples,
leading to the likelihood ratio

r̂ðxjθ0; θ1Þ ¼
p̂ðvðxÞjθ0Þ
p̂ðvðxÞjθ1Þ

: ð28Þ

We use this algorithm point by point in θ0,
but a morphing-based setup is also possible (see
Sec. II C 2). We discuss the histogram approach in
more detail in Appendix B 1.

Approximate frequentist computation (AFC).—Approxi-
mate Bayesian computation (ABC) is currently
the most widely used method for likelihood-free
inference in a Bayesian setup. It allows to sample
parameters from the intractable posterior, θ ∼ pðθjxÞ ¼
pðxjθÞpðθÞ=pðxÞ. Essentially, ABC relies on the
approximation of the likelihood function through a
rejection probability

prejectionðxjθÞ ¼ KϵðvðxÞ; vðxeÞÞ; ð29Þ

with xe ∼ pðxjθÞ, a kernel Kϵ that depends on a
bandwidth ϵ, and a sufficiently low-dimensional sum-
mary statistics vðxÞ.
Inference in particle physics is usually performed in

a frequentist setup, so this sampling mechanism is not
immediately useful. But we can define a frequentist
analogue, which we call “approximate frequentist
computation” (AFC). In analogy to the rejection
probability in Eq. (29), we can define a kernel density
estimate for the likelihood function as

p̂ðxjθÞ ¼ 1

N

X
e

KϵðvðxÞ; vðxeÞÞ: ð30Þ

The corresponding likelihood ratio estimator is

r̂ðxjθ0; θ1Þ ¼
p̂ðxjθ0Þ
p̂ðxjθ1Þ

: ð31Þ

We use this approach point by point in θ0 with
a fixed reference θ1. As summary statistics, we
use subsets of kinematic variables, similar to the
histogram approach. We give more details in
Appendix B 2.

Calibrated classifiers (CARL4).—As discussed in
Sec. III B 1, the decision function ŝðxjθ0; θ1Þ of a
classifier trained to discriminate between samples
generated according to θ0 from θ1 can be turned into
an estimator for the likelihood ratio

r̂ðxjθ0; θ1Þ ¼
1 − ŝðxjθ0; θ1Þ
ŝðxjθ0; θ1Þ

: ð32Þ

This is illustrated in the left panel of Fig. 5.
If the classifier does not learn the optimal decision

function of Eq. (17), but any monotonic function of
the likelihood ratio, a calibration procedure can
improve the performance significantly. We will dis-
cuss this in Sec. III D below.
We implement this strategy point by point in θ0, as

an agnostic parametrized classifier r̂ðxjθ0; θ1Þ that
learns the dependence on both x and θ0, as well as
a morphing-aware parametrized classifier. More de-
tails are given in Appendix B 3.

Neural conditional density estimators (NDE).—Several
other methods for conditional density estimation
have been proposed, often based on neural networks
[32–38]. One particularly interesting class of methods
for density estimation is based on the idea of express-
ing the target density as a sequence of invertible
transformations applied to a simple initial density,
such as a Gaussian [39–42,47]. The density in the
target space is then given by the Jacobian determinant
of the transformation and the base density. A closely
related and successful alternative are neural autore-
gressive models [43–46], which factorize the target
density as a sequence of simpler conditional densities.
Both classes of estimators are trained by maximizing
the log likelihood.
We leave a detailed discussion of these techniques

for particle physics problems as well as an imple-
mentation in our example process for future work.

2. Particle-physics structure

As we argued in Sec. III B, particle physics simulations
let us extract the joint likelihood ratio rðxe; zejθ0; θ1Þ and
the joint score tðxe; zejθ0; θ1Þ, giving rise to strategies
tailored to this class of problems:

Ratio regression (ROLR5).—We can directly regress the
likelihood ratio r̂ðxjθ0; θ1Þ. As shown in the previous
section, the squared error loss between a function
r̂ðxejθ0; θ1Þ and the available joint likelihood ratio
rðxe; zejθ0; θ1Þ is minimized by the likelihood ratio
rðxjθ0; θ1Þ, provided that the samples ðxe; zeÞ are
drawn according to θ1. Conversely, the squared error
of 1=rðxe; zejθ0; θ1Þ with ðxe; zeÞ ∼ pðx; zjθ0Þ is also

4Calibrated ratios of likelihoods
5Regression on likelihood ratio
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minimized by the likelihood ratio. We can combine
these two terms into a combined loss function

L½r̂ðxjθ0; θ1Þ�

¼ 1

N

X
ðxe;ze;yeÞ

�
yejrðxe; zejθ0; θ1Þ − r̂ðxjθ0; θ1Þj2

þ ð1 − yeÞ
���� 1

rðxe; zejθ0; θ1Þ
−

1

r̂ðxjθ0; θ1Þ
����2
�

ð33Þ
with ye¼0 for events generated according to ðxe; zeÞ∼
pðx; zjθ0Þ and ye ¼ 1 for ðxe; zeÞ ∼ pðx; zjθ1Þ. The
factors of ye and ð1 − yeÞ ensure the correct sampling
for each part of the loss functional. We illustrate this
approach in the right panel of Fig. 5.
This strategy is again implemented point by point in

θ0, in an agnostic parametrized setup, as well as in a
morphing-aware parametrized setup. We describe it in
more detail in Appendix B 4.

CARLþ score regression (CASCAL6).—The parame-
trized CARL strategy outlined above learns a classifier
decision function ŝðxjθ0; θ1Þ as a function of θ0. If the
classifier is realized with a differentiable architecture
such as a neural network, we can calculate the gradient
of this function and of the corresponding estimator for
the likelihood ratio r̂ðxjθ0; θ1Þ with respect to θ0 and
derive the estimated score

t̂ðxjθ0Þ ¼ ∇θ log r̂ðxjθ; θ1Þjθ0
¼ ∇θ log

1 − ŝðxjθ0; θ1Þ
ŝðxjθ0; θ1Þ

����
θ0

: ð34Þ

If the estimator is perfect, we expect this estimated
score to minimize the squared error with respect to the
joint score data available from the simulator, follow-
ing the arguments in Sec. III B.
We can turn this argument around and use the

available score data during the training. Instead of
training the classifier just by minimizing the cross
entropy, we can instead simultaneously minimize the
squared error on this derived score with respect to the
true joint score tðx; zjθ0; θ1Þ. The combined loss
function is given by

L½ŝ� ¼ 1

N

X
e

½ye log ŝðxeÞ þ ð1 − yeÞ logð1 − ŝðxeÞÞ

þ αð1 − yeÞjtðxe; zejθ0Þ − t̂ðxejθ0Þj2� ð35Þ
with t̂ðxjθ0Þ defined in Eq. (34) and a hyperparameter
α that weights the two pieces of the loss function
relative to each other. Again, ye ¼ 0 for events

generated according to ðxe; zeÞ ∼ pðx; zjθ0Þ and ye¼
1 for ðxe; zeÞ ∼ pðx; zjθ1Þ, and the factors of ye and
ð1 − yeÞ ensure the correct sampling for each part of the
loss functional.
This strategy relies on the parametrized modeling of

the likelihood ratio. We implement both an agnostic
version as well as a morphing-aware model. See
Appendix B 5 for more details.

Neural conditional density estimatorsþ score (SCAN-
DAL7).—In the same spirit as the CASCAL method,
neural density estimators such as autoregressive flows
can be augmented with score information. We have
started to explore this class of algorithms in Ref. [49],
but leave a detailed study and the application to
particle physics for future work.

Ratioþ score regression (RASCAL8).—The same trick
works for the parametrized ROLR approach. If the
regressor is implemented as a differentiable architec-
ture such as a neural network, we can calculate the
gradient of the parametrized estimator r̂ðxjθ0; θ1Þ with
respect to θ0 and calculate the score

t̂ðxjθ0Þ ¼ ∇θ log r̂ðxjθ; θ1Þjθ0 : ð36Þ

Instead of training just on the squared likelihood ratio
error, we can minimize the combined loss

L½r̂ðxjθ0; θ1Þ�

¼ 1

N

X
ðxe;ze;yeÞ

�
yejrðxe; zejθ0; θ1Þ − r̂ðxejθ0; θ1Þj2

þ ð1 − yeÞ
���� 1

rðxe; zejθ0; θ1Þ
−

1

r̂ðxejθ0; θ1Þ
����2

þ αð1 − yeÞjtðxe; zejθ0Þ − t̂ðxejθ0Þj2
�

ð37Þ

with t̂ðxjθ0Þ defined in Eq. (36) and a hyperparameter
α. The likelihood ratios and scores again provide
complementary information as shown in Fig. 7.
Once more we experiment with both an agnostic

parametrized model as well as a morphing-aware
version.
This technique uses all the available data from the

simulator that we discussed in Sec. III B to train an
estimator of particularly high fidelity. It is essentially a
machine-learning version of the matrix element
method. It replaces computationally expensive numeri-
cal integrals with an upfront regression phase, after
which the likelihood ratio can be evaluated very
efficiently. Instead of manually specifying simplified
smearing functions, the effect of parton shower and

6CARL and score approximate likelihood ratio

7Score and neural density approximate likelihood
8Ratio and score approximate likelihood ratio
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detector is learned from full simulations. For more
details on RASCAL, see Appendix B 6.

Local score regression and density estimation
(SALLY9).—In the local model approximation dis-
cussed in Sec. III A 2, the score evaluated at some
reference point θscore is the sufficient statistics, carry-
ing all the information on θ. A precisely estimated
score vector (with one component per parameter of
interest) is therefore the ideal summary statistics, at
least in the neighborhood of the Standard Model or
any other reference parameter point.
In the last section we argued that we can extract the

joint score tðxe; zejθscoreÞ from the simulator. We
showed that the squared error between a function
t̂ðxjθscoreÞ and the joint score is minimized by the
intractable score tðxjθscoreÞ, as long as the events are
sampled as ðxe; zeÞ ∼ pðx; zjθscoreÞ. We can thus use
the augmented data to train an estimator t̂ðxjθscoreÞ for
the score at the reference point.
In a second step, we can then estimate the like-

lihood p̂ðt̂ðxjθscoreÞjθÞ with histograms, Kernel den-
sity estimation (KDE), or any other density estimation
technique, yielding the likelihood ratio estimator

r̂ðxjθ0; θ1Þ ¼
p̂ðt̂ðxjθscoreÞjθ0Þ
p̂ðt̂ðxjθscoreÞjθ1Þ

: ð38Þ

This particularly straightforward strategy is a
machine-learning analogue of optimal observables
that learns the effect of parton shower and detector
from data. After an upfront regression phase, the
analysis of an event only requires the evaluation of
one estimator to draw conclusions about all param-
eters. See Appendix B 7 for more details.

Local score regression, compression to scalar, and density
estimation (SALLINO10).—The SALLY technique
compresses the information in a high-dimensional
vector of observables x into a lower-dimensional esti-
mated score vector. But for measurements in high-
dimensional parameter spaces, density estimation in
the estimated score space might still be computationally
expensive. Fortunately, the local model of Eq. (15)
motivates an even more dramatic dimensionality reduc-
tion to one dimension, independent of the number of
parameters: Disregarding the normalization constants,
the ratio rðxjθ0; θ1Þ only depends on the scalar product
between the score and θ0 − θ1.
Given the same score estimator t̂ðxjθscoreÞ developed

for theSALLYmethod,we candefine the scalar function

ĥðxjθ0; θ1Þ≡ t̂ðxjθSMÞ · ðθ0 − θ1Þ: ð39Þ

Assuming a precisely trained score estimator, this scalar
encapsulates all information on the likelihood ratio
between θ0 and θ1, at least in the local model approxi-
mation. The likelihood ratio can then be estimated as

r̂ðxjθ0; θ1Þ ¼
p̂ðĥðxjθ0; θ1Þjθ0Þ
p̂ðĥðxjθ0; θ1Þjθ1Þ

; ð40Þ

where the p̂ðĥÞ are simple univariate density estimators.
This method allows us to condense any high-

dimensional observation x into a scalar functionwithout
losing sensitivity, at least in the local model approxi-
mation. It thus scales exceptionally well to problems
with many theory parameters. We describe SALLINO
in more detail in Appendix B 8.

Several other variants are possible, including other
combinations of the loss functionals discussed above.
We leave this for future work.11

We summarize the different techniques in Table III.
With this plethora of well-motivated analysis methods, the
remaining key question for this paper is how well they do
in practice, and which of them (if any) should be used.
This will be the focus of Sec. V. In the next sections, wewill
first discuss some important additional aspects of these
methods.

D. Calibration

While the likelihood ratio estimators described above
work well in many cases, their performance can be further
improved by an additional calibration step. Calibration
takes place after the “raw” or uncalibrated estimators
r̂rawðxjθ0; θ1Þ have been trained. In general, it defines a
function C with the aim that r̂cal ¼ Cðr̂rawÞ provides a
better estimator of the true likelihood ratio than r̂raw. We
consider two different approaches to defining this function
C, which we call probability calibration and expectation
calibration.

1. Probability calibration

Consider the CARL strategy, which trains a classifier
with a decision function sðxÞ as the basis for the likelihood

9Score approximates likelihood locally
10Score approximates likelihood locally in one dimension

11Not all initially promising strategies work in practice. We
experimented with an alternative strategy based on the morphing
structure in Eq. (6). Consider the case in which the training
sample consists of a number of subsamples, each generated
according to a morphing basis point θc. Then the morphing basis
sample c used in the event generation is a latent variable that we
can use instead of the parton-level momenta z to define joint
likelihood ratios and joint scores. Regressing on these quantities
should converge to the true likelihood ratio and score, in complete
analogy to the discussion in Sec. III B. But the joint ratios and
scores defined in this way span a huge range, and the densities of
the different basis points are very similar. The convergence is
therefore extremely slow and the results based on this method
suffer from a huge variance.
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ratio estimation. Even if this classifier can separate the two
classes of events from θ0 and θ1 well, its decision function
ŝðxjθ0; θ1Þ might not have a direct probabilistic interpre-
tation: it might be any approximately monotonic function
of the likelihood ratio rather than the ideal solution given in
Eq. (17). In this case, the CARL approach requires
calibration, an additional transformation of the raw output
r̂raw ¼ r̂ðxjθ0; θ1Þ into a calibrated decision function

r̂cal ¼ Cðr̂rawÞ ¼
p̂ðr̂rawjθ0Þ
p̂ðr̂rawjθ1Þ

; ð41Þ

where the densities p̂ðr̂rawjθÞ are estimated through a
univariate density estimation technique such as histograms.
This calibration procedure does not only apply to classi-
fiers, but to any other likelihood ratio estimation strategy.

2. Expectation calibration

Consider some likelihood ratio rðxjθ0; θ1Þ. The expect-
ation value of this ratio assuming θ1 to be true is given by

E½rðxjθ0; θ1Þjθ1� ¼
Z

dxpðxjθ1Þ
pðxjθ0Þ
pðxjθ1Þ

¼ 1: ð42Þ

A good estimator for the likelihood ratio should reproduce
this property. We can numerically approximate this expect-
ation value by evaluating r̂ðxjθ; θ1Þ on a sample fxeg of N
events drawn according to θ1,

R̂ðθÞ ¼ 1

N

X
xe∼θ1

r̂ðxejθ; θ1Þ ≈ 1: ð43Þ

If a likelihood ratio estimator r̂rawðxjθ; θ1Þ (which might
be entirely uncalibrated or already probability calibrated)

does not satisfy this condition, we can calibrate it by
rescaling it as

r̂calðxjθ; θ1Þ ¼
r̂rawðxjθ; θ1Þ
R̂rawðθÞ

: ð44Þ

For a perfect estimator with r̂ðxjθ0; θ1Þ ¼ rðxjθ0; θ1Þ, we
can even calculate the variance of the numeric calculation
of the expectation value in Eq. (43). We find

var½R̂ðθÞ� ¼ 1

N
½E½r̂ðxjθ; θ1Þjθ� − 1�; ð45Þ

where N is the number of events used to calculate the
expectation value RðθÞ, and the expectation E½r̂ðxjθ; θ1Þjθ�
(under the numerator hypothesis) can be calculated
numerically.
This calibration strategy can easily improve classifiers

that are off by some θ-dependent factor. However, a few
rare events xe with large r̂ðxejθ; θ1Þ can dominate the
expectation value. If these are misestimated, the expect-
ation calibration can actually degrade the performance of
the estimator on the bulk of the distribution with smaller
r̂ðxjθ; θ1Þ.

E. Implementation

1. Neural networks

With the exception of the simple histogram and AFC
methods, all strategies rely on a classifier ŝðxjθ0; θ1Þ, score
regressor t̂ðxjθ0Þ, or ratio regressor r̂ðxjθ0; θ1Þ that is being
learnt from training data. For our explicit example, we
implement these functions as fully connected neural networks:

TABLE III. Overview over the discussed measurement strategies. The first three techniques can be applied in the
general likelihood-free setup, they only require sets of generated samples fxeg. The remaining five methods are
tailored to the particle physics structure and require the availability of rðxe; zejθ0; θ1Þ or tðxe; zejθ0Þ from the
generator, as discussed in Sec. III B. Brackets denote possible variations that we have not implemented for our
example process. In the SALLYand SALLINO strategies, “estimator versions” refers to the density estimation step.
In the loss function columns, “CE” stands for the cross entropy, “ML” for maximum likelihood, “ratio” for losses of
the type jrðx; zÞ − r̂ðxÞj2, and “score” for terms such as jtðx; zÞ − t̂ðxÞj2.

Estimator versions Loss function

Strategy PbP Param Aware CE ML Ratio Score Asymptotically exact

Histograms ✓ (✓)
AFC ✓ (✓)
CARL ✓ ✓ ✓ ✓ ✓
NDE (✓) (✓) (✓) ✓ ✓

ROLR ✓ ✓ ✓ ✓ ✓
CASCAL ✓ ✓ ✓ ✓ ✓
SCANDAL (✓) (✓) ✓ ✓ ✓
RASCAL ✓ ✓ ✓ ✓ ✓
SALLY ✓ (✓) ✓
SALLINO ✓ (✓) ✓

BREHMER, CRANMER, LOUPPE, and PAVEZ PHYS. REV. D 98, 052004 (2018)

052004-16



(i) In the point-by-point setup, the neural networks take
the features x as input and models log r̂ðxjθ0; θ1Þ.
For ratio regression, this is exponentiated to yield the
final output r̂ðxjθ0; θ1Þ. In the CARL strategy, the
network output is transformed to a decision function

ŝðxjθ0; θ1Þ ¼
1

1þ r̂ðxjθ0; θ1Þ
: ð46Þ

(ii) In the agnostic parametrized setup, the neural net-
works take both the features x as well as the
numerator parameter θ0 as input and model
log r̂ðxjθ0; θ1Þ. In addition to the same subsequent
transformations as in the point-by-point case, taking
the gradient of the network output gives the esti-
mator score.

(iii) In the morphing-aware setup, the estimator takes
both x and θ0 as input. The features x are fed into a
number of independent networks, one for each basis
component c, which model the basis ratios log rcðxÞ.
From θ0 the estimator calculates the component
weights wcðθ0Þ analytically. The components are
then combined with Eq. (12). For the CARL
approaches, the output is again transformed with
Eq. (46), and for the score-based strategies the
gradient of the output is calculated.

We visualize these architectures in Fig. 8.
All networks are implemented in shallow, regular,

and deep versions with two, three, and five hidden layers
of 100 units each and tanh activation functions. They are
trained with the ADAM optimizer [79] over 50 epochs
with early stopping and learning rate decay. We implement
them in KERAS [80] with a TENSORFLOW [81] backend.
Experiments modeling s rather than log r, with different
activation functions, adding dropout layers, or using other
optimizers and learning rate schedules have led to a worse
performance.

2. Training samples

Starting from the weighted event sample described in
Sec. II D 2, we draw events ðxe; zeÞ randomly with proba-
bilities given by the corresponding pðxe; zejθÞ. Due to the
form of the likelihood pðx; zjθÞ and due to technical
limitations of our simulator, individual data points can carry
large probabilities pðxe; zejθÞ, leading to duplicate events in
the training samples. However, we enforce that there is no
duplication between training and evaluation samples, so this
limitation can only degrade the performance.
For the point-by-point setup, we choose 100 values

of θ0, five of which are fixed at the SM [θ0 ¼ ð0; 0Þ] and at
the corners of the considered parameter space, with the
remaining 95 chosen randomly with a flat prior over
−1 ≤ θo ≤ 1. For each of these training points we sample
250 000 events according to θ0 and 250 000 events accord-
ing to the reference hypothesis

θ1 ¼ ð0.393; 0.492ÞT: ð47Þ

For the parametrized strategies, we compare three different
training samples, each consisting of 107 events:

Baseline.—For 1000 values of θ0 chosen randomly in θ
space, we draw 5000 events according to θ0 and 5000
events according to θ1 given in Eq. (47).

Random θ.—In this sample, the value of θ0 is drawn
randomly independently for each event. Again we use
a flat prior over θ0 ∈ ½−1; 1�2.

FIG. 8. Schematic neural network architectures for point-by-
point (top), agnostic parametrized (middle), and morphing-aware
parametrized (bottom) estimators. Solid lines denote dependen-
cies with learnable weights, dashed lines show fixed functional
dependencies.
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Morphing basis.—For each of the 15 basis hypotheses θi
from the morphing procedure, we generate 333 000
events according to θ0 ¼ θi and 333 000 according
to θ1.

Finally, for the local score regression model we use a
sample of 107 events drawn according to the SM.
Our evaluation sample consists of 50 000 events drawn

according to the SM. We evaluate the likelihood ratio for
these events for a total of 1016 values of θ0, 1000 of which
are the same as those used in the baseline training sample.
Again we fix θ1 as in Eq. (47).
Each event is characterized by 42 features:
(i) the energies, transverse momenta, azimuthal angles,

and pseudorapidities of all six particles in the
final state;

(ii) the energies, transverse momenta, azimuthal angles,
pseudorapidities, and invariant mass of the four-
lepton system as well as the two-lepton systems that
reconstruct the two Z bosons; and

(iii) the invariant mass, separation in pseudorapidity, and
separation in azimuthal angle of the dijet system.

The derived variables in the feature set help the neural
networks pick up the relevant features faster, though we
did not find that their choice affects the performance
significantly.

3. Calibration and density estimation

We calibrate the classifiers for our example process
with probability calibration as described in Sec. III D 1.
We determine the calibration function CðrÞ with isotonic
regression [82], which constrains CðrÞ to be monotonic.
Experiments with other regression techniques based on
histograms, kernel density estimation, and logistic regres-
sion did not lead to a better performance. We apply the
calibration point by point in θ0. It is based on an additional
event sample that is independent of the training and
evaluation data. The same events are used to calibrate
each value of θ, with an appropriate reweighting. This
strategy to minimize variance is based on the availability of
the parton-level likelihood function pðzjθÞ.
The techniques based on local score regression require

the choice of a reference point to evaluate the score. For the
EFT problem, the natural choice is θscore ¼ θSM ¼ ð0; 0ÞT .
In the SALLY approach, we perform the density estimation
based on two-dimensional histograms of the estimated score
at the SM, point by point in θ0. For the SALLINO technique,
we use a one-dimensional histograms of ĥðxjθSMÞ, point by
point in θ0.

F. Challenges and diagnostics

1. Uncertainties

Even the most evolved and robust estimators will have
some deviations from the true likelihood ratio, which
should be taken into account in an analysis as an additional

modeling uncertainty. Most of the estimators developed
above converge to the true likelihood ratio in the limit of
infinite training and calibration samples. But with finite
statistics, there are different sources of variance that affect
some strategies more than others.
Consider the traditional histogram approach. In the point-

by-point version, each separate estimator r̂ðxjθ0; θ1Þ is
trained on the small subset of the data generated from a
specific value of θ0, so the variance from the finite size of the
training data, i.e., the statistical uncertainty from the
Monte Carlo simulation, is large. At θ0 values between
the training points, there are additional sources of uncertainty
from the interpolation. On the other hand, morphing-aware
histograms use all of the training data to make predictions at
all points, and since the dependence on θ0 is known, the
interpolation is exact. But the large morphing weights
wcðθ0Þ and the cancellations between them mean that even
small fluctuations in the individual basis histograms can lead
to huge errors on the combined estimator.
Similar patterns hold for the ML-based inference strat-

egies. The point-by-point versions suffer from a larger
variance due to small training samples at each point and
interpolation uncertainties. The agnostic parametrized
models have more statistics available, but have to learn
the more complex full statistical model including the
dependence on θ0. The morphing-aware versions make
maximal use of the physics structure of the process and all
the training data, but large morphing weights can dramati-
cally increase the errors of the individual component
estimators log r̂cðxÞ. We demonstrate this for our example
process in Fig. 9: in some regions of parameter space, in
particular far away from the basis points, the errors on a
morphing-aware estimator log r̂ðxjθ; θ1Þ can easily be 100
times larger than the individual errors on the component
estimators log r̂cðxÞ. The θ0 dependence on this error
depends on the choice of the basis points; this uncertainty
can thus be somewhat mitigated by optimizing the basis
points or by combining several different bases.

2. Diagnostics

After discussing the sources of variance, let us now turn
towards diagnostic tools that can help quantify the size of
estimator errors and to assign a modeling uncertainty for
the statistical analysis. These methods are generally closure
tests: we can check the likelihood ratio estimators for some
expected behavior, and use deviations either to correct the
results (as in the calibration procedures described in
Sec. III D), to define uncertainty bands, or to discard
estimators altogether. We suggest the following tests:

Ensemble variance.—Repeatedly generating new train-
ing data (or bootstrapping the same training sample)
and training the estimators again gives us an ensemble
of predictions fr̂rðxjθ0; θ1Þg. We can use the ensemble
variance as a measure of uncertainty of the prediction
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that is due to the variance in the training data and
random seeds used during the training.

Reference hypothesis variation.—Any estimated like-
lihood ratio between two hypotheses θA, θB

r̂ðxjθA; θBÞ ¼
r̂ðxjθA; θ1Þ
r̂ðxjθB; θ1Þ

ð48Þ

should be independent of the choice of the reference
hypothesis θ1 used in the estimator r̂. Training
several independent estimators with different values
of θ1 thus provides another check of the stability of
the results [30].
Much like the renormalization and factorization

scale variations that are ubiquitous in particle physics
calculations, this technique does not have a proper
statistical interpretation in terms of a likelihood
function. We can still use it to qualitatively indicate
the stability of the estimator under this hyperpara-
meter change.

Ratio expectation.—As discussed above, the expectation
value of the estimated likelihood ratio assuming the
denominator hypothesis should be very close to one.
We can numerically calculate this expectation value
R̂ðθÞ, see Eq. (43). In Sec. III D 2 we argued that this
expectation value can be used to calibrate the estima-
tors, but that this calibration can actually decrease the
performance in certain situations.
If expectation calibration is used, the calibration

itself has a nonzero variance from the finite sample size
used to calculate the expectation value R̂ðθÞ. As we

pointed out in Sec. III D 2, we can calculate this source
of statistical uncertainty, at least under the assumption
of a perfect estimator with r̂ðxjθ0; θ1Þ ¼ rðxjθ0; θ1Þ.
The result given in Eq. (45) provides uswith a handle to
calculate the statistical uncertainty of this calibration
procedure from the finite size of the calibration sample.
Note that for imperfect estimators, the variance of R½R̂�
may be significantly larger.
Independent ofwhether expectation calibration is part

of the estimator, the deviation of the expectation R̂ðθÞ
from one can serve as a diagnostic tool to check for
mismodeling of the estimator.We can take log R̂ðθÞ as a
measure of the uncertainty of log r̂ðxjθ; θ1Þ. As in the
case of the reference hypothesis variation, there is no
consistent statistical interpretation of this uncertainty,
but this does not mean that it is useless as a closure test.

Reweighting distributions.—A good estimator r̂ðxjθ0; θ1Þ
should satisfy

pðxjθ0Þ ≈ r̂ðxjθ0; θ1Þpðxjθ1Þ: ð49Þ
We cannot evaluate the pðxjθ0Þ to check this relation
explicitly. However, we can sample events fxeg from
them. This provides another diagnostic tool [30]: we
can draw a first sample as xe ∼ pðxejθ0Þ, and draw a
second sample as xe ∼ pðxejθ1Þ and reweight it with
r̂ðxejθ0; θ1Þ. For a good likelihood ratio estimator, the
two samples should have similar distributions. This can
easily be tested by training a discriminative classifier
between the samples. If a classifier can distinguish
between the sample from the first hypothesis and the
sample drawn from the second hypothesis and re-
weighted with the estimated likelihood ratio, then
r̂ðxjθ0; θ1Þ is not a good approximation of the true
likelihood ratio rðxjθ0; θ1Þ. Conversely, if the classifier
cannot separate the two classes, the classifier is either
not efficient, or the likelihood ratio is estimated well.

Note that passing these closure tests is not a guarantee for
a good estimator of the likelihood ratio. In Sec. IV B we
will discuss how we can nevertheless derive exclusion
limits that are guaranteed to be statistically correct, i.e., that
might not be optimal, but are never wrong.
In our example process, we will use a combination of the

first two ideas of this list: we will create copies of estimators
with independent training samples and random seeds during
training, as well as with different choices of the reference
hypothesis θ1, and analyze the median and envelope of the
predictions.

IV. LIMIT SETTING

The final objective of any EFT analysis is exclusion limits
on theparametersof interest at a given confidence level. These
can be derived in one of twoways. The Neyman construction
based on toy experiments provides a generic and fail-safe
method; we will discuss it in Sec. IVB. But since the
techniques developed in the previous section directly provide

FIG. 9. Uncertainty Δ log r̂ðxejθ; θ1Þ of morphing-aware
estimators due to uncertainties Δ log r̂cðxejθ; θ1Þ on the individ-
ual basis ratios as a function of θ. We fix θ1 as in Eq. (47)
and show one random event xe, the results for other events are
very similar. We assume iid Gaussian uncertainties on the
log r̂cðxjθ; θ1Þ and use Gaussian error propagation. The white
dots show the position of the basis points θc. Small uncertainties
in the individual basis estimators r̂cðxejθ; θ1Þ are significantly
increased due to the large morphing weights and can lead to large
errors of the combined estimator r̂ðxejθ; θ1Þ.

GUIDE TO CONSTRAINING EFFECTIVE FIELD … PHYS. REV. D 98, 052004 (2018)

052004-19



an estimate for the likelihood ratio, we can alternatively
apply existing statistical methods for likelihood ratios as
test statistics. This much more efficient approach will be the
topic of the following section.

A. Asymptotics

Consider the test statistics

qðθÞ ¼ −2
X
e

log rðxejθ; θ̂Þ

¼ −2
X
e

ðlog rðxejθ; θ1Þ − log rðxejθ̂; θ1ÞÞ ð50Þ

for a fixed number N of observed events fxeg with the
maximum-likelihood estimator

θ̂ ¼ argmax
θ

X
e

log rðxejθ; θ1Þ: ð51Þ

In the asymptotic limit, the distribution according to the
null hypothesis, pðqðθÞjθÞ, is given by a chi-squared
distribution. The number of degrees of freedom (d.o.f.) k
is equal to the number of parameters θ. This result by Wilks
[83] allows us to translate an observed value qobsðθÞ
directly to a p-value that measures the confidence with
which θ can be excluded:

pθ ≡
Z

∞

qobsðθÞ
dqpðqjθÞ ¼ 1 − Fχ2ðqobsðθÞjkÞ; ð52Þ

where Fχ2ðxjkÞ is the cumulative distribution function of
the chi-squared distribution with k d.o.f. In our example
process k ¼ 2, for which this simplifies to

pθ ¼ exp

�
−
qobsðθÞ

2

�
: ð53Þ

In particle physics it is common practice to calculate
“expected exclusion contours” by calculating the expected
value of qobsðθÞ based on a large “Asimov” data set
generated according to some θ0 [84]. With Eq. (52) this
value is then translated into an expected p-value.12

In practice we cannot access the true likelihood ratio
defined on the full observable space and thus also not qðθÞ.
But if the error of an estimator r̂ðxjθ0; θ1Þ compared to the
true likelihood ratio is negligible, we can simply calculate

q̂ðθÞ ¼ −2
X
e

log r̂ðxejθ; θ̂Þ ð54Þ

with maximum likelihood estimator θ̂ also based on the
estimated likelihood ratio. The p-value can then be read off
directly from the estimator output, substituting q̂ for q
in Eq. (52).
Under this assumption and in the asymptotic limit,

constructing confidence intervals is thus remarkably simple
and computationally cheap: after training an estimator
r̂ðxjθ; θ1Þ as discussed in the previous section, the observed
events fxeg are fed into the estimator for each value of θ on
some parameter grid. From the results we can read off the
maximum likelihood estimator q̂ðθÞ and calculate the
observed value of the test statistics q̂ðθÞ for each θ.
Equation (52) then translates these values to p-values,
which can then be interpolated between the tested θ points
to yield the final contours.
To check whether these asymptotic properties apply to a

likelihood ratio estimator, we can use the diagnostic tools
discussed in Sec. III F 2. In addition, we can explicitly
check whether the distribution of qðθÞ actually follows a
chi-squared distribution by generating toy experiments for
a few θ points. If it does, the asymptotic results are likely to
apply at other points in parameter space as well. If the
variance of the toy experiments is larger than expected from
the chi-squared distribution, the residual variance may be
taken as an error estimate on the estimator prediction.

B. Neyman construction

Rather than relying on the asymptotic properties of the
likelihood ratio test, we can construct the distribution of a
test statistic with toy experiments. This is computationally
more expensive, but useful if the number of events is not in
the asymptotic regime or if the uncertainty of the estimators
cannot be reliably quantified. Constraints derived in this
way are conservative: even if the likelihood ratio is
estimated poorly, the resulting contours might not be
optimal, but they are never wrong (at a specified confidence
level).
A good choice for the test statistics is the estimated

profile log likelihood ratio q̂ðθÞ given in Eq. (54), which
allows us to compare the distribution of the toy experiments
directly to the asymptotic properties discussed in the
previous section. However, its construction requires finding
the maximum likelihood estimator for every toy experi-
ment. This increases the necessary computation time
substantially, especially in high-dimensional parameter
spaces. An alternative test statistics is the estimated log
likelihood ratio with respect to some fixed hypothesis,
which need not be identical to the reference denominator θ1

12For k ¼ 1, this standard procedure reproduces the median ex-
pectedp-value. Note however that this is not true anymore formore
than one parameter of interest. In this case, the median expected
p-value can be calculated based on a different, but not commonly
used, procedure. It is based on the fact that the distribution of q
according to an alternate hypothesis, pðqðθÞjθ0Þ, is given by a
noncentral chi-squared distribution [85]. In the asymptotic limit,
the noncentrality parameter is equal to the expectation value
E½qðθÞjθ0� [84]. This allows us to calculate for instance the median
expected qðθÞ assuming some value θ0 based on the Asimov data.
Combining all the pieces, the median expected p-value pθ with
which θ can be excluded under the assumption that θ0 is true is then
given by pexpected from θ0

θ ¼ 1 − Fχ2ðF−1
χ2nc
ð1
2
jk;E½qðθÞjθ0�ÞjkÞ, where

Fχ2ðxjkÞ is the cumulative distribution function for the chi-squared
distribution with k d.o.f. andF−1

χ2nc
ðpjk;ΛÞ is the inverse cumulative

distribution function for the noncentral chi-squared distribution
with k d.o.f. and noncentrality parameter Λ.
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used in the likelihood ratio estimators. In the EFTapproach,
the natural choice is the estimated likelihood ratio with
respect to the SM,

q̂0ðθÞ≡ −2
X
e

log r̂ðxejθ; θSMÞ: ð55Þ

Using this test statistic rather than the profile likelihood
ratio defined in Eq. (50) is expected to lead to stronger
constraints if the true value of θ is close to the SM point, as
expected in the EFT approach, and less powerful bounds if
the true value is substantially different from the SM.
In practice we can efficiently calculate the distribution of

q̂ð0ÞðθÞ after n events by first calculating the distribution of
q̂ð0ÞðθÞ for one event and convolving the result with itself
(n − 1) times.

C. Nuisance parameters

The tools developed above also support nuisance param-
eters, for instance to model systematic uncertainties in the
theory calculation or the detector model. One strategy is to
train parametrized estimators on samples generated with
different values of the nuisance parameters ν and let them
learn the likelihood ratio

r̂ðxjθ0; θ1; ν0; ν1Þ≡ p̂ðxjθ0; ν0Þ
p̂ðxjθ1; ν1Þ

ð56Þ

with its dependence on the nuisance parameters. As test
statistics we can then use the estimator version of the usual
profile log likelihood ratio,

q̂ðθÞ ¼ −2
X
e

log

�
rðxejθ; θ̂; ˆ̂ν; ν̂Þ

qð ˆ̂νÞ
qðν̂Þ

�
ð57Þ

with constraint terms qðνÞ,

ˆ̂ν ¼ argmax
ν

X
e

log

�
r̂ðxejθ; θ1; ν; ν1Þ

qðνÞ
qðν1Þ

�
; and ð58Þ

ðθ̂; ν̂Þ ¼ argmax
ðθ;νÞ

X
e

log

�
r̂ðxejθ; θ1; ν; ν1Þ

qðνÞ
qðν1Þ

�
: ð59Þ

The profile log likelihood ratio has two advantages: it is
pivotal, i.e., its value and its distribution do not depend on
the value of the nuisance parameter, and it has the
asymptotic properties discussed in Sec. IVA.
Similarly, we can train the score including nuisance

parameters,

t̂ðxjθ0; ν0Þ ¼ ∇ðθ;νÞ log ½p̂ðxjθ; νÞqðνÞ�jθ0;ν0 : ð60Þ

If the constraints qðνÞ limit the nuisance parameters to a
relatively small region around some ν0, i.e., a range in

which the shape of the likelihood function does not change
significantly, the SALLY and SALLINO methods seem
particularly appropriate.
Finally, an adversarial component in the training pro-

cedure lets us directly train pivotal estimators r̂ðxjθ0; θ1Þ,
i.e., that do not depend on the value of the nuisance
parameters [86]. Compared to learning the explicit depend-
ence on ν, this can dramatically reduce the dimensionality
of the parameter space as early as possible, and does not
require manual profiling. However, the estimators will
generally not converge to the profile likelihood ratio, so
its asymptotic properties do not apply and limit setting
requires the Neyman construction.

V. RESULTS

We now apply the analysis techniques to our example
process of WBF Higgs production in the 4l decay mode.
We first study the idealized setup discussed in Sec. II D 2,
in which we can assess the techniques by comparing their
predictions to the true likelihood ratio. In Sec. V B we then
calculate limits in a more realistic setup.

A. Idealized setup

1. Quality of likelihood ratio estimators

Table IV summarizes the performance of the different
likelihood ratio estimators in the idealized setup. For
50 000 events fxeg drawn according to the SM, we evaluate
the true likelihood ratio rðxejθ0; θ1Þ as well as the estimated
likelihood ratios r̂ðxejθ0; θ1Þ for 1000 values of θ0 sampled
randomly in ½−1; 1�2. As a metric we use the expected
mean squared error on the log likelihood ratio

ε½r̂ðxÞ� ¼
X
θ0

πðθ0Þ
1

N

X
e

½ðlog r̂ðxejθ0; θ1Þ

− log rðxejθ0; θ1ÞÞ2�: ð61Þ

The 1000 tested values of θ0 are weighted with a Gaussian
prior

πðθÞ ¼ 1

Z
N ðjjθjjj0; 2 · 0.22Þ ð62Þ

with normalization factor Z such that
P

θ0
πðθÞ ¼ 1. In

addition we show the expected trimmed mean squared
error, which truncates the top 5% and bottom 5% of events
for each θ. This allows us to analyze the quality of the
estimators for the bulk of the phase space without being
dominated by a few outliers. In Table IV and in the figures
of this section, we only show results for a default set of
hyperparameters for each likelihood ratio estimators. These
default setups are defined in Appendix B. Results for other
hyperparameter choices are given in Appendix C.
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The best results come from parametrized estimators that
combine either a classifier decision function or ratio
regression with regression on the score: the CASCAL
and RASCAL strategies provide very accurate estimates of
the log likelihood ratio. SALLY, parametrized ROLR, and
parametrized CARL perform somewhat worse. For CARL
and ROLR, parametrized estimators consistently perform
better than the corresponding point-by-point versions. All
these ML-based strategies significantly outperform the
traditional one- or two-dimensional histograms and the
approximate frequentist computation.
The morphing-aware versions of the parametrized

estimators lead to a poor performance, comparable or
worse than the two-dimensional histogram approach. As
anticipated in Sec. III F, the large weight factors and the
sizable cancellations between them blow up small errors on
the estimation of the individual basis estimators r̂iðxÞ to
large errors on the combined estimator.

We find that probability calibration as discussed in
Sec. III D 1 improves the results in almost all cases, in
particular for the CARL method. An additional step of
expectation calibration (see Sec. III D 2) after the proba-
bility calibration does not lead to a further improvement,
and in fact often increases the variance of the estimator
predictions. We therefore only use probability calibration
for the results presented here.
The choice of the training sample is less critical, with

nearly identical results between the baseline and random θ
samples. For the CARL approach, shallow networks with
two hidden layers perform better, while ROLR works best
for three hidden layers and the score-based strategies
benefit from a deeper network with five hidden layers.
In Fig. 10 we show scatter plots between the true and

estimated likelihood ratios for a fixed hypothesis θ0. The
likelihood ratio estimate from histograms of observables is
widely spread around the true likelihood ratio, reflecting

TABLE IV. Performance of the different likelihood ratio estimation techniques in our example process. The metrics shown are the
expected mean squared error on the log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last column
denote estimators shown in the following figures. Here we only give results based on default settings, which are defined in Appendix B.
An extended list of results that covers more estimators is given in Appendix C.

Expected Mean squared error (MSE)

Strategy Setup All Trimmed Figures

Histogram pT;j1;Δϕjj 0.056 0.0106 ✓
pT;j1 0.088 0.0230
Δϕjj 0.160 0.0433

AFC pT;j1;Δϕjj 0.059 0.0091
pT;j1; mZ2; mjj;Δηjj;Δϕjj 0.078 0.0101

CARL (PbP) PbP 0.030 0.0111 Fig. 12
CARL (parametrized) Baseline 0.012 0.0026 ✓

Random θ 0.012 0.0028
CARL (morphing aware) Baseline 0.076 0.0200 Fig. 12

Random θ 0.086 0.0226
Morphing basis 0.156 0.0618

ROLR (PbP) PbP 0.005 0.0022
ROLR (parametrized) Baseline 0.003 0.0017 ✓

Random θ 0.003 0.0014
ROLR (morphing aware) Baseline 0.024 0.0063

Random θ 0.022 0.0052
Morphing basis 0.130 0.0485

SALLY 0.013 0.0002 ✓
SALLINO 0.021 0.0006

CASCAL (parametrized) Baseline 0.001 0.0002 ✓
Random θ 0.001 0.0002

CASCAL (morphing aware) Baseline 0.136 0.0427
Random θ 0.092 0.0268
Morphing basis 0.040 0.0081

RASCAL (parametrized) Baseline 0.001 0.0004 ✓
Random θ 0.001 0.0004

RASCAL (morphing aware) Baseline 0.125 0.0514
Random θ 0.132 0.0539
Morphing basis 0.031 0.0072
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the loss of information from ignoring most directions in the
observable space. CARL performs clearly better. ROLR
and SALLY offer a further improvement. Again, the best
results come from the CASCAL and RASCAL strategies,
both giving predictions that are virtually one-to-one with
the true likelihood ratio.
We go beyond a single benchmark point θ0 in Fig. 11.

This scatter plot compares true and estimated likelihood
ratios for different values of θ0, taking the expectation value
over x. We find that the CARL, ROLR, CASCAL, and
RASCAL approaches converge to the correct likelihood
ratio in this expectation value. For the SALLY and
SALLINO techniques we find larger deviations, pointing
towards the breakdown of the local model approximation.
Much more obvious is the loss of information in the
traditional histogram approach, which is clearly not asymp-
totically exact.
The point-by-point, agnostic parametrized, and morph-

ing-aware versions of the CARL strategy are compared in
Fig. 12. As expected from Table IV, the parametrized
strategy performs better than the point-by-point version,

and both are clearly superior to the morphing-aware
estimator.

2. Efficiency and speed

With infinite training data, many of the algorithms
should converge to the true likelihood ratio. But generating
training samples can be expensive, especially when a full
detector simulation is used. An important question is
therefore how much training data the different techniques
require to perform well. In Fig. 13 we show the perfor-
mance as a function of the training sample size.
The SALLYapproach performs very well even with very

little data. Its precision stops improving eventually, show-
ing the limitations of the local model approximation. For
the other methods we find that the more information a
technique uses, the less training data points it requires. The
RASCAL technique utilizes the most information from the
simulator, leading to an exceptional performance with
training samples of approximately 100 000 events. This
is in contrast to the most general CARL method, which

FIG. 10. True vs estimated likelihood ratios for a benchmark hypothesis θ0 ¼ ð−0.5;−0.5ÞT . Each dot corresponds to one event xe.
The CASCAL (right, red), RASCAL (right, orange), and SALLY (middle, blue) techniques can predict the likelihood ratio extremely
accurately over the whole phase space. All new techniques clearly lead to more precise estimates than the traditional histogram approach
(left, orange).

FIG. 11. True vs estimated expected log likelihood ratio. Each dot corresponds to one value of θ0, where we take the expectation over
x ∼ pðxjθSMÞ. The new techniques are less biased than the histogram approach (left, orange).
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does not use any of the extra information from the simulator
and requires a 2 orders of magnitude larger training sample
for a comparable performance.
In Fig. 14 we show the evolution of the likelihood

estimation error and the cross entropy of the classification
problem during the training of the parametrized estimators.
For comparison, we also show the optimal metrics based
on the true likelihood ratio, and the results of the two-
dimensional histogram approach. Once again we see that
either CASCAL or RASCAL leads to the best results. This
result also holds true for the cross entropy, hinting that the

techniques we use to measure continuous parameters might
also improve the power of estimators in discrete classi-
fication problems. Note that the CARL approach is more
prone to overfitting than the others, visible as a significant
difference between the metrics evaluated on the training
and validation samples.
Equally important to the training efficiency is the

computation time taken up by evaluating the likelihood
ratio estimators r̂ðxejθ0; θ1Þ. We compare example evalu-
ation times in Table V. The traditional histogram approach
takes the shortest time. But all tested algorithms are very

FIG. 12. Comparison of the point-by-point, parametrized, and morphing-aware versions of CARL. Top left: True vs estimated
likelihood ratios for a benchmark hypothesis θ0 ¼ ð−0.5;−0.5ÞT , as in Fig. 10. Each dot corresponds to one event xe. Top right: True vs
estimated expected log likelihood ratio, as in Fig. 11. Each dot corresponds to one value of θ0, where we take the expectation over
x ∼ pðxjθSMÞ. The parametrized estimator outperforms the point-by-point one and particularly the morphing-aware version.

FIG. 13. Performance of the techniques as a function of the training sample size. As a metric, we show the mean squared error (left)
and trimmed mean squared error on log rðrjθ0; θ1Þ weighted with a Gaussian prior, as discussed in the text. Note that we do not vary the
size of the calibration data samples. The number of epochs is increased such that the number of epochs times the training sample size is
constant; all other hyperparameters are kept constant. The SALLY method works well even with very little data, but plateaus eventually
due to the limitations of the local model approximation. The other algorithms learn faster the more information from the simulator
is used.
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fast: the likelihood ratio for fixed hypotheses ðθ0; θ1Þ for
50 000 events fxeg can always be estimated in around one
second or less. The local score regression method is
particularly efficient, since the estimator t̂ðxjθscore; θ1Þ
has to be evaluated only once to estimate the likelihood
ratio for any value of θ0. Only the comparably fast step
of density estimation has to be repeated for each tested
value of θ0.
So after investing some training time upfront, all the

measurement strategies developed here can be evaluated on
any events with very little computational cost and amortize

quickly. While this is not the focus of our paper, note that
this distinguishes our approaches from the matrix element
method and optimal observable techniques. These well-
established methods require the computationally expensive
evaluation of complicated numerical integrals for every
evaluation of the likelihood ratio estimator.

3. Physics results

The most important result of an EFT measurement
is observed and expected exclusion contours, either based
on asymptotics or toy experiments. In the asymptotic
approach, the expected contours are determined just by
the likelihood ratio evaluated on a large Asimov data set, as
described in Sec. IVA. Figure 15 shows this expected log
likelihood ratio in the SM after 36 events over a one-
dimensional slice of the parameter space. In Fig. 16 we
show the corresponding expected exclusion limits on the
two Wilson coefficients. To estimate the robustness of the
likelihood ratio estimators, each algorithm is run 5 times
with different choices of the reference hypothesis; inde-
pendent training, calibration, and evaluation samples; and
independent random seeds during training. The lines show
the median of the five replicas, while the shaded bands
show the envelope. While this error band does not have a
clear statistic interpretation, it does provide a diagnostic
tool for the variance of the estimators.
A traditional histogram-based analysis of jet pT andΔϕjj

leads to overly conservative results. It is interesting to note
that this simple analysis works reasonably well in the region
of parameter space with fW > 0 and fWW > 0, which is
exactly the part of parameter space where informative high-
energy events interfere mostly constructively with the SM

FIG. 14. Learning curve of the parametrized models. The solid lines show the metrics evaluated on the training sample, the dots
indicate the performance on the validation sample. Note that these numbers are not comparable to the metrics in Table IV and Fig. 13,
which are weighted with the prior in Eq. (62). These results also do not include calibration. Left: Mean squared error of log r̂ðxjθ0; θ1Þ.
Right: Binary cross entropy of the classification based on ŝðxjθ0; θ1Þ between the numerator and denominator samples. The solid grey
line shows the “optimal” performance based on the true likelihood ratio. The CASCAL and RASCAL techniques converge to a
performance close to the theoretic optimum. The CARL approach (green), based on minimizing the cross entropy, shows signs of
overfitting. All machine-learning-based methods outperform traditional histograms (dashed orange).

TABLE V. Computation times of evaluating r̂ðxjθ0; θ1Þ in the
different algorithms. We distinguish between steps that have to be
calculated once per x and those which have to be repeated for
every evaluated value of θ0. These numbers are from one run of
our algorithms with default settings on the NYU HPC cluster on
machines equipped with Intel Xeon E5-2690v4 2.6 GHz CPUs
and NVIDIA P40 GPUs with 24 GB RAM, using a batch of
50000 events fxeg, and taking the mean over 1017 values of θ0.
The local score regression method and the traditional histogram
method are particularly fast. But all techniques are many orders of
magnitude faster to evaluate than the matrix element method or
optimal observables.

Evaluation time [μs]

Algorithm per xe per xe and θ0

Histogram 0.2
CARL 19.7
SALLY 25.4 0.1
ROLR 19.7
CASCAL 25.1
RASCAL 21.7
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amplitude. In the fW < 0 region of parameter space,
destructive interference dominates in the important regions
of phase space with large momentum transfer. An extreme
example is the “amplitude-through-zero” effect shown in the
left panel of Fig. 2. Simple histograms with a rough binning
generally lead to a poor estimation of the likelihood ratio in
such complicated kinematic signatures.
We find that the new ML-based strategies allow us to

place visibly tighter constraints on the Wilson coefficients
than the doubly differential histogram. In particular the
CARLþ score and regressionþ score estimators lead to
exclusion contours that are close to the contours based on
the true likelihood ratio. In this analysis based on asymp-
totics, however, it is possible for the estimated contours to

be slightly too tight, wrongly marking parameter regions
as excluded at a given confidence level. This problem can
be mitigated by profiling over systematic uncertainties
assigned to the likelihood ratio estimates.
Exclusion limits based on the Neyman construction do

not suffer from this issue: contours derived in this way
might be not optimal, but they are never wrong. We
generate toy experiments to estimate the distribution of
the likelihood ratio with respect to the SM for individual
events. Repeatedly convolving this single-event distribu-
tion with itself, we find the distribution of the likelihood
ratio after 36 observed events.
The expected corresponding expected exclusion limits

are shown in Fig. 17. Indeed, errors in the likelihood ratio

FIG. 15. Expected likelihood ratio with respect to the Standard Model along a one-dimensional slice of the parameter space. We
assume 36 observed events and the SM to be true. For each estimator, we generate five sets of predictions with different reference
hypotheses, independent data samples, and different random seeds. The lines show the median of this ensemble, the shaded error bands
the envelope. All machine-learning-based methods reproduce the true likelihood function well, while the doubly differential histogram
method underestimates the likelihood ratio in the region of negative Wilson coefficients.

FIG. 16. Expected exclusion contours based on asymptotics at 68% C.L. (innermost lines), 95% C.L., and 99.7% C.L. (outermost
lines). We assume 36 observed events and the SM to be true. As test statistics, we use the profile likelihood ratio with respect to the
maximum-likelihood estimator. For each estimator, we generate five sets of predictions with different reference hypotheses, independent
data samples, and different random seeds. The lines show the median of this ensemble, the shaded error bands the envelope. The new
techniques based on machine learning, in particular the CASCAL and RASCAL techniques, lead to expected exclusion contours very
close to those based on the true likelihood ratio. An analysis of a doubly differential histogram leads to much weaker bounds.
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estimation never lead to undercoverage, i.e., the exclusion
of points that should not be excluded based on the true
likelihood ratio. Again we find that histograms of kin-
ematic observables only allow us to place rather weak
bounds on the Wilson coefficients. SALLY performs
clearly better, with excellent performance close to the
SM. Deviations from the optimal bounds become visible
at the 2σ level, hinting at the breakdown of the local model
approximation there. The best results come once more from
the CASCAL and RASCAL methods. Both of these
strategies yield exclusion bounds that are virtually indis-
tinguishable from those based on the true likelihood ratio.
As a side note, a comparison of the expected contours

based on asymptotics to those based on the Neyman
construction shows the Neyman results to be tighter.

This reflects the different test statistics used in the two
figures: in the asymptotics case, we use the profile like-
lihood ratio with respect to the maximum likelihood
estimator, which itself fluctuates around the true value of
θ (which in our case is assumed to be the SM). In the
Neyman construction we use the likelihood ratio with
respect to the SM, leading to tighter contours if the true
value is in fact close to the SM, and weaker constraints if it
is very different.

B. Detector effects

We have now established that the measurement strategy
works very well in an idealized setup, where we can
compare them to the true likelihood ratio. In a next step,

FIG. 17. Expected exclusion contours based on the Neyman construction with toy experiments at 68% C.L. (innermost lines),
95% C.L., and 99.7% C.L. (outermost lines). We assume 36 observed events and the SM to be true. As test statistics, we use the
likelihood ratio with respect to the SM. All machine-learning-based methods let us impose much tighter bounds on the Wilson
coefficients than the traditional histogram approach (left, dotted orange). The Neyman construction guarantees statistically correct
results: no contour based on estimators excludes parameter points that should not be excluded. The expected limits based on the
CASCAL (right, lavender) and RASCAL (right, red) techniques are virtually indistinguishable from the true likelihood contours.

FIG. 18. Ratio of the estimated likelihood ratio r̂ðxjθ0; θ1Þ to the joint likelihood ratio rðx; zjθ0; θ1Þ, which is conditional on the
parton-level momenta and other latent variables. As a benchmark hypothesis we use θ0 ¼ ð−0.5;−0.5ÞT , the events are drawn according
to the SM. The spread common to all methods shows the effect of the smearing on the likelihood ratio. The additional spread in the
histogram, CARL, and ROLR methods is due to a poorer performance of these techniques.
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we turn towards a setup with a rudimentary smearing
function that models the effect of the parton shower and the
detector response on the observables. In this setting, the
true likelihood is intractable, so we cannot use it as a
baseline to validate the predictions any more. But we can
still discuss the relative ordering of the exclusion contours
predicted by the different estimators.
Figure 18 shows the relation between the true joint

likelihood ratio rðx; zjθ0; θ1Þ, which is conditional on the
parton-level momenta z and other latent variables, to the
estimated likelihood ratio r̂ðxjθ0; θ1Þ, which only depends
on the observables x. We see that this relation is stochas-
tically smeared out around 1. Recall that in the idealized
scenario the best estimators described the true likelihood
ratio perfectly, as shown in Fig. 10. This strongly suggests
that the spread visible here is not due to errors of the
likelihood ratio estimators, but rather shows the difference
between the joint and true likelihood ratios, as illustrated
in Fig. 5.
In Fig. 19 we show the expected exclusion contours

based on the Neyman construction, which guarantees
statistically correct results. The conclusions from the
idealized setting are confirmed: a measurement based on
the likelihood ratio estimators leads to robust bounds that
are clearly more powerful than those based on a histogram.
Once again, the CASCAL and RASCAL algorithms lead to
the strongest limits.

VI. CONCLUSIONS

We have developed and analyzed a suite of new analysis
techniques for measurements of continuous parameters in
LHC experiments based on simulations and machine
learning. Exploiting the structure of particle physics

processes, they extract additional information from the
event generators, and use this information to train precise
estimators for likelihood ratios.
Our approach is designed for problems with large

numbers of observables, where the likelihood function is
not tractable and traditional methods based on individual
kinematic variables often perform poorly. It scales well to
high-dimensional parameter spaces such as that of effective
field theories. The new methods do not require any
approximations on the hard process, parton shower, or
detector effects, and the likelihood ratio for any event and
hypothesis pair can be evaluated in microseconds. These
two properties set it apart from the matrix element method
or optimal observables, which rely on crude approxima-
tions for the shower and detector and require the evaluation
of typically very expensive integrals.
Using Higgs production in weak boson fusion in the four-

lepton mode as a specific example process, we have
evaluated the performance of the different methods and
compared them to a classical analysis of the jet momentum
and azimuthal angle between the tagging jets. We find that
the new algorithms provide very precise estimates of
arbitrary likelihood ratios. Using them as a test statistics
allows us to impose significantly tighter constraints on the
EFT coefficients than the traditional kinematic histograms.
Out of the several methods introduced and discussed in

this paper, two stand out. The first, which we call SALLY, is
designed for parameter regions close to the StandardModel:
(1) As training data, the algorithm requires a sample of

fully simulated events, each accompanied by the
corresponding joint score at the SM: the relative
change of the parton-level likelihood function of the
parton-level momenta associated with this event
under small changes of the theory parameters away

FIG. 19. Expected exclusion contours based on the Neyman construction with toy experiments at 68% C.L., 95% C.L., and 99.7% C.L.
with smearing. We assume 36 observed events and the SM to be true. As test statistics, we use the likelihood ratio with respect to the SM.
In the setup with smearing we cannot these results to the true likelihood contours. But since the Neyman construction is guaranteed to
cover, these expected limits are correct. The new techniques, in particular CASCAL (right, dashed red) and RASCAL (right, dash-dotted
orange), allow us to set much tighter bounds on the Wilson coefficients than a traditional histogram analysis (left, dotted orange).
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from the SM. This can be calculated by evaluating
the squared matrix element at the same phase-space
points for different theory parameters. We can thus
extract this quantity from Monte Carlo generators
such as MADGRAPH.

(2) Regressing on this data, we train an estimator (for
instance realized as a neural network) that takes as
input an observation and returns the score at the SM.
This function compresses the high-dimensional
observable space into a vector with as many compo-
nents as parameters of interest. If the parameter space
is high dimensional, this can be even further com-
pressed into the scalar product between the score
vector and the difference between two parameter
points.

(3) The estimated score (or the scalar product between
score and parameter difference) can then be treated
like any set of observables in a traditional analysis.
We can fill histograms of this quantity for different
hypotheses, and calculate likelihood ratios from them.

There are two key ideas that underlie this strategy. First,
note that the training data only consists of the joint score,
which depends on the parton-level four-momenta of an
event. But during the training the estimator converges to the
actual score of the distribution of the observables, i.e., the
relative change of the actual likelihood function under
infinitesimal changes of the parameters. We have proven
this powerful, yet surprisingly simple relation in this paper.
Second, close to the Standard Model (or any other

reference parameter point), the score provides the sufficient
statistics: it encapsulates all information on the local
approximation of the statistical model. In other words, if
the score is estimated well, the dimensionality reduction
from high-dimensional observables into a low-dimensional
vector does not lose any information on the parameters. The
estimated score is a machine-learning version of the
optimal observable idea, but requires neither approxima-
tions of the parton shower or detector treatment nor
numerically expensive integrals.
As a matter of fact, the dimensionality reduction can be

taken one step further. We have introduced the SALLINO
technique that compresses the estimated score vector to a
single scalar function, again without loss of power in the
local approximation, and independent of the number of
theory parameters.
In our example process, these simple and robust analysis

strategies work remarkably well, especially close to the
Standard Model. Deviations appear at the 2σ level, but even
there it allows for much stronger constraints than a tradi-
tional analysis of kinematic variables. It requires signifi-
cantly less data to train than the other discussed methods.
Since the SALLINO method can compress any observation
into a single number without losing much sensitivity, even
for hundreds of theory parameters, this approach scales

exceptionally well to high-dimensional parameter spaces,
as in the case of the SMEFT.
The second algorithm we want to highlight here is the

RASCAL technique. Using even more information avail-
able from the simulator, it learns a parametrized likelihood
ratio estimator: one function that takes both the observation
and a theory parameter point as input and returns an
estimate for the likelihood ratio between this point and a
reference hypothesis given the observation. This estimator
is constructed as follows:
(1) Training this parametrized estimator requires data for

many different values of the tested parameter point
(the numerator in the likelihood ratio). For simplicity,
the reference hypothesis (the denominator in the
likelihood ratio) can be kept fixed. For each of these
hypothesis pairs, event samples are generated accord-
ing to the numerator and denominator hypothesis. In
addition, we extract the joint likelihood ratio from the
simulator: essentially the squared matrix element
according to the numerator theory parameters divided
by the squared matrix element according to the
denominator hypothesis, evaluated at the generated
parton-level momenta. Again, we also need the joint
score, i.e., the relative change of the parton-level
likelihood function under infinitesimal changes of the
theory parameters. Both quantities can be extracted
from matrix element codes.

(2) A neural network models the estimated likelihood
ratio as a function of both the observables and the
value of the theory parameters (of the numerator in
the likelihood ratio). We can calculate the gradient of
the network output with respect to the theory
parameter and thus also the estimated score. The
network is trained by minimizing the squared error
of the likelihood ratio plus the squared error of the
score, in both cases with respect to the joint
quantities extracted from the simulator.

(3) After the training phase, the likelihood ratio can
optionally be calibrated, for instance through iso-
tonic regression.

This technique relies on a similar trick as the local score
regression method: the likelihood ratio learned during the
training converges to the true likelihood ratio, even though
the joint ratio information in the training data is conditional
on the parton-level momenta. The RASCAL method is
among the best-performing methods of all analyzed tech-
niques. It requires significantly smaller training samples
than all other approaches, with the exception of SALLYand
SALLINO. Expected exclusion limits derived in this way
are virtually indistinguishable from those based on the true
likelihood ratio.
On top of these two approaches, we have developed,

analyzed, and compared several other methods.We refer the
reader to the main part and the Appendix of this document,
where all these algorithms are discussed in depth.
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All tools developed here are suitable for large-scale LHC
analyses. On the software side, only few modifications of
existing tools are necessary. Most importantly, matrix-
element generators should provide a user-friendly interface
to calculate the squared matrix element for a given
configuration of four-momenta and a given set of physics
parameters. With such an interface, one could easily
calculate the joint score and joint likelihood ratio data that
is needed for the new algorithms. The training of the
estimators is then straightforward, in particular for the
SALLY and SALLINO methods. The limit setting follows
established procedures, either based on the Neyman con-
struction with toy experiments, or (since the tools provide
direct estimates for the likelihood ratio) using asymptotic
formulas.
While we have focused on the example of effective field

theory measurements, these techniques equally apply to
other measurements of continuous parameter in collider
experiments as well as to a large class of problems outside
of particle physics [49]. Some of the techniques can also be
applied to improve the training of machine-learning-based
classifiers. Finally, while we restricted our analysis to
frequentist confidence intervals, as is common in particle
physics, the same ideas can be used in a Bayesian setting.
All in all, we have presented a range of new inference

techniques based on machine learning, which exploit the
structure of particle physics processes to augment training
data. They scale well to large-scale LHC analyses with
many observables and high-dimensional parameter spaces.
They do not require any approximations of the hard
process, parton shower, or detector effects, and the like-
lihood ratio can be evaluated in microseconds. In an
example analysis, these new techniques have demonstrated
the potential to substantially improve the precision and new
physics reach of the LHC legacy results.
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APPENDIX A: SIMPLIFIED DETECTOR
DESCRIPTION

Whilemost of our results are based on an idealized perfect
measurement of parton-level momenta, we also consider a
toy smearing representing the effect of parton shower and
the detector. The total smearing function is given by

pðxjzÞ ¼
Y

l∈leptons
plðxljzlÞ

Y
j∈jets

pjðxjjzjÞ: ðA1Þ

Lepton momenta xl ¼ ðÊ; p̂T; η̂; ϕ̂Þ are smeared by

plðÊ; p̂T; η̂; ϕ̂jE; pT; η;ϕÞ ¼ N ðp̂T jpT; ð3 × 10−4 GeV−1p2
TÞ2Þ · δðÊ − E0ðp̂T; η̂;mlÞÞδðη̂ − ηÞδðϕ̂ − ϕÞ; ðA2Þ

while the distribution of the jet properties depending on the quark momenta is given by

pjðÊ; p̂T; η̂; ϕ̂jE; pT; η;ϕÞ ¼ ðN ðÊja0 þ a1
ffiffiffiffi
E

p
þ a2E; ðb0 þ b1

ffiffiffiffi
E

p
þ b2EÞ2Þ

þ cN ðÊjd0 þ d1
ffiffiffiffi
E

p
þ d2E; ðe0 þ e1

ffiffiffiffi
E

p
þ e2EÞ2ÞÞ

· δðp̂T − pT0ðÊ; η̂;mlÞÞN ðη̂jη; 0.12ÞN ðϕ̂jϕ; 0.12Þ: ðA3Þ

Here N ðxjμ; σ2Þ is the Gaussian distribution with mean μ
and variance σ2. The jet energy resolution parameters ai, bi,
c, di, and ei are based on the default settings of the jet
transfer function in MADWEIGHT [87]. The functions
E0ðpT; η; mÞ and pT0ðE; η; mÞ refer to the energy and
transverse momentum corresponding to an on-shell particle
with mass m.

APPENDIX B: MODEL ALMANAC

In Sec. III A we developed different estimators for the
likelihood ratio, focusing on the key ideas over technical
details. Here we fill in the gaps, explain all strategies in a
self-contained way, and document the settings we use for
our example process. To facilitate their comparison, we
describe all models in terms of a “training” and an
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“evaluation” part, even if this language is not typically used
e. g. for histograms.

1. Histograms of observables

Idea.—Most collider measurements are based on the
number of events or the cross section of a process in
a given phase-space region or on the differential cross
section or distribution of one or at most a few kinematic

observables v. Typical choices are the reconstructed
energies, momenta, angles, or invariant masses of
particles. Choosing the right set of observables for a
given measurement problem is all but trivial, but many
processes have been studied extensively in the liter-
ature. Once this choice is made, this strategy is simple,
fast, and intuitive. We illustrate the information used
by this approach in the top panels of Fig. 20.

FIG. 20. Example distributions to illustrate the doubly differential histogram analysis (top), the SALLY technique (middle), and the
CASCAL method (bottom). The left panels show the different spaces in which the densities and their ratios are estimated. On the right
we show the corresponding distributions of the estimated ratio r̂ (solid) and compare them to the true likelihood ratio distributions
(dotted). We use the benchmark θ0 ¼ ð−0.5;−0.5ÞT (blue) and θ1 as in Eq. (47) (orange).
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Requirements.—The histogram approach can be used in
the general likelihood-free setting: it only requires a
simulator that can generate samples fxg ∼ pðxjθÞ.

Structure.—Histograms are most commonly used point
by point in θ. If the problem has the morphing
structure discussed in Sec. II C 2, they can also be
applied in a morphing-aware parametrized way (we
have not implemented this for our example process).

Training.—After generating samples for both the numer-
ator and denominator hypotheses, the values of the
chosen kinematic variables vðxÞ are extracted, and
binned into separate histograms for the two hypotheses.

Calibration.—With sufficient training data, histograms
should be well calibrated, so we do not experiment
with an additional calibration stage.

Evaluation.—To estimate the likelihood ratio between
two hypotheses θ0 and θ1 for a given set of observ-
ables x, one has to extract the kinematic variables vðxÞ
and look up the corresponding bin contents in the
histograms for θ0 and θ1. Assuming equal binning for
both histograms, the likelihood ratio is simply esti-
mated as the ratio of bin contents.

Parameters.—The only parameters of this approach are
the choices of kinematic observables and the histo-
gram binning.

In our example process,we consider six different variants:
(i) A one-dimensional histogram of the transverse

momentum pT;j1 of the leading (higher-pT) jet with
80 bins.

(ii) A one-dimensional histogram of the absolute value
of the azimuthal angle Δϕjj between the two jets
with 20 bins.

(iii) A “coarse” two-dimensional histogram of these two
variables with ten bins in the pT;j1 direction and five
bins along Δϕjj.

(iv) A “medium” two-dimensional histogram of these
two variables with 20 bins in the pT;j1 direction and
ten bins along Δϕjj.

(v) A “fine” two-dimensional histogram of these two
variables with 30 bins in the pT;j1 direction and 15
bins along Δϕjj.

(vi) A “very fine” two-dimensional histogram of these
two variables with 50 bins in the pT;j1 direction and
20 bins along Δϕjj.

(vii) An “asymmetric” two-dimensional histogram of
these two variables with 50 bins in the pT;j1

direction and five bins along Δϕjj.
For each pair ðθ0; θ1Þ and each observable, the bin edges are
chosen such that the same expected number of events
according to θ0 plus the expected number of events
according to θ1 is the same in each bin.

2. Approximate frequentist computation (AFC)

Idea.—Approximate Bayesian computation is a very
common technique for likelihood-free inference in a

Bayesian setup. In its simplest form it keeps samples
according to the rejection probability of Eq. (29). This
amounts to an approximation of the likelihood func-
tion through kernel density estimation, which we can
isolate from the ABC sampling mechanism and use in
a frequentist setting. We call it approximate frequentist
computation (AFC) to stress the relation to ABC. Just
as ABC or the histogram approach, it requires the
choice of a summary statistics vðxÞ, which in our
example process we take to be a two-dimensional or
five-dimensional subset of the kinematic variables.

Requirements.—AFC can be used in the general like-
lihood-free setting: it only requires a simulator that
can generate samples fxg ∼ pðxjθÞ.

Structure.—We use AFC point by point in θ. If the
problem has the morphing structure discussed in
Sec. II C 2, it can also be applied in a morphing-
aware parametrized way.

Training.—For each event in the numerator and denom-
inator training samples, the summary statistics vðxÞ
are calculated and saved.

Calibration.—AFC can be calibrated as any other
technique on this list, but we left this for future work.

Evaluation.—The summary statistics vðxÞ is extracted
from the observation. For numerator and denominator
hypothesis separately, the likelihood at this point is
estimated with Eq. (30). The likelihood ratio estimate
is then simply given by the ratio between the estimated
numerator and denominator densities.

Parameters.—Just as for histograms, the choice of the
summary statistics is the most important parameter.
The performance of AFC also crucially depends on
the kernel and bandwidth ε. Too small values for the
bandwidth make large training samples necessary, too
large values lead to an oversmoothening and loss of
information.

In our example process, we consider two different
variants:

(i) A two-dimensional summary statistics space of the
leading jet pT and Δϕjj (see above). Both variables
are rescaled to zero mean and unit variance.

(ii) A five-dimensional summary statistics space of the
leading jet pT ,Δϕjj, the dijet invariant massmjj, the
separation in pseudorapidity between the jets Δηjj,
and the invariant mass of the lighter (off-shell)
reconstructed Z boson mZ2. All variables are re-
scaled to zero mean and unit variance.

We use Gaussian kernels with bandwidths between 0.01
and 0.5.

3. Calibrated classifiers (CARL)

Idea.—CARL was developed in Ref. [30]. The authors
showed that the likelihood ratio is invariant under any
transformation that is monotonic with the likelihood
ratio. In practice, this means that we can train a
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classifier between two samples generated from
the numerator and denominator hypotheses and
turn the classifier decision function ŝðxÞ into an
estimator for the likelihood ratio r̂ðxÞ. This relation
between ŝðxÞ and r̂ðxÞ can follow the ideal relation in
Eqs. (18) and (46). But even if this relation does
not hold, we can still extract a likelihood ratio
estimator from the classifier output through proba-
bility calibration.

Requirements.—CARL can be used in the general like-
lihood-free setting: it only requires a simulator that
can generate samples fxg ∼ pðxjθÞ.

Structure.—CARL can be used either point by point, in
an agnostic parametrized version, or [if the morphing
condition in Eq. (6) holds] in a morphing-aware
version. Figure 8 illustrates the structure of the
estimator in these three cases.

Training.—A classifier with decision function
ŝðxjθ0; θ1Þ is trained to discriminate between numer-
ator (label y ¼ 0) and denominator (label y ¼ 1)
samples by minimizing the binary cross entropy given
in Eq. (16) (other loss functions are possible, but we
have not experimented with them).
In the point-by-point version, the inputs to the

classifiers are just the observables x, and the events
in the numerator sample are generated according to one
specific value θ0. In the parametrized versions of the
estimator, the numerator training samples do not come
from a single parameter θ0, but rather a combination of
many different subsamples. In the agnostic parame-
trized setup, the value of θ0 used in each event is then
one of the inputs to the neural network. In the
morphing-aware versions, it is used to calculate the
weights wcðθ0Þ that multiply the different component
networks r̂cðxÞ, as visualized in the bottom panel
of Fig. 8.

Calibration.—In a next step, the classifier output is
optionally calibrated as discussed in Sec. III D 1 using
isotonic regression. The calibration curve is shown in
the left panel of Fig. 21. We have also experimented
with an additional step of expectation calibration, see
Sec. III D 2.

Evaluation.—For a given x (and in the parametrized
versions θ0), the classifier decision function
ŝðxjθ0; θ1Þ is evaluated. This is turned into a like-
lihood ratio estimator with the relation given in
Eq. (18), and optionally calibrated.

Parameters.—The parameters of this approach are the
architecture of the neural network, i.e., the number
of layers and elements, the activation function, the
optimizer used for training, its parameters, and op-
tionally regularization terms.
For our example process we consider fully con-

nected neural networks with two (“shallow”), three, or
five (“deep”) layers of 100 neurons each and tanh
activation functions. They are trained with the ADAM

optimizer [79] over 50 epochs with early stopping and
learning rate decay. Our default settings are given in
Table VI. Experiments with different architectures,
other activation functions, additional dropout layers,
other optimizers, and different learning rate schedules
yielded a worse performance.

4. Ratio regression (ROLR)

Idea.—Particle physics generators do not only provide
sets of observables fxeg, but also the corresponding
parton-level momenta fzeg. From matrix element
codes such as MADGRAPH we can extract the squared
matrix element jMj2ðzjθÞ given parton-level mo-
menta z and theory parameter points θ. This allows
us to calculate the joint likelihood ratio

FIG. 21. Calibration curves for different estimators, comparing the uncalibrated (raw) estimator to the estimator after probability
calibration. The calibration curve for the truth prediction is a cross-check for consistency; we do not actually use calibration for the truth
predictions. For the local score regression technique, we show the value of ĥðxjθ0; θ1Þ (essentially the log likelihood ratio in the local
model) versus the estimated likelihood ratio after density estimation.
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rðxe; zejθ0; θ1Þ ¼
pðzejθ0Þ
pðzejθ1Þ

¼ jMj2ðzejθ0Þ
jMj2ðzejθ1Þ

σðθ1Þ
σðθ0Þ

ðB1Þ

for any of the generated events.
In Sec. III B we have shown that regressing a

function r̂ðxÞ on the generated events fxeg and the
corresponding joint likelihood ratios rðxe; zejθ0; θ1Þ
will converge to

r̂ðxÞ → rðxÞ ¼ pðxjθ0Þ
pðxjθ1Þ

; ðB2Þ

provided that the events are sampled according
to xe ∼ pðxjθ1Þ.

Requirements.—The ROLR technique requires a gen-
erator with access to the joint likelihood ratios
rðxe; zejθ0; θ1Þ. In the particle physics case, this means
we have to be able to evaluate the squared matrix
elements for given phase-space points and theory
parameters.

Structure.—ROLR can be used either point by point, in
an agnostic parametrized version, or [if the morphing
condition in Eq. (6) holds] in a morphing-aware
version. Figure 8 illustrates the structure of the
estimator in these three cases.

Training.—The training phase is straightforward regres-
sion. It consists of minimizing the squared error loss
between a flexible function r̂ðxjθ0; θ1Þ (for instance a
neural network) and the training data fxe; rðxe;
zejθ0; θ1Þg, which was generated according to θ1.
In the point-by-point version, the input to the

regressor is just the observables x, and the ratio is
between two fixed hypotheses θ0 and θ1. In the

parametrized versions of the estimator, the ratios
are based on various values θ0, while θ1 is still kept
fixed. In the agnostic parametrized setup, the value of
θ0 used in each event is then one of the inputs to the
neural network. In the morphing-aware versions, it is
used to calculate the weights wcðθ0Þ that multiply the
different component networks r̂cðxÞ, as visualized in
the bottom panel of Fig. 8.
In all cases we can slightly improve the structure by

adding samples generated according to θ0 to the
training samples, regressing on 1=r instead of r on
these events. The full loss functional is given
in Eq. (33).

Calibration.—In a next step, the classifier output is
optionally calibrated as discussed in Sec. III D 1 using
isotonic regression. The calibration curve is shown in
the middle panel of Fig. 21. We have also experi-
mented with an additional step of expectation cali-
bration, see Sec. III D 2.

Evaluation.—For a given x (and in the parametrized
versions θ0), the regressor r̂ðxjθ0; θ1Þ is evaluated. The
result is optionally calibrated.

Parameters.—The parameters of this approach are the
architecture of the neural network, i.e., the number
of layers and elements, the activation function, the
optimizer used for training, its parameters, and op-
tionally regularization terms.
For our example process we consider fully con-

nected neural networks with two (shallow), three, or
five (deep) layers of 100 neurons each and tanh
activation functions. They are trained with the ADAM

optimizer [79] over 50 epochs with early stopping and
learning rate decay. Our default settings are given in
Table VI. Experiments with different architectures,

TABLE VI. Default settings for the analysis techniques. The neural network (NN) layers each have 100 units with
tanh activation functions. The hyperparameter αmultiplies the score squared error in the combined loss functions of
Eqs. (35) and (37).

Strategy NN layers α Calibration/density estimation

Histogram Histogram
AFC Gaussian KDE

CARL (PbP) 3 Isotonic probability calibration
CARL (parametrized) 2 Isotonic probability calibration
CARL (morphing aware) 2 Isotonic probability calibration

SALLY 5 Histogram
SALLINO 5 Histogram
ROLR (PbP) 3 Isotonic probability calibration
ROLR (parametrized) 3 Isotonic probability calibration
ROLR (morphing aware) 2 Isotonic probability calibration

CASCAL (parametrized) 5 5 Isotonic probability calibration
CASCAL (morphing aware) 2 5 Isotonic probability calibration

RASCAL (parametrized) 5 100 Isotonic probability calibration
RASCAL (morphing aware) 2 100 Isotonic probability calibration
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other activation functions, additional dropout layers,
other optimizers, and different learning rate schedules
yielded a worse performance.

5. CARL+ score regression (CASCAL)

Idea.—The parametrized CARL technique learns the
full statistical model r̂ðxjθ0; θ1Þ, including the depend-
ency on θ0. If it is realized as a differentiable classifier
(such as a neural network), we can calculate the
gradient of r̂ðxjθ0; θ1Þ with respect to θ0, and thus
the estimated score of this model. If the estimator is
perfect, we expect this estimated score to minimize the
squared error with respect to the joint score data
available for the training data. This is based on the
same argument as the local score regression technique;
see Sec. III B for the proof.
We can turn this argument around and use the

available score information during the training. To this
end, we combine two terms in a combined loss
function: the CARL-style cross entropy and the
squared error between the estimated score and the
joint score of the training data. These two pieces
contain complementary information: the CARL part
contains the information of the likelihood ratio for a
fixed hypothesis comparison ðθ0; θ1Þ, while the score
part describes the relative change of the likelihood
ratio under changes in θ0.

Requirements.—The CASCAL technique requires a
generator with access to the joint score tðxe; zejθ0Þ.
In the particle physics case, this means we have to be
able to evaluate the squared matrix elements for given
phase-space points and theory parameters.

Structure.—Since the CASCAL method relies on the
extraction of the estimated score from the estimator, it
can only be used for parametrized estimators, either in
an agnostic or morphing-aware version. The middle
and bottom panels of Fig. 8 illustrate the structure of
the estimator in these two cases.

Training.—A differentiable classifier with decision
function ŝðxjθ0; θ1Þ is trained to discriminate between
numerator (label y ¼ 0) and denominator (label
y ¼ 1) samples, while the derived estimated score
t̂ðxjθ0Þ is compared to the joint score on the training
samples generated from y ¼ 0. The loss function that
is minimized is thus a combination of the CARL-style
cross entropy and the squared error on the score,
weighted by a hyperparameter α. It is given in
Eq. (35).
The numerator (y ¼ 0) training samples do not

come from a single parameter θ0, but rather a
combination of many different subsamples. In the
agnostic parametrized setup, the value of θ0 used in
each event is then one of the inputs to the neural
network. In the morphing-aware versions, it is used to
calculate the weights wcðθ0Þ that multiply the different

component networks r̂cðxÞ, as visualized in the
bottom panel of Fig. 8.

Calibration.—In a next step, the classifier output is
optionally calibrated as discussed in Sec. III D 1 using
isotonic regression. The calibration curve is shown in
the right panel of Fig. 21. We have also experimented
with an additional step of expectation calibration, see
Sec. III D 2.

Evaluation.—For a given x and θ0, the classifier decision
function ŝðxjθ0; θ1Þ is evaluated. This is turned into a
likelihood ratio estimator with the relation given in
Eq. (18), and optionally calibrated.

Parameters.—The key hyperparameter of this technique
is the factor α that weights the two terms in the loss
function. Additional parameters set the architecture of
the neural network, i.e., the number of layers and
elements, the activation function, the optimizer used
for training, its parameters, and optionally regulari-
zation terms.
For our example process we consider fully con-

nected neural networks with two (shallow), three, or
five (deep) layers of 100 neurons each and tanh
activation functions. They are trained with the ADAM

optimizer [79] over 50 epochs with early stopping and
learning rate decay. Our default settings are given in
Table VI. Experiments with different architectures,
other activation functions, additional dropout layers,
other optimizers, and different learning rate schedules
yielded a worse performance.

6. Ratio+ score regression (RASCAL)

Idea.—The parametrized ROLR technique learns the full
statistical model r̂ðxjθ0; θ1Þ, including the dependency
on θ0. If it is realized as a differentiable regressor, we
can calculate the gradient of r̂ðxjθ0; θ1Þwith respect to
θ0, and thus the score of this model. If the estimator is
perfect, we expect this estimated score to minimize the
squared error with respect to the joint score data
available for the training data.
We can turn this argument around and use the

available likelihood ratio and score information during
the training. To this end, we combine two terms in a
combined loss function: the squared errors on the ratio
and the score. These two pieces contain complemen-
tary information: the ratio regression part contains the
information of the likelihood ratio for a fixed hypoth-
esis comparison ðθ0; θ1Þ, while the score part de-
scribes the relative change of the likelihood ratio
under changes in θ0.

Requirements.—The RASCAL technique requires a
generator with access to the joint likelihood ratio
rðxe; zejθ0; θ1Þ and score tðxe; zejθ0Þ. In the particle
physics case, this means we have to be able to evaluate
the squared matrix elements for given phase-space
points and theory parameters.

GUIDE TO CONSTRAINING EFFECTIVE FIELD … PHYS. REV. D 98, 052004 (2018)

052004-35



Structure.—Since the RASCAL method relies on the
extraction of the estimated score from the estimator, it
can only be used for parametrized estimators, either in
an agnostic or morphing-aware version. The middle
and bottom panels of Fig. 8 illustrate the structure of
the estimator in these two cases.

Training.—An estimator r̂ðxjθ0; θ1Þ is trained through
regression on the joint likelihood ratio, while the
derived estimated score t̂ðxjθ0Þ is compared to the
joint score on the training samples generated from
y ¼ 0. The loss function that is minimized is thus a
combination of the squared error on the ratio and the
squared error on the score, weighted by a hyper-
parameter α. It is given in Eq. (35).
The numerator (y ¼ 0) training samples do not

come from a single parameter θ0, but rather a
combination of many different subsamples. In the
agnostic parametrized setup, the value of θ0 used in
each event is then one of the inputs to the neural
network. In the morphing-aware versions, it is used to
calculate the weights wcðθ0Þ that multiply the different
component networks r̂cðxÞ, as visualized in the
bottom panel of Fig. 8.

Calibration.—In a next step, the classifier output is
optionally calibrated as discussed in Sec. III D 1 using
isotonic regression. The calibration curve is shown in
the right panel of Fig. 21. We have also experimented
with an additional step of expectation calibration, see
Sec. III D 2.

Evaluation.—For a given x and θ0, the estimator
r̂ðxjθ0; θ1Þ is evaluated and optionally calibrated.

Parameters.—The key hyperparameter of this technique
is the factor α that weighs the two terms in the loss
function. Additional parameters set the architecture of
the neural network, i.e., the number of layers and
elements, the activation function, the optimizer used
for training, its parameters, and optionally regulari-
zation terms.
For our example process we consider fully con-

nected neural networks with two (shallow), three, or
five (deep) layers of 100 neurons each and tanh
activation functions. They are trained with the ADAM

optimizer [79] over 50 epochs with early stopping and
learning rate decay. Our default settings are given in
Table VI. Experiments with different architectures,
other activation functions, additional dropout layers,
other optimizers, and different learning rate schedules
yielded a worse performance.

7. Local score regression and density
estimation (SALLY)

Idea.—In Sec. III A 2 we introduced the score, the
relative gradient of the likelihood with respect to
the theory parameters. The score evaluated at some
reference parameter point is the sufficient statistics of

the local approximation of the likelihood given in
Eq. (15). In other words, we expect the score vector to
be a set of “optimal observables” that includes all the
information on the theory parameters, at least in the
vicinity of the reference parameter point. If we can
estimate the score from an observation, we can use it
like any other set of observables. In particular, we can
fill histograms of the score for any parameter point and
thus estimate the likelihood ratio in score space.
To estimate the score, we again make use of the

particle physics structure. Particle physics generators
do not only provide sets of observables fxeg, but also
the corresponding parton-level momenta fzeg. From
matrix element codes such as MADGRAPH we can
extract the squared matrix element jMj2ðzjθÞ given
parton-level momenta z and theory parameter points θ.
This allows us to calculate the joint score

tðxe; zejθ0Þ ¼ ∇θ logpðzejθÞjθ0
¼ ∇θjMj2ðzejθ0Þ

jMj2ðzejθ0Þ
−
∇θσðθ0Þ
σðθ0Þ

ðB3Þ

for any of the generated events. The derivatives in
Eq. (B3) can always be evaluated numerically. If the
process has the morphing structure of Eq. (6), one can
alternatively calculate it from the morphing weights.
In Sec. III B we have shown that regressing a

function t̂ðxÞ on the generated events fxeg and the
corresponding joint scores tðxe; zejθÞ will converge to

t̂ðxÞ → tðxÞ ¼ ∇θ log pðxjθÞjθ0 ; ðB4Þ

provided that the events are sampled according to
xe ∼ pðxjθ0Þ.
This technique is illustrated in the middle panels of

Fig. 20. The middle panel of Fig. 21 shows the relation
between the scalar product of estimated score and
θ0–θ1 and the estimated likelihood ratio.

Requirements.—The SALLY technique requires a gen-
erator with access to the joint score tðxe; zejθ0Þ. In the
particle physics case, this means we have to be able to
evaluate the squared matrix elements for given phase-
space points and theory parameters.

Structure.—The technique consists of two separate
steps: the score regression and the density estimation
in the estimated score space. The score regression step
is independent of the tested hypothesis and realized as
a simple fully connected neural network. The sub-
sequent density estimation is realized through multi-
dimensional histograms, point by point in parameter
space [if the morphing condition in Eq. (6) holds, a
morphing-aware version is also possible].

Training.—The first part of the training is regression on
the score (evaluated at some reference hypothesis). It
consists of minimizing the squared error loss between
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a flexible vector-valued function t̂ðxjθscoreÞ (imple-
mented for instance as a neural network) and the
training data fxe; tðxe; zejθscoreÞg, which was sampled
according to θscore.
The second step is density estimation in the

estimated score space. We only consider histograms,
but other density estimation techniques are also
possible. For each value of θ0 or θ1 that is tested,
we generate samples of events, estimate the corre-
sponding score vectors, and fill a multidimensional
histogram of the estimated score.

Calibration.—The density estimation step already cal-
ibrates the results, so we do not experiment with an
additional calibration step.

Evaluation.—For a given observation x, the score
regressor t̂ðxÞ is evaluated. For each tested ðθ0; θ1Þ
pair, we then extract the corresponding bin contents
from the numerator and denominator histograms, and
calculate the estimated likelihood ratio with Eq. (38).

Parameters.—Both the score regression part and the
subsequent density estimation have parameters. The
first and most important choice is the reference
hypothesis θscore, at which the score is evaluated.
For effective field theories the Standard Model is the
natural choice, and we use it in our example process.
The score regression also depends on the hyper-

parameters of the neural network, i.e., the number of
layers and elements, the activation function, the opti-
mizer used for training, its parameters, and optionally
regularization terms. For our example process we
consider fully connected neural networks with two
(shallow), three, or five (deep) layers of 100 neurons
each and tanh activation functions. They are trained
with the ADAM optimizer [79] over 50 epochs with
early stopping and learning rate decay. Our default
settings are given in Table VI. Experiments with
different architectures, other activation functions, addi-
tional dropout layers, other optimizers, and different
learning rate schedules yielded a worse performance.

The only parameter of the density estimation stage is the
histogram binning. For our example process we consider
two different variations:

(i) Density estimation with a “fixed” binning, where the
bin axes are aligned with the score components. We
use 40 bins for each of the two score components.

(ii) Density estimation with a “dynamic” binning, in
which the bin axes are aligned with the θ0 − θ1
direction and the orthogonal one. We use 80 bins
along the Δθ direction, which carries the relevant
information in the local model approximation, and
ten along the orthogonal vector.

For each pair ðθ0; θ1Þ and each dimension, the bin edges are
chosen such that the expected number of events according
to θ0 plus the expected number of events according to θ1 is
the same in each bin.

8. Local score regression, compression to scalar,
and density estimation (SALLINO)

Idea.—In theproximityof theStandardModel (or anyother
reference parameter point), likelihood ratios only depend
on the scalar product between the score and thedifference
between the numerator and denominator parameter
points. If we can estimate the score from an observation,
we can calculate this scalar product ĥðxjθ0; θ1Þ, defined
in Eq. (39), and use it like any other observable. In
particular, we can fill histograms of ĥ for any parameter
point and thus estimate the likelihood ratio in ĥ space.
To estimate the score, we once again exploit particle

physics structure. Particle physics generators donot only
provide sets of observables fxeg, but also the corre-
sponding parton-level momenta fzeg. From matrix
element codes such as MADGRAPH we can extract the
squared matrix element jMj2ðzjθÞ given parton-level
momenta z and theory parameter pointsθ. This allowsus
to calculate the joint score with Eq. (B3) for any of the
generated events.
In Sec. III Bwe have shown that regressing a function

t̂ðxÞ on the generated events fxeg and the corresponding
joint scores tðxe; zejθÞ will converge to tðxÞ, provided
that the events are sampled according to xe ∼ pðxjθ0Þ.

Requirements.—The SALLINO technique requires a
generator with access to the joint score tðxe; zejθ0Þ.
In the particle physics case, this means we have to be
able to evaluate the squared matrix elements for given
phase-space points and theory parameters.

Structure.—The technique consists of two separate
steps: the score regression, and the density estimation
in ĥ space. The score regression step is independent of
the tested hypothesis and realized as a simple fully
connected neural network. The subsequent density
estimation in ĥ space is realized through one-
dimensional histograms, point by point in parameter
space [if the morphing condition in Eq. (6) holds, a
morphing-aware version is also possible].

Training.—The first part of the training is regression on the
score (evaluated at some reference hypothesis). It con-
sists of minimizing the squared error loss between a
flexible vector-valued function t̂ðxjθscoreÞ (implemented
for instance as a neural network) and the training data
fxe; tðxe; zejθscoreÞg, which was sampled according to
θscore.
The second step is density estimation in ĥ space. We

only consider histograms, but other density estimation
techniques are also possible. For each value of θ0 or θ1
that is tested, we generate samples of events, estimate the
corresponding score vectors, calculate the scalar product
in Eq. (39) to get ĥðxjθ0; θ1Þ, and fill a one-dimensional
histogram of this quantity.

Calibration.—The density estimation step already cal-
ibrates the results, so we do not experiment with an
additional calibration step.
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Evaluation.—For a given observation x, the score
regressor t̂ðxÞ is evaluated. For each tested ðθ0; θ1Þ
pair, we multiply it with θ0 − θ1 to get ĥðxjθ0; θ1Þ,
extract the corresponding bin contents from the
numerator and denominator histograms, and calculate
the estimated likelihood ratio with Eq. (40).

Parameters.—Both the score regression part and the
subsequent density estimation have parameters. The
first and most important choice is the reference
hypothesis θscore, at which the score is evaluated.
For effective field theories the Standard Model is the
natural choice, and we use it in our example process.
The score regression also depends on the hyper-

parameters of the neural network, i.e., the number of
layers and elements, the activation function, the
optimizer used for training, its parameters, and op-
tionally regularization terms. For our example proc-
ess we consider fully connected neural networks with
two (shallow), three, or five (deep) layers of 100
neurons each and tanh activation functions. They are
trained with the ADAM optimizer [79] over 50 epochs
with early stopping and learning rate decay. Our
default settings are given in Table VI. Experiments
with different architectures, other activation func-
tions, additional dropout layers, other optimizers,
and different learning rate schedules yielded a worse
performance.

The only parameter of the density estimation stage is
the histogram binning. We use 100 bins. For each pair
ðθ0; θ1Þ and each dimension, the bin edges are chosen
such that the same expected number of events accord-
ing to θ0 plus the expected number of events according
to θ1 is the same in each bin.

APPENDIX C: ADDITIONAL RESULTS

In Tables VII–XII we compare the performance of
different versions of the likelihood ratio estimators. As
metric we use the expected mean squared error on
log rðxjθ0; θ1Þ as well as a trimmed version, as defined in
Sec. VA. The estimators are an extended list of those given
in Table IV, adding variations with different hyperparameter
choices and the results for uncalibrated (raw) estimators. By
default, we use neural networkswith three hidden layers, the
labels “shallow” and “deep” refer to two and five hidden
layers, respectively. We highlight the versions of the
estimators that were shown in the main part of this paper.
Because of the duality between density estimation and

probabilistic classification [see Eqs. (18) and (46)], we can
use all techniques to define classifiers. In Fig. 22 we show
the ROC curves for two benchmark parameter points. Note
how badly the two scenarios can be separated. This is not a
shortcoming of the discrimination power of the classifiers,
but due to the genuine overlap of the probability distribu-
tions, as can be seen from the identical ROC curve based on
the true likelihood ratio.

TABLE VII. Comparison of techniques based on manually selected kinematic observables. The metrics shown are the expected mean
squared error on the log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last two columns denote
estimators included in Table IV and the figures in the main part of this paper, respectively.

Expected MSE

Strategy Setup All Trimmed Table IV Figures

Histogram pT;j1 0.0879 0.0230 ✓
Δϕjj 0.1595 0.0433 ✓
2d (coarse binning) 0.0764 0.0117
2d (medium binning) 0.0630 0.0101
2d (fine binning) 0.0597 0.0115
2d (very fine binning) 0.0603 0.0153
2d (asymmetric binning) 0.0561 0.0106 ✓ ✓

AFC 2d, ϵ ¼ 1 0.1243 0.0257
2d, ϵ ¼ 0.5 0.0797 0.0144
2d, ϵ ¼ 0.2 0.0586 0.0091 ✓
2d, ϵ ¼ 0.1 0.0732 0.0103
2d, ϵ ¼ 0.05 0.3961 0.0160
2d, ϵ ¼ 0.02 13.6816 0.0550
2d, ϵ ¼ 0.01 241.3264 0.2143
5d, ϵ ¼ 1 0.1252 0.0226
5d, ϵ ¼ 0.5 0.0779 0.0101 ✓
5d, ϵ ¼ 0.2 0.0734 0.0128
5d, ϵ ¼ 0.1 0.9560 0.1833
5d, ϵ ¼ 0.05 38.1854 3.6658
5d, ϵ ¼ 0.02 2050.5289 57.0410
5d, ϵ ¼ 0.01 50024.7997 1668.8988
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TABLE VIII. Comparison of different versions of the CARL technique. The metrics shown are the expected mean squared error on the
log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last two columns denote estimators included in
Table IV and the figures in the main part of this paper, respectively.

Expected MSE

Strategy Setup All Trimmed Table IV Figures

CARL (PbP, raw) PbP 0.0409 0.0213

CARL (PbP, calibrated) PbP 0.0301 0.0111 Fig. 12

CARL (parametrized, raw) Baseline 0.0157 0.0040
Baseline, shallow 0.0134 0.0035
Baseline, deep 0.0161 0.0038
Random θ 0.0148 0.0037
Random θ, shallow 0.0130 0.0037
Random θ, deep 0.0164 0.0038

CARL (parametrized, calibrated) Baseline 0.0156 0.0032
Baseline, shallow 0.0124 0.0026 ✓ ✓
Baseline, deep 0.0160 0.0029
Random θ 0.0147 0.0029
Random θ, shallow 0.0122 0.0028 ✓
Random θ, deep 0.0155 0.0029

CARL (morphing aware, raw) Baseline 0.1598 0.0350
Baseline, shallow 0.1483 0.0331
Random θ 0.1743 0.0429
Random θ, shallow 0.1520 0.0369
Morphing basis, shallow 10.1231 7.9314

CARL (morphing aware, calibrated) Baseline 0.1036 0.0282
Baseline, shallow 0.0762 0.0200 ✓ Fig. 12
Random θ 0.1076 0.0289
Random θ, shallow 0.0858 0.0226 ✓
Morphing basis, shallow 0.1564 0.0618 ✓

TABLE IX. Comparison of different versions of the ROLR technique. The metrics shown are the expected mean squared error on the
log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last two columns denote estimators included in
Table IV and the figures in the main part of this paper, respectively.

Expected MSE

Strategy Setup All Trimmed Table IV Figures

ROLR (PbP, raw) PbP 0.0052 0.0023

ROLR (PbP, calibrated) PbP 0.0049 0.0022 ✓

ROLR (parametrized, raw) Baseline 0.0034 0.0019
Baseline, shallow 0.0069 0.0037
Baseline, deep 0.0041 0.0022
Random θ 0.0034 0.0017
Random θ, shallow 0.0070 0.0036
Random θ, deep 0.0036 0.0017

ROLR (parametrized, calibrated) Baseline 0.0032 0.0017 ✓ ✓
Baseline, shallow 0.0059 0.0030
Baseline, deep 0.0038 0.0019
Random θ 0.0030 0.0014 ✓
Random θ, shallow 0.0060 0.0030
Random θ, deep 0.0034 0.0015

(Table continued)
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TABLE IX. (Continued)

Expected MSE

Strategy Setup All Trimmed Table IV Figures

ROLR (morphing aware, raw) Baseline 0.2029 0.1449
Baseline, shallow 0.1672 0.1305
Random θ 0.1908 0.1353
Random θ, shallow 0.1160 0.0755
Morphing basis, shallow 5.6668 3.8335

ROLR (morphing aware, calibrated) Baseline 0.0328 0.0088
Baseline, shallow 0.0243 0.0063 ✓
Random θ 0.0321 0.0089
Random θ, shallow 0.0224 0.0052 ✓
Morphing basis, shallow 0.1300 0.0485 ✓

TABLE X. Comparison of different versions of the SALLY and SALLINO techniques. The metrics shown are the expected mean
squared error on the log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last two columns denote
estimators included in Table IV and the figures in the main part of this paper, respectively.

Expected MSE

Strategy Setup All Trimmed Table IV Figures

SALLY Fixed 2D histogram 0.0174 0.0005
Fixed 2D histogram, shallow 0.0170 0.0005
Fixed 2D histogram, deep 0.0171 0.0005
Dynamic 2D histogram 0.0132 0.0003
Dynamic 2D histogram, shallow 0.0133 0.0003
Dynamic 2D histogram, deep 0.0132 0.0002 ✓ ✓

SALLINO 1D histogram 0.0213 0.0006
1D histogram, shallow 0.0215 0.0007
1D histogram, deep 0.0213 0.0006 ✓

TABLE XI. Comparison of different versions of the CASCAL technique. The metrics shown are the expected mean squared error on
the log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last two columns denote estimators included
in Table IV and the figures in the main part of this paper, respectively.

Expected MSE

Strategy Setup All Trimmed Table IV Figures

CASCAL (parametrized, raw) Baseline, α ¼ 5 0.0019 0.0004
Baseline, α ¼ 5, shallow 0.0037 0.0004
Baseline, α ¼ 5, deep 0.0010 0.0003
Baseline, α ¼ 0.5, deep 0.0017 0.0006
Baseline, α ¼ 1, deep 0.0014 0.0005
Baseline, α ¼ 2, deep 0.0017 0.0008
Baseline, α ¼ 10, deep 0.0013 0.0004
Baseline, α ¼ 20, deep 0.0016 0.0004
Baseline, α ¼ 50, deep 0.0024 0.0007
Random θ 0.0022 0.0006
Random θ, shallow 0.0038 0.0005
Random θ, deep 0.0010 0.0003

(Table continued)
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TABLE XI. (Continued)

Expected MSE

Strategy Setup All Trimmed Table IV Figures

CASCAL (parametrized, calibrated) Baseline, α ¼ 5 0.0012 0.0002
Baseline, α ¼ 5, shallow 0.0025 0.0003
Baseline, α ¼ 5, deep 0.0008 0.0002 ✓ ✓
Baseline, α ¼ 0.5, deep 0.0013 0.0003
Baseline, α ¼ 1, deep 0.0011 0.0003
Baseline, α ¼ 2, deep 0.0010 0.0002
Baseline, α ¼ 10, deep 0.0010 0.0003
Baseline, α ¼ 20, deep 0.0011 0.0003
Baseline, α ¼ 50, deep 0.0016 0.0005
Random θ, α ¼ 5 0.0013 0.0003
Random θ, α ¼ 5, shallow 0.0027 0.0004
Random θ, α ¼ 5, deep 0.0009 0.0002 ✓

CASCAL (morphing aware, raw) Baseline, α ¼ 5 0.1935 0.0810
Baseline, α ¼ 5, shallow 0.1870 0.0732
Random θ, α ¼ 5, shallow 0.1624 0.0643
Morphing basis, α ¼ 5, shallow 0.0707 0.0109

CASCAL (morphing aware, calibrated) Baseline, α ¼ 5 0.1408 0.0508
Baseline, α ¼ 5, shallow 0.1359 0.0427 ✓
Random θ, α ¼ 5, shallow 0.0922 0.0268 ✓
Morphing basis, α ¼ 5, shallow 0.0403 0.0081 ✓

TABLE XII. Comparison of different versions of the RASCAL technique. The metrics shown are the expected mean squared error on
the log likelihood ratio with and without trimming, as defined in the text. Checkmarks in the last two columns denote estimators included
in Table IV and the figures in the main part of this paper, respectively.

Expected MSE

Strategy Setup All Trimmed Table IV Figures

RASCAL (parametrized, raw) Baseline, α ¼ 100 0.0010 0.0003
Baseline, α ¼ 100, shallow 0.0025 0.0006
Baseline, α ¼ 100, deep 0.0009 0.0004
Baseline, α ¼ 10, deep 0.0011 0.0005
Baseline, α ¼ 20, deep 0.0009 0.0004
Baseline, α ¼ 50, deep 0.0009 0.0004
Baseline, α ¼ 200, deep 0.0009 0.0004
Baseline, α ¼ 500, deep 0.0011 0.0006
Baseline, α ¼ 1000, deep 0.0012 0.0007
Random θ 0.0011 0.0004
Random θ, shallow 0.0030 0.0010
Random θ, deep 0.0008 0.0004

(Table continued)
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TABLE XII. (Continued)

Expected MSE

Strategy Setup All Trimmed Table IV Figures

RASCAL (parametrized, calibrated) Baseline, α ¼ 100 0.0010 0.0003
Baseline, α ¼ 100, shallow 0.0021 0.0005
Baseline, α ¼ 100, deep 0.0009 0.0004 ✓ ✓
Baseline, α ¼ 10, deep 0.0010 0.0004
Baseline, α ¼ 20, deep 0.0009 0.0004
Baseline, α ¼ 50, deep 0.0009 0.0004
Baseline, α ¼ 200, deep 0.0008 0.0004
Baseline, α ¼ 500, deep 0.0009 0.0005
Baseline, α ¼ 1000, deep 0.0012 0.0006
Random θ, α ¼ 100 0.0010 0.0004
Random θ, α ¼ 100, shallow 0.0025 0.0008
Random θ, α ¼ 100, deep 0.0008 0.0004 ✓

RASCAL (morphing aware, raw) Baseline, α ¼ 100 0.2880 0.2024
Baseline, α ¼ 100, shallow 0.3569 0.2861
Random θ, α ¼ 100 0.2705 0.1825
Random θ, α ¼ 100, shallow 0.3243 0.2488
Morphing basis, α ¼ 100, shallow 0.1909 0.1673

RASCAL (morphing aware, calibrated) Baseline, α ¼ 100 0.1530 0.0673
Baseline, α ¼ 100, shallow 0.1250 0.0514 ✓
Random θ, α ¼ 100 0.1358 0.0627
Random θ, α ¼ 100, shallow 0.1316 0.0539 ✓
Morphing basis, shallow, α ¼ 100 0.0307 0.0072 ✓

FIG. 22. Receiver operating characteristic (ROC) curves of true positive rates (TPR) vs false positive rates (FPR) for the classification
between the benchmark scenarios θ0 ¼ ð−0.5;−0.5ÞT and θ1 as in Eq. (47). The ROC Area under curve (AUC) based on the true
likelihood is 0.6276. The results show how much the probability distributions for these two hypotheses overlap.
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