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In this article, we investigate the privacy issues that arise from a new frame-based 
kernel analysis approach to reconstruct from frame coefficient erasures. We show 
that while an erasure recovery matrix is needed in addition to a decoding frame for 
a receiver to recover the erasures, the erasure recovery matrix can be designed in such 
a way that it protects the encoding frame. The set of such erasure recovery matrices 
is shown to be an open and dense subset of a certain matrix space. We present 
algorithms to construct concrete examples of encoding frame and erasure recovery 
matrix pairs for which the erasure reconstruction process is robust to additive 
channel noise. Using the Restricted Isometry Property, we also provide quantitative 
bounds on the amplification of sparse additive channel noise. Numerical experiments 
are presented on the amplification of additive normally distributed random channel 
noise. In both cases, the amplification factors are demonstrated to be quite small.

© 2018 Published by Elsevier Inc.

1. Introduction

In recent years frames have proven to be very useful in many applications, and in particular in signal 
or information processing. Typically a signal (message) is analyzed or encoded as a sequence of frame 
coefficients by using an encoding frame. These frame coefficients (or codes) are then transmitted to a 
receiver and the receiver reconstructs (decodes) the signal (message) by using a decoding frame. In this 
process the transmitted data set may get corrupted due to erasures, distortions and noises. However, if the 
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encoding frames have an appropriate amount of redundancy then the reconstruction procedure is robust to 
these corruptions, and in many cases perfect reconstruction from erasure corrupted data sets is possible. 
For several good references on frame erasures, see [4,5,8,12,14,17–29,31,34–36].

A standard method of perfectly reconstructing a signal from erasure corrupted frame coefficients at 
known locations is to invert the frame operator of the frame whose indices correspond to the non-erased 
frame coefficients. However, this method is relatively slow since it requires an n ×n matrix inversion, where 
n denotes the dimension of the underlying Hilbert space.

This work was motivated by two recent approaches to the problem of perfect reconstruction from frame 
erasures. The first was due to the first and fourth authors in [17], and the second was due to the second and 
third authors in [24]. The method of [17] uses erasure recovery matrices whose kernels are the range spaces 
of the analysis operators for the encoding frame or part of the encoding frame. The method of [24], called 
bridging, is to recover the lost frame coefficient data using a small subset of the good frame coefficients. Both 
approaches recover lost data by inverting an L ×L matrix, where L denotes the cardinality of the erased set 
of indices. Thus, these methods significantly reduce the computational complexity of perfect reconstruction 
from frame erasures.

In cryptography, a man-in-the-middle attack occurs when an eavesdropper impersonates a signal sender in 
order to send either a false or modified message to a signal recipient. A man-in-the-middle attack can occur 
if an eavesdropper is able to steal the encoding frame (or encoding device) of a signal sender. Unfortunately, 
in order to reconstruct a signal from frame coefficient erasures, a signal recipient must have some knowledge 
of the encoding (or analysis) frame. The method of reconstruction that is used in this paper allows for 
erasure reconstruction in such a way that an eavesdropper, or the signal recipient does not receive enough 
information to completely determine the encoding device. Thus, by protecting the encoding device, this 
erasure reconstruction method can be used to safeguard against a man-in-the-middle attack.

Clearly the standard dual frame of the encoding frame can not be provided to the receiver since the 
standard dual of the standard dual is the original encoding frame. We will show (Proposition 3.4) that, in 
fact, to protect the encoding frame, the range space of the analysis operator for the encoding frame must 
be a proper subspace of the kernel of the erasure recovery matrix. The goal of this paper is to address the 
problem of erasure recovery, while still protecting the encoding device (i.e., the encoding frame).

In Section 4, it is shown that m-encoding frame protected erasure recovery matrices for a given frame, 
{gj}Nj=1 exist provided that {gj}j∈{1,··· ,N}\Γ still forms a frame whenever |Γ| ≤ m, and n < N−m. Moreover, 
it is shown that these matrices exist in great abundance, as they form an open dense subset of a certain 
convex matrix space. In Section 5, three constructions of erasure recovery matrix, encoding frame pairs are 
provided.

The remainder of the paper is devoted to the effects of additive channel noise on our reconstruction. Any 
erasure reconstruction technique has the potential to heavily amplify channel noise. However, in Section 5, by 
utilizing tools from compressive sensing, we give two constructions of frames and erasure recovery matrices 
for which this amplification factor is small ( 2

1−δ where δ is the restricted isometry constant for the erasure 
recovery matrix) for sparse additive channel noise. In Section 7, we provide numerical experiments which 
suggest that the amplification factor for normally distributed additive random channel noise is also quite 
small.

2. Frames and erasures

We begin with some background on frames (cf. [9,10,15,16]). A sequence {gj}Nj=1 is said to be a frame
for a finite dimensional Hilbert space H if there exist positive constants A and B such that

A‖f‖2 ≤
N∑

| 〈f, gj〉 |2 ≤ B‖f‖2, ∀f ∈ H. (1)

j=1
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The constants A and B are called lower and upper frame bounds, respectively. The optimal lower frame 
bound is the supremum over all lower bounds, and the optimal upper frame bound is the infimum over all 
upper frame bounds. A frame {gj}Nj=1 with optimal frame bounds A and B is said to be tight if A = B, 
and Parseval if A = B = 1. For the remainder of this article, we will use Hn to denote Rn or Cn.

Let {gj}Nj=1 be a frame for Hn. Its analysis operator Θ : Hn → HN is defined by

Θ(f) = {〈f, gj〉}Nj=1, ∀f ∈ Hn. (2)

It is easily seen that a matrix representation for the analysis operator is the matrix G∗ whose jth row is g∗j
(the conjugate transpose of the jth frame vector). The synthesis operator is the adjoint of Θ, and we have

Θ∗c =
N∑
j=1

cjgj ∀c = (cj)Nj=1 ∈ HN . (3)

The matrix representation for this operator is the matrix G, whose jth column is the jth frame vector, gj .

Remark 2.1. We will sometimes abuse notation and denote a frame {gj}Nj=1 by its synthesis matrix, G. If the 
reader sees the sequence {gj}Nj=1, he/she should automatically associate this with the matrix G whose jth
column is the vector gj , and vice versa.

It can be easily verified that the operator S := Θ∗Θ = GG∗ is invertible on Hn and {g̃j = S−1gj}Nj=1 is 
also a frame for Hn, which is called the canonical or standard dual frame for {gj}Nj=1. The standard dual 
provides us the following reconstruction formula:

f =
N∑
j=1

〈f, g̃j〉 gj , ∀f ∈ Hn. (4)

Note that whenever {gj}Nj=1 is a frame but not a basis, then there are many (actually, infinitely many) 
other choices of fj for which

f =
N∑
j=1

〈f, fj〉 gj , ∀f ∈ Hn.

Any such frame {fj}Nj=1 is called a dual frame to {gj}Nj=1. Two sequences {gj}Nj=1 and {hj}Nj=1 are called 
strongly disjoint (or orthogonal) if the range spaces of their analysis operators are orthogonal subspaces 
of HN , and they are strongly complementary if their range spaces form orthogonal complementary subspaces. 
It is well known (cf. [15,16]) that a sequence {fj}Nj=1 is a dual frame for {gj}Nj=1 if and only if fj = S−1gj+hj , 
where S is the frame operator for {gj}Nj=1 and {hj}Nj=1 is strongly disjoint to {gj}Ni=1.

In applications, a frame {gj}Nj=1 is often used to analyze a signal f ∈ Hn (or to encode a message f) 
by computing its frame coefficients cj = 〈f, gj〉. We will refer to such a frame as an encoding frame. The 
frame coefficients are transmitted to receivers to reconstruct (or decode) f by using various methods. The 
simplest method is to use a dual frame {fj}Ni=1, known as the decoding frame to recover f :

f = Fc =
N∑
j=1

cjfj . (5)

Since {fj}Nj=1 is not a basis, there are infinitely many different choices for the encoding frame, which 
consequently provides a high level of security for the encoding device. If the receiver does not have the 
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information about the range space of the analysis operator for the encoding frame, then it is difficult for the 
receiver to recover the encoding frame. However, in the case that a receiver is provided with some additional 
tools to deal with problems coming from, for example, erasures, then the additional tools may jeopardize 
the privacy of the encoding frame. In this paper we present requirements, existence and constructions of 
erasure recovery matrices (introduced in [17,18]) that can preserve the privacy for the encoding frame when 
they are provided to the decoder as additional tools for signal/image recovery.

We say that a subset Λ of {1, · · · , N} satisfies the minimal redundancy condition for a frame {gj}Nj=1
if {gj}j∈Λc remains to be a frame for Hn (cf. [24,25]). It is easily seen that if Λ does not satisfy the 
minimal redundancy condition, then we cannot recover every signal from frame coefficient erasures indexed 
by Λ. However, if Λ satisfies the minimal redundancy condition, any signal can be reconstructed from 
frame coefficient erasures indexed by Λ. If every subset Λ of cardinality m satisfies the minimal redundancy 
condition for F , then we say that F has the minimal redundancy condition for m-erasures.

In following the conventions set in [1], the spark of a matrix is the size of the smallest linearly depen-
dent subset of the columns. Moreover, we will define the spark of a collection of vectors {gj}Nj=1 in an 
n-dimensional Hilbert space Hn as the size of the smallest linearly dependent subset of {gj}Nj=1 (i.e. as the 
spark of its synthesis matrix, G). Furthermore, if N ≥ n, the collection {gj}Nj=1 is said to have full spark if 
it has spark n + 1. Frames which satisfy the full spark property were also known as frames with maximal 
robustness to erasures in [23]. It was shown in [30] that if N ≥ n, then the set of full spark frames is open 
and dense in the set of all frames. In [1], this was extended to a proof of density in the Zariski topology. 
Thus, most frames satisfy the full spark property.

The restricted isometry constant of order s for an m × N matrix M is the smallest number δs > 0 so 
that for all s-sparse vectors x ∈ CN ,

(1 − δs)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δs)‖x‖2. (6)

It is well known (cf. [13]) that there is a universal constant C, so that whenever

m ≥ C

δ2

(
s ln

(
eN

s

)
+ ln

(
2
ε

))
, (7)

for δ, ε ∈ (0, 1), the probability that the restricted isometry constant δs for an m × N Gaussian random 
matrix M satisfies δs ≤ δ is greater than 1 −ε (cf. [2,7,11,32,37]). Later on, we will be using restricted isometry 
constants to provide bounds on the amplification of sparse additive channel noise for our reconstruction.

3. Erasure recovery matrices

The following concept of an erasure recovery matrix was introduced in [17]:

Definition 3.1. Let {gj}Nj=1 be a frame for an n-dimensional Hilbert space, Hn and k be a positive integer. 
An m-erasure recovery matrix is a k × N matrix M with spark m + 1 satisfying Mc = 0 for any vector 
c ∈ Θ(H), where Θ denotes the analysis operator for the frame G. That is, MΘ = 0, or

M (〈f, gj〉)Nj=1 = 0 ∀f ∈ H.

Notice that in Definition 3.1 we must have k ≥ m, however, for any practical application, we will only 
consider k = m. Definition 3.1 has many useful equivalents which are given in the next proposition. In 
particular, parts (4) and (5) below will give us formulas on how to reconstruct a signal from erasures at 
known locations (see Remark 3.3).
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Proposition 3.2. Let {gj}Nj=1 be a frame for Hn and Θ be its analysis operator. Suppose that m ≥ 1 is an 
integer. Then the following are equivalent for a k ×N matrix, M :

(1) M is an m-erasure recovery matrix.
(2) M has spark m + 1 and ker(M) ⊇ Θ(Hn).
(3) The columns of M have spark m + 1 and are strongly disjoint (i.e. orthogonal) to {gj}Nj=1.
(4) ker(M) ⊇ Θ(Hn) and for every set Λ ⊂ {1, 2, · · · , N} satisfying |Λ| ≤ m, (M∗

ΛMΛ)−1 exists, where MΛ
denotes the minor of M formed by the columns indexed by Λ.

(5) ker(M) ⊇ Θ(Hn) and for any Λ with |Λ| ≤ m, there exists a subset I of {1, ..., k} such that MI,Λ is 
invertible, where MI,Λ denotes the minor of M with rows indexed by I and columns indexed by Λ.

Proof. Clearly we have (1) ⇒ (2) ⇒ (3). For (3) ⇒ (4), write M = [h1, · · · , hN ]. Since |Λ| ≤ m, M∗
ΛMΛ

is the Gramian of the linearly independent sequence {hj}j∈Λ, M∗
ΛMΛ is invertible. To prove (4) ⇒ (5), 

notice that M∗
ΛMΛ is invertible {hj}j∈Λ is linearly independent. Thus MΛ has rank |Λ|. Thus, we can find 

a set I ⊂ {1, 2, · · · , k} such that |I| = |Λ|, and M−1
I,Λ exists. To prove (5) ⇒ (1), clearly MΘ(Hn) = 0. 

Assume Λ ⊂ {1, · · · , N} satisfying |Λ| = m. Then, we can find I ⊂ {1, · · · , k} such that M−1
I,Λ exists. Thus, 

the columns of MI,Λ are linearly independent, and it follows that the columns of MΛ must be linearly 
independent. Since Λ was chosen arbitrarily, this shows that every subset of m columns of M are linearly 
independent. That is, M has spark m + 1. �
Remark 3.3. Assume that M is an m-erasure matrix for a frame {gj}Nj=1 for Hn. Assume that f ∈ Hn, and 
c = (cj)Nj=1, where cj = 〈f, gj〉. Then, by definition, we have

Mc = 0.

Hence, if we let MΛ denote the matrix with columns indexed by Λ, and cΛ denote the vector (cj)j∈Λ for 
any Λ ⊂ {1, · · · , N}, we have

MΛcΛ + MΛccΛc = 0.

Rearranging the equation gives

MΛcΛ = −MΛccΛc . (8)

If the goal is to reconstruct the vector c from erasures indexed by erasures at Λ, our goal is to solve 
equation (8) for cΛ. Using Proposition 3.2, we have two ways to proceed.

Using part (5) of Proposition 3.2, we can find I ⊂ {1, · · · , k} so that M−1
I,Λ exists. Therefore, if we chop 

off rows indexed by Ic from equation (8), we get

MI,ΛcΛ = −MI,ΛccΛc .

Thus, we can reconstruct cΛ as

cΛ = −M−1
I,ΛMI,ΛccΛc . (9)

If we instead use part (4) of Proposition 3.2 we will be able to use a pseudoinverse method to solve for cΛ. 
Multiplying both sides of equation (8) by M∗

Λ gives

M∗
ΛMΛcΛ = −M∗

ΛMΛccΛc .
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Now, simply inverting we can reconstruct cΛ as

cΛ = −(M∗
ΛMΛ)−1M∗

ΛMΛccΛc . (10)

In our experiments, we will use the pseudo-inversive method given by equation (10) not only because it 
is more stable, but we also will not need to implement a search for the set I used in equation (9).

The following is an important observation that tells us that if the receiver is given a dual frame and an 
erasure recovery matrix M such that ker(M) = Θ(Hn), then the receiver can easily recover the encoding 
frame {gj}Nj=1 and consequently the encoding devices are not protected from the decoder.

Proposition 3.4. Any finite frame can be explicitly computed from the range space of its analysis operator 
and any one of its dual frames.

Proof. Assume that K is the range space of the analysis operator Θ of an encoding frame {gj}Nj=1 for Hn, 
and that {fj}Nj=1 is a dual frame to {gj}Nj=1. Then,

In =
N∑
j=1

fj ⊗ gj , (11)

where In denotes the n ×n identity matrix and f ⊗g denotes the rank-one operator defined by (f⊗g)(x) =
〈x, g〉 f ∀x ∈ Hn. Let {ej}Nj=1 be the standard orthonormal basis for HN and P be the orthogonal projection 
from HN onto K. Let hj = Pej . Then the range space of the analysis operator for {hj}Nj=1 is also K. Hence, 
by Proposition 2.6 in [16], we have that {gj}Nj=1 and {hj}Nj=1 are similar. I.e., there exists an invertible 
operator A : K → Hn such that gj = Ahj (j = 1, · · · , N). All we need to prove is that A can be computed 
in terms of {hj}Nj=1 and {fj}. Indeed, since

In =
N∑
j=1

fj ⊗ gj =
N∑
j=1

fj ⊗Ahj =

⎛
⎝ N∑

j=1
fj ⊗ hj

⎞
⎠A∗,

we get that 
∑N

j=1 fj ⊗ hj is invertible, and so

A =

⎛
⎝ N∑

j=1
hj ⊗ fj

⎞
⎠

−1

.

Therefore we get gj =
(∑N

j=1 Pej ⊗ fj

)−1
Pej . �

From the above result we know that in order to protect the encoding frame, the range space of its analysis 
operator and a dual frame can not be simultaneously made available to the decoder. Since a dual frame 
must be given so that the receiver can reconstruct the signal after erasure recovery, we need to provide 
the decoder an erasure recovery matrix M such that ker(M) �= Θ(Hn) and a dual frame which is not the 
standard dual.

Definition 3.5. An m-erasure recovery matrix, M , for an encoding frame {gj}Nj=1 is called an encoding frame 
protected m-erasure recovery matrix if the range of the analysis operator, Θ, for {gj}Nj=1 is a proper subspace 
of the kernel of M .
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Remark 3.6. Notice that by sending a signal, we are providing an eavesdropper, or the signal recipient with 
information on the range of the analysis operator, ΘG, for {gj}Nj=1. Thus, if the signal sender transmits 
too many (≥ n) signals, the encoding frame will be compromised. However, provided that fewer than 
min{n, N −m −n} signals are sent, if a receiver is provided with an erasure recovery matrix and a decoding 
frame, the encoding frame will remain protected. That is, if the signal recipient possesses a decoding frame 
F = {fj}Nj=1, an m ×N erasure recovery matrix M , and receives P < min{N−m −n, n} messages xj = Θ∗

F cj
for 1 ≤ j ≤ P , then there are still infinitely many possibilities for the encoding frame, G = {gj}Nj=1. To see 
this, notice that the encoding frame must satisfy the following conditions:

(1) MΘG = 0,
(2) Θ∗

FΘG = I, and
(3) ΘGxj = cj for 1 ≤ j ≤ P .

If we treat every entry of the analysis matrix for G, ΘG, as an unknown, then conditions (1), (2), and (3) 
make up a system of nm + n2 + nP = n(m + n + P ) equations in nN unknowns. Since we know that an 
encoding frame exists, we know that the system has a solution. Furthermore, since P < N −m − n, there 
are more unknowns than equations. Thus, under this condition there actually exist infinitely many possible 
choices for the encoding frame.

Definition 3.5 leads to the investigation of the existence and constructions of encoding frame protected 
m-erasure recovery matrices. Our main results in Sections 4 and 5 show that such matrices can be explicitly 
constructed and they form an open and dense subset in the set of all matrices which annihilate the range 
of Θ.

4. Existence of erasure recovery matrices

In this section, we will give a necessary and sufficient condition for the existence of erasure recovery 
matrices, and prove that when this condition is satisfied, erasure recovery matrices exist in great abundance. 
We first point out a simple necessary condition for the existence of erasure recovery matrices.

Lemma 4.1. Let {gj}Nj=1 be a frame for Hn. If there exists an m-erasure recovery matrix, then {gj}Nj=1
satisfies the minimal redundancy condition for m erasures. Moreover, if an m-erasure recovery matrix exists, 
then m ≤ N − n.

Proof. Since there exists an m-erasure recovery matrix M , it follows that every f ∈ Hn can be exactly 
reconstructed from {〈f, gj〉}j∈Λc whenever |Λ| ≤ m. If there exists a subset Λ such that |Λ| = m and 
{gj}j∈Λc is not a frame for Hn, then there exists a non-zero vector f ∈ Hn such that f ⊥ gj for all j ∈ Λc. 
Let c = (cj)Nj=1 = Θ(f). Then cj = 0 for j ∈ Λc. Since every m-column vectors are linearly independent, we 
have that cj = 0 for j ∈ Λ. Thus Θ(f) = 0 and hence f = 0. This contradiction shows that every N −m

vectors in {gj}Nj=1 form a frame for Hn.
For the moreover part, notice that since {gj}N−m

j=1 forms a frame, dim(span{gj}N−m
j=1 ) = n. That is, 

N −m ≥ n. Rearranging gives m ≤ N − n. �
Lemma 4.1 tells us that the minimal redundancy condition for m erasures is necessary for the existence of 

erasure recovery matrices. In what follows we show that this necessary condition is also sufficient. Moreover, 
there are many choices for m-erasure recovery matrices. Let {gj}Nj=1 be a frame for Hn and m ≤ N − n. 
We define MG to be the set of all sequences {hj}Nj=1 in Hm that are strongly disjoint to {gj}Nj=1. Then, 
MG is a norm closed, convex subset of HN

m =
⊕N

j=1 Hm (N -copies of Hm). We denote by M̃G the set of 
all {hj}Nj=1 ∈ MG with spark m + 1. Then every sequence in M̃G is a frame for Hm.
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Theorem 4.2. Let {gj}Nj=1 be a frame for Hn that satisfies the minimal redundancy condition for m-erasures. 
Then the set M̃G is open and dense in MG.

The method of proof of this result is similar to Theorem 5.7 in [24] in that at no point will we actually 
construct an m-erasure matrix for a given analysis frame. Thus, this problem is different from Theorems 13 
and 15 in [1] because they were able to provide an example of a full spark matrix (namely, the first k rows 
of the N × N DFT matrix). However, once we obtain an existence result, it is easy to get Zariski density 
using their techniques.

For the proof of Theorem 4.2, we require a lemma.

Lemma 4.3. Assume {gj}Nj=1 is a frame for Hn, and Λ satisfies the minimal redundancy condition with 
respect to {gj}Nj=1. If {hj}j∈Λ spans Hm, then {hj}j∈Λ can be extended to a frame {hj}Nj=1 for Hm that is 
strongly disjoint with respect to {gj}Nj=1.

Proof. Since Λ satisfies the minimal redundancy property with respect to {gj}Nj=1, for each j ∈ Λ, we can 

find scalars c(j)� ∈ C so that

gj =
∑
�∈Λc

c
(j)
� g�.

For � ∈ Λc, let

h� = −
∑
j∈Λ

c
(j)
� hj .

Then,

N∑
j=1

gj ⊗ hj =
∑
j∈Λ

gj ⊗ hj +
∑
�∈Λc

g� ⊗ h�

=
∑
j∈Λ

(∑
�∈Λc

c
(j)
� g�

)
⊗ hj

+
∑
�∈Λc

g� ⊗

⎛
⎝−

∑
j∈Λ

c
(j)
� hj

⎞
⎠

=
∑
j∈Λ

∑
�∈Λc

c
(j)
� g� ⊗ hj −

∑
�∈Λc

∑
j∈Λ

c
(j)
� g� ⊗ hj

= 0.

Therefore {hj}Nj=1 is strongly disjoint with respect to F . �
Corollary 4.4. Let {gj}Nj=1 be a frame for Hn satisfying the minimal redundancy condition for m-erasures. 
For each Λ ⊂ {1, 2, · · · , N} satisfying |Λ| = m, let M̃Λ

G denote the set of frames {hj}Nj=1 in MG for which 
{hj}j∈Λ is a linearly independent set. Then M̃Λ

G is non-empty.

Proof. Since |Λ| = m ≤ N − n, Λ satisfies the minimal redundancy condition with respect to {gj}Nj=1. Let 
{hj}j∈Λ be a basis for Hm. Then by the previous lemma, {hj}j∈Λ can be extended to a frame {hj}Nj=1 that 
is strongly disjoint with respect to {gj}Nj=1. Since {hj}j∈Λ is a linearly independent set, {hj}Nj=1 ∈ M̃Λ

G. �
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Proof of Theorem 4.2. Let Γ = {Λ ⊂ {1, 2, · · · , N} : |Λ| = m}. Then,

M̃G = ∩Λ∈ΓM̃Λ
G. (12)

We proceed by showing that each M̃Λ
G is an open and dense set.

To show that M̃Λ
G is open, first define the continuous mapping γΛ : M̃G → Cm×m defined by

γΛ({hj}Nj=1) =

⎛
⎜⎝ | | |

hj1 hj2 · · · hjm

| | |

⎞
⎟⎠

where Λ = {j�}m�=1. Since M̃Λ
G = γ−1

Λ (det−1(C \ {0})), M̃Λ
G is open.

To show that M̃Λ
G is dense, assume {h(0)

j }Nj=1 ∈ MG \ M̃Λ
G. Let ε > 0. Since M̃Λ

G is non-empty, we 

can find a {h(1)
j }Nj=1 ∈ M̃Λ

G. Let h(t)
j = (1 − t)h(0)

j + h
(1)
j . By convexity, {h(t)

j }Nj=1 ∈ MG. Note that 
p(t) = det(γΛ({h(t)

j }Nj=1)) is a polynomial. Since {h(1)
j }Nj=1 ∈ M̃Λ

G, p(1) �= 0. Since p has only finitely 

many zeros, we can find t0 so small that ‖{h(t0)
j }Nj=1 − {h(0)

j }Nj=1‖ < ε, and p(t0) �= 0. Since p(t0) �= 0, 
{h(t0)

j }Nj=1 ∈ M̃Λ
G. Therefore, M̃Λ

G is dense in MG.
Therefore, M̃G is dense in MG since the intersection of a finite collection of open dense subsets in a 

metric space is open and dense. �
From Lemma 4.1 we know that the condition N −m ≥ n is needed in order for an m-erasure recovery 

matrix M to exist. Note that an m-erasure recovery matrix M of size m × N has full rank. We get that 
dim(ker(M)) = N−m. Thus the condition n < N−m is necessary for the existence of m-erasure matrices M
for a frame {gj}Nj=1 such that ker(M) � Θ(Hn). Theorem 4.2 tells us that this is also sufficient if {gj}Nj=1
satisfies the minimal redundancy condition for m-erasures. Therefore we get the following:

Theorem 4.5. Let {gj}Nj=1 be a frame for Hn. Then there exists an encoding frame protected m-erasure 
recovery matrix if and only if {gj}Nj=1 satisfies the minimal redundancy condition for m-erasures and n <
N −m.

5. Constructions of erasure recovery matrices

While erasure recovery matrices for a fixed frame are abundant from Theorem 4.2, the theorem and its 
proof do not provide any constructions of such frames. In this section we will present several algorithms for 
the construction of strongly disjoint frame pairs {gj, hj}Nj=1 with M = [h1, · · · , hN ] serving as the erasure 
recovery matrix for {gj}Nj=1.

For the first construction, we need the following result due to Bodmann, Casazza, Paulsen, and Speegle 
(cf. [3]).

Lemma 5.1. Let {gj}Nj=1 be a frame for Hn and Θ be its analysis operator. Set hj = P⊥ej, where P is the 
orthogonal projection from HN onto Θ(Hn) and {ej}Ni=1 is the standard orthonormal basis for HN . Then 
G satisfies the minimal redundancy condition for m-erasures if and only if {hj}Ni=1 has spark m + 1.

Now we are ready to present the first construction procedure for strongly disjoint frame pairs {gj, hj}Nj=1
based on Lemma 5.1.

Construction Algorithm 1.

Step 1. Generate an m × N matrix M0 whose entries are drawn independently from the standard normal 
distribution, and let M = 1√ M0 = [h1, · · · , hN ].
m
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Step 2. Compute the orthogonal projection P for the range space of the analysis operator for {hj}Nj=1, and 
let g̃j = P⊥ej = (IN − P )ej for j = 1, · · · , N .

Step 3. Generate an n × N matrix T whose entries are drawn independently from the standard normal 
distribution.

Step 4. Let gj = T g̃j.

Proposition 5.2. Assume that m ≤ N − n, and G, M , P , and T are constructed as in Construction Algo-
rithm 1. If M has full spark, and T maps Range(P⊥) onto Hn, then M is an erasure recovery matrix for 
{gj}Nj=1. Moreover, {gj}Nj=1 satisfies the minimal redundancy condition for m erasures, and if m < N − n, 
M is an encoding frame protected m-erasure recovery matrix.

Proof. Since T is surjective, {gj}Nj=1 is a frame. We have

N∑
j=1

gj ⊗ hj =
N∑
j=1

TP⊥ej ⊗ hj = TP⊥
N∑
j=1

ej ⊗ hj

= TP⊥ΘH = 0

where ΘH denotes the analysis operator for {hj}Nj=1. Furthermore, since M has full spark, M is an m-erasure 
recovery matrix for {gj}Nj=1.

From Lemma 4.1, we know that {gj}Nj=1 satisfies the minimal redundancy condition for m erasures.
If m < N −n, then dim(kerM) = N −m > n. Hence, ΘG(Hn) is properly contained in kerM . Therefore, 

M is an encoding frame protected m-erasure recovery matrix. �
Remark 5.3. In practice, the conditions on M and T are always satisfied. In [1], Alexeev, Cahill, and Mixon 
proved that the set of m × N full spark matrices is open and dense in the set of all n × N matrices. 
Furthermore, any matrix T will map the range of P⊥ onto Hn with probability 1 since N −m ≥ n.

The next construction is useful because it provides robustness to signal noise, which is the main subject 
of the next section.

Construction Algorithm 2.

Step 1. Generate an m × N matrix M0 whose entries are drawn independently from the standard normal 
distribution, and let M = 1√

m
M0 = [h1, · · · , hN ].

Step 2. Let A be an N × (m + n) matrix whose first m columns are the rows of M , and the rest of the 
entries are selected independently according to the standard normal distribution.

Step 3. Let Q be the matrix obtained by performing the Gram-Schmidt orthonormalization procedure to the 
columns of A.

Step 4. Let G = F be the n ×N matrix whose rows are made up of columns m + 1 through m + n of Q.

Proposition 5.4. Assume m ≤ N − n, and A, G, and M are as constructed in Construction Algorithm 2. 
If M has full spark and A has full rank, then M is an m-erasure recovery matrix for the Parseval frame 
{gj}Nj=1.

Proof. Since A has orthonormal columns, GG∗ = In. Thus, {gj}Nj=1 is a Parseval frame. By the Gram-
Schmidt orthonormalization procedure, the rows of M are orthogonal to the rows of G. Thus, MG∗ =
MΘG = 0. Thus, M is an m-erasure recovery matrix for {gj}Nj=1. �
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While Construction Algorithm 2 does not provide protection for the encoding frame because the encoding 
frame is a Parseval frame, an encoding frame protected m-erasure recovery matrix can be obtained by ex-
tending Construction Algorithm 2 to give a non-standard dual frame pair. This is provided by Construction 
Algorithm 3 below.

Construction Algorithm 3.

Step 1. Generate an m × N matrix M0 whose entries are drawn independently from the standard normal 
distribution, and let M = 1√

m
M0 = [h1, · · · , hN ].

Step 2. Let A be an N × (m + 2n) matrix whose first m columns are the rows of M , and the rest of the 
entries are selected independently according to the standard normal distribution.

Step 3. Let Q be the matrix obtained by performing the Gram-Schmidt orthonormalization procedure to the 
columns of A.

Step 4. Let F be the n ×N matrix whose rows are made up of columns m + 1 through m + n of Q.
Step 5. Let K be the n ×N matrix whose rows are made up of columns m + n + 1 through m + 2n of Q.
Step 6. Let G = F + K.

Proposition 5.5. Assume m ≤ N − 2n, and M , F , and G are as in Construction Algorithm 2. If M has full 
spark and A has full rank, then M is an encoding frame protected m-erasure recovery matrix for {gj}Nj=1.

Proof. As in the proof of Proposition 5.4, M is an m-erasure recovery matrix for the Parseval frames F
and K. Thus

MΘG = M (ΘF + ΘK) = MF ∗ + MK∗ = 0 + 0 = 0.

Therefore, M is an m-erasure recovery matrix for {gj}Nj=1. Furthermore, since A has full rank, m < N − n, 
and as in the proof of Proposition 5.2, M is also an encoding frame protected m-erasure recovery matrix. �
Remark 5.6.

(1) As with Proposition 5.2, the hypotheses of Propositions 5.4 and 5.5 are almost always satisfied for 
random matrices.

(2) Using Matlab, we recommend the qr-decomposition of the matrix A instead of implementing the classical 
Gram-Schmidt orthonormalization procedure, for the sake of stability. To save time, we also recommend 
that the “economy-sized” qr-decomposition be used (qr(A, 0) in Matlab).

(3) To ensure greater privacy, Construction Algorithm 3 could be modified so that the encoder is given by 
G = F +αK for α > 1. This way, the encoding device is further from the decoder. However this comes 
at the expense of a less stable reconstruction (see Remark 6.6).

6. Noise mitigation

Let M be an encoding frame protected m-erasure recovery matrix for an encoding frame {gj}Nj=1 for Hn, 
and let {fj}Nj=1 be a dual frame to {gj}Nj=1. Assume Λ is an erasure set. For a given set Γ ⊂ {1, 2, · · · , N}, 
let MΓ denote the minor of M consisting of the columns indexed by Γ. For a fixed signal f ∈ Hn, let 
cj = 〈f, gj〉, c = (cj)Nj=1, and cΓ = (cj)j∈Γ. Then from equation (10), we have:

cΛ = −(M∗
ΛMΛ)−1M∗

ΛMΛccΛc . (13)
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In this section, we would like to know what happens to our reconstruction when the frame coefficients 
indexed by Λc are subject to additive channel noise. Since our reconstruction operator Δ : H(N−|Λ|) → H|Λ|
defined by

Δc = −(M∗
ΛMΛ)−1M∗

ΛMΛcc (14)

is linear, if we introduce a noise term ε = (εj)j∈Λc to the good coefficients, the corresponding error in the 
reconstructed coefficients is given by

Δε = −(M∗
ΛMΛ)−1M∗

ΛMΛcε. (15)

Thus, if ‖ε‖ or ‖Δ‖ is large, the reconstructed signal will be highly inaccurate. However, we will see that 
this is not the case for this situation when we use Construction Algorithms 2 and 3. The next lemma shows 
that if M satisfies the Restricted Isometry Property and ε is sparse, then the error in the coefficients is only 
slightly amplified.

Remark 6.1.

(1) This sparse noise model was motivated by [6]. In that paper, a similar model for erasure reconstruction 
was given. Assume that a signal recipient receives the frame coefficients, c = (〈f, gj〉)Nj=1 plus a sparse 
additive noise term, α (here α may represent either noise, or erasures). Their method uses a linear 
program to reconstruct the noise term, α. Since c ∈ ker(M), M(c + α) = Mα. Since c + α and M are 
known, to determine the additive noise term, α they consider the minimization problem:

argmin‖α‖0 subject to Mα = M(c + α),

where ‖α‖0 denotes the number of non-zero entries of α. However, this combinatorial problem is quite 
slow, so they solve the equivalent convex optimization problem instead:

argmin‖α‖1 subject to Mα = M(c + α),

which is much faster.
(2) In [12] classes of frames for which the amplification of additive channel noise was small were discussed. 

However, their analysis was for a different reconstruction which requires an n × n matrix inversion. 
Frames which had small error amplification factors were called NERFs, or Numerically Erasure-Robust 
Frames.

Lemma 6.2. Assume that {gj}Nj=1 is a frame for Hn and M is a k×N encoding frame protected m-erasure 
recovery matrix for {gj}Nj=1 which satisfies the Restricted Isometry Property of order s with constant δs. 
If ε is s-sparse, |Λ| ≤ s, and Δ is the reconstruction operator as defined in equation (14), then,

‖Δε‖ ≤ 1 + δs
1 − δs

‖ε‖. (16)

Proof. From equation (15), we have

‖Δε‖ ≤ ‖(M∗
ΛMΛ)−1‖‖MΛ‖‖M c

Λε‖. (17)

Since |Λ| ≤ s, using the restricted isometry property, whenever ‖x‖ = 1, we get
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〈M∗
ΛMΛx, x〉 = ‖MΛx‖2 ≥ 1 − δs.

Thus,

min σ(M∗
ΛMΛ) ≥ 1 − δs,

where σ(M∗
ΛMΛ) denotes the spectrum of M∗

ΛMΛ. Therefore

‖(M∗
ΛMΛ)−1‖ = 1

min σ(M∗
ΛMΛ) ≤ 1

1 − δs
. (18)

Again, since |Λ| ≤ s the restricted isometry property gives

‖MΛ‖ ≤
√

1 + δs. (19)

Since ε is s-sparse, the restricted isometry property yields

‖MΛcε‖ ≤
√

1 + δs‖ε‖. (20)

Combining equations (17), (18), (19), and (20) gives the result. �
The previous lemma gave a bound on the error of the frame coefficients. Next we will build on this error 

estimate for the reconstruction of a signal f ∈ Hn. Recall that if {fj}Nj=1 is a dual frame to {gj}Nj=1, then

f =
N∑
j=1

〈f, gj〉 fj =
N∑
j=1

cjfj ∀f ∈ H, (21)

where cj = 〈f, gj〉 for all j ∈ {1, · · · , N}. If the coefficients indexed by an erasure set Λ are erased, and the 
coefficients indexed by Λc are subject to an additive noise term, given by ε, then the corresponding error 
in the reconstruction of the erased coefficients is Δε. Thus the reconstructed signal, after synthesizing with 
{fj}Nj=1 is

f̃ =
∑
j∈Λ

(cj + (Δε)j)fj +
∑
j∈Λc

(cj + εj)fj = f +
∑
j∈Λ

(Δε)jfj +
∑
j∈Λc

εjfj . (22)

The following lemma gives a bound on the reconstruction error, ‖f − f̃‖.

Lemma 6.3. Assume that {fj}Nj=1 is a Parseval dual frame to {gj}Nj=1, and that M is a k × N encoding 
frame protected m-erasure recovery matrix for {gj}Nj=1 which satisfies the RIP of order s with constant δs. 
Suppose |Λ| ≤ s, ε is s-sparse, and let f and f̃ be defined as in equation (22). Then,

‖f − f̃‖ ≤ 2
1 − δs

‖ε‖. (23)

Proof. From equation (22),

‖f − f̃‖ =

∥∥∥∥∥∥
∑
j∈Λ

(Δε)jfj +
∑
j∈Λc

εjfj

∥∥∥∥∥∥ = ‖FΛΔε + FΛcε‖ ≤ ‖FΛΔε‖ + ‖FΛcε‖

≤ ‖Δε‖ + ‖ε‖ ≤
(

1 + δs
1 − δs

+ 1
)
‖ε‖ = 2

1 − δs
‖ε‖. �
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Remark 6.4. If we replace the condition that {fj}Nj=1 is a Parseval frame with the condition that {fj}Nj=1
has an upper frame bound of B, then it is easy to see that the error bound in equation (23) becomes

‖f − f̃‖ ≤ 2
√
B

1 − δs
‖ε‖.

With Lemma 6.3 in mind, it should be fairly clear why Construction Algorithms 2 and 3 work well. In 
those algorithms, since F is Parseval, and M is a standard normally distributed random matrix, M will 
satisfy the Restricted Isometry Property with good constants.

By combining the results from this section with Construction Algorithm 2 or 3 and the RIP for Gaussian 
random matrices into one we get the following theorem. The theorem tells us that with high probability, 
our reconstruction scheme will not amplify noise, provided m is O

(
s ln

(
N
s

))
.

Theorem 6.5. Assume that F and M are constructed using Construction Algorithm 2 or 3, where

m ≥ C

δ2

(
s ln

(
eN

s

)
+ ln

(
2
γ

))
(24)

for δ, γ ∈ (0, 1), and C is the universal constant in the proof of the restricted isometry property for Gaussian 
random matrices. Then with probability at least 1 − γ, for any s-sparse vector x ∈ HN ,

(1 − δ)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δ)‖x‖2.

Moreover, for f , f̃ , and ε defined as in Lemma 6.3,

‖f − f̃‖ ≤ 2
1 − δ

‖ε‖, (25)

with probability greater than 1 − γ.

Remark 6.6. Both Construction Algorithm 2 and 3 start by specifying an erasure recovery matrix, after 
which the RIP constant for the erasure recovery matrix is fixed. Thus, they should have roughly the same 
error bound. However, the frame expansion

f =
N∑
j=1

〈f, gj〉 fj

is more stable for Construction Algorithm 2 since we are encoding with the standard dual, which is known to 
minimize the �2 norm of the coefficient sequence (〈f, gj〉)Nj=1. Thus, there is a tradeoff between Construction 
Algorithm 2 which is more stable, and Construction Algorithm 3 which protects the encoding frame.

In the next section, we will experimentally illustrate that Theorem 6.5 is satisfied. Moreover, we will give 
evidence that our reconstruction method may not amplify normally distributed random noise, even if the 
noise term is not necessarily sparse.

7. Numerical results

Our first three experiments were designed to examine the effects of noise on our erasure reconstruction. In 
particular, we wanted to assure in these experiments that additive noise introduced in the frame coefficients 
indexed by Λc was not heavily amplified by our reconstruction process, backing up our results in Section 6. 
Each experiment corresponds to one of the Construction Algorithms in Section 5. For each experiment, we 
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Fig. 1. Noise amplification for Construction Algorithm 1.

used frames of length 1000 for R250 with erasure recovery matrices of size 250 × 1000. We ran 50 trials 
for each erasure set size, for erasure set sizes of |Λ| = 10, 20, 30, · · · , 250. The trials for each experiment 
were run simultaneously so that the same erasure recovery matrix was used for each construction algorithm. 
Similarly, the experiments corresponding to Construction Algorithms 2 and 3 share a synthesis (or decoding) 
frame. For each trial, new frames and erasure recovery matrices were generated by using the construction 
algorithms in Section 5. In each trial, we generated a standard normally distributed random vector f ∈ R250

(the same vector was used for each construction algorithm) and added a 5% additive normally distributed 
random noise term to the frame coefficients indexed by Λc. By 5% noise, we mean that the norm of the noise 
term, ε, was 5% of the norm of the frame coefficients indexed by Λc. The noise terms for each trial were 
the same for each construction algorithm, up to a scalar multiple (to obtain the correct noise percentage). 
The plot shows all 50 trials for each erasure set size with the exception of |Λ| = 250. These data points 
were omitted to avoid distortion in the plot. The ×’s denote ‖f − f̃R‖, and the +’s denote ‖f − f̃‖, where 
f̃R =

∑
j∈Λc(〈f, gj〉 + εj)fj and f̃ is as in Section 6. That is, f̃R is a noisy partial reconstruction, and f̃

is the signal obtained after performing our reconstruction algorithm on the noisy and erased data set. For 
more details on these experiments, see the attached reproducible file.

Remark 7.1. It is important to note that 5% channel noise does not necessarily lead to 5% reconstruction 
error. In fact after synthesis with a Parseval frame, this error frequently shrinks. This is why the recon-
struction errors in the following graphs tend to drop below .05 for unit norm signals. Use of a filter may 
further reduce this noise.

Even though there was no noise analysis in Section 6 for Construction Algorithm 1, Fig. 1 still suggests 
that this construction is stable. It is also important to note that in Fig. 1, we used the standard dual 
to the analysis (or encoding) frame. If a different dual were used, we would expect to see a less stable 
reconstruction.

In Fig. 2 we see a slight improvement over Fig. 1 in terms of stability to noise. In Fig. 3 we see a decline 
in stability, however, this is because we are not using the standard dual as the encoder (cf. Remark 6.6). In 
fact we are using the sum of the standard dual and a Parseval frame which is strongly disjoint with respect 
to the decoder.

In each of the figures, f̃ is a better approximation of f than f̃R is, except for the extreme case |Λ| = 250. 
This data backs up our results in Section 6. We note that the mathematical theory is not as strong as the 
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Fig. 2. Noise amplification for Construction Algorithm 2.

Fig. 3. Noise amplification for Construction Algorithm 3.

experiments seem to suggest for two reasons. The first reason is because we are using normally distributed 
random noise as opposed to sparse noise in the experiments. The second reason is that |Λ| ln( N

|Λ| ) is larger 
than m = 250 for |Λ| > 117. However, even for larger values of |Λ|, we still get relatively little noise 
amplification.

In Table 1, we list the averages of ‖f − f̃R‖ and ‖f − f̃‖ for each set of 50 trials. It is also useful to note 
that the maximal reconstruction errors for |Λ| = 250 were 7.0725 for Construction Algorithm 1, 5.3486 for 
Construction Algorithm 2, and 7.5135 for Construction Algorithm 3.

Fig. 4 is a comparison of our algorithms with the �1 minimization algorithm from the article [6] as 
described in Remark 6.1, as well as a variation of �1 minimization suggested by one of our referees. To 
reconstruct the noise term (in this case erasures and noise), α, we solve the quadratically constrained basis 
pursuit problem (cf. [13]):

α̃ = argmin‖z‖�1 subject to ‖Mz − b‖�2 < δ, (26)
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Table 1
Table of average reconstruction errors.

Algorithm 1 Algorithm 2 Algorithm 3
|Λ| ‖f − f̃‖ ‖f − f̃R‖ ‖f − f̃‖ ‖f − f̃R‖ ‖f − f̃‖ ‖f − f̃R‖
10 0.0317 0.0655 0.0256 0.0557 0.0362 0.0780
20 0.0329 0.0928 0.0266 0.0776 0.0377 0.1063
30 0.0329 0.1104 0.0269 0.0929 0.0381 0.1290
40 0.0340 0.1298 0.0277 0.1107 0.0392 0.1464
50 0.0355 0.1461 0.0286 0.1232 0.0405 0.1672
60 0.0357 0.1588 0.0293 0.1345 0.0415 0.1796
70 0.0371 0.1751 0.0302 0.1489 0.0427 0.1977
80 0.0380 0.1889 0.0315 0.1572 0.0445 0.2106
90 0.0392 0.2003 0.0321 0.1684 0.0454 0.2204
100 0.0403 0.2136 0.0332 0.1792 0.0469 0.2346
110 0.0424 0.2195 0.0343 0.1931 0.0485 0.2514
120 0.0446 0.2389 0.0359 0.2061 0.0507 0.2636
130 0.0460 0.2430 0.0380 0.2131 0.0537 0.2733
140 0.0486 0.2554 0.0394 0.2284 0.0559 0.2845
150 0.0507 0.2673 0.0412 0.2340 0.0583 0.2935
160 0.0521 0.2777 0.0427 0.2451 0.0604 0.3078
170 0.0561 0.2854 0.0464 0.2544 0.0657 0.3189
180 0.0592 0.2993 0.0483 0.2650 0.0682 0.3292
190 0.0634 0.3071 0.0525 0.2733 0.0741 0.3368
200 0.0715 0.3160 0.0588 0.2811 0.0832 0.3461
210 0.0801 0.3275 0.0651 0.2938 0.0920 0.3586
220 0.0934 0.3327 0.0764 0.3025 0.1082 0.3661
230 0.1148 0.3410 0.0941 0.3093 0.1328 0.3751
240 0.1527 0.3527 0.1262 0.3256 0.1778 0.3938
250 1.1241 0.3666 0.9261 0.3283 1.3049 0.3948

Fig. 4. Noise amplification comparison for Construction Algorithm 2 using erasure recovery matrices, �1 minimization, and weighted 
�1 minimization.

where M denotes the erasure recovery matrix, b denotes the frame coefficients subject to both noise and 
erasures, and δ denotes the noise level. We denote the result of the minimization procedure as α̃ because it 
is only an approximation of the true erased coefficients, subject to noise, α.

The variation of �1 minimization suggested by our referee uses the knowledge of the erasure set, Λ, to 
give a more accurate approximation of the noise term, α, by penalizing noise terms with the wrong support. 
To approximate α, we solve the following minimization problem:

α̃ = argmin
N∑

wj |zj | subject to ‖Mz − b‖�2 < δ, (27)

j=1
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where wj = 1 for j ∈ Λ, and wj = κ for j ∈ Λc, where κ > 1 is some penalty factor. Both δ and b are 
the same as the regular, unweighted �1 minimization problem above. For the following experiment, we used 
κ = 1000. This constant was selected because larger penalty factors did not seem to provide significantly 
smaller error terms.

For both �1 minimization algorithms, we used the software provided within the yall1 (Your Algorithms 
for L1) toolbox for Matlab, with a tolerance level set to 10−3 (cf. [38]). The plot shows the reconstruction 
errors for various erasure set sizes using erasure recovery matrices (as denoted by ×’s), �1 minimization 
(as denoted by o’s), and weighted �1 minimization (as denoted by +’s). To create the figure, we used 
Construction Algorithm 2 to create frames of length N = 1000 for R250 with an erasure recovery matrix of 
height m = 250. We performed 50 trials for erasure set sizes of 10, 20, 30, · · · , 240. For each trial new frames 
and erasure recovery matrices were used. As with the first three experiments, for each trial, we generated 
a standard normally distributed random vector f ∈ R250 and added a 5% additive normally distributed 
random noise to the frame coefficients indexed by Λc.

Fig. 4 shows that our reconstruction procedure as well as weighted �1 minimization both outperform �1

minimization. For smaller erasure set sizes, erasure recovery matrices outperform weighted �1 minimization. 
However, for larger erasure set sizes, weighted �1 minimization outperforms erasure recovery matrices. 
In general, erasure recovery matrices also seem to perform the reconstruction procedure faster than �1

minimization. However, the erasure recovery matrix algorithm and weighted �1 minimization are not a 
suitable replacement for the unweighted �1 minimization algorithm if the erasure set is unknown. We thank 
one of our referees for suggesting the inclusion of these comparisons.

The figures for the next set of experiments are given in Appendix A. These results were provided to give 
a visualization of the previous set of experiments. For each experiment, we compressed a 256 × 256 pixel 
image (Mandrill). To perform the compression, we simply erased 80% of the least significant fast Fourier 
coefficients. Thus, the compressed images lies in Cn for n = 13107. Each experiment corresponds to one of 
the construction algorithms in Section 5. For each algorithm, we used the same erasure recovery matrix, M . 
For the experiments, our erasure recovery matrix contained m = 3000 rows, and we used frames of length 
N = 2n + m = 29214. We used a 10% normally distributed noise term, and used erasure percentages of 
1%, 3%, 5%, 7%, and 9%. New noise terms were used for each erasure percentage. In each figure, the top 
row shows the image corrupted only by the 10% noise term with no erasures. The second row shows the 
noisy partial reconstruction of the image, f̃R, and the third row shows the noisy reconstructed image, f̃ , for 
various erasure set sizes.

In Figs. 5–7 in Appendix A, we see that the reconstructed image, f̃ , gives a better approximation to the 
compressed image than the erased image with noise, f̃R, with the exception of 9% erasures. However, 9% 
erasures corresponds to |Λ| = 2629 which is close to m = 3000. Thus, since |Λ| ≈ m, it is reasonable to 
expect a high degree of noise amplification.

8. Concluding remarks

We proposed a frame based kernel analysis approach to information recovery that also ensures encoding 
frame protections when additional tools, the erasure recovering matrices, are provided to the decoders. We 
also presented several necessary and sufficient conditions under which the erasure recovery matrix protects 
the encoding frame. We proved that such erasure recovery matrices actually form an open and dense subset 
in a particular matrix space, and concrete examples can be easily constructed by using the three proposed 
algorithms. Moreover, the construction algorithms also imply that any randomly generated matrix can serve 
(with probability one) as such an erasure recovery matrix with a proper choice of a encoding frame. For 
two of the three construction algorithms, we were able to provide proofs that these methods have small 
channel noise amplification factors. Detailed numerical experiments are presented pertaining to channel 
noise amplification for our the three construction algorithms.
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Besides the application to frame erasures, this method can possibly be applied to signal authentication 
yielding a method for protection from identity theft. Suppose that a communications group shares a common 
decoding (or synthesis) frame, {fj}Nj=1 held by a designated receiver. In general, there are many duals 
{g(k)

j }Nj=1 to {fj}Nj=1. Assume that the kth member of the communications group has his/her own encoding 

frame {g(k)
j }Nj=1 and erasure recovery matrix Mk. If the recipient wishes to verify which user sent a signal, the 

recipient can deliberately introduce erasures in the received signal and then reconstruct using each erasure 
recovery matrix Mk. As indicated by preliminary experiments, if there is a sufficient amount of randomness 
in the construction of the erasure recovery matrix, then the k value for which this reconstruction is sharp is 
the signal sender with a high probability. For example, suppose the designated receiver is the IRS and each 
taxpayer has his/her own encoding frame. Then, a file encoded by a taxpayer named Alice can be decoded 
by an agent named Bob holding the IRS decoder. Furthermore, Bob can authenticate Alice’s identity by 
using the erasure recovery matrix Bob has on file for Alice in a library of erasure recovery matrices, one for 
each taxpayer. Electronic signatures, for instance, could thus be authenticated in order to protect against 
man-in-the-middle attacks. Since the file of a recovery matrix can be vastly smaller than the file of an 
encoder, maintaining a library of recovery matrices would not be difficult. In this way, the erasure recovery 
matrix can be thought of as a fingerprint of the encoding frame. This method would not be a new public 
key method of encryption. However, since it is a natural outgrowth of the methods in our paper, we feel it 
adds to the exposition of our methods and might have some merit for potential considerations. (For another 
proposed application of frame theory to digital fingerprinting, see [33].)
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Appendix A. Visualizing numerical results using the mandrill image

Fig. 5. Noise amplification for Construction Algorithm 1 using the mandrill image.
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Fig. 6. Noise amplification for Construction Algorithm 2 using the mandrill image.

Fig. 7. Noise amplification for Construction Algorithm 3 using the mandrill image.
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